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1 lntrod uction 

Let y = (y1, Y2, ... , Yn) be a sequence of random variables which take on values 

in a certain finite alphabet A. The binary hypothesis testing problem is that 

of deciding, based on observing y, whether this sequence has originated from a 

source with a probability distribution P9
1 

(hypothesis H1) or from a source with 

a probability distribution P9
2 

(hypothesis H2). The distribution P9,, associated 

with the hypothesis Hi, is known to belong to a certain parametric family of 

probability mass functions (PMF's) {p9, (y), /Ji E 6i}, where /Ji is the parameter 

of the PMF within the family and ei is the parameter set, i = 1, 2. 

A decision rule n is a sequence of partitions nn 
= (01, 02) (n = 1, 2, ... ) 

of the observation space An into two complementary regions 01 and 02 whose 

union equals An, with the interpretation that for y E Of, a decision is made in 

favor of hypothesis Hi, i = 1, 2. 

Let Pei (On J/Ji) � P9i (y E 02) and Pe2 
(On JIJ2) � p92 (y E 01) denote 

the first (false-alarm) and the second (mis-detection) kinds of error probabil­

ity, respectively. The classical Neyman-Pearson approach [1) to simple binary 

hypothesis testing (/J1 and /J2 are known) suggests to minimize the probabil­

ity of error of the second kind Pe2 (nn J/J2) subject to the constraint that the 

probability of error of the first kind Pei (nn J/J1 ) is less than 2-An for some 

>. > 0. An alternative approach of interest is the Bayes criterion, in which 

a decision rule is sought to minimize the overall probability of error given by 

Pe (nn J01 ,/J2) � 7r1Pe1 
(nn J/J1) + 7r2Pe2

(nn J/J2), where 7r1 and 7r2 are prior prob­

abilities of the hypotheses. The optimal test under both criteria is well-known 

[2] to be the likelihood ratio test (LRT), which compares the likelihood ratio

p9
2 (y) / p9

1 (y) to a suitable threshold in order to make a decision. 

In many problems of practical importance the situation is not so simple and 

()i and /J2 are not fully known. All one knows is that the parameters 01 and 

/J2 take on values in two disjoint sets 61 and 62 , respectively. In this case, H1 
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Also, in several composite hypothesis testing problems considered in [4]­

[9], another test, known as the generalized likelihood ratio test (GLRT), was 

shown to be asymptotically optimal under the generalized Neyman-Pearson cri­

terion. The GLRT, which sometimes coincides with (3), uses maximum likeli­

hood (ML) estimates of (Ji and 82 under H1 and H2, respectively, to implement 

an LRT. In other words, this test compares the generalized likelihood ratio 

sup112
ee2 p92 

(y)/ sup111
e81 

p91 (y) to a certain threshold. In some situations, the

GLRT is asymptotically optimal also in the Bayesian sense [14], minimax sense 

[15] and random coding sense [16]. Although the GLRT is not always optimal

[17), [18, Appendix), it is widely used in universal hypothesis testing because in 

most of the practical situations this approach gives satisfactory results. 

While universal decision rules are independent of the unknown parameters 81 

and 82, the performance, in general, will depend on them. We are usually inter­

ested in exponential decay of the error probabilities, and we say that a universal 

test is efficient, if it achieves exponential decay of both error probabilities for all 

values of 81 and 82 . Thus, the important objective in the generalized Neyman­

Pearson approach is that of choosing the threshold >. such that the second kind 

error probability will vanish exponentially fast with n for every 82 . As shown 

in [4)-[9], for every distinct P111 and P112 , there exists some>.> 0 such that the 

error probabilities under both hypotheses decay exponentially to zero. However, 

such >. depends on the true underlying probability measures that are in turn 

unknown. Therefore, to assure exponential decay of both error probabilities for 

all Po
1 and P112 , the value of>. should be selected small enough. Moreover, if 

the families of PMF's associated with the hypotheses are sufficiently rich, such 

>. > 0 does not exist at all. It means that for any >., one can find Po1 and 

P11
2

, which are close enough each to other, so that the requirement (2) will be 

too restrictive, and even an optimal LRT that satisfies (2) for these 91 and 82 

will not be able to discriminate between the hypotheses, i.e., the mis-detection 

probability will tend to unity [4, Theorem 3], [8, Remark l(b)]. 
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One customary approach to overcome this difficulty is to adjust the threshold 

).. empirically during an experiment, as was also suggested in [8]. But in this 

case, the universality property of a test will be broken off, since one can not 

specify a good value of ).. before an experiment. Another method, proposed 

in (19), [20], is to let ).. tend to zero with sufficiently small rate as n -+ oo. 

This approach, unfortunately, achieves exponentially vanishing mis-detection 

probability at the cost of the exponential decay of the false-alarm probability, 

that is Pe1 
(!1n l81 ) will decay only subexponentially to zero. 

In this paper, we propose a new, competitive version of the Neyman-Pearson 

criterion to composite hypothesis testing, that could potentially solve the in­

consistency problem described above. The main idea behind this approach is 

to replace the uniform constraint on the error rate under H1 by a softer one. 

Specifically,. we wish to find a decision rule that maximizes the second kind error 

exponent uniformly over 82 , subject to the following condition: 

(4) 

where >..(01 , 82 ) is a certain threshold function that determines, for every 01 and 

82, the minimal allowable exponential rate of the first kind error probability. 

Observe that this is just a modified version of the generalized Neyman-Pearson 

approach where).. is allowed to be a function of the parameters (Ji and 82. This 

modification adapts the constraint on the first kind error rate to the ability 

of discrimination between P11
i 

and Po
2 , as measured by >..(81,82). Namely, for 

hardly distinguishable hypotheses, >..(81, 82) is expected to take on small values 

and hence the constraint (4) turns to be weaker than (2), whereas for those 

parameters 81 and 82 that >..(81,82) takes on relatively large values, a higher 

error rate under H1 is required. In the radar detection problem, for example, it 

would be desirable to adjust the false-alarm rate according to an unknown level 

of the signal-to-noise ratio (SNR). 

An optimal test under this competitive Neyman-Pearson criterion is quite 
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a straightforward extension of that under the generalized Neyman-Pearson ap­

proach that was derived in the previous works on universal hypotheses testing 
[3]-[13]. The major interest in the proposed approach, however, is in specifying a 

reasonable threshold function >..(81 , B2) that would lead to an efficient universal 

decision rule. 

In a recent paper (18], that in fact has motivated our work, a novel com­

petitive minimax approach to composite hypothesis testing was proposed for 

the Bayesian setting. An optimal decision rule in the competitive minimax 
sense minimizes the worst-case ratio between the error probability of the test 

that is independent of the unknown ( B1, B2) and the minimum error probability 

achieved by the LRT. That is, 

K t. .  f Pe(On lB1,B2) n = m sup ,
0" 91 .82 Pe• ( B1, B2) (5) 

where Pe (nn j81, B2) is the overall probability of error associated with a decision 

rule nn and Pe
· ( B1 , B2) is the minimum Bayes error probability of the LRT for 

known B1 and 82, If Kn happens to be subexponential in n, then an optimal 
sequence of decision rules under the competitive minimax criterion attains the 

same exponential error rate as the optimum LRT for every B1 and B2 . On the 

other hand, when Kn grows exponentially with n, this criterion, unfortunately, 

does not guarantee an exponential decay of the error probability, and therefore 

the following modification has been proposed: 

Ke t. 'nf Pe(On l81, B2) n = 1 sup [ ]' 
,

0" 81 ,92 
P;(fh,B2) � (6) 

where O � e � 1 is selected to be the largest number e• such that K� does not 

grow exponentially with n. An asymptotically minimax-optimal test developed 

in (18] is given by 

fin { PB1 (y) P92 (y) 
} 

l = Y : sup [P* (B B )]e· > sup [P• (B B )](· 81,82 e 1, 2 81,92 e l, 2 
(7) 

Actually, this decision rule asymptotically achieves the maximal fraction C of 

the optimum error exponent and is therefore asymptotically equivalent, under 
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certain regularity conditions, to the test that maximizes the worst-case ratio 

between the exponential error rates of a decision rule that is ignorant of ( 81, 82) 

and the LRT, specifically, 

. f 
lim infn--too --k log Pe(nn l81, 82)

sup m 
11 61,62 £•(81,82) 

(8) 

where £•(81,82) = lim inf n--too -!i logP;(81,82) is the exponential error rate 

associated with the LRT. 

