
1

A Scalable Approach to the Partition of QoS

Requirements in Unicast and Multicast∗

Ariel Orda Alexander Sprintson

Department of Electrical Engineering

Technion—Israel Institute of Technology

Haifa 32000, Israel

Abstract

Supporting Quality of Service (QoS) in large-scale broadband networks poses major challenges, due

to the intrinsic complexity of the corresponding resource allocation problems. An important problem in

this context is how to partition QoS requirements along a selected topology (path for unicast, tree for

multicast). As networks grow in size, the scalability of the solution becomes increasingly important. This

requires to devise ef£cient algorithms, whose computational complexity is less dependent on the network

size. In addition, recently proposed precomputation-based methods can be employed to facilitate scalability

by signi£cantly reducing the time needed for handling incoming requests.

We present a novel solution technique to the QoS partition problem(s), based on a “divide and conquer”

scheme. As opposed to previous solutions, our technique considerably reduces the computational com-

plexity in terms of dependence on network size; moreover, it enables the development of precomputation

schemes. Hence, our technique provides a scalable approach to the QoS partition problem, for both unicast

and multicast. In addition, our algorithms readily generalize to support QoS routing in typical settings of

large-scale networks.

Index Terms

QoS partition, Performance-dependent costs, Multicast, Routing, Resource allocation.

I. INTRODUCTION

Future communication networks are expected to support applications with quality of service (QoS)

requirements. Supporting QoS poses major challenges due to the large size and complex structure of

networks. A key issue in the design of broadband architectures is how to allocate network resources in

order to meet end-to-end QoS requirements in a way that maximizes the overall network performance.

Several network mechanisms need to be introduced to support QoS. One is a QoS routing mechanism,

whose purpose is to £nd a suitable topology (path for unicast, tree for multicast) that can support the

connection(s) QoS requirements. Then, a second mechanism is required, in order to optimally allocate

∗A preliminary version appeared in the Proceedings of IEEE Infocom’02, New York, NY, USA, June, 2002.

lesley
CCIT Report #347
July 2001

2

s

t

v

u

s

t

v

u

c
o

s
t

delay

(a)
 (b)

c
o

s
t

delay

c
o

s
t

delay

c
o

s
t

delay

Fig. 1. (a) Original network (b) Aggregated network; subnetworks are represented by link cost functions

resources (e.g., bandwidth, buffer space) along the selected topology such that the required QoS can be

guaranteed at minimal cost.

A network link (or element) can offer several levels of QoS guarantees, each associated with a certain

cost. The link’s cost represents the consumption of local resources that must be reserved on the link

in order to support the QoS guarantee. For example, in the DiffServ architecture [1] a service provider

can offer several types of service at different prices. Moreover, links may aggregate subnetworks (e.g.,

accordingly to the ATM PNNI recommendations [9]), in which case each link represents several paths that

support different QoS requirements at different cost values. Accordingly, we consider a network model, in

which each link is associated with a performance-dependent cost function. For example, Fig. 1(b) shows

an aggregated network that corresponds to the original network depicted on Fig. 1(b). Each link in the

aggregated network is associated with a cost-delay function that represents the corresponding subnetwork.

The problem of optimal partition of QoS requirements was formulated in [6] and has been the subject

of several studies [2], [3], [5], [7], [10]. Ef£cient optimal solutions for the special case of convex cost

functions for both unicast and multicast were established in [6]. However, the convexity assumption is

not valid in many cases of practical interest. Since in the general case the problem of optimal partition

is intractable (i.e., NP-hard [6]), suitable approximation schemes were presented in [2], [7], [10]. While

the computational complexity of those approximations is polynomial, it depends heavily on the size of the

topology, which renders these solutions unscalable. The high complexity, in turn, results in a high response

time to each connection request, which adversely affects the service to network users.

Accordingly, the purpose of this study is to provide scalable solution schemes to the problem. This

is achieved in two ways. First, we establish algorithmic solutions that are considerably less dependent

on the size of the routing topology than previous proposals. Second (and independently), we employ a

precomputation approach, in order to further enhance scalability. We proceed to discuss each of these two

3

contributions.

The major contribution of this study is a novel solution technique that better exploits the speci£c structure

of routing topologies (paths and trees). More speci£cally, we employ a divide-and-conquer scheme, which

£rst computes the costs of supporting various QoS requirements through smaller components (subpaths and

subtrees), and then combines the results in order to obtain solutions for larger components. Our technique

allows to easily distribute the computational effort among network nodes. Furthermore, it can be generalized

to handle the combined problem of routing and partition of QoS in typical settings of large-scale networks.

Precomputation-based methods have recently been proposed [4], [8] (in the context of QoS routing)

as an instrument to facilitate scalability, improve response time and reduce the computational load on

network elements. The key idea is to effectively reduce the time needed to handle a request, by performing

a certain amount of computations in advance, i.e., prior to the request’s arrival. Such advance computations

are performed as background processes, i.e., when a network element is idle or underutilized, thus resulting

in better utilization of the computational capabilities of network elements. In addition, when the rate of

incoming requests is high, a considerable reduction in overall computational load is achieved. Accordingly,

we employ the precomputation approach in order to improve the scalability of our solutions.

Precomputation is performed by means of a two-phase procedure, referred to as a precomputation scheme.

The £rst phase is executed in advance and its purpose is to precompute the optimal partition a priori, for

each delay constraint supported by the path or tree. The computations performed at this phase are then

summarized into a database for later usage. The purpose of the second phase is to provide an adequate

solution on demand, i.e., upon an incoming request. The second phase either selects one of the solutions

precomputed at the £rst phase, or, if necessary, performs additional computations.

The rest of this paper is organized as follows. In Section II, we formulate the network model and formally

state the considered problems. Section III deals with unicast topologies and presents solutions both for

performing on-demand computation as well as precomputation. Section IV presents similar solutions for

the much more complex setting of multicast. Finally, conclusions are presented in Section V.

II. MODEL AND PROBLEM FORMULATION

This section formulates the general model and main problems addressed in this paper. For clarity of

presentation, we focus here on unicast; the de£nitions and terminology for multicast are presented in

Section IV.

A network is represented by a directed graph G(V, E), where V is the set of nodes and E is the set

of links. Let N = |V | and M = |E|. A path is a £nite sequence of nodes P = {v0, v1, · · · , vn}, such

that, for 0 ≤ i ≤ n − 1, (vi, vi+1) ∈ E; n = |P| is then said to be the number of hops (or hop count) of

P . The subpath of P that extends from vi to vj is denoted by P(vi,vj). We assume that the connection’s

topology, i.e., a path P , is given.

Each link l ∈ E offers different (integer) QoS guarantees {dl}, whose signi£cance depends on the

type of considered QoS requirement. For example, when the QoS requirement is an upper bound on the

4

end-to-end delay, the values {dl} are delay guarantees supported by link l. A QoS partition on a unicast

path P is a set {dl}l∈P of local QoS requirements, which satis£es the end-to-end QoS requirement D.

QoS requirements may be additive, such as delay and jitter, or bottleneck, such as bandwidth. As is easy

to verify, the QoS partition problem is straightforward for bottleneck metrics, hence we focus on additive

QoS requirements. In other words, a partition of a QoS requirement D is a set {dl}l∈P on a path P such

that
∑

l∈P dl ≤ D. For clarity of presentation and without loss of generality, we describe our model and

problems in terms of end-to-end delay requirements.

For each link l ∈ E, there is a link cost function, cl(d), which assigns a cost to each delay guarantee d

that the link offers. We assume the cl(d) is higher for tighter delay constraints, i.e., the function cl(d) is

monotonically decreasing. For clarity of presentation we assume that if a delay guarantee d is not supported

by a link l, then cl(d) = ∞. The link cost function estimates the quality of the link in terms of resource

utilization; it may depend on various factors, e.g., the link’s available bandwidth, its location, etc.. The

link cost function can be speci£ed by either an algebraic expression or by a table that speci£es costs for

supporting various delay guaranties. In the latter case, we say it is a discrete cost function. We shall assume

that all parameters (both delay guaranties and costs) are (positive) integers. The overall cost of a partition

{dl}l∈P is the sum of the local costs, i.e.,
∑

l∈P cl(dl).

The optimal QoS partition problem is then de£ned as follows.

Problem OPQ (Optimal Partition of QoS): Given a path P = {v0, · · · , vn} and a delay constraint D,

£nd a QoS partition {dl}l∈P such that
∑

l∈P dl ≤ D and
∑

l∈P cl(dl) is minimized.

The solution {d̂l}l∈P of Problem OPQ is referred to as an optimal partition of a QoS requirement D

along P .

Fig.2 demonstrates an instance of Problem OPQ. Suppose we need to establish a connection with a delay

requirement 8 between v1 and v4. For this purpose we use path P = {v0, · · · , v4}, with link cost functions,

as depicted in Fig. 2. The optimal partition for this instance is {2, 2, 1, 3}, i.e., the delay requirement for

the £rst link is 2, for the second link is 2, etc. The cost of the optimal partition is 17.

As mentioned in the Introduction, we devise ef£cient schemes for precomputation of optimal partitions

for a wide range of delay constraints. The related problem is de£ned as follows:

Problem POPQ (Precomputation of Optimal Partition of QoS): Given a path P = {v0, · · · , vn}, £nd,

for each delay requirement D, a QoS partition {dl}l∈P such that
∑

l∈P dl ≤ D and
∑

l∈P cl(dl) is

minimized.

For clarity of presentation we make the following simplifying assumptions:

1) The number of links n in path P is a power of 2, i.e., n = 2K , for some integer K.

2) Given delay constraint d, the cost cl(d) of supporting d by link l can be computed in O(1) time.

3) Given a cost c, the minimum delay constraint d supported by link l at cost c, can be computed in

O(1) time.

