
Stochastic Analysis
of

Symmetric Two-Flow Wireless-Fair Scheduling

Raphael Rom and Hwee Pink Tan

March 25, 2002

lesley
CCIT Report #371February 2002



Abstract

Future Wireless Networks are expected to offer diverse services with different grades of Quality of
Service (QoS). Wireless scheduling plays an important role in QoS provisioning since it determines
how scarce resources will be allocated to concurrently support the diverse demands of users.

In this report, we shall develop an analytical model for a simple symmetric two-flow wireless
scheduling algorithm based on the fair queuing paradigm (Wireless-Fair Scheduling). By proper
selection of the analysis interval, time instances as well as definition of a suitable state variable, the
behavior of the scheduler can be characterized by a one dimensional Markov Chain. Based on the
model, we shall derive the delay and fairness performance of the two-flow scheduler in terms of
channel state parameters.

In addition, we shall also define a Wired-Fair scheduling scheme which is fair and but not
channel-efficient and a Channel-Efficient scheduling scheme which is not fair. We shall compare
the performance of these schemes under different channel conditions in terms of channel-efficiency
and fairness.
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Chapter 1

Introduction

Future Generation wireless networks are envisaged to bring existing wireline applications, including
high speed data and multimedia, to mobile users via a wireless environment. Users are expected to
carry diverse traffic types with vastly different Quality of Service (QoS) requirements. This poses
a challenge to the network’s traffic management mechanism to provide seamless QoS to the mobile
users.

Scheduling determines how resources will be allocated amongst contending users, and hence,
is an integral component for QoS provisioning. Whilst an abundance of such algorithms, e.g., Fair
Queuing scheduling [1], Virtual Clock [2] and EDD [3] that provides guaranteed QoS exists for
wireline networks, research activities on scheduling over a wireless media (Wireless Scheduling)
took off only in the last few years. Direct application of wireline scheduling to the wireless media
is not useful due to the following unique characteristics: (a) high error rate and bursty errors (b)
location dependent and time varying capacity (c) scarce bandwidth (d) user mobility and (e) power
constraint of mobile users.

A comprehensive survey of wireless scheduling algorithms is given in [4] and [5]. Most of the
algorithms proposed can be mapped onto a Unified Wireless Fair Queuing Framework [4]. Under
this framework, scheduling is performed according to a wireline fair queuing algorithm under error-
free conditions. However, under error-prone conditions, the scheduler swaps transmission amongst
flows based on their respective channel conditions to maximize channel efficiency. To ensure fair-
ness, an accounting system is maintained to monitor the reassignment activities in order to make
up for ‘lost’ transmissions in the future. In terms of per-flow QoS requirements, the performance
of these algorithms are evaluated in terms of the following parameters: (a) channel-access delay
bound, (b) short and long-term throughput guarantees and (c) long and short-term fairness. Based
on simulation results in [4], it is suggested the CIF-Q [6] and WFS [7] algorithms offer the best QoS
performance.

However, it is noted that the analytical bounds obtained for the above algorithms seem somewhat
incomplete. For the CIF-Q algorithm, performance bounds are derived for error-free flows only. For
the WFS algorithm, in addition to error-free flows, performance bounds conditioned on the channel
characteristics are derived for error-prone flows, i.e., the worst case performance under a static error
condition (e.g., worst case error rate). Such a deterministic bound is often conservative and hence,
is not representative of the scheduler performance. Since the behavior of the wireless channel
can typically be modeled as a stochastic process, statistical performance bounds can be derived
by modeling the wireless scheduler as a stochastic process. These bounds are expected to better
describe the scheduler performance.

In this report, we shall develop an analytical model for a wireless fair scheduling algorithm that
maps to the Unified Wireless Fair Queuing Framework. Based on this model, we shall derive sta-
tistical performance bounds for packet delay and fairness for various scheduler designs and channel
error models.
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Chapter 2

Scheduling Scenario

We consider a typical centralized scheduling scenario, where N flows (denoted flow 1,2,..N) contend
for a shared resource. In this case, the shared resource is the access to a common wireless channel.
The channel is assumed to be slotted in time, where all slots are of equal size. The traffic of each
flow is characterized by its rate weight (denoted r1; r2; ::rN where

PN
i=1 ri = 1).

Since the purpose of this paper is to establish the delay and fairness properties of the scheduling
mechanism, we assume that at the beginning of each slot, the scheduler has perfect knowledge of the
channel state of each flow, i.e., if the flow perceives an error-free channel or an error-prone channel.
A flow’s transmission is successful only if it perceives an error-free channel.

In addition, although the channel state of each flow is assumed to be independent of that of other
flows, we only consider time-dependent, location-independent channel errors so as to disregard the
‘unfairness’ introduced by location-dependence of the channel states of different flows.
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Chapter 3

Wireless-Fair Scheduling

Fair queuing is a popular scheduling approach that provides throughput and fairness guarantees as
well as bounded-delay link access in a wired network. These desirable properties will be degraded
if fair queuing is directly applied for scheduling in a wireless media because of the following char-
acteristics:

(a) High transmission error rate
Since flows are scheduled independent of channel conditions, slots are wasted (which is signifi-

cant compared to a wired link) when the flow allocated to transmit perceives channel error, resulting
in reduced channel efficiency.

(b) Time-dependent and Bursty transmission errors
Due to the burstiness of channel errors, the fairness property no longer holds over intervals

comprising erroneous slots. In order to maintain fairness, channel efficiency can be significantly
reduced if the flow undergoing an error-burst is repeatedly polled by the scheduler.

(b) Flow-dependent transmission errors
In addition to time dependence, the transmission error over the wireless channel may also be

spatially dependent (e.g., due to user mobility), and hence differ amongst flows. This can introduce
additional unfairness to the scheduler.

Based on the above characteristics, wireless adaptation techniques can be introduced to the fair
queuing paradigm such that the resulting wireless-fair queuing algorithm will:

(a) emulate the performance of fair queueing under error-free conditions (thus achieving through-
put, fairness and delay guarantees), and

(b) maintain optimal channel efficiency (thus minimizing degradations to delay and throughput
guarantees) and fairness guarantees under error-prone conditions.