To see the interrelation between this approach and the competitive Neyman­

Pearson criterion, consider a specific choice of >,.(81,82) = eE•(B1,82), where 

e > 0 is a given number. Then, condition (4) restricts consideration to tests 

whose worst-case value of the ratio between the first kind error exponent and 

the optimum error exponent of the LRT is not less than e, More precisely, the 

constraint on the first kind error probability can be rewritten in the following 

form: 

(9) 

where e > 0 designates the maximal tolerable level of the loss ( or the mini­

mal gain) in the false-alarm rate relative to E*(81,82) caused by uncertainty 

in (81, 82). In light of these observations, our competitive Neyman-Pearson ap­

proach may be viewed as an extension of the competitive minimax criterion to 

a Neyman-Pearson-like setting of the composite hypothesis testing problem. 

In our work we propose and investigate a universal decision rule, which is 

optimal in this competitive Neyman-Pearson sense. We also derive a single­

letter expression for the second kind error exponent and establish the necessary 

and sufficient condition on )..( 81, 82) under which exponential decay of the mis­

detection probability is guaranteed for all 82 . Generally speaking, our main 

result is that infe;ee
2 

D(Pe; IIPe
i ) serves as the supremum over all error rates 

under H1 that could be achieved by a universal decision rule, which still guaran­

tees, for all 82 E 82 , exponential decay of the second kind error probability. In 

effect, it can be seen as generalization of Stein's Lemma (cf. e.g., (16, Corollary 
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1.21) to composite hypotheses. The significance of this result is that it enables 

us to establish conditions on the richness and the structure of the parameter 

sets under which it is possible to distinguish efficiently between the hypotheses. 

In addition, we develop an optimal decision rule under the modified version 

of the competitive minimax criterion (with C) for the Bayesian setting of the 

composite hypothesis testing problem. In contrast to the competitive minimax 

test (7), this decision rule is shown to be independent of(*, which is normally 

unavailable in closed form. Finally, we present applications of the proposed 

approach to problems of classification with training sequences, model order es­

timation and detection of messages via unknown channels: The performance 

will be examined and compared to the generalized Neyman-Pearson approach 

and other existing methods. 

For the sake of simplicity, the general analysis will be restricted to the case 

of i.i.d. sources with a finite alphabet, but it can easily be extended to Markov 

sources, finite-state (FS) arbitrary varying sources (AVSs) with known deter­

ministic state sequences and more general alphabets. In addition, using an 

appropriate definition of the Neyman-Pearson criterion for multiple hypotheses 

testing, a generalization to M hypotheses is also possible as long as M does not 

grow exponentially with n. The analysis techniques that will be used are similar 

to those of [4]. 

The remainder of the paper is organized as follows. In the next section, 

the problem is precisely formulated and main results are derived. Section 3 

contains the aforementioned applications. Finally, in Section 4, we summarize 

our conclusions. 
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2 Statement of the Problem and Main Results 

2.1 Statement of the Problem 

Let Pi £ {Pe;(·) : (}i E 8i} denote a parametric family of memoryless sources 

with a finite alphabet A, whose cardinality is IAI, where 6i is a parameter 

vector consisting of the strictly positive letter probabilities, and 8i � JRJA l-l 

is a parameter set, i = 1, 2. Let P9
1 

E P1 and Pe2 
E P2 be two sources in 

these families. The assumption about positivity of the letter probabilities is 

needed to guarantee that the functional D(·IIP1J;), which is defined below in 

(15), is continuous. This is required for the proof of Theorem 2 in Subsection 

2.2. Let 6 £ (61,62) E 8, where 8 denotes the Cartesian product 81 x 82. The 

unknown (} is assumed fixed and deterministic. Given a sequence of observations 

y = (Y1, Y2, ... , Yn) E An, we wish to decide between two hypotheses {Hi, i =

1, 2}, where under Hi it is assumed that y was emitted from the source P/J;· 

The probability of error under hypothesis Hi, associated with a decision rule 

nn 
= (flf' n�), is given by 

Pe;(flnl6i)= I: Po,(Y), i=l,2, (10) 
t1E(Of )° 

where (nft is the complement set of flf and p9;(y) is the conditional PMF 

of y given 6i. Let e1(!1l61) and e2(fll62) denote the first and the second kind 

error exponents, respectively, associated with a sequence n of decision rules nn 

(n = 1, 2 .. . ) and induced by 6, i.e., 

(11) 

We wish to find an optimal decision rule in the competitive Neyman-Pearson 

sense, that is, among all tests satisfying 

(12) 

the optimal test will maximize e2(!1l62) uniformly over 02 E 92, where >.(6) is 

an arbitrary nonnegative threshold function. In other words, we seek a decision 
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rule, that for every Po1 
and Po2 

achieves exponential decay of the false-alarm 

probability with rate at least ..\(0), and at the same time maximizes the mis­

detection exponent, whatever the true underlying probability measures are. Our 

goal is to analyze the performance of this optimal decision rule and to establish 

conditions on the threshold function under which both error probabilities vanish 

exponentially fast with n for all Po1 
and Po2 • 

2.2 Main Results 

Let q11(a) denote the relative frequency of appearance of the letter a E A in the 

vector y E An 

1 n 

q11(a) = - L 5(y; = a),n i=l 
(13) 

where 5(y; = a) is an indicator function for Y; = a. Since Q
y 

� {q11
(a) : a EA} 

is a probability measure over the finite alphabet A, we define the empirical 

entropy and the divergence 

aEA 

""°' qy(a) 
D(Q11 IIPo.) = � Qs,(a) log-

(
-

)
,

aEA Po, a 

(14) 

(15) 

where logarithms here and throughout the sequel are taken to the base 2 and 

OlogO � 0. Note that, as was mentioned above, D(·l!Pe.) is continuous since 

Po, (a) is assumed positive for every a EA. The type class T(Q11
) is defined as

the set of all sequences y' E An for which Q1/ = Q11• It is well-known [16] that

Po,(Y) = exp2 {-n[H(Q11
) + D(Q11 11Pe.)]}. (16)

Let a decision rule A be defined as 

(17) 

In the following theorem we state that A is an asymptotically optimal test in 

the competitive Neyman-Pearson sense. 
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Theorem 1. Let the decision role A be defined as in (17). 