Dropping Assumption 1 requires a mild and straightforward modi£cation of our results, with no penalty

in terms of computational complexity. Assumptions 2 and 3 require that the functions cl(d) and the

5

v

0

v

1

c
o

s
t

delay
1
 2
 3
 4
 5
 6
 7
 8

v

2

8

c
o

s
t

delay
1
 2
 3
 4
 5
 6
 7

c
o

s
t

delay
1
 2
 3
 4
 5
 6
 7

c
o

s
t

delay
1
 2
 3
 4
 5
 6
 7

v

3
 v

4

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 2. An instance of Problem OPQ

corresponding inverse functions can be easily computed. Since a value of the inverse function can be

computed through binary search, dropping Assumption 3 results in a small penalty in terms of computational

complexity.

The computational complexity of our solutions depends on the maximum cost Cmax of supporting a

delay constraint by a link in P . More speci£cally, let dmin
l be the minimum delay constraint supported by

a link l, i.e., dmin
l = minl∈P {d | cl(d) 6= ∞}. Then Cmax = cl(d

min
l).

In general, Problem OPQ and Problem POPQ are intractable, i.e., NP-hard [6]. Accordingly, in this

work we resort to scalable ε-approximate solutions for £xed 0 < ε ≤ 1, i.e., solutions of (low) polynomial

complexity, whose cost is at most (1 + ε) times higher than the cost of the optimal solution. Speci£cally,

we present algorithms for Problems OPQ and POPQ whose computational complexity is O(1
ε2 n log

(

n
ε

)

+

n log log Cmax) and O(1
ε2 n log(nCmax)), respectively.

III. QOS PARTITION FOR UNICAST

In this section we deal with the partition of QoS requirements along unicast paths. We begin by presenting

our novel approximation approach. Then, we present approximation schemes for Problems OPQ and POPQ.

A. Our approach

We observe that the optimal solution to the problem of QoS partition on a path contains within it optimal

solutions for its subpaths. For example in Fig. 2 the optimal partition {2, 2, 1, 3} of delay constraint 8 for

path P = {v0, · · · , v4} contains within it the optimal partition {2, 2} of delay constraint 4 for the subpath

P(v0,v2). Accordingly, we compute the solutions to Problems OPQ and POPQ in the following “divide-and-

conquer” fashion. We recursively split the given unicast path P into two disjoint subpaths. We compute

the set of delay guaranties supported by each subpath at different costs. These delay guaranties and the

corresponding partitions are summarized by means of delay functions, de£ned below. We then obtain a

6

solution to the original problem, i.e., a partition of delay constraint D on path P , by recursively combining

the delay functions obtained for the subpaths.

1) Delay Functions

We begin by de£ning a new structure, namely optimal delay functions, whose purpose is to summarize

the delay guaranties that can be offered by subpaths at different costs.

De£nition 1: The optimal delay function Dopt
(vi,vj)

(c) of a subpath P(vi,vj) of P is de£ned as the minimum

delay requirement D supported by P(vi,vj) at cost c, i.e.,

Dopt
(vi,vj)

(c) = min







D

∣

∣

∣

∣

∣

∣

∃ {dl}l∈P(vi,vj)
such that

∑

l∈P(vi,vj)

dl ≤ D and
∑

l∈P(vi,vj)

cl(dl) ≤ c







.

Note that if the subpath comprises of a single link (vi, vi+1), then Dopt
(vi,vi+1)

(c) is the inverse of the cost

function of that link, i.e., Dopt
(vi,vi+1)

(c) = min
{

d | c(vi,vi+1)(d) ≤ c
}

.

While optimal delay functions accurately capture the delays supported by subpaths of P at different

costs, they are impractical, since their computation is intractable, and moreover, their storage requirements

are prohibitively large. Accordingly, we resort to ε̄-approximate delay functions, whose computation and

storage requirements are feasible.

De£nition 2: An ε̄-approximate (subpath) delay function D(vi,vj)(c) of a subpath P(vi,vj) of P is a

function that satis£es, for each c ≥ 0,

D(vi,vj) (c(1 + ε̄)) ≤ Dopt
(vi,vj)

(c) .

For the sake of clarity, and when no ambiguity exists, ε̄-approximate delay functions shall be referred

to as just delay functions.

2) Logarithmic Sampling

Approximate delay functions can be constructed from optimal delay functions by employing logarithmic

sampling. The idea is to sample the optimal delay function at cost values {1, 1+ ε̄, (1+ ε̄)2, · · · }. For each

cost c, (1 + ε̄)i ≤ c ≤ (1 + ε̄)i+1 and for each i ≥ 0, the value of the approximate delay function at cost

c is equal to the optimal delay function at cost (1 + ε̄)i, i.e.,

D(vi,vj)(c) = Dopt
(vi,vj)

(c′) , where c′ = max{(1 + ε̄)t | (1 + ε̄)t ≤ c, t = 1, 2, · · · }.

For example, consider the optimal delay function Dopt
(vi,vj)

(c) depicted in Fig. 3(a). The function is sam-

pled at £ve cost values {1, 1+ε̄, · · · (1+ε̄)4}. The resulting approximate delay function D(vi,vj)(c), depicted

in Fig. 3(b), is a piecewise-constant function whose segments correspond to the values {d1, · · · , d4} of the

optimal function at sampled costs. In our approximation schemes, we store a delay function D(vi,vj)(c) by

keeping the values of cost and delay for each segment of D(vi,vj)(c).

7

d
e

la
y

(a)
 (b)

cost

d
e

la
y

cost
1
1+
 (1+)
2
 (1+)
4
(1+)
3
 1
1+
 (1+)
2
 (1+)
4
(1+)
3

d

1

d

2

d

3

d

4

d

1

d

2

d

3

d

4

Fig. 3. (a) Optimum delay function (b) Approximate delay function.

3) Layers

We proceed to describe our approach in more detail. Consider a unicast path P = {v0, · · · , vn}, which

is referred to as a layer-0 path. Recall that our assumption is that n = 2K . We split P into two layer-1

subpaths P(v0,vb) and P(vb,vn), where b = n/2. Then, for each value k, k = 1, 2, · · · , K − 1, each layer-k

subpath P(vi,vj) is split into two layer-(k+1) subpaths P(vi,vb) and P(vb,vj), where b = (i+ j)/2. Note that

layer-K subpaths comprise of just a single link. Clearly, the number of subpaths of a layer k is O(2k).

The goal our scheme is to compute, for each layer k, 0 ≤ k ≤ K, the delay functions of layer-k subpaths.

We begin by computing the delay functions of subpaths of layer K. Since these subpaths comprise of just

a single link, their delay functions can be obtained by applying logarithmic sampling on the inverted cost

functions for corresponding links. Then, for each k, 1 ≤ k ≤ K − 1, we compute the delay functions

of layer-k subpaths by merging previously computed delay functions for subpaths of layer-(k−1). The

merging procedure is discussed in detail in Section III-A.4.

The computation of a delay function introduces some error at each layer, which accumulates as we

proceed to lower layers. The error depends on the approximation parameter ε̄ used in the logarithmic

sampling process. The key idea of our scheme is to use different approximation parameters εk for different

layers. The values εk are chosen in a way that minimizes the computational complexity of the algorithm,

while insuring that the total accumulated error does not exceed a desired approximation ratio ε. The

assignment of εk is discussed in detail in Section III-A.5.

4) Procedure MERGE

The merging procedure receives, as input, the delay functions D(vi,vb)(c) and D(vb,vj)(c) of two layer-

k + 1 subpaths, P(vi,vb) and P(vb,vj), and an upper bound U . The procedure computes the values of delay

function D(vi,vj)(c) of layer-k subpath P(vi,vj) for each 1 ≤ c ≤ U .

8

The merging procedure employs logarithmic sampling for an approximation parameter εk. Its goal is to

compute for each c, 1 ≤ c ≤ U , the partition (c1, c2) of a budget c between the subpaths, which minimizes

the delay of the subpath P(vi,vj) under budget constraint c.

A straightforward solution would be to examine all possible partitions (c1, c2) of the budget c. Since

the choice of c1 determines c2, it is suf£cient to consider each c1 ≤ c. Moreover, since the delay function

D(vi,vb)(c) is obtained by logarithmic sampling at costs {1, 1 + εk+1, (1 + εk+1)
2, · · · }, only these costs

should be considered.

The merging can be performed more ef£ciently by the following procedure. We divide the set S =

{(c1, c2) | c1 + c2 ≤ c} of feasible partitions into two subsets S1 and S2. The subset S1 includes the

partitions for which c1 ≤ c/2 and the subset S2 includes the partitions for which c1 > c/2, i.e., S1 =

{(c1, c2) | 1 ≤ c1 ≤ c/2, c/2 < c2 ≤ c} and S2 = {(c1, c2) | c/2 < c1 ≤ c, 1 ≤ c2 ≤ c/2}. Then we

identify, for each subset, the partition that minimizes the delay of the subpath P(vi,vj). For the subset S1, we

note that it is suf£cient to examine partitions for which values of c2 correspond to costs {(1+εk+1)
t | c/2 <

(1 + εk+1)
t ≤ c}. Thus, and since c/2 < c2 ≤ c, we need to consider only O(log(1+εk+1) 2) = O(1/εk+1)

partitions. Similarly, for the second subset, it is suf£cient to consider only O(1/εk+1) values of c1 ∈ {(1+

εk+1)
t | c/2 < (1+εk+1)

t ≤ c}. We conclude that the optimal partition of the budget c requires O(1/εk+1)

time. Since we need to £nd a partition for O(log U/εk) budget values, the total complexity incurred is

O(log U/ε2
k). This procedure is referred to as Procedure MERGE and its formal speci£cation is presented

in Fig. 4. For clarity of presentation, Procedure MERGE identi£es only the delay function D(vi,vj)(c) of

P(vi,vj). The corresponding partitions can be identi£ed by a mild and straightforward modi£cation of the

procedure, with no penalty in terms of computational complexity.

Lemma 1: Given are layer-(k+1) subpaths P(vi,vb) and P(vb,vj) with corresponding ε̄-approximate delay

functions D(vi,vb)(c) and D(vb,vj)(c). Then, the execution of Procedure MERGE yields an ε̃-approximate

delay function D(vi,vj)(c) for the subpath P(vi,vj), where ε̃ = (1 + εk)(1 + ε̄) − 1.