3.1 Wireless Adaptation Mechanism

Most wireless-fair scheduling algorithms that were recently proposed in the literature perform wire-
less adaptation by (a) reassigning flows for transmission based on their channel states and (b) sub-
sequently compensating for the reassignment. This is further elaborated as follows:

When a flow that is scheduled for transmission in the next slot predicts channel error, another
flow that perceives a clean channel in the given slot (which is likely to exist due to the location-
dependent nature of channel errors) will transmit instead to minimize slot wastage and hence op-
timize channel efficiency. The scheduler accounts for the ‘loss’ slot and attempts to compensate
the flow for it at a later time. The extent to which the scheduler minimizes slot wastage and max-
imize slot compensation represents a trade-off between channel efficiency and short-term fairness
provision.
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3.2 Unified Wireless Fair Queuing Framework

A Unified Wireless Fair Queuing Framework has been defined in [4]. With our assumption of per-
fect channel knowledge, and that each packet is kept in its queue until successful transmission (i.e.,
infinite retransmission bound), the framework is simplified and comprises the following compo-
nents:

3.2.1 Error-free Service

The error-free service is the scheduling scheme employed in an error-free environment to provide
throughput, fairness and delay guarantees. It is typically some packetized approximation of the fluid
fair queueing paradigm (see [1],[8],[9],[10],[11],[7]).

3.2.2 Lead and Lag Accounting Service

The notion of per-flow lag(lead) is defined to keep track of the amount of additional service that a
flow is entitled to (needs to relinquish) in the future in order to compensate for service lost (gained)
in the past. It is used as an input to the compensation service to select the flow to transmit in the next
slot. The definition of the service differs in terms of the choice of the reference and the existence of
bounds for lead/lag.

3.2.3 Compensation Service

This component enables lagging flows to reclaim ‘lost’ service (due to channel error) from leading
flows by defining the mechanism (how, when and which) for which a flow relinquishes or transmits
in a given slot.
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Chapter 4

Analytical Model

In Section 3, we have described a general framework for designing a wireless-fair scheduler based
on time-slot swapping and compensation. In this section, we will define a specific wireless-fair
scheduler and build a model in order to analyze its performance.

4.1 Assumptions

Several assumptions are in place here. We shall consider a scheduling scenario with N=2 where
r1 = r2 = 0:5 (symmetric two-flow wireless-fair scheduling). The arrival process of one flow is
assumed to be independent of the other. In addition, for each flow, the arrival process in one interval
is independent of the arrival process in a non-overlapping interval. Each message comprises one
packet, and all packets are of equal size with transmission time of one slot.

We also assume that the queue of each flow is of infinite length and at any instant in time, each
queue can be in one of two states, namely, empty or backlogged.

4.2 Definition of Symmetric Two-Flow Wireless-Fair Scheduler

According to Section 3, we can define our symmetric two-flow wireless-fair scheduler by specifying
its error-free service, lead and lag accounting service and its compensation service.

4.2.1 Error-free service

For a system where packets are of fixed size equal to the slot width, if all flows are backlogged at all
times during the interval of analysis, then Weighted Round Robin with spreading (WRR-spreading)
is equivalent to Weighted Fair Queueing (WFQ) [11]. Hence, WRR-spreading will be used as the
error-free service. For a symmetrical two-flow system, WRR-spreading reduces to simple alternate
slot allocation.

4.2.2 Lead and Lag Accounting Service

Since we do not simulate fluid fair queueing, the lead/lag of each flow will be computed relative to
each other such that at any time instant,

P
2
j=1 lead of flow j = 0.

For a two-flow system, we can define a single variable, x, to denote the lead of flow 1 relative
to flow 2 (or the lag of flow 2 relative to flow 1). Flow 1 is defined as leading, lagging or in-sync
(neither leading nor lagging) according to the following:

x

8><
>:

= 0; f lows are in� sync;
> 0; f low 1 is leading;
< 0; f low 1 is lagging:
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The value of x is updated (a) whenever a flow transmits in a slot given up by another flow or (b)
whenever a lagging flow is ‘catching up’ on its lag by transmitting in its own slot.

4.2.3 Compensation Service

We consider the compensation service where absolute priority is given to the lagging flow, i.e, as
long as there exists a lagging flow, slots are always allocated to it until it ‘recovers’ from its lag, i.e,
when x = 0; otherwise, slots are allocated according to the error-free service.

4.3 Definition of Intervals for Performance Analysis

Fig. 4.1 depicts an example of the queue status of both flows over an interval of time.

�������
Regenerative Interval

Performance Interval

Legend:

t1      t2                             t3       t4

�Duration where flow 1
is backlogged

Duration where flow 2
is backlogged

time

Figure 4.1: Queue status for two-flow scheduling scenario

At time t1, flow 1 becomes backlogged, and since it is the only flow that is backlogged, all slots
are allocated to it until t2 when both flows become backlogged. During the interval [t2; t3], slots are
allocated alternately to each flow. At t3, flow 2 empties, and hence, all slots are allocated to flow 1
until t4, when flow 2 becomes backlogged again.

Let us define a variable, xi to denote the lead of flow 1 in slots (or equivalently the lag of flow
2) at the end of slot i. A positive xi indicates that flow 1 is leading over flow 2 by xi slots, while a
negative xi indicates that flow 1 is lagging from flow 2 by xi slots. If we consider all intervals where
both flows are backlogged (e.g., [t2; t3] in Fig. 4.1), then x is initialized to zero at the beginning of
all such intervals.

If we consider an interval between the instant when both flows become backlogged to the next
instant when both flows become backlogged again (e.g., [t2; t4] in Fig. 4.1), we notice that the
evolution of x within such an interval is independent of that in past intervals because at the beginning
of each interval, x is reset. Hence, the instances where x is reset are regenerative points with respect
to x and we define the interval between two successive regenerative points as a regenerative interval.

Let us consider a regenerative interval. It always begins with a sub-interval where both flows are
backlogged, followed by at least one sub-interval where only one flow is backlogged. Sometimes,
it may also include a sub-interval where both flows are empty. We are interested in the performance
analysis over the sub-interval where both flows are backlogged (e.g., [t2; t3] in Fig. 4.1) since the
other cases are trivial. We define such an interval as a performance interval.

4.4 Mechanism of Wireless-Fair Scheduler

Let us consider the performance interval as shown in Fig. 4.2, where time is slotted and slots are
numbered 1,2,3,...from the beginning of each performance interval.
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For any slot i, the lead of flow 1 at the end of slot i is denoted by xi. Let Ai denote the flow that
is allocated in slot i, where Ai = fS1; S2g. If Ai = Sj, then slot i is allocated to flow j.

Slot Number

Allocation

Actual
transmission

Error Status

Flow 1

Flow 2

��
�����
��
��
�
�

  F1              F2      F1      F1     F1     F2     F2      F1

  S1    S2      S1      S1      S2     S2     S2     S2      S1

   1      2        3        4         5       6       7        8       9

1            2                                3          4 time

x at beginning
of slot i    0      0        0      -1         0       1        2       1       0

�Erroneous Channel                     Error-free channel

i iPacket i of F1 becomes HOL              Packet i of F1 departs

Figure 4.2: Performance Interval for a two-flow scheduling scenario

Under an error-free environment, the error-free service reduces to a simple slot allocation policy
based on the status of the queue to each flow. At any instant of time, as long as only one flow is
backlogged, all slots are allocated to that flow. Once the other flow becomes backlogged while that
flow stays backlogged, slots are allocated in an alternate manner (i.e., Ai = Ai�1) until one queue
empties. No transmission takes place when neither queue is backlogged.