( a) For every () E E>

(18) 

(b) Let n be an arbitrary sequence of partitions nn 
= (!11, n�) (n = 1, 2, . .. ) 

based on y, which is independent of the true underlying probability measures,

and that at the same time satisfies 

(19) 

where for all n sufficiently large Pn � IAI log(,:i + 1)/n. Then:

(20) 

The optimality of A, in the sense of Theorem 1, essentially means that if 

the guaranteed performance, in terms of the first kind error probability, of an 

arbitrary competing decision rule n is slightly better than that of A, then n is 

inferior to A in the second kind error exponent uniformly for every Pe2 • 

Proof of Theorem 1. Since Pe
1 

and P9
2 

are memoryless sources, it can be proved 

that Q
y 

is a sufficient statistic for asymptotic optimality. Namely, for every 

decision rule n there exists another decision rule, based only on the empirical 

statistic Q
y 

of the observed data y, which is not worse than n in the error 

exponents sense (see, e.g., [13, Lemma 11). Hence, we may restrict ourselves to 

those tests which depend on y only via Q
y

, without loss of generality. Thus, 

Pel (nn 1e1) = L PIJ1 (y) 
yE02 

= L IT(Q11)I · PIii (y),
T(Qv)<;;;n2 

(21) 

(22) 

where IT(Q
v
)I is the size of the type class T(Q

y
).  The cardinality of the type 

class is well-known [16] to be bounded as follows: 
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where En = JAi log(n+ 1)/n. Combining this with (16), and using the constraint 
(19) on the first kind error probability, we have that for any y En� and OE e 

rn[.�(ll)+Pn] > p (f!nJO ) - e1 1 

> L exp2{-n[D(Q11 IIPoi ) + En]}
T(Q11)�02

. Since Pn � En, we conclude that for sufficiently large n and ally E n� 

and therefore, 
inf (D(Q11 IIP0J - ,\(0)) > 0, Vy En�. 
9E9 

-

(24) 
(25) 

(26) 

(27) 

(28) 
It means that for n sufficiently large, any y that belongs to n� is also in A�, or 
equivalently, Af � f!f. Hence, 

(29) 

and part (b) is proved. 
As for the part (a), we have for all O E e 

Pe1 (A nlB1) = :E IT(Qi,)I · P91 (y) (30)
T(Q11)�A2 

< :E exp2 {-nD( Q11I JP01 )} (31) 
T(Q11)�A2 

< :E exp2 {-n,\(O)}, (32) 
T(Q11 i)�A2 

where the last inequality follows from the definition of A�. Since the number of 
distinct empirical measures Q11 

is upper-bounded by (n + l)IAI [16], we obtain 

Consequently, 

and the theorem is proved. 
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Although Theorem 1 provides an optimal decision rule for any >.(B), it does 

not directly specify an asymptotic behavior of the second kind error probability, 

which depends on the unknown Po2 
as well as on the threshold function >.(B) 

that can be adjusted by a detector. The fundamental question that has to be 

considered is whether there exists such >.(B) that guarantees exponential decay 

of both error probabilities for all possible sources Po1 
and Po2

• If so, what would 

be a reasonable choice of >.(B)? 

For convenience, let us define 

g(Q) � inf [D(QIIP01) -
>.(B')], 

8'E6 
1 

(35) 

where Q is a PMF on the alphabet A. Also, for any memoryless PMF with 

parameter vector µ, we denote by B(µ, 8) an open ball of radius 8 > 0 around 

µ taken in some metric in the Euclidean space. 

Throughout the sequel, for any set S, S denotes the closure of S, S0 the 

interior of S, and sc the complement of S.

The next theorem determines the second kind error exponent associated 

with the optimal decision rule A and establishes a condition on >.(B) under 

which Pe2 
(An lB2) decays exponentially fast to zero. 

Theorem 2. Let the decision rule A be defined as in (17). Let Po1 
and Po2 

be 

the true underlying probability measures with unknown B E 0. Then,

a) 

e2(AIB2) = inf D(QIIP02 ), QEG 
where C is the set of all PMF's over th� finite alphabet A, defined as 

C={Q:g(Q)<O}. 

b} 

if and only if there exists some 8(82) > 0 such that
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Discussion: Part (a) of this theorem provides a single-letter expression for 

the second kind error exponent as a functional of 82 and>.(·). Part (b) specifies 

the necessary and sufficient condition on >.(·) to attain exponential decay of 

the second kind error probability for a specific value of 82. Observe, that this 

condition is expressed as an upper bound on>.(·) that depends on the unknown 

02. Therefore, exponential decay of Pe2 (AI02) is achieved for all 02 E 82, if and

only if (39) holds for all 02 E 82. 

It can be seen from {39) that the simple necessary condition for achieving 

exponential decay of the mis-detection probability for all 02 E 82 is given by 

Note that this condition is also sufficient when 62 is an open set, since for every 

02, one can find 8(02) > 0 such that B(02, 8(02)) � 82. 

In view of this result, for every 01 , the value of D(P2IIPei ) can be interpreted

as the supremum over all error rates under H1 that could be achieved by a 

universal decision rule, which still guarantees for all 02 E 82 exponential decay 

of the error probability under H2• In the classical Neyman-Pearson approach, 

where two sources Pe1 
and Pe2 

are given, it is well-known {Stein's Lemma, see, 

e.g., [16, Corollary 1.2)) that the best exponential rate of the first kind error

probability, when the second kind error probability is bounded away from 1, is 

D(Pe2 l1Pe1 ). Hence, our result can be seen as generalization of Stein's Lemma 

to composite hypothesis testing. 

Theorem 2 can also be used for establishing conditions on the richness and 

the structure of the parameter sets under which universal efficient decision rules 

exist. Clearly, an efficient test exists if and only if there exists some positive

>.(·) that satisfies (39) for all 02 E 82• For example, suppose that 81 and 82 

are sepamted away in the sense that there exists some 8 > 0 such that 
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where 83 � LJ82E92 B(02, o) is a a-smoothing of 82. Then, the threshold func­

tion A(O) = eD(P�IIP01 ), with O < e � 1, guarantees exponential decay of 

both error probabilities for all O E 8. Moreover, in this case, for any constant 

threshold function ,\(0) = Ao with Ao � D(P�IIP1 ), equation (39) holds for all 

02 E 02. Therefore, for every such Ao, also the generalized Neyman-Pearson 

criterion leads to an efficient decision rule. However, this is a more conservative 

approach since for all 01 E 01 the first kind error exponent is only guaranteed 

to be Ao, while in the competitive Neyman-Pearson approach, for those 01 that 

are "far" enough from 02, we can guarantee much higher values of the first kind 

error exponent. 

In certain problems of practical interest 01 happens to be a subset of 02 ( e.g., 

01 = 1/2 and 82 = (O, 1/2) U(l/2, 1) ). For this geometry, D(P2IIP11i ) vanishes 

for all 01 E 81 . As a result, an exponential decay of both error probabilities 

cannot be achieved simultaneously. 

Another interesting situation is when 01 and Eh are open sets. As was men­

tioned earlier, if 02 is open, then the necessary and sufficient condition for the 

exponential decay of the second kind error probability is ,\(0) � D(P2IIPe1 ). 

Hence, to prove the existence of an efficient test, it is enough to show that 

D(P2IIP01 ) is positive for all B1. Suppose, conversely, that D(P2IIP01 ) = 0 for 

some 01• Then, by continuity of D(·II01 ), there exists someµ E 01 that belongs 

to 62 . Since 01 and 02 are disjoint, this µ necessarily lies on the boundary 

of 02 and hence any neighborhood of µ contains elements of 02 , contradict­

ing the openness of 81 . Thus, for instance, for the threshold function ,\(0) =

eD(P2 IIP01 ), with O < e � 1, exponential decay of both error probabilities is 

guaranteed for all (J E 0. Note that even if D(P2IIP1) � info
1Ee1 D(P2IIP0

1
) 

vanishes (and hence 01 and 02 are not separated away), e.g., if 01 = (0, 1/2) 

and 02 = (1/2, 1), it is still possible to distinguish efficiently between the hy­

potheses, whereas the generalized Neyman-Pearson approach, in this situation, 

fails to universally achieve exponentially vanishing error probabilities, since no 
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constant threshold >.o > 0 can satisfy ( 40).

Proof of Theorem 2. In this proof, we use large deviations techniques [21]. By
definition of the set" C

(42) 

where .Cn denotes the set of all empirical measures induced by sequences of
length n. Using Sanov's theorem for finite alphabets [21, Theorem 2.1.10), we
have

By definition of g( ·) as the point-wise infimum of a family of continuous func­
tions, it is upper semi-continuous, which implies that C is an open set. There­
fore, an upper bound in (43) coincides with a lower bound and the part (a) is
proved.