Proof: See Appendix.

Lemma 2: The computational complexity of Procedure MERGE is O(1
ε2

k

log U).

Proof: See Appendix.

5) Computing the Delay Function for P
We proceed to present Procedure UNICAST, which computes the delay function of a unicast path P .

Procedure UNICAST receives, as input, a layer-k subpath P(vi,vj) of P and an upper bound U . The procedure

computes the values of delay function D(vi,vj)(c) of P(vi,vj) for each 1 ≤ c ≤ U in the following recursive

manner. If P(vi,vj) is a layer-K path, i.e., P(vi,vj) comprises of a single link l, then the corresponding

delay function is obtained by logarithmic sampling (see Section III-A.2) of the inverse of the link cost

function cl(d). Else, for layer-k paths, 1 ≤ k ≤ K − 1, we £rst recursively compute the delay functions

for subpaths P(vi,vb) and P(vb,vj) of P(vi,vj), where b = (i + j)/2; the delay function of the path P(vi,vb)

is then computed by merging the the delay functions for P(vi,vb) and P(vb,vj).

9

Procedure MERGE (D(vi,vb)(c), D(vb,vj)(c), εk, εk+1, U):
parameters

D(vi,vb)(c)- the delay function for subpath P ′
(vi,vb)

D(vb,vj)(c)- the delay function for subpath P ′
(vb,vj)

εk- the approximation parameter for layer-k
εk+1 - the approximation parameter for layer-(k + 1)
U - the upper bound on the cost of a partition.

1 c = 1
2 while c ≤ U do

3 D(vi,vj)(c) ← ∞
4 c′2 ← max{(1 + εk)t ≤ c/2}
5 c2 ← c′2
6 while c2 ≤ c do

7 D(vi,vj)(c) ← min
{

D(vi,vj)(c), D(vi,vb)(c − c2) + D(vb,vj)(c2)
}

8 c2 ← c2 · (1 + εk+1)

9 c′1 ← max{(1 + εk)t ≤ c/2}
10 c1 ← c′1
11 while c1 ≤ c do

12 D(vi,vj)(c) ← min
{

D(vi,vj)(c), D(vi,vb)(c1) + D(vb,vj)(c − c1)
}

13 c1 ← c1 · (1 + εk+1)
14 c ← (1 + εk) · c
15 return D(vi,vj)(c)

Fig. 4. Procedure MERGE

As mentioned, the computation of a delay function introduces some error at each layer k, which

accumulates as we proceed to lower layers. The error at a layer k depends on the approximation parameter

εk used for this layer. The accumulated error at layer-k (i.e., accumulated along the layers k, k+1, · · · , K)

is denoted by ε(k).

The major consideration in choosing the approximation parameters εk for each layer 1 ≤ k ≤ K is to

minimize the computational complexity of the scheme. In addition, the values εk must be chosen such that

the total accumulated error for the path P does not exceed a desired approximation ratio ε. From Lemma 1

it follows that the accumulated error for at layer 0 is

ε(0) =
∏K

k=1(1 + εk) − 1 ≤ 2
∑K

k=1 εk,

where the last inequality follows from the fact that, for 0 ≤ x ≤ 1, it holds that ln(1+x) ≤ x ≤ ln(1+2x).

Note that a layer k adds εk to the accumulated error.

By Lemma 2, the computational complexity of invoking Procedure MERGE for a layer k subpath is

O(1
ε2

k

log U). As there are 2k subpaths at that layer, the time needed for processing all layer-k paths is

O(1
ε2

k

2k log U). Therefore, the total computational complexity of the algorithm is
∑K

k=1
1
ε2

k

2k log U . Thus,

in order to £nd the optimal assignment of approximation parameters {εk}, we need to solve the following

optimization problem:

10

min
∑K

k=1
2k

ε2
k

.

subject to :

2
∑K

k=1 εk ≤ ε.

(1)

Noting that the objective function in (1) is a sum of convex functions, it is easy to verify that the optimal

assignment of {εk} is:

εk =
ε

8
3
√

2K−k
for k = 1, · · · , K. (2)

With this assignment, the total running time required for all invocations of Procedure MERGE is

O(n
ε2 log U).

The detailed description of Procedure UNICAST appears in Fig. 5. As was the case with Procedure MERGE,

the partitions that correspond to the delay function D(vi,vj)(c) of P(vi,vj) can be identi£ed by a mild and

straightforward modi£cation of Procedure UNICAST, with no penalty in terms of computational complexity.

Procedure UNICAST (P(vi,vj), k, {cl}l∈P(vi,vj)
, ε, U):

parameters

P(vi,vj)- a subpath of P of layer k;

{cl}l∈P(vi,vj)
- the links’ cost functions;

ε - approximation ratio;

U - the upper bound on the cost of an optimal partition.

1 εk ← ε

8
3√

2K−k

2 if k = K then

3 for each c ∈
{

(1 + εk)t | (1 + εk)t ≤ U, t = 1, 2, · · ·
}

do

4 D(vi,vj)(c) ← min
{

d | c(vi,vj)(d) ≤ c
}

5 return D(vi,vj)(c)

6 εk+1 ← εk · 3
√

2

7 b = i+j
2

8 D(vi,vb)(c) ←UNICAST(P(vi,vb), k + 1, {cl}l∈P(vi,vb)
, ε, U)

9 D(vb,vj)(c) ←UNICAST(P(vb,vj), k + 1, {cl}l∈P(vb,vj)
, ε, U)

10 D(vi,vj)(c) ←MERGE(D(vi,vb)(c), D(vb,vj)(c), εk, εk+1, (1 + ε)U)

11 return D(vi,vj)(c)

Fig. 5. Procedure UNICAST

Theorem 1: Procedure UNICAST identi£es, in O(1
ε2 n · log U) time, an ε-approximate delay function

D(v0,vn)(c) for a path P .

Proof: See Appendix.

B. On-demand computation: Problem OPQ

In this section we present an algorithm for computing a suitable QoS partition upon an incoming request.

The algorithm comprises of the following steps. First, we obtain suf£ciently tight lower and upper bounds,

L and U , on the cost of an optimal partition. Then, we use these bounds in order to perform linear scaling

on link cost functions. The purpose of linear scaling is to “scale down” all the costs, i.e., reduce all the

11

costs by dividing them by some £xed parameter. The resulting graph has smaller costs, which reduces

the overall running time. Next, we £nd a suitable partition by using Procedure UNICAST. The obtained

solution is then rounded back to the original costs, i.e., prior to the linear scaling, incurring a small error.

1) Upper and Lower Bounds

Following the algorithmic technique presented in [7], we start with trivial bounds, and proceed to

iteratively improve them, until they become suf£ciently tight.

Let {dl}l∈P be a partition that satis£es the delay constraint D. We observe that, for each l ∈ P , it

holds that dmin
l ≤ dl ≤ D, where dmin

l is the minimum delay constraint supported by a link l, i.e.,

dmin
l = min {d | cl(d) 6= ∞}. This implies that L =

∑

l∈P cl(D) and U =
∑

l∈P cl(d
min
l) constitute

obvious lower and upper bounds on the cost of an optimal partition. Since L ≥ n and U ≤ n · Cmax, we

have U/L ≤ Cmax.

Reduction of the ratio U/L is achieved by performing a binary search on the interval (L, U) on a

logarithmic scale. First, we compute for each l ∈ P the minimum value of the QoS requirement dl that

can be supported by allocating a budget c =
√

U ·L
n to l. Then, we check whether the resulting partition

{dl}l∈P satis£es the delay constraint, i.e.,
∑

l∈P dl ≤ D. Clearly, if {dl}l∈P satis£es the delay constraint,

then c ·n is an upper bound on the cost of the optimal solution, hence we set U ← c ·n. Otherwise, the cost

of the optimal solution is at least c, hence we set L ← c. The process continues as long as U > 2 · n · L.

We denote by β the ratio of the initial upper and lower bounds, and by βi the ratio of upper and lower

bounds after iteration i. Let L and U be the values of the lower and upper bounds, respectively, at the

beginning of the iteration i. During an iteration, either the lower or the upper bound is updated. In the

former case, we have

βi = U
c =

√

nU
L =

√

nβi−1,

while in the latter case, the value of βi is

βi = nc
L =

√

nU
L =

√

nβi−1.

In both cases, we have βi =
√

nβi−1. Thus, the value of βi at iteration i is bounded by

βi ≤ nβ
1

2i .

Note that, at iteration i = ⌈log log β⌉, we have βi ≤ 2 · n. We conclude that just O(log log β) =

O(log log Cmax) iterations are necessary in order to achieve U/L ≤ 2·n. Since each iteration requires O(n)

time, the computational complexity of £nding lower and upper bounds, L and U , for which U/L ≤ 2 · n,

is O(n log log Cmax).

2) The algorithm

Having computed suitable bounds U and L, i.e., bounds for which U/L ≤ 2 ·n, we apply a scaling and

rounding procedure on the link cost functions. To that end, a new cost function is de£ned for each link l,

12

as follows:

c∗l (dl) =

⌊

2n · cl(dl)

εL

⌋

. (3)

With modi£ed link costs, the new cost c∗ of a partition with original cost c is bounded by

c · n
(ε/2) · L − n ≤ c∗ ≤ c · n

(ε/2) · L. (4)

Thus, and since U ≤ 2n ·L, the upper bound on the solution with respect to the new link cost functions

is U∗ = 4n2

ε . Finally, the problem is solved by applying Procedure UNICAST to a path with the scaled

cost functions c∗l (dl). The procedure is invoked with the upper bound U ∗ and the approximation parameter

ε/2. The procedure returns an ε
2 -approximate solution with respect to the new link costs. Theorem 2 below

implies that the cost of this solution, under the original cost functions, is at most (1+ ε) times larger than

that of the optimal solution. Algorithm OPQ, described in Fig. 6, summarizes the above discussion.