However, under an error-prone environment, the above slot allocation policy is sub-optimal in
terms of channel efficiency and is also unable to guarantee fairness to both flows. This is where the
lead and lag accounting service as well as the compensation service (described in Section ??) come
into play.

In Fig. 4.2, the first flow 1 packet arrives to the system while a flow 2 packet is transmitting in
slot 0. Hence, the performance interval begins with slot 1 and x0 = 0. Let us assume that A1 = S1,
i.e., flow 1 has priority of transmission in slot 1. Flow 1 perceives an error-free channel in slot
1 and transmits successfully. Since x0 = 0 and neither flow gained in transmission relative to the
other, x1 = x0 = 0. To ensure fairness, slot 2 is allocated S2 (i.e., A2 = A1). However, both flows
perceive erroneous channels in slot 2 and since neither flow can transmit, x2 = x1 = 0. Although
slot 3 is allocated S1, flow 2 transmits as it perceives an error-free channel while flow 1 perceives
an erroneous channel. Hence, flow 2 gains a lead of 1 slot (or equivalently, flow 1 gains a lead of
-1), and therefore, x3 = -1. Since flow 2 leads at the beginning of slot 5, the scheduler attempts
to compensate flow 1 by allocating subsequent slots to S1 until both flows are in-sync (i.e., x = 0
where neither flow leads nor lags relative to the other). In slot 4, flow 1 transmits as it perceives an
error-free channel, thereby incrementing x such that x4 = 0.

Since x4 = 0, the system resumes alternate slot allocation, and slot 5 is allocated to S2. How-
ever, in this slot, flow 1 transmits as it perceives an error-free channel while flow 2 perceives an
erroneous channel, thus giving flow 1 a lead of 1 slot over flow 2 (or equivalently, x5 = 1). Subse-
quent slots are allocated S2 to compensate flow 2 until both flows are in-sync again. However, the
channel of flow 2 is undergoing an error burst and flow 1 increases its lead by transmitting in slot 6.
The system continues to allocate slots to flow 2 until sufficient flow 2 transmissions take place, and
x is decremented with each transmission to zero at the end of slot 8.

4.5 Stochastic Characterization

Let us characterize the behavior of the symmetric two-flow wireless-fair scheduler by looking at the
evolution of x over each slot interval.
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Let us denote the set of all possible events that can occur in any slot i by E as follows:

E =

8>>>>><
>>>>>:

No F low transmits(NF );
f low 1 transmits when Ai = S1 (f1S1);
f low 1 transmits when Ai = S2 (f1S2);
f low 2 transmits when Ai = S2 (f2S2);
f low 2 transmits when Ai = S1 (f2S1)

9>>>>>=
>>>>>;

4.5.1 Effects of each transmission event on x

In any slot i, whenever no transmission takes place (i.e., event NF), neither flow achieves any lead
over the other flow. However, when the event f1S2 takes place, flow 1 gains a lead of one slot over
flow 2; on the other hand, when the event f2S1 takes place, flow 1 suffers a lag of 1 slot relative to
flow 2.

When flows transmit in their allocated slots (i.e., event f1S1 or f2S2 occurs), if they were in-
sync before the transmission, neither flow gains with respect to each other. Otherwise, the flow
that is allocated the slot is lagging (since lagging flows always receive priority in allocation) before
the transmission and perceives a ‘clean’ channel in slot i. Hence, its lag will be reduced after the
transmission.

In summary, the effects of each transmission event in slot i on xi can be depicted as follows:

xi =

8><
>:

xi�1; NF [ (f1S1 [ f2S2) \ xi�1 = 0;
xi�1 + 1; f1S2 [ f1S1 \ xi�1 < 0;
xi�1 � 1; f2S1 [ f2S2 \ xi�1 > 0:

4.5.2 Effects of x on Ai

The scheduler always allocates a given slot i to a lagging flow if it exists (i.e., when xi�1 6= 0);
otherwise, the allocation is alternate. Hence, the effects of x on Ai can be depicted as follows:

Ai =

8><
>:

Ai�1; xi�1 = 0;
S1; xi�1 < 0;
S2; xi�1 > 0:

Given xi�1, the value of xi depends on the transmission event in slot i. The value of Ai determines
the set of allowable events, i.e., when Ai = S1, the allowable events are fNF; f1S1; f2S1g whereas
if Ai = S2, the allowable events are fNF; f2S2; f1S2g. Within each set of allowable events, the
probability of occurrence of each transmission event in slot i depends only on the channel state of
each flow in slot i.

The value of Ai can be determined from xi�1 if xi�1 6= 0; otherwise, the value of Ai�1 is
needed since in this case, Ai = Ai�1.

In summary, given xi�1; Ai�1 and the channel statistics of each flow in slot i, xi can be deter-
mined. In other words, the wireless scheduler can be modeled as a two dimensional Markov Chain
with state variables given by f(xi; Ai); i = 1; 2; 3:::g defined at each slot interval (Markov points).

4.6 Simplification of 2-D Markov Model of Wireless Scheduler

Let us consider a performance interval (i.e., an interval during which both flows are continuously
backlogged). Instead of observing the value of x at each slot interval, let us consider only the
departure instances of flow 1 packets, or equivalently, the instances when the flow 1 packets become
head� of � line (HOL). Let us consider a packet of flow 1 which departs from the system in slot
i-1 with xi�1 = 0. In slot i-1, either one of the events, f1S1 or f1S2, could have occurred. Let us
assume that f1S2 occurred in slot i-1. Since f1S2 always results in an increment of x, this implies
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that xi�2 = xi�1 � 1 = -1. However, if xi�2 = �1, then Ai�1 = S1, which is a contradiction since
then, the event f1S2 cannot take place in slot i-1. Hence, the event f1S1 must have occurred in slot
i-1, i.e., Ai�1 = S1. Therefore, S2 is always allocated in slot i when xi�1=0 since Ai = Ai�1.
Therefore, given the value of x when a packet of flow 1 becomes HOL, the distribution of x when it
departs the system can be computed given the channel statistics.