By continuity of D(·l1Ps2 ), the error exponent under H2, given by (36),
vanishes if and only if Po2 

E C. Thus, Pe2 
(A nl82) converges to zero exponentially

fast iff Po2 
E (C/ = (cc)° . This condition is equivalent to the following:

There exists some '5(82) such that B(82,'5(82)) � CC, or equivalently, for every
µ E B(82,J(02)),

g(P,,. ) = inf [n(P,,. IIPo,) - >.(8')] > 0,
8'E0 

1 -

which completes the proof.

(44)

D

In general, to achieve exponential decay of both error probabilities, >.(8) may
be an arbitrary function of 8 which satisfies (39) for all O E E>. However, there
are two specific choices mentioned earlier that would be advisable to examine
more closely.

One, perhaps the most natural choice in view of Theorem 2, is >.( 8) =
eD(P2IIPsi ), where O < e < I. In this case, a decision rule is required to
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achieve only a certain fraction ( of the maximal universally achievable exponent 
of the first kind error probability. It follows from (37) that when ( -t 0, the set 

C tends to include only Q satisfying 

(45) 

i.e., Q E P1 . Therefore, by Theorem 2 the second kind error exponent (36)
tends to be 

(46) 

Similarly to D(P2IJPe1 ), the value of D(P1IJP02 ) for every 02 can be interpreted 
as the supremum over all universally achievable error rates under H2, for which 
the first kind error exponent does not vanish for all 01. Thus, the choice of 
0 < ( < 1 controls the balance between false-alarm and mis-detection rates. At 
the upper edge of the range of ( ([ -t 1) the highest false-alarm rate D(P2IIP0

1
) 

is attained, and at the lower edge ([ -t 0), we obtain the highest mis-detection 
rate D(P1IJPe

2
). 

It should be stressed that, at least in the case that 01 and 02 are open 
sets, for any O < ( < 1, the exponential decay of both error probabilities is 
guaranteed for all sources in P1 and P2. 

Another interesting choice of >.(O) is >.(O) = [E*(O), where E*(O) is the 
error exponent function of the LRT associated with the Bayesian setting of 
the simple hypothesis testing problem and e is a given positive number (not 
necessary less than 1). The value of e, in this case, can be interpreted as 
the maximal tolerable level of the loss (or the minimal gain) in the first kind 
error rate relative to E* ( 0). By Theorem 2, the maximal ( that guarantees 
exponential decay of the second kind error probability is upper bounded by 
infeE0 D<:.2m1>. As was mentioned in Introduction, this choice of the threshold
function emphasizes the relation of our competitive Neyman-Pearson approach 
to the competitive minimax approach of [18]. Moreover, if we select e to be the 
largest possible number ( = (* such that there exists a decision rule for which 
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Theorem 4. Let the decision rule W(,) be defined as in (50). Then:

liminf -� logPe(Wn(,n)IB) � f.* E*(8), VB Ee. (51)n-+oo n 

where C is defined by ( 48). 

Proof of Theorem 4. Let us define A('y) as 

By definition of W ( 'Y), whatever the value of f.* is, the following condition is

satisfied: For every y E Wf ('yn), either 

or 

inf D(QvllPei) +'Yn < f.*
9E9 E*(8) 

. inf D(QvllP02) + 'Yn > f.*.
9E9 E*(8) -

(53) 

(54) 

Equivalently, either 

(55) 

or 

(56) 

It means that Wf (,n) � Arbn) u Xrbn)• Employing the union bound, we 

obtain 

Pe2 (Wn(,n)l82) = Po2(y E Wi'('rn)) � P112(y E ArC'Yn) U Af('Yn)) (57) 

� P112 (Y E Af('Yn)) + P112(Y E Af('yn)). (58) 

Hence, the second kind error exponent associated with W(7) is lower-bounded 

by 
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where the last inequality follows from Corollary 3. Using similar arguments, it 

can also be shown that 

Thus, combining the last two equations, we have 

and the theorem is proved. 

2: c E*(8), w Ee, 

(60) 

(62) 

D 

Although merely i.i.d. sources were considered here, all our results can read­

ily be extended to finite alphabet Markov sources. The only difference is in 

defining of the empirical entropy and the divergence, where the conditional em­

pirical probabilities will be used instead of the ordinary ones. 

It also extends to the class of FS AVSs with known state sequences. This 

could be useful in problems of communication across unknown channels, where 

a probability distribution of the channel output Yt at the time instant t depends 

on the input to the channel. In this case, the sequence of states associated with 

a hypothesis Hi is determined by the corresponding channel input sequence, 

which is known to the decoder. 

In addition, similarly to [13], using a slightly weaker version of the optimality 

criterion, the generalization to the continuous alphabet case is possible. An 

optimal test, in this case, is based on the continuous version of the relative 

entropy and employs a "8-smoothing" of decision regions (see [13]). 

We remark that the method of types for i.i.d. sources [16], which, together 

with large deviations techniques [21], was used in this Section for the general 

analysis, can be extended to more general situations, such as Markov sources 

and unifilar FS sources in the discrete case [12], and exponential families [9] 
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and, in particular, Gaussian models (22] in the continuous case. Hence, our 

approach can naturally be extended to all these important and commonly used 

parametric models. 

Finally, our results can be generalized to the multiple hypothesis testing 

problem, where there are M composite hypotheses, provided that M does not 

grow exponentially with n. Unfortunately, using the same analysis technique, we 

were unable to extend them to the general case, where M grows exponentially 

with n, which in turn has a very important application in universal decoding 

for unknown communication channels. 

3 Applications 

This section is devoted to applications of our results and their extensions to some 

of the frequently encountered problems in communications, signal processing 

and detection theory areas. We investigate the usefulness of our approach in 

the context of these specific examples and compare it to the generalized Neyman­

Pearson approach and other widely used methods. 

One example is the problem of classifying an observation sequence into one 

of two unknown sources, when each source is represented by an independent 

training sequence. The optimal test in the generalized Neyman-Pearson sense, 

derived in [4], uses only one training sequence but is inconsistent. In contrast, 

we demonstrate that our approach leads to a universal test that employs both 

training sequences and guarantees exponential decay of the error probabilities 

for all distinct sources. 

Another example is estimating the order of a finite-alphabet Markov source. 

It will be shown that, in this problem, the best universally achievable exponent of 

the overestimation probability vanishes, which implies that an efficient universal 

Markov order estimator does not exist at all. This fact was also proved in [19]. 

Finally, application of our approach to the problem of detection of signals 
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transmitted across an unknown finite-alphabet finite-state channel is examined 

and compared to the generalized Neyman-Pearson approach of [11). In addition, 

an optimal detector is explicitly derived for the class of Gaussian intersymbol 

interference (ISI) channels with finite input alphabet. 

3.1 Classification with Training Sequences 

The problem of classifying probabilistic information sources, whose statistics 

are only partially available though training sequences, is frequently encountered 

in speech recognition applications, signal detection and digital communications. 

This problem can be treated as one of the multiple composite hypothesis testing 

as follows. 

Let { P,p : </> E �} be a certain parametric family of PMF's over a finite al­

phabet A. There are M distinct unknown sources, P,p1
, P,p2 , • • •  , P,pM, whose 

probability measures belong to this family, i.e. </>i E �' i = 1, 2, ... , M. We 

are given a test sequence x = (xi,x2, •• • ,xn) E An that must be classified 

as having been produced by one of the M sources. In addition, for each </>i 

(i = 1, 2, ... , M), there is a training sequence ti = (til, ti2, ... , tim) E Am 

emitted from the source P,p;. It is assumed that the training sequences are in­

dependent of each other and of the test sequence x. The problem is to decide 

among hypotheses {Hi, i = 1, 2, ... , M }, where hypothesis Hi is that x and 

ti originated from the same source. A decision rule O for this problem is a 

sequence of partitions of the observation space An x (Am)M into M disjoint

regions or' 0�' ... OM, where the test sequence X is classified as coming from 

the source P,p; iff (x,ti, ... ,tM) E Of. 