Algorithm OPQ (P, {cl}l∈P , ε, D):
parameters

P = {v0, ..., vn}- a QoS path;

{cl}l∈P - the links’ cost functions;

ε - approximation ratio;

D- delay constraint.

1 L ← ∑

l∈P cl(D)

2 U ← ∑

l∈P cl(d
min
l), where dmin

l = min {d | cl(d) 6= ∞}
3 while U

L
> 2 · n do

4 c ←
√

L·U
n

5 for each l ∈ P do

6 dl = min {d | cl(d) ≤ c}
7 if

∑

l∈P dl ≤ D then

8 U ← c · n
9 else

10 L ← c

11 D(v0,vn)(c) ←UNICAST

(

P, 0,
{⌊

cl(dl)·n
(ε/2)·L

⌋}

, ε/2, 4n2

ε

)

12 ĉ ← min
{

c | D(v0,vn)(c) ≤ D
}

)

13 return partition that corresponds to ĉ

Fig. 6. Algorithm OPQ

Theorem 2: Algorithm OPQ provides, in O(1
ε2 n·log n

ε +n·log log Cmax) time, an ε-approximate solution

to Problem OPQ, i.e.: given a connection request with delay constraint D, Algorithm OPQ identi£es a

suitable QoS partition {dl}l∈P , whose cost is at most (1+ε) times higher than that of the optimal partition.

Proof: See Appendix.

C. Precomputation scheme: Problem POPQ

Precomputation is performed by means of a two-phase procedure, referred to as a precomputation scheme.

The purpose of the £rst phase is to compute a delay function for the path P , which summarizes a set

13

of suitable partitions, for each delay constraint. The second phase merely selects one of the solutions

precomputed in the £rst phase.

1) First phase

The £rst phase is implemented as follows. We begin by invoking Procedure UNICAST with approximation

parameter ε/3, which computes an ε/3-approximate delay function D′
(v0,vn)(c) and the corresponding

partitions. Then, we use D′
(v0,vn)(c) in order to compute a delay function D(v0,vn)(c) whose storage

requirements are signi£cantly smaller.

More speci£cally, the delay function D ′
(v0,vn)(c), obtained through Procedure UNICAST, is a piecewise-

constant function whose segments correspond to costs c ∈ {1, (1 + ε0), · · · , nCmax}, where ε0 = ε
8 3
√

n

(according to Equation (2)). Thus, we need O(
3
√

n
ε log(nCmax)) space in order to store D′

(v0,vn)(c).

The storage requirement can be signi£cantly reduced by logarithmic sampling. Speci£cally, we compute

new delay function D(v0,vn)(c) out of D′
(v0,vn)(c) by logarithmic sampling at costs {1, (1 + ε/3), (1 +

ε/3)2, · · · , nCmax}. By Lemma 3 below, D(v0,vn)(c) is an ε-approximate delay function for P . The detailed

description of the £rst part of the precomputation scheme, implemented by Algorithm POPQ, appears in

Fig. 7.

Algorithm POPQ (P, {cl}l∈P , ε):
parameters

P = {v0, ..., vn}- a QoS path;

{cl}l∈P - the links’ cost functions;

ε - approximation ratio;

1 D′
(v0,vn)(c) ←UNICAST(P, 0, {cl}l∈P , ε/3, n · Cmax)

2 for each c ∈
{

(1 + ε/3)t ≤ U | t = 1, 2, · · ·
}

do

3 D(v0,vn)(c) ← D′
(v0,vn)(c)

4 return D(v0,vn)(c)

Fig. 7. Algorithm POPQ

Lemma 3: Algorithm POPQ computes, in O(1
ε2 n log(nCmax)) time, an ε-approximate delay function

D(v0,vn)(c) for P .

Proof: See Appendix.

2) Second phase

Upon a request with some QoS requirement D, the optimal partition is promptly identi£ed by examining

the output of Algorithm POPQ. Speci£cally, we identify, through binary search, the cost c of a suitable

partition, c = min{c′ = (1 + ε/3)t | D(v0,vn)(c
′) ≤ D}, and return the corresponding partition. Since

the total number of precomputed partitions is O(1
ε log(nCmax)), the computational complexity of this

procedure is O(log log(Cmax)+log(1/ε)+n). The term n in the complexity expression is due to the need

to describe the partition.

14

D. Discussion

We proceed to compare the performance of our algorithms with that of its alternatives.

We begin with the on-demand setting. In [7] and [2], the problem of partitioning of QoS constraints

was considered, in a broader context of QoS routing with cost-dependent functions. The proposed algo-

rithms, when applied to Problem OPQ, yield computational complexities of O(n log log Cmax + n2 log(n/ε)
ε2)

and O(min(D, log U
ε , n

ε D)1
εn2 log log Cmax), respectively. The dominant terms of these expression are

O(n2 log(n/ε)
ε2) and O(n2 log Cmax

ε2), respectively, while the dominant term in our solution is O(n log(n/ε)
ε2). We

thus conclude that the computational complexity of our algorithm is signi£cantly (Ω(n)) less dependent

on the topology size than that of [7] and [2], which renders it more scalable for large topologies. This

improvement has been achieved by exploiting the topological structure of unicast paths.

Next, we note that our algorithm can be applied also in the practically important case of discrete cost

functions, i.e., step functions whose range is a discrete set of values. Such functions have been the focus

of [10], and an O(rn3 log r
ε) algorithm was presented there, where r =

∑

l∈P rl and rl is the number of

different delay values supported by link l. We conclude that, even if r = O(n) (i.e., each link supports a

£xed number of delays), we achieve a major (Ω(n3)) reduction in terms of dependency on the topology

size.

We described a precomputation scheme for Problem OPQ that provides ε-optimal solutions within a

computational complexity of O(1
ε2 n·log(n·Cmax)) for the £rst phase and O(log log(n·Cmax)+log 1

ε+n) for

the second phase. Compared with an on-demand scheme, the precomputation scheme signi£cantly reduces

the time required to £nd a suitable partition. Indeed, with precomputation, the computational complexity

of £nding a suitable partition is dominated by the time necessary to describe a partition (O(n)), i.e., it is

very close to the lower bound.

We note that a precomputation scheme can be trivially constructed out of any existing approximation

algorithm for Problem OPQ (e.g., [2], [7]), by just sequentially executing them for a certain range of

delay values. Nonetheless, as it easy to verify, the computational complexity of such simplistic solutions

is signi£cantly higher than that of our solution.

IV. QOS PARTITION FOR MULTICAST

In this section we deal with the problem of QoS partition on multicast trees. Since we employ ideas

that are quite similar to those of the unicast setting, we shall restrict ourselves to a brief discussion.

We begin by introducing the required de£nitions and terminology. A directed tree is a subgraph T of

G(V, E) having a unique node s such that every node is reached from s by a unique path; node s is referred

to as the source. A multicast connection uses a tree T to interconnect the source s and the members of

a multicast group M = {t1, t2, ...}. A path between source s and a terminal ti on links that belong to

the tree T is denoted by Pi. Given a multicast tree T , our goal is to (ef£ciently) allocate the delay on

each link l ∈ T such that the end-to-end delay is satis£ed for each member ti of the multicast group. A

QoS partition on a multicast tree T is a set of link delay requirements {dl}l∈T , which satis£es, for each

15

co
st

delay

s

co
st

delay

co
st

delay

v

1
 v

2

v

3

v

4

v

5
 v

6

t

1
 t

2
 t

3
 t

4

T(v ,v)
2
 6
T(v ,v)
1
 1

Fig. 8. An example of a multicast tree, n = 11 and H = 4.

ti ∈ M , the end-to-end delay requirement D, i.e.,
∑

l∈Pi
dl ≤ D for each ti ∈ M . Each link is associated

with a cost function cl(d), which speci£es the cost of supporting a delay requirement d. The cost of a QoS

partition {dl}l∈T is the sum of the local costs, i.e.,
∑

l∈T cl(dl). We assume that all parameters (cost and

delays) are (positive) integers.

The optimal QoS partition for a multicast tree is then de£ned as follows.

Problem MOPQ: (Muticast Optimal Partition of QoS) Given a tree T and a delay requirement D, £nd

a QoS partition {dl}l∈T such that
∑

l∈Pi
dl ≤ D for each ti ∈ M and

∑

l∈T cl(dl) is minimized.

We de£ne also the related precomputation problem.

Problem PMOPQ: (Precomputation of MOPQ) Given a tree T , £nd, for each delay requirement D, a

QoS partition {dl}l∈T such that
∑

l∈Pi
dl ≤ D for each ti ∈ M and

∑

l∈T cl(dl) is minimized.

For clarity of exposition, we use the following notation. The number of nodes and the depth of the

multicast tree are denoted by n and H , respectively. The number of children of a node vi are denoted by

mi. The subtree originating from the node vi ∈ T is denoted by T(vi,vi). A branch T(vi,vj) of the subtree

T(vi,vi) is a subtree originating from vi, which includes the link (vi, vj) outgoing from i and all descendants

of vj . For example, Fig. 8 shows a multicast tree T , a subtree T(v1,v1) and a branch T(v2,v6).

We employ the following “divide-and-conquer scheme”. A multicast tree is recursively split into a

number of disjoint subtrees. We compute the set of delay guaranties supported by each subtree at different

costs. These delay guaranties and the corresponding partitions are summarized by means of delay functions,

de£ned below. We then obtain a solution to the original problem, i.e., a partition of delay constraint D on

tree T , by recursively combining the delay functions obtained for the subtrees of T .

More speci£cally, consider a multicast tree T , which is referred to as a layer-0 tree. We split T into a

number of layer-1 subtrees
{

T(vi,vi)

}

, for each child node vi of s. Then, for each value k, k = 1, 2, ..., H ,

each layer-k subtree T(vj ,vj) is split into a number of layer-(k + 1) subtrees, for each child node of vj .