Let us define the state variable of the system, yq, to be the value of x when the qth packet of flow
1 departs the system within a performance interval, for q � 1. yq is also the value of x when the
q+1th packet becomes HOL. The description in the previous paragraph implies that the probability
distribution of yq can be determined given the channel statistics of each flow as well as yq�1. Hence,
the two dimensional Markov Chain, f(xi�1; Ai); i = 1; 2; 3:::g, defined in Section 4.5 reduces to a
one dimensional Markov Chain, fyq; q = 1; 2; 3:::g, where Markov Points are defined at departure
instances of flow 1 packets.

Since the scheduling mechanism is symmetrical with respect to both flows, the same Markov
Chain representation is obtained by considering only the departures of flow 2 packet instead of flow
1 packets.

12



Chapter 5

Performance Evaluation

In Section 4.4, a 1-D Markov Chain representation of a symmetric two-flow wireless-fair scheduler,
fyq; q = 1; 2; 3:::g, has been developed over any performance interval, where yq denotes the lead
of flow j, j�f1; 2g, when its qth packet departs the system. Given yq�1, as long as the channel states
of each flow are known, yq can be computed. In this section, we shall derive the performance of the
scheduler based on its Markov Chain representation.

The performance of the wireless-fair scheduler can be evaluated based on several QoS parame-
ters, e.g., packet delay, throughput, loss probability and fairness. In this analysis, we shall establish
the performance of the scheduler in terms of fairness and delay. Since the system is symmetrical,
henceforth, we shall consider only packet departures of flow 1.

Let us consider packet q of flow 1 which becomes HOL in slot k. We say that it has a duration
of n slots if it departs in slot k+n. This is illustrated in Fig. 5.1. We shall also define n to be the
delay of packet q. Hence, we shall use the words duration and delay interchangeably in the rest of
the paper.

Allocation

Slot Numer

Pkt q-1 departs

y
q-1

 = x    = x initk-1

No Flow 1 transmission

Pkt q departs

S1 S2

k k+1 k+2 k+n-1 k+n

x        y q=xk+n =xfink+n-1

Figure 5.1: Definition of packet duration / delay

5.1 Fairness density function

The value of y at any departure instance indicates the gain in cumulative service received by flow 1
at the expense of flow 2 up to and including the departing packet. Hence, jyj represents the disparity
in cumulative service received by both flows, and is a coarse measure of the level of ‘unfairness’
of the scheduler. If we compute the probability density function of y (termed the fairness density
function), then the spread of the density function indicates the level of long-term ‘unfairness’ of
the scheduler; the wider the spread, the more ‘unfair’ the scheduler is and vice versa. An ideal fair
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scheduler will have a fairness density function given by a dirac-delta function, �(x) such that

�(x) =

(
1; x = 0;
0; otherwise:

We proceed to derive the fairness density function of the two-flow symmetrical wireless-fair sched-
uler. Let us use the following notations:

pxinitxfin(q) � Prob(yq = xfin j yq�1 = xinit)

where q � 2

hq(x) � Prob(yq = x); where q � 1

where pxinitxfin(q) denotes the state transition probability matrix for packet q and hq(x) is proba-
bility density function of yq at flow 1 departure instants. Since yq is the state variable of the Markov
Chain, hq(x) is related to hq�1(x), q � 2 as follows:

hq(x) =
X
xinit

pxinitx(q)hq�1(xinit) (5.1)

Hence, as long as h1(x) and pxinitx(q) are known, hq(x) can be recursively computed by Eq. (5.12).
Since the scheduler is symmetrical to both flows, the fairness density function at a packet de-

parture of any flow, fq(x), is given by

fq(x) = 0:5 � (hq(x) + hq(�x)) (5.2)

The steady state fairness density function, f(x), is given as follows:

f(x) = lim
q!1

fq(x) (5.3)

Since f(x) is symmetrical about x (as shown in Eq. (5.3)), the steady state fairness distribution
function, F(x), can be written as follows:

F (x) = f(0) +
xX

y=1

2� f(y) (5.4)

5.2 Packet delay distribution

We have defined the packet delay or duration to be the number of slots from the instant the packet
becomes HOL to the instant it departs the system, as illustrated in Fig. 5.1. Since Markov points
of the scheduler model are defined at packet departure instants of flow 1 packets, the packet delay
distribution actually corresponds to the distribution of the Markov intervals.

Consider packet q of flow 1 whose duration is n slots. Let us use the following notations:

rxinitn(q) � Prob(delay of packet q = n slots

j yq�1 = xinit) where q � 2

gq(n) � Prob(delay of packet q = n slots)

where q � 1

Assuming that rxinitn(q) and hq�1(x) are known, gq(n); q � 2 can be computed recursively as
follows:

gq(n) =
X
xinit

rxinitn(q)hq�1(xinit) (5.5)
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The steady state packet density function, g(n), and distribution function, G(n), are then given as
follows:

g(n) = lim
q!1

gq(n)

G(n) =
nX

k=1

g(k) (5.6)

5.3 Computation of h1(x)

From Eq.(5.12)-(5.6), we observe that as long as pxinitxfin(q), rxinitn(q) and h1(x) are known,
hq(x) and gq(n) (q � 2) can be computed and hence, f(x) and g(n) can be obtained. In this section,
we shall illustrate the computation of h1(x).

Let us consider packet 1 of flow 1 and assume that it has a duration of n slots. Since it becomes
HOL in slot 1, it will depart in slot n. We begin by computing h1(x; n), which is the probability
density function of x at the end of slot n, where n is the departure slot. To do so, we will consider
the transmission events between slots 1 to n.

Since the beginning of a performance interval always coincides with the beginning of a regen-
erative interval (where x is reset), the slot allocation policy starts anew at the beginning of each
performance interval. Hence, in slot 1 where x0 = 0, the allocation is given as follows:

Prob(A1 = S1) = Prob(A1 = S2) = 0:5 (5.7)

Since the packet can only transmit successfully in slot n, for slot k, 1 � k � n� 1, one of the
following two events can occur:

(a) No transmission takes place (Event NF)
This event can occur if both flows perceive an erroneous channel in slot k, regardless of the

channel allocation in slot k, and xk = xk�1.
(b) Flow 2 transmits (Event f2S2 or f2S1)
The probability of occurrence of this event depends on Ak. If slot k is allocated S1, then this

event occurs if flow 1 perceives an erroneous channel while flow 2 perceives an error-free channel,
and xk = xk�1 � 1. However, if slot k is allocated S2, then this event occurs if flow 2 perceives an
error-free channel, and xk = xk�1.