As an important example, we consider the binary classification problem of 

memoryless sources. That is, we assume that M = 2 and {P,p : </> E �} is the 

class of all memoryless probability measures over the finite alphabet A with 

strictly positive letter probabilities. In addition, we assume that the asymp-
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totic regime of the problem is such that the length of the training sequences m
grows linearly with the length of the test sequence n, namely the ratio r £ 1!!­
is constant for all large n. In this configuration, the conditional probability
distribution of the entire data set y = (x, ti, t2) under Hi is given by

H1: Pe1 (Y) =P¢1 (x)p¢1 (t1)P¢2 (t2),
H2: Pe2 (y) =P¢2 (X)P<1>1 (ti)p<1>2 (t2),

(63)
(64)

where 81 £ (¢1,¢1,¢2) E 81 and 82 £ (¢2,¢1,¢2) E 82 are unknown parame­
ters . Note, first, that the parameter sets 81 £ { ( c/>1, c/>1, c/>2) E IP3 : c/>1 f:. c/>2 }
and 02 £ { ( ¢2, c/>1, c/>2) E IP3 : c/>1 f:. c/>2 } are not separated away. Secondly,
they are relatively open rather than open, i.e., 8i is open on the hyperplane
{(¢i,c/>1,c/>2) E cp3 }, i = 1,2, but it is not open on IP3

• In addition, 81 and 82
are related in the sense that 82 is completely specified by 81. This fact reduces
the degree of uncertainty in the parameters and may potentially improve the
performance of a universal test.

Let Q
Y 

£ (Q2 , Qt1 , Qt2) denote the triplet of empirical PMF's associated
. with y. In this case, Q

Y 
is a sufficient statistic for asymptotically optimal

classification in the error exponent sense. For any two triplets of PMF's Q
1 £

(Q11, Q12, Q13) and Q2 £ (Q21, Q22, Q23), let us define the following functional:

Now, if we replace D(·II·) by .D(·II·) in the formulations of Theorems 1, 2 and
4, their results will hold for the above-defined classification problem. Thus, an
optimal classifier in the competitive Neyman-Pearson sense can be written in
the following form:

Af = {y: inf (n(QzllP<1>1 ) + rD(Qt1 IIP<1>1 )
(</>1,</>2 )E'P2 

+ rD(Qt2 IIP<1>2 ) - A(c/>1, c/>2)) < 0 }· (66)
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Note that, in the particular case of A(</>1 , ¢2) = Ao, where Ao is a positive con­

stant, this test coincides with the GLRT studied in (4],(7]. It was shown there 

that only one training sequence is needed to achieve an asymptotic optimality 

in the generalized Neyman-Pearson sense. To see it from (66), observe that 

A( ¢1 , ¢2) = Ao does not take part in the minimization and therefore the min­

imization over </>2 sets to zero D( Qt
2 IIP,t,2 ). This emphasizes the pessimistic 

nature of the generalized Neyman-Pearson criterion, since the additional infor­

mation associated with the second training sequence is ignored. As a result, no 

Ao can guarantee exponential decay of both error probabilities for all sources. 

In contrast, the decision rule (66) generally uses both training sequences and, 

as will be shown later, there exists A ( ¢1 , ¢2) that leads to an efficient classifier. 

It follows from Theorem 2 that the upper bound on the efficient threshold 

function is given by 

= inf D(P.., IIP,.1 ) + rD(P,., IIP,.2). (69) ,t,� E � "'2 "' ..-2 ., 

By a standard minimization technique, it can be shown that the minimum in the 

last expression is attained by P¢; = P,t,1 x ,t,2 , where P,t,1 x ,t,2 denotes a normalized 

exponential combination of P¢1 and P,t,2 
defined by 

ps (o)Pl-s(a)P. (o) � ,t,1 ¢2 
,t,1 x,t,2 - '°' p• ( ')Pl-•( '),

L...a'EA IPt o ,t,2 o 
Vo EA, (70)

where s = i!r. Hence, in this specific problem of classification with training 

sequences, the expression Dc(P,t,2 IIP,t,1) � D(P,t,1 x,t,2 IIP,t,1 )+ rD(P<ti1 x,t,2 IIP,t,2
)

measures the universal distinguishability between the composite hypotheses as­

sociated with the partially known sources P</11 
and P</12

• It is an analogue to 

D(P,t,2 IIP¢J, which has the similar role in the simple hypothesis testing (Stein's 

Lemma (16, Corollary 1.2]). 
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As can easily be verified, Dc (P<1>2 
l1P<1>1 ) has the following properties: 

(72) 

where equality holds on the left-hand side of (71) if and only if ¢1 = ¢2 or 

r = 0. Now, it can be observed that when r goes to infinity, i.e., the training 

sequences are considerably longer than the test sequence, our universal test A, 

which is independent of Pc/>1 and Pcf,2
, performs as well as the optimal LRT 

for that Pcf,1 
and Pc/>2 in the sense of Stein's Lemma. On the other hand, if 

r tends to zero, then the best universally achievable false-alarm rate vanishes. 

This result is similar to that presented in [7], where it was shown that no 

universal classifier can perform efficiently unless the training sequences length 

increases at least linearly with the classified sequence length. Finally, for any 

0 < r < oo, Dc (P<1>2 
I 1P<1>1 ) is positive for all ¢1 -:/- ¢2. Hence, following the 

discussion after Theorem 2, it can be shown that for the threshold function 

>.(¢1 , ¢2) = �Dc (P,t,2 IIP<1>1 ), with O < e < 1, exponential decay of both error 

probabilities will be guaranteed for all distinct sources. 

For the M-hypothesis problem, our decision rule can be extended to a re­

jection decision scheme. This scheme is allowed not to make a decision ( and 

request another test sequence for an additional attempt). In this case, the 

union of all decision regions is not equal to the entire observation space and 

ni � ( U:!
1 
Of) c is called the rejection zone. H (x, t1, ... , tM) E OYi, then a 

rejection is made. The probability of error under Hi is given by 

Pe,(On j¢) = I: P<1>,(x) ITP<1>.(tk), 
vEU;,,., 07 k=l 

where¢� (¢1 , .. . ,<PM) E <J?M and y � (x,t1 , .. . ,tM)-

(73) 

We are interested in a decision rule, which is optimal in the sense that it 

minimizes an exponential rate of the rejection probability subject to the con-
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straint that all error probabilities decay exponentially in n with rate at least
>..( </>).

Consider the test statistic

and let the classifier A be defined by

Af={y :fk(Y)�O, Vk=2, ... , M},

Af = { y: J.(y) < 0, fk(Y) � 0, Vk # i, l � k � M },
(75)

Vi= 2, ... , M.

Similarly to the proof of [4, Theorem 2], it can be demonstrated that A is
optimal under the competitive Neyman-Pearson criterion with rejection. Note
that this decision rule reduces to the GLRT, that was developed in [4] for the
rejection scheme, if>..(</>) is a constant threshold. For this setting, the GLRT
uses all training sequences, but still it does not assure an exponential decay of
the rejection probability. In contrast, combining the results of Theorem 2 and
[4, Theorem 3], it can be shown that the universal classifier (75) is efficient,
provided that

(76)

for all</> E �M.
To gain some intuition regarding the way the information carried by training

sequences can be efficiently used by a universal test to control the rejection rate,
consider the following decision procedure: The parameters of the sources are
first estimated from the given training data. Then, based on these estimates, a
suitable threshold >.. is chosen. Finally, this threshold and the estimates of the
parameters are used in the LRT for the simple hypothesis testing problem with
rejection . This approach, with an appropriate strategy of choosing >.., can be
shown to universally achieve an exponential decay of the rejection probability,
but it might not be optimal in the error exponent sense. It is interesting to
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point out, however, that in this decision scheme, a good value of>. depends, via 

the training sequences, on the unknown parameters, which is similar to the idea 

of variable threshold in the competitive Neyman-Pearson approach. 