Layer-H subtrees comprise of just a single node. For example, in the tree T depicted in Fig. 8, subtrees

16

T(v1,v1) and T(v2,v2) are layer-1 subtrees, while T(v3,v3) and T(v4,v4) are layer-2 subtrees. We denote by nk

the number of subtrees of layer-k. Clearly,
∑H

k=1 nk = n.

We introduce the following subtree delay functions, which summarize the delay guaranties offered by a

subtree at different costs.

De£nition 3: The optimal delay function Dopt
(vi,vi)

(c) of the subtree T(vi,vi) of T is de£ned as the minimum

delay requirement supported by T(vi,vi) at cost c, i.e.,

Dopt
(vi,vi)

(c) = min







D

∣

∣

∣

∣

∣

∣

∃ {dl}l∈T(vi,vi)
such that max

tk∈T(vi,vi)

∑

l∈Pk

dl ≤ D and
∑

l∈T(vi,vi)

cl(dl) ≤ c







.

Optimal delay functions for branches T(vi,vj) of T(vi,vi) are de£ned similarly.

In addition we de£ne, for each link (vi, vj) ∈ T , the optimal delay function D̃opt
(vi,vj)

(c) in a way

that resembles the optimal delay function of a subpath (see De£nition 1, Section III-A.1). Speci£cally, the

optimal delay function D̃opt
(vi,vj)

(c) of link (vi, vj) is de£ned as the minimum delay requirement d supported

by link (vi, vj) at cost c, i.e., D̃opt
(vi,vj)

(c) = min
{

d | c(vi,vj)(d) ≤ c
}

.

De£nition 4: An ε̄-approximate delay function D(vi,vj)(c) of a subtree T(vi,vj) of T is a function that

satis£es, for each c ≥ 0, D(vi,vj)(c(1 + ε̄)) ≤ Dopt
(vi,vj)

(c).

We de£ne ε̄-approximate delay functions for branches and links in a similar manner. When no ambiguity

exists, ε̄-approximate delay functions will be referred to as just delay functions. Delay functions are

constructed by using the logarithmic sampling approach.

A. Computation of delay functions

In this section we present Procedure MULTICAST which identi£es the delay functions D(vi,vi)(c) and the

corresponding partitions for each subtree of each layer. The delay functions are computed in a bottom-up

manner, £rst for layer-H subtrees, then for layer-(H−1) subtrees, etc., up to layer 0. Note that each layer-

H subtree T(vi,vi) comprises of a single terminal node vi. For each terminal node vi the delay function

D(vi,vi)(c) of subtree T(vi,vi) is set to 0 for all c.

More speci£cally, we compute the delay function D(vi,vi)(c) of subtree T(vi,vi) by performing the

following steps:

1) If vi is a terminal, then D(vi,vi)(c) is is set to 0 for all c. Otherwise, for each child node vj of vi:

a) Recursively compute the delay function D(vj ,vj)(c) of layer-(k + 1) subtree T(vj ,vj);

b) Compute the delay function D̃(vi,vj)(c) of the link (vi, vj) by performing logarithmic sampling

on the link cost function c(vi,vj)(d) of (vi, vj);

c) Compute the delay function D(vi,vj)(c) of the branch T(vi,vj) by merging the delay functions

D̃(vi,vj)(c) and D(vj ,vj)(c);

2) Compute the delay function D(vi,vi)(c) of the subtree T(vi,vi) by merging the delay functions of all

branches
{

T(vi,vj)

}

of T(vi,vi).

17

As it is the case for unicast, the critical part is to choose, for each layer k, the approximation parameter

εk used for computing delay functions. The assignment of εk is discussed in detail in Section IV-A.2.

1) Merging procedures

As discussed above, in order to compute the delay function D(s,s)(c) we need to de£ne two merging

procedures, which we proceed to describe in some more detail.

The £rst procedure receives, as an input, the delay functions D̃(vi,vj)(c) and D(vj ,vj)(c) of link (vi, vj)

and subtree T(vj ,vj), respectively, and an upper bound U . The function computes the values of the delay

function D(vi,vj)(c) of the branch T(vi,vj) for each 1 ≤ c ≤ U . The goal of this procedure is to compute

for each c, 1 ≤ c ≤ U , the partition (c1, c2) of a budget c between the link (vi, vj) and subtree T(vj ,vj),

which minimizes the delay supported by the branch T(vi,vj) under budget constraint c. The procedure is

similar to the merger of the delay functions of two subpaths, as discussed in Section III-A.4. Accordingly,

we use Procedure MERGE that appears on Fig. 4.

The purpose of the second procedure, referred to as MIN-MAX-MERGE, is to calculate the delay function

D(vi,vi)(c) of the subtree T(vi,vi) out of the delay functions D(vi,vj)(c) of its branches. In order to compute

D(vi,vi)(c), we £nd, for each cost value c, 1 ≤ c ≤ U , the minimum delay that can be supported by the

subtree T(vi,vi) subject to budget c. For this purpose we need to £nd the local budget cj for each branch

T(vi,vj) in such a way that the maximum delay between vi and a terminal ti ∈ T(vi,vi) is minimized, i.e.,

D(vi,vi)(c) = min







D

∣

∣

∣

∣

∣

∣

∃ {cj}(vi,vj)∈T such that max
(vi,vj)∈T

D(vi,vj)(cj) ≤ D and
∑

(vi,vj)∈T
cj ≤ c







. (5)

Note that the delay function D(vi,vj)(c) of each branch T(vi,vj) is piecewise-constant. Hence, the function

D(vi,vj)(c) of the subtree T(vi,vi) is also piecewise-constant and can be computed by identifying its segments.

We begin with segments that correspond to lower costs, then proceed with segments that correspond to

higher costs. Since the cost of supporting a delay requirement by each branch T(vi,vj) is at least 1, then

the minimum cost for the supporting a delay requirement by subtree T(vi,vi) is mi, hence we set:

D(vi,vi)(mi) = max
(vi,vj)∈T

{

D(vi,vj)(1)
}

.

Thus, the £rst segment corresponds to cost mi and delay D(vi,vi)(mi). Suppose that we have identi£ed the

segment of D(vi,vi)(c) that corresponds to delay constraint d̂, cost ĉ of supporting d̂ and the corresponding

partition {ĉj}(vi,vj)∈T , i.e., d̂ = D(vi,vi)(ĉ) and
∑

(vi,vj)∈T ĉj = ĉ. We show how to identify the next seg-

ment of D(vi,vi)(c) that corresponds to delay d̂′ and cost ĉ′ =
∑

(vi,vj)∈T ĉ′j . Note that ĉ′ is the minimum cost

that must be paid in order to support a delay constraint lower than d̂, i.e., ĉ′ = min
{

c | D(vi,vi)(c) < d̂
}

and d̂′ = D(vi,vi)(ĉ
′).

We observe that, by Equation 5, there exists a link (vi, vj) ∈ T for which it holds that D(vi,vj)(ĉj) =

D(vi,vi)(ĉ). We denote by S =
{

j | D(vi,vj)(ĉj) = D(vi,vi)(ĉ)
}

. Since d̂′ < d̂, for each j ∈ S, the delay

supported by branch T(vi,vj) at cost ĉ′j must be lower than d̂. Thus, we set ĉ′j be the minimum cost

18

of supporting a delay lower than d̂ by branch T(vi,vj). For each j /∈ S we set ĉ′j = ĉj . As we prove

in Lemma 4 below, the next segment of D(vi,vj)(c) corresponds to cost ĉ′ =
∑

(vi,vj)∈T ĉ′j and delay

d̂′ = max(vi,vj)∈T

{

D(vi,vj)(ĉ
′
j)

}

.

Having computed D(vi,vi)(c), we perform an additional procedure in order to reduce the number of

segments in D(vi,vi)(c). Speci£cally, we perform logarithmic sampling at costs 1, 1+εk, (1+εk)
2, · · · . This

yields a number of segments that is bounded by O(1
εk

log U). The formal description of Procedure MIN-

MAX-MERGE appears on Fig. 9.

Procedure MIN-MAX-MERGE (T(vi,vi), εk, U):
parameters

T(vi,vi) the subtree of T
εk - the approximation parameter for the output functions

U - the upper bound on the cost of a partition.

1 for each (vi, vj) ∈ T do

2 cj ← 1
3 dj ← D(vi,vj)(cj)

4 c ← ∑

(vi,vj)∈T cj

5 d ← max(vi,vj)∈T dj

6 while c ≤ U do

7 D(vi,vi)(c) ← d

8 S ← {j | D(vi,vj)(cj) = d}
9 for each j ∈ S do

10 cj ← min
{

c | D(vi,vj)(c) ≤ dj

}

11 dj ← D(vi,vj)(cj)

12 c ← ∑

(vi,vj)∈T cj

13 d ← max(vi,vj)∈T dj

14 for each c ∈
{

(1 + εk)t ≤ U | t = 1, 2, · · ·
}

do

15 D′
(vi,vi)

(c) ← D(vi,vi)(c)

16 return D′
(vi,vi)

(c)

Fig. 9. Procedure MIN-MAX-MERGE

Lemma 4: Given are a layer-k subtree T(vi,vi), layer-(k + 1) branches T(vi,vj) of T(vi,vi) with corre-

sponding ε̄-approximate delay functions D(vj ,vj)(c). Then, Procedure MIN-MAX-MERGE computes, in

O(1
εk

mi log mi log U) time, an ε̃-approximate delay function D(vi,vi)(c) for the subtree T(vi,vi), where

ε̃ = (1 + εk)(1 + ε̄) − 1.

Proof: See Appendix.

2) Tuning the parameters

The computation of the delay functions introduces some error at each layer k, which accumulates as we

proceed to lower layers. The error at a layer k depends on the approximation parameter εk used for this

layer. The accumulated error at layer-k is denoted by ε(k).

By Lemmas 1 and 4, if the accumulated error at layer-k + 1 is ε(k+1), then the accumulated error at

layer k is ε(k) = (1 + ε(k+1))(1 + εk) − 1. Thus, the accumulated error at layer 0 is

19

ε(0) =
∏H

k=0(1 + εk)
2 − 1 ≤ 6

∑H
k=0 εk.