By considering each possible A1, and all allowable events for each A1 in slot 1, the probability
distribution of x1 can be computed. By repeating this process up to slot n, h1(x; n) can be obtained.
By considering all possible n, we obtain the following expression for h1(x):

h1(x) =
1X
n=1

h1(x; n) (5.8)

5.4 Computation of pxinitxfin(q) and rxinitn(q)

We consider packet q of flow 1, as illustrated in Fig. 5.1, that becomes HOL in slot k and departs
from the system in slot k+n. Let us look at the transmission events that are possible in each slot i,
k � i � k + n, constrained by the fact that the packet can only be successfully transmitted in slot
k+n. In slots k,k+1,..k+n-1, either flow 2 transmits or neither flow transmits. Since x can only be
incremented by a flow 1 transmission, x can be incremented at most once over the packet duration,
and hence, we obtain the following constrain:

xfin � xinit + 1 (5.9)

From Section 4.4, the allocation in slot k can be determined as long as we know if xinit < 0,
xinit > 0 or xinit = 0. Hence, we shall consider the three cases separately and for each case, we
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shall look at all combinations of permissible transmission events over the duration of packet q such
that

(a) it transmits successfully only at slot k+n (i.e., to compute rxinitn(q))
(b) it departs with a lead of xfin (i.e., to compute pxinitxfin(q))
We shall use the following notations to denote all possible transmission events in each slot or

over an interval of slots:

f1S1 flow 1 transmits in slot i where Ai=S1
f1S2 flow 1 transmits in slot i where Ai=S2
f2S1 flow 2 transmits in slot i where Ai=S1
f2S2 flow 2 transmits in slot i where Ai=S2
NF No flow transmits in slot i
S1S2 In slots i, i+1 where Ai=S1 and Ai+1=S2, NF and (NF [ f2S2)

occur in slot i and i+1 respectively
S2S1 In slots i, i+1 where Ai=S2 and Ai+1=S1, (NF [ f2S2) and NF

occur in slot i and i+1 respectively
(E)m m successive occurrences of Event E

We shall show here the derivation only for the case of xinit < 0 here. In this case, slot k is
allocated S1, independent of the value of q. Hence, pxinitxfin(q) � pxinitxfin and rxinitn(q) �
rxinitn.

Since flow 1 cannot transmit before slot k+n, the value of x cannot be incremented over the slot
interval k,k+1,..k+n-1, i.e., xi < 0; k � i � k + n � 1, and therefore, S1 is allocated from slot
k:k+n-1. In the above interval, one of two events can occur, namely, f2S1 or NF. In slot k+n, since
xk+n�1 < 0, S1 is allocated and the only possible event is f1S1.

If there are m occurrences of f2S1 in slot k:k+n-1, where 0 � m � n � 1, then, NF occurs in
each of the remaining n-m-1 slots. By considering all possible values of m, we can express rxinitn
as follows:

rxinitn =
n�1X
m=0

Prob([(f2S1)m(NF )n�m�1](f1S1)) (5.10)

where [(A)(B)] denotes all possible permutations of the events A and B and Prob((A)(B)) denotes
the probability of occurrence of event A followed by event B.

Each occurrence of f2S1 in slots k:k+n-1 decrements x by a value of 1, while the event f1S1 in
slot k+n increments it by 1. Hence, for a given n, for a packet to depart with x = xfin, there must be
xinit � xfin + 1 occurrences of f2S1 in slots k:k+n-1. If we let c = xinit � xfin + 1, we obtain

pxinitxfin =
1X

n=c+1

Prob([(f2S1)c(NF )n�1�c](f1S1)) (5.11)

5.5 Wired-Fair Scheduling

A scheduling algorithm that allocates resources based only on the error-free service described in
Section 4.2.1 achieves fairness in a wired environment where transmissions are assumed to be error-
free. We call such an algorithm a wired � fair scheduler. In a wireless environment, while
retaining its fairness properties, the performance of such an algorithm is expected to be degraded in
terms of channel efficiency, and we are interested to investigate the extent of this degradation.

Since our scheduling system comprises two flows with equal resource requirements, thewired�
fair scheduler allocates slots in an alternate manner as described in Section 4.4. However, each
flow can only transmit in its own allocated slot (i.e., flow i can only transmit in a slot allocated Si).
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5.5.1 Packet delay distribution

We refer to Fig. 5.1 and consider packet q of flow which becomes HOL in slot k and departs in slot
k+n. For the first packet of flow 1 (q=1), the delay density function, g1(n), where n � 1 is given as
follows:

g1(n) =

8>>>>>>>>>><
>>>>>>>>>>:

Prob(f10s channel in error for every even n even and A1 = S2;
slot k; 2 � k < n AND error � free in slot n);

P rob(f10s channel in error for every odd n odd and A1 = S1;
slot k; 1 � k < n AND error � free in slot n);

0; otherwise:

Next, consider the case where q � 2. Since packet q of flow 1 becomes HOL in slot k, packet q-1
must have departed the system in slot k-1, i.e., when Ak�1=S1 and the channel for flow 1 was error-
free. Since slots are allocated in an alternate manner, Ak = S2 always. Hence, the delay density
function, gq(n), where q > 1 and n � 1, is given as follows:

gq(n) =

8>>><
>>>:

Prob(f10s channel in error for every even n even;
slot k; 2 � k < n AND error � free in slot n);

0; otherwise:

5.5.2 Fairness density function

Since channel-symmetry is assumed (i.e., both flows are subject to the same channel conditions),
the Wired-Fair Scheduler is ideally-fair and hence, has a fairness density function, f(x) = �(x) such
that

�(x) =

(
1; x = 0;
0; otherwise:

5.6 Channel-Efficient Scheduling

In a wireless environment, in the absence of wireless adaptation (as in the Wired-Fair Scheduler),
a slot may be ‘wasted’ when the flow that is allocated the slot perceives an erroneous channel. We
define an simple wireless adaptation scheme to the Wired-Fair Scheduler as follows: when a flow
cannot transmit in a slot allocated to it due to channel errors, another flow is allowed to transmit in
its place if it perceives an error-free channel. In this way, the channel efficiency will be maximized.
We term such a scheduler a Channel-Efficient Scheduler.

Let us consider packet q of flow 1, as illustrated in Fig. 5.1, that becomes HOL in slot k and
departs from the system in slot k+n. Let us define zq to be the allocation in slot k, i.e.,

zq � Ak�fS1; S2g

Given zq and n, fAi; i�k : k + ng can be determined and hence, zq+1 can be computed. The value
of n depends on the transmission events in slots k:k+n, that in turn depends on the channel state of
each flow. Hence, we can define fzq; q = 1; 2; 3::g as a 1-D Markov Chain that characterizes the
behavior of the Channel-Efficient Scheduler.