For the Bayesian setting, using the optimality of A in the competitive Ney­

man-Pearson sense with rejection, one can readily extend Theorem 4 to the 

case of M hypotheses. Thus, an asymptotically optimal test in the competitive 

minimax sense (with C) will classify the test sequence x as being generated by 

the source P<t,, for which 

·( ) � . f D(Q..,IIP<t>J + r b�i D(Qt,.IIPt1>,.) + 'Yn 
g, y - m 

E ("") 
.

.. </,Eif!M . • 'I' 
(77) 

is minimal. It should be pointed out that if r � oo, then Pt/>,. that minimizes 

the r.h.s. of (77) is very close to Qt,. , k =I, . . .  , M. Therefore, the decision rule 

(77) can be approximated by

Ui(Y) = D(Q..,IIQt;). (78) 

In other words, if the amount of training data is relatively large, then (77) per­

forms nearly as "plug-in" (PI) method, where the ML estimates of the param­

eters, calculated from relative frequencies of letters in the training sequences, 

are plugged into the LRT. 

3.2 Model Order Estimation 

In this subsection, we apply our method to the estimation of the order k of 

a discrete-time finite-alphabet ergodic M�kov source, when an upper bound 

ko on the true order is available. In [8], where this problem was studied in 

detail, an asymptotically optimal order estimator was developed in the sense 

of minimizing the underestimation probability while keeping the overestimation 

probability exponent at a certain level >.. This is a generalized version of the 

Neyman-Pearson crit�rion. It was shown in [8], that in contrast to other earlier 

proposed estimation algorithms, which achieve only subexponential decay of the 
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overestimation probability, for every Markov source there exists .X > 0 such that 

both overestimation and underestimation probabilities vanish exponentially fast. 

The major deficiency of this approach, however, lies in the fact, as was explained 

earlier, that once .\ > 0 was fixed, one can find a Markov source for which the 

underestimation probability tends to 1 (8, Remark 1]. Thus, an appealing issue 

is to examine whether our competitive Neyman-Pearson approach can remedy 

this problem. 

To facilitate the discussion we assume that the true order is bounded by 

k0 = 1. That is, it is desired to test the hypothesis H1: an observed sequence 

y = (Y1, Y2, ... , Yn) was emitted from an unknown i.i.d. source, against the al­

ternative H2: y was emitted from an unknown first order Markov source. We 

also assume here that all transition probabilities of Markov sources are strictly

positive. Thus, in this example, P1 = { Ps
1

, (Ji E 81} is the class of all memo­

ryless sources' over a finite alphabet A with strictly positive letter probabilities, 

and P 2 = { Ps
2

, 02 E 82} is the class of all stationary ergodic first order Markov 

sources over the alphabet A with strictly positive transition probabilities, which 

can not be reduced to memoryless sources. Observe that, in this setup, 82 is 

open and 81 � 82. 
Let Si £ Yi-1 E A denote the state of the Markov source at time instant i

(s1 = y0 is the fixed initial state). Define the empirical joint probability of the 

letter a EA and the states EA in the vector y E An as 

q;(a, s) £ ! t tS(yj = a, Sj = s),
n i=l

(79) 

where tS(yi = a, si = s) is the indicator function for Yi = a jointly with Sj = s. 

The matrix Qt £ { qt ( a, s) : a E A, s E A} can be viewed as an empirical first 
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order Markov distribution associated with y. Also, let 

qt(s) = L qt(a,s), 
o:EA 

i 
qt(a, s) 

qy(als) = 1 ( ) , qy s 

(80) 

(81) 

where qt(als) is set to zero if the denominator qt(s) vanishes. Next, define the 

divergence between Q� and Po
1 

E P1 as 

(82) 

Similarly, we define the divergence between the first order Markov source Po
2 

E 

P2 and the memoryless source Poi E P1: 

(83) 

where {po
2 ( s), s E A} is an invariant probability measure associated with Po

2 , 

i.e., Ls'eAP02 (s')Po2 (sls') = Po2(s). 

Now, extending Theorem 1 to this case, we straightforwardly obtain that an 

optimal estimator in the competitive Neyman-Pearson sense will select an order 

k=Oiff 

y E Af = {Y: inf (D(Q�IIP01 ) - ,\(O)) < o}. 
0E9 

(84) 

Since 02 is open, the necessary and sufficient condition on the threshold 

function ,\(0) under which an exponential decay of the underestimation proba­

bility is achieved for all first order Markov sources is given by (40): 

(85) 

Obviously, in this case, D(P2IIP01 ) = 0. It means that no threshold function 

can assure that both overestimation and underestimation probabilities will van­

ish exponentially fast for all possible sources. Moreover, since our approach is 

optimal- in the error exponents sense, it implies that an efficient universal es­

timation of the order of a Markov chain is not feasible at all. Naturally, if we 
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relax the assumption associated with positivity of the transition probabilities, 

we would only decrease prior knowledge about the true underling model and 

definitely would not be able to construct an efficient estimator. 

The reason for the nonexistence of an efficient universal test, in this par­

ticular case, is that the parameter set 81 is a subset of the closure of 82. In 

general, we may conclude that if for a certain Pe1 
E P1 one can find Pe

2 
E P2 

which is arbitrary close to Pe1 
in the informational divergence sense, then there 

is no possibility to efficiently distinguish between the hypotheses. Several other 

well-known examples fall in this category of the composite hypothesis testing 

problems: (i) discrimination problem, where we wish to decide whether or not 

two given sequences of random variables were emitted from the same source [4), 

[7], (ii) testing for independence - whether two sequences are mutually indepen­

dent [5], [6], and (iii) testing for randomness - whether or not a given sequence 

consists of i.i.d. random variables [5], [6). In all these examples the parameter 

sets 81 and 02 have the property described above and hence efficient universal 

tests do not exist. 

3.3 Detection of Messages via Unknown Channels 

Detection of signals transmitted across an unknown noisy communication chan­

nel is the very important problem in composite hypothesis testing. Some typical 

examples are the following: (i) radar target detection, where an unknown atten­

uation and phase shift are introduced by the channel in the transmitted signal 

[2], [23], (ii) identification problem and watermark detection (see e.g., [24], [25) 

and references therein), and (iii) digital communication over an unknown chan­

nel [16], [22], [26], [27]. 

In our· framework, this problem is defined as follows. Consider an unknown 

channel W,p from some family of channels W defined by the conditional PMF's 

{w,p(ylx),,j., E '1.i}, where x = (x1,x2, .. ,,xn) E xn is the channel input, y =
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(y1, y2, ... , Yn) E yn is the channel output, 'I/; is the index of the channel in the 

family, and '1t is some index set. A transmitter uses a set C = { :z:1 , :z:2 , ... , xM } 

of M messages xi E xn , i = 1, 2, ... , M, where M is a fixed positive integer, to 

send information across the channel. Given a received sequence y and the signal 

set C, the decoder has to decide which of M possible messages was transmitted. 

In radar, identification and certain watermarking applications, however, the 

receiver is not required to carry out full decoding and needs only to decide 

whether or not an output sequence y corresponds to a particular input sequence. 

In this case, the problem essentially reduces to binary detection, where it is 

natural to use the Neyman-Pearson criterion to balance appropriately the trade­

off between false-alarm and mis-detection rates. 