The time needed for processing all subtrees is dominated by the time required for the execution of

Procedure MERGE for all subtrees of all layers. By Lemma 2, the computational complexity of the

invocation of Procedure MERGE for a branch of layer-k subtree is O(log U
ε2

k

). As the number of branches

of layer-k subtrees is nk+1, the total running time required for invoking Procedure MERGE for layer

k subtrees is O(nk+1 log U
ε2

k

). The total computational complexity of the algorithm is O(
∑H−1

k=0
nk+1 log U

ε2
k

).

Thus, in order to £nd the optimal assignment of approximation parameters {εk}, we need to solve the

following optimization problem:

min
∑H−1

k=0
nk+1

ε2
k

.

subject to :

6
∑H

k=0 εk ≤ ε

(6)

It is easy to verify that the optimal assingment of {εk} is

εk =

{ ε 3
√

nk+1

12
∑

H

k=1
3
√

nk

for k = 0, · · · , H − 1.

ε
2 k = H

(7)

With this assignment of {εk}, total running time required for all invocations of Procedure MERGE is

O(nH2

ε2 log U).

Note 1: If T is a balanced tree, then the optimal assignment is εk = ε
24

3

√

2k

n for k = 1, · · · , H − 1.

The formal speci£cation of Procedure MULTICAST appears in Fig. 10. The partitions that correspond

to the returned delay function D(vi,vj)(c), can be identi£ed by a mild and straightforward modi£cation of

the Procedure MULTICAST, with no penalty in terms of computational complexity.

Theorem 3: Procedure MULTICAST identi£es, in O(1
ε2 nH log U) time, a ε-approximate delay function

D(s,s)(c) for a tree T .

Proof: See Appendix.

Note 2: If the tree T is balanced, using the assignment of εk as speci£ed in Note 1 yields a computational

complexity of O(1
ε2 n log U).

B. On-demand computation: Problem MOPQ

We proceed to discuss the on-demand setting, in which a suitable QoS partition is computed upon an

incoming request with some delay constraint D. L =
∑

l∈P cl(D) and U =
∑

l∈P cl(d
min
l) constitute

obvious lower and upper bounds on the cost of an optimal partition, where dmin
l = min {d | cl(d) 6= ∞}.

Clearly, U/L ≤ Cmax.

Reduction of the ratio U/L is achieved by performing binary search on the interval [L, U] in a logarithmic

scale. First, we compute for each l ∈ T , the minimum value of the QoS requirement dl that can be supported

by allocating a budget c =
√

U ·L
n to l. Then, we check whether the resulting partition {dl}l∈T satis£es

the delay constraint, i.e., for each terminal ti it holds that
∑

l∈Pi
dl ≤ D. Clearly, if {dl}l∈T satis£es the

20

Procedure MULTICAST (T(vi,vi), k, {ce}, ε, U):
parameters

T(vi,vi)- subtree of layer k

{ce}- the links’ cost functions;

ε - approximation ratio;

U - the upper bound on the cost of an optimal partition.

1 εk ← ε 3√nk+1

12
∑

H
k=1

3√nk

2 if vi is a terminal then

3 D(vi,vi)(c) ← 0 for all c

4 return D(vi,vi)(c)

5 if k = H − 1 then εk+1 ← ε
2

else εk+1 ← ε 3√nk+2

12
∑

H
k=1

3√nk

6 for each (vi, vj) ∈ T do

7 D(vj ,vj)(c) ←MULTICAST(T(vj ,vj), k + 1, {ce}, ε, U)

8 for each c ∈
{

(1 + εk+1)
t | (1 + εk+1)

t ≤ U, t = 1, 2, · · ·
}

do

9 D̃(vi,vj)(c) ← min
{

d | c(vi,vj)(d) ≤ c
}

10 D(vi,vj)(c) ←MERGE(D̃(vi,vj)(c), D(vj ,vj)(c), εk, εk+1, (1 + ε)U)

11 D(vi,vi)(c) ←MIN-MAX-MERGE(T(vi,vi), εk, (1 + ε)U)

12 return D(vi,vi)(c)

Fig. 10. Procedure MULTICAST

delay constraint, then c · n is an upper bound on the cost of the optimal solution, hence we set U = c · n.

Otherwise, the cost of the optimal solution is at least c, hence we set L = c. The process continues as

long as U > 2nL. After O(log log Cmax) iterations we obtain lower and upper bounds, U and L for which

holds U
L ≤ 2n. The procedure requires O(n log log Cmax) time.

Having computed suitable bounds U and L, for which U/L ≤ 2n, we apply a scaling and rounding

procedure on the link cost functions. To that end, a new cost function is de£ned for each link l, according

to Equation 3. Finally, the problem is solved by applying Procedure MULTICAST to a path with the scaled

cost functions c∗l (dl). The procedure is invoked with the upper bound U ∗ = 2n2

ε and the approximation

parameter ε
2 . The procedure returns an ε

2 -approximate solution with respect to the new link costs. As it is

the case for the unicast, the cost of this solution under the original cost functions is at most (1 + ε) times

larger than that of the optimal solution.

The above results are summarized by the following theorem.

Theorem 4: Given a connection request with delay constraint D, a suitable QoS partition {dl}l∈T , whose

cost is at most (1+ε) times larger than that of the optimal partition, can be identi£ed in O(1
ε2 n ·H2 log n

ε +

+n log log Cmax) steps.

Proof: The proof is similar to that of Theorem 2.

Note 3: If the tree T is balanced, an ε-approximate solution can be identi£ed in O(1
ε2 n log n

ε +n log log Cmax)

time.

21

C. Precomputation scheme: Problem PMOPQ

As explained in Section III-C, precomputation is performed by means of a two-phase procedure. The

purpose of the £rst phase is to precompute the optimal partition a priori, for each delay constraint supported

by the tree T . We start by invoking Procedure MULTICAST with approximation parameter ε/3, which

computes an ε/3-approximate delay function D′
(s,s)(c) and the corresponding partitions. Then, we compute

a new delay function D(s,s)(c) out of D′
(s,s)(c) by performing logarithmic sampling at costs {1, (1 +

ε/3), (1+ε/3)2, · · · , nCmax}. The computational complexity of the £rst phase is O(1
ε2 n·H2 log(n·Cmax)).

For the special case of balanced trees the computational complexity is O(1
ε2 n · log(n · Cmax)).

Then, at the second phase, and upon a request with some QoS requirement D, the suitable partition

is promptly identi£ed by examining the delay function D(s,s)(c). Speci£cally, we identify, through binary

search, the cost c of a suitable partition, c = min{c′ = (1 + ε/3)t | D(s,s)(c
′) ≤ D}, and return the

corresponding partition. This procedure requires O(loglog(nCmax) + log 1
ε + n) time.

D. Discussion

We proceed to compare the performance of our algorithms with that of its alternatives.

The on-demand setting was considered in [7], where an ε-approximate solution to Problem MOPQ

was presented. That algorithm yields a computational complexity of O(n log D log log β + n2(log D +

n) log log H + n2

ε (log D + n
ε)). The dominant term of this expression is O(n3

ε2), while the dominant term

of our solution is O((1/ε2)n ·H2 log n
ε). It follows that, for most practical settings i.e., when H is lower

than n, the computational complexity of our algorithm is signi£cantly (Ω(n2

H2 log(n/ε))) less dependent on

the topology size than that of [7]. Moreover, we note that the depth H of a typical multicast tree is

O(log n), in which case our algorithm is Ω(n2

log2 n log(n/ε)
) times faster. Furthermore, in the special case of

balanced trees, the computational complexity of our solution is just O(1
ε2 n log n

ε)+n log log Cmax), which

is Ω(n2

log(n/ε)) times faster than that of [7].

We described a precomputation scheme for Problem MOPQ that provides ε-optimal solutions within a

computational complexity of O(1
ε2 n ·H2 log(nCmax)) for the £rst phase and O(loglog(nCmax) + log 1

ε +

n) for the second phase. This precomputation scheme promptly provides a suitable partition upon an

incoming request. The computational complexity of our scheme is signi£cantly lower than that of simplistic

adaptations of existing approximation algorithms.

V. CONCLUSION

A fundamental problem in the support of QoS in networks is how to allocate resources along the

connection’s topology such that the required QoS can be guaranteed at minimum cost. This immediately

translates into the optimization problem that has been the focus of this study, namely, how to optimally

partition the end-to-end QoS requirement into local requirements. This problem poses major challenges

in terms of algorithmic design, and has been the subject of several recent studies. These studies provided

signi£cant insight into the essence of the problem and its potential solutions. However, the solutions

22

that have been proposed either relied on restrictive assumptions (such as convexity), or else proposed

approximation schemes whose complexity considerably depended on the network size. Therefore, a scalable

approach, which would be adequate for large scale networks, was called for. Such an approach should be

less dependent on the size of the connection’s topology, and, ultimately, provide a fast answer to the

partition problem upon each incoming connection request.

Accordingly, in this study we considered the scalability perspective, taking two independent approaches.

First, we proposed a novel algorithmic technique, which exploits the speci£c structure of the actual

topologies on which connections are established, i.e. paths or trees. This technique resulted in a signi£cant

improvement in terms of computational complexity, in particular dependence on the size of the topology.

Indeed, for the “on-demand” setting, our approach typically offers almost-linear solutions, both for unicast

and for multicast, in terms of dependence on topology size. These results per se constitute a signi£cant

improvement upon previous solutions. Second, we devised a precomputation scheme. This scheme is based

on the observation that, typically, network elements have the resources to perform much of the computation

in advance. Hence, it enables to obtain fast solutions immediately upon each incoming connection request;

in particular, at that time (i.e., at the “second phase”), the computational complexity depends only linearly

on the size of the topology, be it a unicast path or a multicast tree.

Several enhancements and extensions of this study are possible. For example, our layering approach

allows to easily distribute the computational effort among network nodes. Indeed, at each layer, each com-

ponent (subpath or subtree) is processed independently, hence the processing can be performed concurrently,

at different nodes.