In order to compute the state transition probability matrix, we define the following notations:

PS1(q) � Prob(Ak = S1)

PS2(q) � Prob(Ak = S2)
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where

PS1(q) + PS2(q) = 1 8q

We define the following notations to denote the transmission events in single slot i (or multiple slots
beginning with slot i):

f1S1 flow 1 transmits in slot i where Ai=S1
f1S2 flow 1 transmits in slot i where Ai=S2
f2S1 flow 2 transmits in slot i where Ai=S1
f2S2 flow 2 transmits in slot i where Ai=S2
NF No flow transmits in slot i
f1E flow 1 channel in error in slot i where Ai=S1
S1S2 In slots i, i+1 where Ai=S1 and Ai+1=S2, f1E and (NF [ f2S2)

occur in slot i and i+1 respectively
S2S1 In slots i, i+1 where Ai=S2 and Ai+1=S1, (NF [ f2S2) and f1E

occur in slot i and i+1 respectively
(E)m m successive occurrences of Event E

The 1-D Markov Chain of the Channel-Efficient Scheduler can be characterized in terms of the its
state transition probability matrix (for q � 2) as follows:

PS2(q) =
1X

n=2; n even

PS2(q � 1)Prob[(S2S1)
n�2
2 (NF [ f2S2)(f1S1)] +

1X
n=1; n odd

PS1(q � 1)Prob[(S1S2)
n�1
2 (f1S1)]

PS1(q) =
1X

n=2; n even

PS1(q � 1)Prob[(S1S2)
n�2
2 (f1E)(f1S2)] +

1X
n=1; n odd

PS2(q � 1)Prob[(S2S1)
n�1
2 (f1S2)]

5.6.1 Packet delay distribution

For packet q of flow 1, where q � 1, based on Eq. (5.12), the delay density function, gq(n), where
n � 1, can be computed as follows:

gq(n) =

8>>>>>><
>>>>>>:

PS1(q)� Prob[(S1S2)
n�2
2 (f1E)(f1S2)] n even;

+PS2(q)� Prob[(S2S1)
n�2
2 (NF [ f2S2)(f1S1)];

PS1(q)Prob[(S1S2)
n�1
2 (f1S1)] n odd:

+PS2(q)Prob[(S2S1)
n�1
2 (f1S2)];

5.6.2 Fairness density function

We define xi to be the lead of flow 1 at the end of slot i, as for the Wireless-Fair Scheduler. In this
case, xi is updated as follows:

xi =

8><
>:

xi�1; NF [ f1S1 [ f2S2;
xi�1 + 1; f1S2;
xi�1 � 1; f2S1:
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In addition to zq , we can define the variable yq to be the value of x when packet q of flow 1 departs
the system within a performance interval. Given yq,zq, the value of n as well as the transmission
events in slots k:k+n, yq+1 can be computed. Hence, instead of the 1-D Markov Chain, fzq; q =
1; 2; 3::g, we can define f(yq; zq); q = 1; 2; 3::g as a 2-D Markov Chain for the scheduler for fairness
evaluation, with state transition probabilities defined as follows:

rainitafin(q) � Prob(zq = afin j zq�1 = ainit)

pxinitainitxfin(q) � Prob(yq = xfin j yq�1 = xinit; zq = ainit)

If we define the following:

hq(x) � Prob(yq = x);

then

hq(x) =
X
xinit

X
ainit

pxinitainitx(q)hq�1(xinit) (5.12)

Hence, as long as h1(x) and pxinitainitx(q) are known, hq(x) can be recursively computed by Eq.
(5.12), from which the steady-state fairness density function, f(x), can be obtained.

5.6.3 Computation of pxinitainitxfin(q)

As in the Wireless-Fair Scheduler, we have the following constraint on xfin and xinit:

xfin � xinit+1

To derive the expressions for pxinitainitxfin(q), we have to consider the following three cases
separately (a) xfin = xinit+1, (b) xfin = xinit and (c) xfin < xinit. We show here the expressions
for case (b).

pxinitainitxfin(q) =

8>>>>>>>><
>>>>>>>>:

Prob[(S1S2)
n�1
2 (f1S1)]; n odd; ainit = S1;

(
n�1
2

1 )Prob[(NF [ f2S2)(f2S1)(S2S1)
n�3
2 (f1S2)]; n odd; ainit = S2;

Prob[(S2S1)
n�2
2 (NF [ f2S2)(f1S1)]; n even; ainit = S2;

(
n�2
2

1 )Prob[(f2S1)(NF [ f2S2)(S1S2)
n�4
2 (NF )(f1S2)]; n even; ainit = S1;

Prob[(S1S2)
n�2
2 (f2S1)(f1S2)]; n even ainit = S1:

where the following events are re-defined as follows:

S1S2 In slots i, i+1 where Ai=S1 and Ai+1=S2, NF and (NF [ f2S2)
occur in slot i and i+1 respectively

S2S1 In slots i, i+1 where Ai=S2 and Ai+1=S1, (NF [ f2S2) and NF
occur in slot i and i+1 respectively

5.6.4 Computation of h1(x)

Let us consider packet 1 of flow 1 that becomes HOL at the beginning of a performance interval.
Since this always coincides with the beginning of a regenerative interval (where x is reset), the slot
allocation policy starts anew at the beginning of each performance interval and x0=0. Hence, the
allocation in the slot 1, z1, is given as follows:

PS1(1) = PS2(1) =
1

2
(5.13)

We note that h1(x) is actually equivalent to pxinitainitxfin(q) for q=1, xinit=0 with Prob(z1 =
ainit) defined according to Eq. (5.13). Hence, h1(x) can be evaluated as follows:

h1(x) = PS1(1)pxinit=0ainit=S1x(1) +

PS2(1)pxinit=0ainit=S2x(1) (5.14)
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Chapter 6

Results

The expressions obtained for f(x) and g(n) in Section 5 can be evaluated in terms of the probability
of occurrence of combinations of transmission events. The evaluation of these probabilities depend
on the channel error model which we assume for the wireless channel.

6.1 Channel Error Model

We consider two types of wireless channels that differ in terms of the level of burstiness of the
error behavior over time, namely, (a) Bursty or Two-State Markov Chain Error Model and (b) Zero-
burstiness or Random Error Model.

6.1.1 Two-State Markov Chain (2SMC) Error Model

Channel errors over wireless links are typically bursty in nature and hence, the error behaviour
can be suitably modeled as a Markov Chain. We consider a Two-State Markov Chain (2SMC)
error model where renewal points are defined at the beginning of each slot and between successive
renewal points, the channel is in one of two states, Good; Bad. The state transition diagram is
given in Fig. 6.1.