The conditional distribution of y under hypothesis Hi (xi was transmitted) 

is given by Pe, (y) = w,i,(ylxi), where (Ji designates an unlmown parameter asso-

ciated with the hypothesis Hi, i = 1, 2, ... , M. Note that, as in the classification 

problem (Subsection 3.1), (Ji (i = 1, 2, ... , M) are related each to other. This 

relation, which affects the performance of a universal detector, is through the 

common channel parameter 1/; and the structure of the signal set C. Therefore, 

an additional interesting issue that arises here, is the choice of the signals that 

are suitable for universal detection. In the sequel, we provide an interesting 

characteristic of a good universally detectable signal set. 

The detection problem defined above was studied in [11] for the class of 

finite-state channels over finite input and output alphabets. A universal decision 

rule, which is based on Lempel-Ziv (LZ) algorithm for source coding [28), was 

derived and shown to be asymptotically optimal in the generalized Neyman­

Pearson sense. However, no results concerning the behavior of the mis-detection 

probability have been presented. 

To describe the universal detector that is derived from our competitive 

Neyman-Pearson approach, let us assume, for the sake of simplicity, that M = 2 

and Wis the class of all finite-alphabet discrete memoryless channels (DMC's) 
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with the transition probability function of the form 
w,i,(ylx) = IT w,i,(YJIXJ)- (86) 

J=l In order to extend Theorem 2 to this case, we need the assumption that all transition probabilities are positive, namely, WtJ, (ylx) > 0 for all y E Y, x E X and W,t, E W. Let Zi £ (x},x;) E Z £ X2
, i = 1, ... ,n, andz = (zt,···,zn)- Let Q

11
," £ {qy ,z(y,z): y E Y,z E Z} denote the empirical joint PMF associated with the vectors y and z, where 

ti. 1 n q11 ,z(Y, z) = � L 8(yj = y, Zj = z), Vy E Y, z E Z. (87) 
j=l It can be shown that, in this case, Q

11
,z. serves as sufficient statistics for asymp-totically optimal detection. Similarly, Q11,z; will denote the empirical joint PMF associated with (y, xi), i = 1, 2. Let Qz;, Q11 and Q,. denote the empirical PMF associated with xi, y and z, respectively. It will be assumed that Q,. is inde­pendent of the input sequences length n and will be referred to as the empirical joint probability distribution of the signal set. Also, define for all y E Y and zE Z 

( I ) � {q11,,.(y,z)/q,.(z), Qy ,z Y Z -
0, 

(88) 
Similarly, q11 ,z; (ylai) will denote the empirical conditional pro?ability of y E Y given ai E X corresponding to the empirical joint probability distribution of (y, xi). Finally, let us define the conditional divergence 

D(Q11,zllWT/J IQ,.,xi) £ 
L q,.(z)Lq11,.z(Ylz)log!'(�f��' ·i=l,2. (89) 

z=(a1,a2}EZ yEY tJ, An optimal detector in this case turns out to be the following: Decide· that x1 has been transmitted iff 
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where A( 't/J) designates, for every 't/i E '11, the prescribed value of the false-alarm 

rate. Observe that 

where I( Q..,2, Q
y

,..,2 IQ..,1) is the empirical conditional mutual information given 

by 

and 

It follows then, that in the case of A( 't/i) = Ao, our decision rule (90) reduces to the 

one that compares J(Q..,2,Q
y
,z2IQ..,1) to the threshold. As could be expected, 

it essentially coincides, in the special case of the memoryless channels, with the 

test proposed in [11]. 

Applying the result of Theorem 2 to the discussed problem, we obtain that 

the best universally achievable false-alarm rate that guarantees exponential de­

cay of the mis-detection probability is upper bounded by 

As can be seen, Amaz('t/i, Q,. ) depends on the empirical joint probability distri­

bution of the signal set Q,.. In a sense, Amaz(1P, Qz) measures the suitability of 

the signal set for universal detection. For example, suppose that all the compo­

nents of the sequence x1 a.re equal to some a E X and all the components of the 

sequence x2 a.re equal to another letter f3 E X. Then, it can be observed from 

(94), that Amaz ('t/i, Q,. ) vanishes for all ,tp E '11. It means that this set of signals, 

which may be good for a single known channel, is totally useless for universal 

detection. It would be reasonable, therefore, to examine the signal set Q;('I/J) 

that attains maxo. Am.oz ( 'l/J, Q,.). IT Q! ( 'l/J) happens to be independent of 'lj;, this 
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signal set would universally achieve the highest false-alarm rate, uniformly over 

the class of channels, while the mis-detection probability decays exponentially 

to zero. If, however, Q;('I/J) depends on 1/J, then another features of good signal 

sets have to be sought. As an example, the class of binary symmetrical channels 

(BSC's) is analyzed in Appendix II. It is demonstrated there that orthogonal 

signals are optimal in the above sense, i.e., the orthogonal signal set maximizes 

Amax('I/J, Q%) uniformly over all BSC's. 

In the applications that require full decoding at the receiver end, it is more 

appropriate to use the Bayesian setting of the detection problem. In this case, 

our asymptotically optimal decoder in the competitive minimax sense (with f") 

will select the massage xi that minimizes 

(95) 

where E* ( 1/J) is the error exponent of the optimal ML decoder. 

Although only DMC's where considered here, all our results straightfor­

wardly extend to the case in which W is a family of finite-alphabet, finite-state 

channels with deterministic transitions and a fixed initial state. These channels 

are commonly used for modeling of the !SI channels. A finite-state channel 

WT/I E W is characterized by the following conditional probability distribution: 

w,p(ylx) = IT wT/l(Yilxi,si),. (96) 
i=l 

where Si ES is a state of the channel at the time instant i and w,p(Yilxi, Si) is the 

probability of the current output of the channel Yi E Y, given the current input 

to the channel Xi E X and the state Si E S. The initial state s1 is assumed fixed 

and known, and Si+i is given by a deterministic next state function g(xi, Si). 

In this case, the state sequence s = ( s1, ... , sn) is determined by the channel 

input x and the initial state s1. Again, we assume that w,p(ylx,s) > 0 for all 

y E Y, x E X, s E S and W 1/1 E W. 

For this class of channels, we yield the same detectors as in (90) and (95), 
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but with z = (z1, ... , Zn) being defined by 

Zi � ((xLsi), (x;,s;)) E Z �(Xx S)2
, i = 1, ... ,n, (97)

where si 
= (si, ... , st) is the state sequence corresponding to the input se­

quence xi, j = l, 2. 

As mentioned at the end of Section 2, our general approach, with a slightly 

modified criterion of the optimality, can be extended to the infinite-alphabet 

case, where D(·II·) is essentially replaced by its continuous version /(·II·) (see 

e.g., (13]). In the context of the discussed detection problem, the corresponding 

generalization is possible to channels with a finite input alphabet and an infinite 

output alphabet. In this continuous case, the analogue to the assumption about 

positivity of the letter probabilities is that the support of the conditional prob­

ability density functions (PD F's) of the channel output given the channel input 

is the same for every input and for all channels in the family, where the support 

of the conditional PDF w,p(·lx) is the set of all y E Y for which w,p(ylx) > 0. 