More generally, the schemes presented in this study can serve to tackle the scalability issue in other

important networking problems. In particular, another fundamental problem in the context of QoS provision

is that of QoS routing, i.e., the proper selection of the connection’s topology. The key observation there is

that large-scale networks typically bear a hierarchical layering structure, which provides the grounds for

an ef£cient application of our divide-and-conquer approach.

REFERENCES

[1] S. Blake. An Architecture for Differentiated Services. - RFC No. 2475. Internet Engineering Task Force, December 1998.

[2] L. Zhang F. Ergun, R. Sinha. Qos Routing with Performance-Dependent Costs. In Proceedings of IEEE INFOCOM’00,

Tel-Aviv, Israel, March-April 2000.

[3] V. Firoiu and T. Towsley. Call Admission and Resource Reservation for Multicast Sessions. In Proceedings of IEEE

INFOCOM’96, San-Francisco, CA, April 1996.

[4] R. Guérin and A. Orda. Computing Shortest Paths for Any Number of Hops. IEEE/ACM Transactions on Networking,

10(5):613–620, October 2002.

[5] M. Kodialam and S. Low. Resource Allocation in a Multicast Tree. In Proceedings of IEEE INFOCOM’99, New York, NY,

March 1999.

[6] D. H. Lorenz and A. Orda. Optimal Partition of QoS Requirements on Unicast Paths and Multicast Trees. IEEE/ACM

Transactions on Networking, 10(1):102–114, February 2002.

[7] D.H. Lorenz, A. Orda, D. Raz, and Y. Shavitt. Ef£cient QoS Partition and Routing of Unicast and Multicast. In Proceedings

of IEEE/IFIP IWQoS, Pittsburgh, PA, June 2000.

23

[8] A. Orda and A. Sprintson. QoS Routing: the Precomputation Perspective. In Proceedings of IEEE INFOCOM’00, Tel-Aviv,

Israel, March-April 2000.

[9] Private Network-Network Interface Speci£cation v1.0 (PNNI). ATM Forum Technical Committee, March 1996.

[10] D. Raz and Y. Shavitt. Optimal Partition of QoS Requirements with Discrete Cost Functions. IEEE Journal on Selected

Areas in Communications, 18(12):2593–2602, December 2000.

APPENDIX

Lemma 1: Given are layer-(k + 1) subpaths P(vi,vb) and P(vb,vj) with corresponding ε̄-approximate delay

functions D(vi,vb)(c) and D(vb,vj)(c). Then, the execution of Procedure MERGE yields an ε̃-approximate

delay function D(vi,vj)(c) for the subpath P(vi,vj), where ε̃ = (1 + εk)(1 + ε̄) − 1.

Proof: Let ĉ be an arbitrary cost. We denote by dopt the minimum delay supported by P(vi,vj) at

cost ĉ, i.e., dopt = Dopt
(vi,vj)

(ĉ) and by {dopt
l }l∈P(vi,vj)

the optimal partition of delay dopt. In addition,

we denote by d̂1 =
∑

l∈P(vi,vb)
dopt

l , d̂2 =
∑

l∈P(vb,vj)
dopt

l , ĉ1 = min{c | D(vi,vb)(c) ≤ d̂1} and ĉ2 =

min{c | D(vb,vj)(c) ≤ d̂2}. The condition of the lemma implies that ĉ1 ≤ (1 + ε̄)
∑

l∈P(vi,vb)
cl(d

opt
l) and

ĉ2 ≤ (1 + ε̄)
∑

l∈P(vb,vj)
cl(d

opt
l). This, in turn, implies that ĉ1 + ĉ2 ≤ (1 + ε̄)ĉ.

We prove that D(vi,vj)((1 + ε̃)ĉ) ≤ dopt. Consider the invocation of the loop that begins at line 2 for

c = min{(1 + εk)
t | (1 + εk)

t ≥ ĉ1 + ĉ2}. Clearly, ĉ1 + ĉ2 ≤ c ≤ (1 + εk)(ĉ1 + ĉ2).

There are two possible cases.

1) ĉ1 ≤ ĉ2. Then after the iteration of the loop that begins on line 6 for c2 = max{ĉ2, c
′
2}, it holds that

D(vi,vj)(c) ≤ D(vi,vb)(ĉ1) + D(vb,vj)(ĉ2) ≤ d̂1 + d̂2 = dopt.

2) ĉ2 < ĉ1. Then after the iteration of the loop that begins on line 11 for c1 = max{ĉ1, c
′
1}, it holds

that D(vi,vj)(c) ≤ D(vi,vb)(ĉ1) + D(vb,vj)(ĉ2) ≤ d̂1 + d̂2 = dopt.

In both cases we showed that there exists c ≤ (1 + εk)(ĉ1 + ĉ2) for which D(vi,vj)(c) ≤ dopt. Since

ĉ1 + ĉ2 ≤ (1+ ε̄)ĉ, we have c ≤ (1+εk)(1+ ε̄)ĉ = (1+ ε̃)ĉ, which in turn implies that D(vi,vj)((1+ ε̃)ĉ) ≤
dopt. Since ĉ is arbitrary, the lemma follows.

Lemma 2: The computational complexity of Procedure MERGE is O(1
ε2

k

log U).

Proof: First, let us count the number of iterations t of the procedure’s main loop (i.e., the loop

beginning on line 2). Clearly, (1 + εk)
t ≤ U hence t ≤ ln U

ln(1+εk) . Since for all 0 ≤ x ≤ 1 it holds that

x ≤ 2 ln(1 + x), we have t = O
(

log U
εk

)

The number of iterations t′ of each of the loops beginning on lines 6 and 11 is O
(

log 2(1+εk)
log(1+εk+1)

)

. Since

log(1 + εk) = O(1) for εk ≤ 1 and 1/εk+1 = O(1/εk), it holds that t′ = O(1
εk

). The time required to

execute both loops is also O(1
εk

), since a single iteration requires O(1) time.

We conclude that the computational complexity of the procedure is indeed O(1
ε2

k

log U).

Theorem 1: Procedure UNICAST identi£es, in O(1
ε2 n · log U) time, an ε-approximate delay function

D(v0,vn)(c) for a path P .

Proof: We begin by proving that Procedure UNICAST identi£es, for each subpath of layer k, 1 ≤
k ≤ K, an ε(k)-approximate delay function D(vi,vj)(c), where ε(k) =

∏k
t=k(1 + εt) − 1.

24

The proof is by induction on the layer number k. Consider a layer-K subpath P(vi,vi+1). It is immediate

that lines 2 and 3 compute an εK-approximate delay function D(vi,vi+1)(c). Assume inductively that the

assertion holds for subpaths of layer-(k + 1), and consider a layer-k subpath P(vi,vj). Since the assertion

holds for the subpaths P(vi,vb) and P(vb,vj), b = (j + i)/2, the condition of Lemma 1 is satis£ed for

ε(k+1) =
∏K

t=k+1(1 + εt)− 1. Lemma 1 implies, in turn, that the algorithm identi£es an ε(k)-approximate

delay function D(vi,vj)(c), for ε(k) =
∏K

t=k(1 + εt) − 1.

Since
∏K

t=0(1 + εt)− 1 ≤ 2
∑K

t=0 εt ≤ ε, the assertion implies that Procedure UNICAST ε-approximate

delay function D(v0,vn)(c) for path P .

We proceed to analyze the computational complexity of Procedure UNICAST. The procedure is applied

recursively for each subpath of P of each layer k. The total time required for processing layer-K paths

is O(1
εK

n · log U). For 0 ≤ k ≤ K − 1, the time needed for processing a layer-k subpath is determined

by the running time of Procedure MERGE. By Lemma 2, invocation of of Procedure MERGE for layer-k

subpath requires O(log U
ε2

k

) = O(
3
√

22(K−k) log U
ε2) time. Since there are 2k subpaths of layer-k, processing

layer-k requires O(
3
√

22K+k log U
ε2) time. The total time needed for processing each subpath of each layer is:

O
(

2
2K
3 log U

ε2

∑K−1
k=0 2

k

3

)

= O
(

1
ε2 n · log U

)

.

We conclude the computational complexity of the algorithm is O(1
ε2 n · log U) and the theorem follows.

Theorem 2: Algorithm OPQ provides, in O(1
ε2 n · log n

ε +n · log log Cmax) time, an ε-approximate solution

to Problem OPQ, i.e.: given a connection request with delay constraint D, Algorithm OPQ identi£es a

suitable QoS partition {dl}l∈P , whose cost is at most (1+ε) times higher than that of the optimal partition.

Proof: In lines 1 and 2 we compute obvious lower and upper, L and U bounds on the cost of the

optimal solution. As discussed in Section III-B.2, the bounds remain valid during execution of the loop

that begins at line 3 and after the execution of this loop it holds that U/L ≤ 2n.

We denote by copt and c∗opt the cost of the optimal solution under the original and scaled cost functions,

respectively. Equation 4 implies that c∗opt ≤ copt·n
(ε/2)·L . By Theorem 1, Procedure UNICAST yields an ε/2-

approximate delay function D(v0,vn)(c). Thus, after execution of line 12 it holds that ĉ ≤ (1 + ε/2)c∗opt.

Since c∗opt ≤ copt·n
(ε/2)·L , we have ĉ ≤ (1 + ε/2) copt·n

(ε/2)·L . Let {dl}l∈P be the partition that corresponds to cost

ĉ. From the left part of Equation 4 it follows that the cost c of {dl}l∈P is at most c ≤ εĉ·L
2n + εL

2 ≤
(1 + ε/2) · copt + (ε/2) · L ≤ (1 + ε) · copt. We conclude that the algorithm returns a feasible partition

whose cost is at most (1 + ε) times more than the optimum.

We proceed to analyze the computational complexity of Algorithm OPQ. Lines 1 and 2 of the algorithm

require O(n) time. Each iteration of the loop of line 3 requires also O(n) time. Since the total number

of iterations is O(log log Cmax), we conclude that the loop requires O(n · log log Cmax) time. Theorem 1

implies that the application of Procedure UNICAST for U = 4n2

ε (line 11) requires O(1
ε2 n · log n

ε) time.