Good Bad

p
ge

p
eg

Figure 6.1: State transition diagram of a 2SMC error model

The Markov Chain is specified in terms of two parameters, namely, pge and pcorr, which are
defined as follows:

pge = Prob(Bad j Good)

pcorr = peg + pge where 0 � pcorr � 1

The steady state probabilities of the channel being in either state are given as follows:

PG = Prob(Good) = peg
peg+pge

PB = Prob(Bad) = pge
peg+pge
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The value of pcorr is inversely proportional to the level of burstiness of the error behavior of the
channel: the lower the value, the higher the correlation between successive slots. In the performance
analysis that follows, pcorr = 0.1 will be used.

6.1.2 Random Error Model (REM)

This represents the special case where the error behavior is completely uncorrelated across succes-
sive slots. The error behavior in any given slot can be described by a single parameter, PE , where

PE = average error rate in each slot

Since the scheduler has perfect channel knowledge, given the channel state of the previous slot,
the scheduler can compute the probability of the channel to each flow being in a certain state. Hence,
the probability of occurrence of transmission events and therefore, f(x) and g(n), can be evaluated.

6.2 Performance of Symmetric Two-Flow Wireless-Fair Scheduling in
different channels

In this section, we shall evaluate the delay and fairness performance of Wireless-Fair Scheduling
in terms of G(n) and F(x) in different channels. Since we have assumed that the channel is flow-
independent, the channel conditions for both flows will be identical (i.e., with the same average
error rate = PB = PE).

6.2.1 Delay performance

The delay distribution, G(n), for symmetric two-flow wireless-fair scheduling in different channels
are shown in Fig. 6.2. The mean packet delay and its standard deviation (std) are tabulated in Table
6.1.

We observe the loss/delay trade-off of the scheduler under all channel conditions independent
of the average error rate. A reduction in delay bound always results in an increase in loss rate.
However, the loss/delay trade-off is less pronounced when the channel is correlated.

Under low error conditions, as seen in Fig. 6.2(a), the scheduler performs significantly better in
a correlated channel in the region of low delay bound and high loss rate. At larger delay bounds,
the scheduler performs better in an uncorrelated channel.

Assume that flow switching is negligible at the given error rate and consider a packet of flow 1
that becomes HOL in slot i+1 with a delay of n slots. It will see slot allocation S2,S1,S2,S1,...and will
transmit only in slot i+2, i+4, .. etc. If the channel is correlated, there is a very high probability ((1�
pge)

2
�1) that it will transmit successfully in slot i+2. However, when the channel is uncorrelated,

the corresponding probability is of the order of 1� pE , which is lower, since pge < pE .
For n> 2, this implies that the channel of flow 1 became erroneous in slot i+2. Hence, Prob(n=4)

is of the order of pge � peg for a correlated channel and pE � (1 � pE) >> pge � peg for an
uncorrelated channel. In a similar way, Prob(n j n > 4, uncorrelated channel) > Prob(n j n > 4,

p
E
 = 0.2 p

E
 = 0.8

mean

2.08

1.93

std

0.80

3.80

mean

5.50

4.83

std

5.17

19.81

REM

2SMC EM

Error
Model

Channel
state

Table 6.1: Mean and std of packet delay for symmetric two-flow wireless-fair scheduling
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Figure 6.2: Delay distribution, G(n), for two-flow wireless-fair scheduling for (a)PB = 0.2 and (b)

PB = 0.8

correlated channel). Therefore, eventually, at a certain threshold m, Prob(n � m, uncorrelated
channel) > Prob(n � m, correlated channel).

Similar observations can be made under high error conditions, as seen in Fig. 6.2(b), except that
the delay threshold, m, is now 14 slots. In this case, significant flow switching occurs, and hence,
we have to consider separately the cases when a flow 1 packet becomes HOL with x > 0, x=0 and
x < 0.

The explanation given for the low-error case can be applied here for the case of x=0. Here,
Prob(n = i + 2 j correlated channel) >> Prob(n = i + 2 j uncorrelated channel) since pge <<

pE . Hence, it will require a larger m before Prob(n � m, uncorrelated channel) > Prob(n � m,
correlated channel) than the low-error case. Similar observations can be made for the cases when
x 6= 0.

Hence, Wireless-Fair Scheduling performs better in a correlated channel for delay-sensitive
applications (e.g., loss rate � 10�1:5 and n � 3 under low error conditions and loss rate � 10�1:5

and n � 14 under high error conditions). For error-sensitive applications, the algorithm performs
better when the channel is uncorrelated.

6.2.2 Fairness performance

The fairness distribution, F(x), for two-flow symmetric wireless-fair scheduling in different channels
are shown in Fig. 6.3. The mean and standard deviation of x are tabulated in Table 6.2.

It is observed that under all channel conditions, the algorithm retains fairness properties signif-
icantly better in an uncorrelated channel. For example, in Fig. 6.3(a), while the disparity between
the cumulative service received by both flows is within 2 slots with a probability of 0.99 in an
uncorrelated channel, the corresponding figure is 37 slots in a correlated channel.

p
E
 = 0.2 p

E
 = 0.8

mean

0.25

7.65

std

0.56

8.22

mean

2.71

13.63

std

2.79

15.98

REM

2SMC EM

Error
Model

Channel
state

Table 6.2: Mean and std of x for symmetric two-flow wireless-fair scheduling
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Figure 6.3: Fairness Distribution, F(x), for two-flow wireless-fair scheduling for (a)PB = 0.2 (b) PB

= 0.8

Let us consider the scenario where xi�1=0 and a packet departure in slot i results in xi 6= 0
(i.e., either f1S2 or f2S1 occurs). If f1S2 occurred in slot i, xi=1 and the next slot will be allocated
to S2. In a correlated channel, the probability of f1S2 occurring in slot i+1 (resulting in xi+1=2) is
(1-pge)�(1�peg) � 1 and hence, there is a high likelihood that x will deviate from 0. In the case of
an uncorrelated channel, the corresponding probability is (1-pE)�pE << 1 and hence, there is less
tendency to deviate from 0. A similar explanation is applicable for the case where f2S1 occurred in
slot i. Hence, under this scheduling algorithm, the disparity between the service received by both
flows (i.e., reducing ‘fairness’) is likely to be higher when the channel is correlated.

6.3 Performance Comparison of Wireless Scheduling Algorithms over
Random Error Model

6.3.1 Channel efficiency

The delay distribution, G(n), for the Wired-Fair, Channel-Efficient and Wireless-Fair Scheduling
algorithms for pE = 0.2 and 0.8 are shown in Fig. 6.4(a) and (b) respectively.

Under both error conditions, the Wireless-Fair algorithm performs better than the Channel-
Efficient algorithm, which in turn performs better than the Wired-Fair algorithm.