As an important and interesting example, we next consider the detection prob­

lem over the Gaussian ISI channel. Obviously, in the Gaussian case, the above 

assumption is trivially satisfied since the support of the Gaussian PDF is the 

whole real line Ill 

Example. Consider the discrete-time Gaussian ISI channel characterized by 

C 
Yt = L hJXt-j + nt, 

j=O 

(98)

where {xt} is the input sequence from a finite alphabet X, h = (ho, ... , he) is 

the vector of unknown ISI coefficients, {nt} is zero-mean, Gaussian white noise 

with unit variance, and {yt} is the output sequence. The conditional PDF of 

the output y given the input x and parameterized by ISI sequence h is given 

by 
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where we assume that Xt is equal to an arbitrary but fixed letter a E X fort � 0.
Clearly, this channel is a finite-state channel with deterministic transitions and
a fixed initial state. We again use the notation zt = ( ( xL sn' ( x�, sn) E z,

where si is defined here as si £ (xl-c,··-,xL1) ES= xi:, i = 1,2, and
Z =(Xx S)2

• 

Since the variance of the Gaussian noise is known, only the conditional em­
pirical mean of y is essential for an asymptotically optimal decision. More
precisely, let

_ � I:;�1 Yt · 8(zt = z) 
Y - n , 

zEZ 
z Lt=l 8(zt = z) (100)

i.e., Yz denotes the empirical mean of all Yt for which Zt = z. Then, the Gaussian
empirical conditional PDF associated with (y, z)

Qy ,.z(Ylz) = �exp{-�(y-y.,,)2 }, y E JR,z E Z (101)
can be thought of as sufficient statistics.

Jt is well-known (and not difficult to show) that the divergence between two
Gaussian distributions Q and P with means µ

9 
and µp , respectively, and unit

variance is given by
(102)

Therefore, the analogue to our asymptotically optimal detectors, in this contin­
uous case, will be based on

where vi £ ( vL ... , v�) E X · S = xi:+1 . Specifically, let u = ( u1 , ... , u11) £
:z:1 - :z:2 • The error exponent of the optimal ML decoder, which uses the knowl­
edge of the ISI coefficients, is given by ! I::=1 ( :Ef=o hjUt-j) 2. Thus, the
test statistic of our asymptotically optimal detector in the competitive minimax
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sense takes approximately the following form (ignoring ,n): 

. I:z=(vl,u2)EZqz(z) (Yz - I:7=ohjVJ)
2 

mf 2 
h I::=1 ( E7=o h;Ut-j) 

(104) 

Note that in the particular case of h = ho, i.e., Wn is the Gaussian mem-
oryless channel with an unknown fading parameter ho, the above test statistic 
simplifies to 

. f Lz=(a1 ,a2)EX2 qz(z) (Yz -hoo:i)2 

m 
2 '°'n 2 

ho ho L..,t=l Ut (105) 

Since (I:;=1 u;) is independent of ho, defining b � l/ho we yield that this 
detector selects xi that minimizes 

(106) 

It is interesting to point out that there is a certain similarity between this test 
and the one developed in [22] for universal decoding of memoryless Gaussian 
channels with an unknown deterministic interference. The decoding rule of [22] 
uses an auxiliary "backward channel" to maximize the empirical conditional 
entropy of the channel input given the channel output. In the case of only one 
unknown fading parameter, it is essentially equivalent to the test that minimizes 
infb i I:;=1 (x; - byt( It should be emphasized, however, that this test is uni­
versal in the random coding sense, i.e., it attains the same random coding error 
exponent as the optimal ML decoder, whereas our detector (106) is universal 
in a somewhat stronger sense: for every specific code it universally· achieves the 
largest possible fraction of the optimal ML error exponent associated with this 
code. ¢ 

As a final remark we point out that the detectors developed in this subsection 
can easily be extended to the case of M > 2, provided that M is held fixed while 
n --+ oo. Unfortunately, the extension to the general case is not trivial, and hence 
our results can not be applied to the problem of universal decoding at coding 
rates R > 0, where M grows exponentially with n.
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4 Conclusions 

In this paper, we studied the problem of composite hypothesis testing in the 

Neyman-Pearson formulation. By softening the false-alarm constraint, we con­

sidered a wider class of decision rules than in the generalized Neyman-Pearson 

criterion. This modification led to construction of an efficient test that at­

tains exponential decay of the false-alarm and mis-detection probabilities with 

optimal exponents. We further derived. a single-letter expression for the best 

false-alarm rate that can be achieved by a universal test with exponentially van­

ishing mis-detection probability. This in turn enabled us to furnish conditions 

on the geometry of the problem, under which efficient decision rules exist. As 

an additional benefit of our approach, we developed a test statistics, which is 

based on the worst-case ratio between the relative entropy of the empirical mea­

sure w.r.t. the true underlying probability measure and an optimal exponent of 

the LRT, and showed its asymptotic optimality under the competitive minimax 

criterion proposed in [18] for the Bayesian setting of the composite hypothesis 

testing problem. 

Unfortunately, our results rely heavily on the fact that an observation se­

quence can be described by a finite dimensional vector of sufficient statistics. 

Therefore, our approach is not directly applicable to classes of hidden Markov 

sources (HMS), which are frequently used in speech recognition applications, 

and to general FS channels. However, we hope that, similarly to [10], [11], re­

placing the relative entropy by the sum of the log-likelihood function and the 

LZ complexity, it is possible to extend Theorems 1 and 4 to this case. 

Another fundamental limitation of our analysis techniques is associated with 

the assumption that the number of hypotheses does not grow exponentially 

with n. While this assumption holds in a variety of interesting applications, the 

important problem of universal decoding cannot be formalized in our framework. 
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Appendix I 

Proof of Corollary 3. First, by definition of(*, there exist a sequence of decision 

rules fln and (n -t O such that 

(107) 

Since log(·) is a monotonic increasing function and Pe(fln lO) = !Pei (fln l81) +

tPe2
(fln l82) (assuming equiprobable messages), we obtain that 

Now, similarly to the proof of Theorem 1, for any y E fl� and(} Ee, we have 

exp2 {-n[C E*(O) - (n - 1/n]} 2::: Pei (fln l81) (109) 

> L exp2{-n[D(Q11IIP11i ) + En]} (110)
T(Qv)�n2 

2::: exp2 {-n[D(Q11 IIPeJ + En]} (111) 

= exp2 {-n[D(Q11!1Pei ) + 'Yn + En - 'Yn]}, 

(112) 

where En = !Al log(n + 1)/n. Choosing 'Yn 2::: (n +En + fi, we conclude that for 

ally E fl�, 

D(Q11 1!PeJ + 'Yn 2::: (* E*(O), VOE 0. 

It means that Af C'Yn) � fl? and hence, 

(113) 

(114) 

We next turn to the first kind error exponent. As in the proof of the part 
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(a) of Theorem 1, for all () E e,

(115)

< exp2 {-nD(Q11IIP11J} (116) 

< exp2 {-n[C E*(()) - 'Yn]} (117)

::::; exp2 {-n[�* E* ( B) - 'Yn - €n]} , (118)

and therefore,
(119)

Finally, by combining (114) with (119),

lim inf-! logPe(An('Yn)I()) = min {e1(A('Y)IB1),e2(A('Y)IB2)} (120)n-.oo n 

which completes the proof.

Appendix II 

2: C E*(B), VB E 8, (121)

D

Optimality of orthogonal signals for BSC's. Let W be the class of all BSC's with
crossover probability O < p < l. We assume also that the signal set consists of
only two messages of length n, x1 = (xLx�, ... ,x�) and x2 = (xLx�, ... , x!).
Using the symmetry of this problem, we can write (94) in the following simple
form:

Ama:i:(p, q) = inf (qD(p'jjp) + (1- q)D(p'lll - p)], (122)
p' 

where q is the relative number of the coordinates in which x1 equals x2 and
D(all.B) is the relative entropy between two binary sources with probabilities
a and /3, respectively. First, note that Ama:i:(p, q) is concave in q because it is
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defined as the pointwise infimum of the collection of concave (in fact, affine) 

functions. Secondly, it can be seen that, for every p, Amax (p, ·) is symmetri­

cal around q = 1/2, i.e., Amax(p,q) = Amax(p, 1 - q). Combining these two 

properties, we have that 

for all p and q. In other words, the signal set that universally attains the 

maximal false-alarm rate has the following structure: half of the coordinates 

of x1 and a:2 are identical and another half of the coordinates are different, 

meaning that x1 and x2 are orthogonal signals. 
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