Thus, we conclude that the computational complexity of the algorithm is O(1
ε2 n · log n

ε +n · log log Cmax).

25

Lemma 3: Algorithm POPQ computes, in O(1
ε2 n log(nCmax)) time, an ε-approximate delay function

D(v0,vn)(c) for P .

Proof: By Theorem 1, Procedure UNICAST yields an ε/3-approximate delay function D′
(v0,vn)(c).

Let ĉ be an arbitrary cost. Since D′
(v0,vn)(c) is an ε/3-approximate delay function, there exists c′ ≤

(1 + ε/3)c such that D′
(v0,vn)(c

′) ≤ Dopt
(v0,vn)(c). Furthermore, let c′′ = min

{

(1 + ε/3)t |(1 + ε/3)t > c′
}

.

Since c′′ ≤ (1 + ε/3)c′ ≤ (1 + ε/3)2ĉ, it holds that c′′ ≤ (1 + ε)ĉ for ε ≤ 1. After execution of the

loop that begins at line 2 it holds that D(v0,vn)(c
′′) ≤ D′

(v0,vn)(c
′). Hence for c′′ ≤ (1 + ε)ĉ it holds that

D(v0,vn)(c
′′) ≤ Dopt

(v0,vn)(c). Since c is arbitrary, D(v0,vn)(c) is an ε-approximate delay function for P .

By Theorem 1, the application of Procedure UNICAST for U = n · Cmax (line 1) requires O((1/ε2)n ·
log(nCmax)) time, which is also the computational complexity of Algorithm POPQ.

Lemma 4: Given are a layer-k subtree T(vi,vi), layer-(k + 1) branches T(vi,vj) of T(vi,vi) with corre-

sponding ε̄-approximate delay functions D(vj ,vj)(c). Then, Procedure MIN-MAX-MERGE computes, in

O(1
εk

mi log mi log U) time, an ε̃-approximate delay function D(vi,vi)(c) for the subtree T(vi,vi), where

ε̃ = (1 + εk)(1 + ε̄) − 1.

Proof: First, we prove the following claim: at each iteration of the loop that begins on line 6 for

each (vi, vj) ∈ T it holds that cj is the minimum cost of supporting delay requirement d, i.e., cj =

min
{

c | D(vi,vj)(c) ≤ d
}

. Clearly, the claim holds at the beginning of iteration 1. Suppose inductively

that, the claim holds at the beginning of iteration k, we prove that the claim holds at the end of the

iteration. We denote the value of d at the beginning of the iteration by d′ and in the end of the iteration by

d′′. Note that d′′ < d′ and in the end of the iteration it holds that D(vi,vj)(cj) ≤ d′′ for each (vi, vj) ∈ T .

Thus, for each j /∈ S, since the value of cj does not change during the iteration, it holds that cj is a

minimum cost of supporting d′′. For each j ∈ S, cj is set to minimum cost of supporting a delay lower

than d′. Thus, since d′′ < d′ and D(vi,vj)(cj) ≤ d′′, it holds that cj is a minimum cost of supporting d′′.

Next, we prove, that for arbitrary cost ĉ, 1 ≤ ĉ ≤ U it holds that D(vi,vi)((1 + ε̄)ĉ) ≤ Dopt
(vi,vi)

(ĉ). We

denote by d̂opt the minimum delay supported by T(vi,vi) at cost ĉ, i.e., d̂opt = Dopt
(vi,vi)

(ĉ). In addition,

we denote, for each (vi, vj) ∈ T , ĉopt
j = min

{

c | Dopt
(vi,vj)

(c) ≤ d̂opt
}

, ĉj = min
{

c | D(vi,vj)(c) ≤ d̂opt
}

,

d̂j = D(vi,vj)(ĉj). Let d̂ = max(vi,vj)∈T d̂j .

The condition of the lemma implies that, for each (vi, vj) ∈ T , it holds that ĉj ≤ (1+ε̄)ĉopt
j . Consider the

iteration of the loop that begins on line 6 in which d = d̂. The claim above implies that for each (vi, vj) ∈ T ,

it holds that cj = min
{

c
∣

∣

∣
D(vi,vj)(c) ≤ d̂

}

= ĉj . Thus, for each (vi, vj) ∈ T , it holds that cj ≤ (1+ε̄)ĉopt
j

and, after execution of line 7 we have D(vi,vi)(c) ≤ dopt, where c =
∑

(vi,vj)∈T cj ≤ (1 + ε̄)ĉopt. We thus

proved that D(vi,vi)(c) is a ε̄-approximate delay function of T(vi,vi).

In the loop that begins in line 14 we compute the function D′
(vi,vi)

(c) by performing the logarithmic

sampling of function D(vi,vi)(c) at costs 1, 1 + εk, · · · . Thus, the resulting function is an ε̃-approximate

delay function, where ε̃ = (1 + ε̄)(1 + εk) − 1.

We proceed to analyze the computational complexity of Procedure MIN-MAX-MERGE. The loop that

begins at line 1 requires O(mi) time. At each iteration of the loop that begins at line 6 we examine

26

a segment of D(vi,vj)(c) for some branch T(vi,vj) of T(vi,vi). Since the delay function of the branch has

O(log U
εk

) segments, the number of iterations of the loop is O(1
εk

mi log U). All lines in the loop, except

for lines 11, 11 and 13, can be executed in O(1) time. The total computational complexity of line 10 is

O(1
εk

mi log U). If we use a binary tree to keep values of dj , then the total computational complexity of

lines 11 and 13 is O(1
εk

mi log mi log U). The loop that begins at line 14 requires O(1
εk

log U) time. We

conclude that the total computational complexity of the procedure is O(1
εk

mi log mi log U).

Theorem 3: Procedure MULTICAST identi£es, in O(1
ε2 nH log U) time, a ε-approximate delay function

D(s,s)(c) for a tree T .

Proof: We begin by proving that Procedure MULTICAST identi£es, for each subtree T(vi,vi) of layer-k,

1 ≤ k ≤ H , a ε(k)-approximate delay function D(vi,vi), where ε(k) =
∏H

t=k(1 + εt)
2 − 1.

The proof is by induction on layer number k. Consider a subtree T(vi,vi) that corresponds to a terminal

vi. It is immediate that line 3 computes an optimal delay function D(vi,vi)(c). Assume inductively that

the assertion holds for subtrees of layer k + 1 and consider a layer-k subtree T(vi,vi). Since the assertion

holds for the subtrees
{

T(vj ,vj)

}

(vi,vj)∈T
, and since D̃(vi,vj) is a εk+1-approximate delay function for link

(vi, vj) the condition of Lemma 1 is satis£ed for ε(k+1) =
∏H

t=k+1(1+εt)
2−1. Lemma 1 implies, in turn,

that the algorithm identi£es an ε̂-approximate function D(vi,vj) for each branch T(vi,vj) of T(vi,vi), where

ε̂ = (1+εk)(1+ε(k+1))−1. Hence, the condition of Lemma 4 is satis£ed for ε̄ = (1+εk)(1+ε(k+1))−1.

Lemma 4 implies, in turn, that the algorithm identi£es an ε(k)-approximate function D(vi,vi) for T(vi,vi),

where ε(k) = (1 + εk)
2(1 + ε(k+1)) − 1 and the assertion follows.

We note that
∏H

t=0(1+εt)
2 =

∏H
t=0(1+2εt +ε2

t) ≤
∏H

t=0(1+3εt) and
∏H

t=0(1+3εt)−1 ≤ ∑H
t=0 3εt.

After substitution εt according to Equation 7 we have
∑H

t=0 3εt ≤ ε. We conclude that the procedure

computes an ε-approximate delay function D(s,s)(c) for tree T .

We proceed to analyze the computational complexity of Procedure MULTICAST. The complexity is

dominated by time required to execute Procedure MERGE, which is executed for each subtree of each

layer. Since the computational complexity of Procedure MERGE for layer-k subtree is O(1
ε2

k−1
log U) and

since there are nk subtrees at layer k, the total time T1 of required for execution of Procedure MERGE is

log U
∑

k=1 H − 1 1
ε2

k−1
nk. After substitution εt according to Equation 7 we have

T1 ≤ 18 log U

ε

(

H
∑

k=1

3
√

nk

)2 H
∑

k=1

3
√

nk.

Since the latter expression is maximized when nk = n/H , we have T1 = O(1
ε2 nH2 log U).

Next, we analyze the total time T2 required for execution of Procedure MIN-MAX-MERGE. The pro-

cedure is also executed for each each subtree of each layer. By Lemma 4, the computational complexity

of executing the procedure for a subtree T(vi,vi) of layer k is O(1
εk

mi log mi log U), where mi ≤ n is the

number of branches of T(vi,vi). Thus, T2 = log n log U
∑H−1

k=0
1
εk

nk+1. After substitution εk according to

27

Equation 7 we have

T2 =
log n log U

ε

H
∑

k=1

3
√

nk

H
∑

k=1

3

√

n2
k.

Since the latter expression is maximized when nk = n/H , we have T2 = O(1
εnH log n log U).

Finally, in procedure Procedure MULTICAST we perform logarithmic sampling for each link l ∈ T
(lines 8-9). Let T(vj ,vj) be a subtree of layer k, 1 ≤ k ≤ H − 1 and let {vi} be the parent node of

vj . Performing logarithmic sampling for each link (vi, vj) requires O(1
εk

log U) time. Thus, handling

all links between a root of a subtree of layer-k and its parent node is O(1
εk

nk log U). Thus, we need

T3 = O(log U
∑∑H

k=1
1
εk

nk) time to process all links in T . After substitution εk according to Equation 7,

we conclude that the time required to process all links in T is T3 = O(1
εnH log U). We conclude that the

computational complexity of Procedure MULTICAST is T1 + T2 + T3 = O(1
ε2 nH2 log U) and the theorem

follows.