For example, under low error conditions, referring to Fig. 6.4(a), a delay-sensitive flow with a
delay bound of 10 slots will suffer a loss rate of between 10�3 to 10�4 with the first two algorithms,
while the corresponding figure for the Wireless-Fair algorithm is 10�6. On the other hand, for a
loss-sensitive flow with a loss rate of 10�5, the respective maximum delay are 13 to 15 slots and 9
slots.

6.3.2 Fairness

The fairness distribution function, F(x), obtained with each scheduling algorithm is plotted in Fig.
6.5 for (a) pE=0.2 and (b) pE=0.8 respectively.

Based on Fig. 6.5(a), under low error conditions, the disparity between the service received
by each flow is between 2 to 4 slots with a probability of 0.99. On the other hand, under high
error conditions, as observed in Fig. 6.5(b), the disparity falls within 12 to 14 slots with the same
probability. This is because when a flow is lagging, it is harder for it to transmit successfully in
order to reduce its lag when the channel conditions worsen.
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Figure 6.4: Delay distribution, G(n), for various scheduling algorithms for (a) PE = 0.2 and (b) PE

= 0.8 under Random Error Model
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Figure 6.5: Fairness distribution, F(x), for various scheduling algorithms for (a) pE = 0.2 (b) pE =

0.8 under Random Error Model

For the Wireless-Fair algorithm, under high error conditions, this implies that a lagging flow
may be allocated up to 12 consecutive slots in order for it to reclaim its ‘lost’ slots (fairness), thus
‘starving’ the other flow (separation) over this duration. Hence, the trade off between fairness and
separation is significant under high error conditions.

Between the Channel-Efficient and the Wireless Fair algorithm, the Channel-Efficient algorithm
is ‘less fair’. This is because in the Wireless-Fair algorithm, slots are allocated such that priority is
always given to the lagging flow to allow it to ‘recover’; in the Channel-Efficient algorithm, slots
are allocated independent of the channel conditions, i.e., the lead/lag status of the flows.
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6.4 Performance Comparison of Wireless Scheduling Algorithms over
2SMC Error Model

6.4.1 Channel efficiency

The delay distribution function, G(n), obtained with each scheduling algorithm is plotted in Fig. 6.6
for (a) pB=0.2 and (b) pB=0.8 respectively.
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Figure 6.6: Delay distribution, G(n), for various scheduling algorithms for (a) PB = 0.2 and (b) PB

= 0.8 under 2SMC Error Model

Under all conditions, the Wireless-Fair algorithm performs better than the Channel-Efficient
algorithm, which in turn performs better than the Wired-Fair algorithm. However, the difference in
performance under low error conditions is marginal.

This is because if we assume that flows transmit mainly in slots allocated to them under low
error conditions, then the 3 algorithms are actually equivalent. However, flow switching becomes
significant when error conditions are degraded, and hence, the gain in performance becomes visible.

6.4.2 Fairness

The fairness distribution function, F(x), obtained with each scheduling algorithm is plotted in Fig.
6.7 for (a) pB=0.2 and (b) pB=0.8 respectively.

Based on Fig. 6.7, it is observed that instead of enhancing the fairness of the Channel-Efficient
Algorithm, the wireless adaptation scheme employed in the Wireless-Fair algorithm actually results
in a degradation in fairness. For example, under low error conditions, (i.e., Fig. 6.7(a)), with the
Channel-Efficient algorithm, the disparity between the service received by each flow is about 12
slots with a probability of 0.95; for the Wireless Fair algorithm, the corresponding figure is about
15 slots.

The above observation can be explained as follows. Let us assume that flow 1 becomes lagging
at the end of slot i. This implies that its channel was in error in slot i while flow 2 enjoyed an
error-free channel. In the Wireless-Fair algorithm, the scheduler persistently allocates slots to the
lagging flow to allow it to ‘recover’. Hence, Ai+1 = S1 and owing to the burstiness of the channel,
the channel states are likely to remain the same in slot i+1 as in slot i. Hence, flow 2 is highly likely
to extend its lead over flow 1 in slot i+1, resulting in Ai+2 = S1 and the above cycle repeats itself,
further stretching the disparity between the flows.

On the other hand, in the Channel-Efficient algorithm, since flow 2 can only extend its lead
by transmitting in an S1 slot, this probability is lower since slots are allocated alternately, i.e.,
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Figure 6.7: Fairness distribution, F(x), for various scheduling algorithms for (a) pB = 0.2 (b) pB =

0.8 under 2SMC Error Model

:::S1; S2; S1; S2; :. instead of ::S1; S1; S1; :: as described for the Wireless Fair algorithm. Hence,
the wireless adaptation scheme does not perform well in terms of fairness in a highly correlated
channel.
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Chapter 7

Conclusions and Future Directions

Several wireless-fair scheduling algorithms have been proposed in the literature, which are based
on adapting wireline-fair scheduling algorithms to the wireless channel. The wireless adaptation
mechanism comprises flow switching to optimize channel efficiency and fairness compensation to
retain the fairness properties offered by the wireline algorithm.

In this report, we have developed an analytical model for a wireless-fair scheduler for the sim-
plest case of a symmetric two-flow scheduling scenario. By appropriately choosing the interval
and time instances, the symmetric two-flow scheduler can be characterized stochastically as a one
dimensional Markov Chain.

Based on the analytical model, we have derived the performance of the wireless-fair schedul-
ing algorithm under different channel conditions. We have considered both uncorrelated as well
as correlated channel error models in our performance evaluation. In addition, In order to bench-
mark its performance in terms of channel efficiency and fairness under different types of channel,
we have defined a wired-fair scheduler (which is equivalent to the wireless-fair scheduler without
the wireless adaptation mechanism) and a channel-efficient scheduler (which is equivalent to the
wireless-fair algorithm without the fairness compensation component of wireless adaptation).

Results indicate that for all channel types, we obtain the expected gain in channel efficiency
for the Wireless-Fair and Channel-Efficiency algorithms over the Wired-Fair algorithm. In terms
of fairness, when the channel errors are uncorrelated, the Wireless-Fair algorithm performs better
than the Channel-Efficient algorithm. However, the fairness compensation mechanism fails to retain
fairness properties well when the channel is correlated.

The analytical model can be extended to the more general case of asymmetric two-flow wireless-
scheduling, where r1 6= r2. The performance evaluation obtained for such a scheduler with r1 = 1

3

may provide some insight into the best-case performance of a three-flow symmetric scheduler. This
may be extrapolated to an N-flow symmetric scheduler by analyzing the asymmetric scheduler with
r1 = 1

N
.

In this analysis, we have assumed that channel errors are spatially independent in order to at-
tribute any ‘unfairness’ obtained solely to the mechanism of the wireless scheduler. Ongoing work
seeks to address the ‘unfairness’ introduced by location-dependent errors, where different flows may
perceive different channel conditions at the same time.
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