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Abstract

Consider the normalized cumulative loss of a predictor F on the sequence xn = (x1, . . . , xn),
denoted LF (xn). For a set of predictors G, let L(G, xn) = minF∈G LF (xn) denote the loss of
the best predictor in the class on xn. Given the stochastic process X = X1, X2, . . ., we look at
EL(G, Xn), termed the competitive predictability of G on Xn. Our interest is in the optimal
predictor set of size M , i.e., the predictor set achieving min|G|≤M EL(G, Xn). When M is
sub-exponential in n, simple arguments show that min|G|≤M EL(G, Xn) coincides, for large n,
with the Bayesian envelope minF ELF (Xn). Our interest is in the behavior, for large n, of
min|G|≤enR EL(G, Xn), which we term the competitive predictability of X at rate R. It is shown
that under difference loss functions, the competitive predictability of X is lower bounded by the
Shannon lower bound (SLB) on the distortion-rate function of X and upper bounded by the
distortion-rate function of any (not necessarily memoryless) innovation process through which
the process X has an autoregressive representation. This precisely characterizes the competitive
predictability whenever X can be autoregressively represented via an innovation process for
which the SLB is tight (e.g., when X is a Gaussian process under squared error loss). We
next derive lower and upper bounds on the error exponents, i.e., on the exponential behavior
of min|G|≤exp(nR) Pr (L(G, Xn) > d), which are shown to be tight for many cases of interest.
Finally, the universal setting is considered, where a predictor set is sought which minimizes its
worst-case competitive predictability over all sources in a given family. The problem is shown
to significantly diverge from its non-universal origin when the effective number of sources in the
family grows exponentially with n. The optimal predictor set for this problem is shown to be
related to the capacity-achieving code-book corresponding to the “channel” from the family of
sources to their realizations.

Index Terms: Channel capacity, competitive prediction, error exponents, rate distortion theory,

redundancy, scandiction, strong converse.

1 Introduction

The problem of universal prediction, in both its deterministic setting (cf., e.g., [12, 17, 21, 29, 19]) and

stochastic setting (cf. [2] and references therein), typically involves the construction of a predictor

whose goal is to compete with a given comparison class G of predictors (“experts”) in the sense

of approaching the performance of the best predictor in the class, L(G, xn), whatever the data

sequence xn turns out to be. In the deterministic setting, the comparison class may represent a set

of different approaches, or a set of prediction schemes which are limited in computational resources
∗Authors are with the Department of Electrical Engineering, Technion- Israel Institute of Technology, Haifa 32000,
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(cf. [30, Section 1] for a broader discussion). In the stochastic setting, the comparison class typically

consists of those predictors which are optimal for the sources with respect to which universality is

sought.

In the choice of a reference class of predictors with which to compete there is generally a tradeoff

between the size of the class and the redundancy attainable relative to it. In the stochastic setting

of universal prediction it is common practice, and often advantageous, that rather than taking the

class of predictors corresponding to all sources in the uncertainty set, one takes a more limited class

of “representatives” with the hope that the reduced redundancy will compensate for those sources

that are not exactly covered. On the other extreme of this tradeoff, one takes a reference class

richer than the class of sources, allotting more than one predictor to be specialized for each source,

at the price of a higher redundancy. There are two issues which arise in this context. The first

concerns the question of whether there is a size for a reference class which is in any sense optimal,

when the dilemma is between a rich “cover” of the typical sequences one is going to encounter, and

the redundancy which increases with the increase in the size of the set. The second concerns the

following question: For a given size, what is the optimal predictor set? The first question has been

extensively studied in the context of universal prediction (cf. [21] and reference therein), coding, and

estimation (e.g., [24, 6] and references thereto and therein). The latter question is the motivation

for this work.

It should be emphasized that in the prediction problem in the literature, especially that pertaining

to computational learning theory (e.g. [27, 28, 12, 11, 10, 13, 19] and references therein), where

the problem is formulated in terms of learning with expert advice, the class of experts is always

assumed given and the questions typically asked concern optimal strategies per the given class.

In such problems, one is not concerned with the question of how to choose the reference class

of experts. Nevertheless, it is understood in such problems that there is no point in letting two

experts be too similar and that, rather, an appropriate set should be chosen to efficiently cover

the possible sequences one is likely to encounter. Our goal in this work is to gain some insight

regarding the considerations for the choice of the expert class through an analysis of this problem

in the probabilistic setting.

To answer this question, we shall first turn to the most basic, non-universal setting and address

the following problem: given a probabilistic source sequence X1, . . . , Xn and M , what is the predictor

set of size M which is, in some sense, “best” for this source? In the problem we pose here, the

object of interest which we seek to optimize is the predictor set. This problem will turn out to be

intimately related with rate-distortion theory [18, 7]. We shall later consider the universal case,

where the sequence is known to be generated by a source belonging to some (exponentially large)

uncertainty class. This problem will be seen to be connected, not only to rate-distortion theory, but

also to channel capacity theory.
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A brief account of the main gist of this work is as follows. Let LF (xn) = 1
n

∑n
t=1 ρ(xt−Ft(xt−1))

denote the normalized cumulative loss of the predictor F on the sequence xn = (x1, . . . , xn). For

a predictor set G, let further L(G, xn) = minF∈G LF (xn) denote the loss of the best predictor in

the class on xn. Given the stochastic process X = X1,X2, . . ., we look at EL(G,Xn), which will

be termed the competitive predictability of G on Xn. Our interest is in the optimal predictor set

of size M , i.e., the predictor set achieving min|G|≤M EL(G,Xn). When M is sub-exponential in n,

simple arguments will show that min|G|≤M EL(G,Xn) coincides, for large n, with minF ELF (Xn),

which, by classical results on prediction is characterized by the Bayesian envelope of the process.

When M grows exponentially in n, however, the problem significantly diverges from its classical

origin. Thus, our interest is in the behavior, for large n, of min|G|≤enR EL(G,Xn), which we term

the competitive predictability of X at rate R. The competitive predictability of X will be shown to be

lower bounded by the Shannon lower bound (SLB) on the distortion-rate function of X. An upper

bound will be seen to be given by the distortion-rate function of any (not necessarily memoryless)

innovation process through which the process X has an autoregressive representation. This will

lead to a precise characterization of the competitive predictability for all cases where X has an

autoregressive representation via an innovation process for which the SLB is tight (e.g., when X is a

Gaussian process and ρ is squared error). As will be discussed, this result has some rather surprising

implications.

Next, we shall derive lower and upper bounds on the error exponents, i.e., on the exponential

behavior of min|G|≤exp(nR) Pr (L(G,Xn) > d). These bounds will be seen to be tight and to precisely

characterize the error exponents for many cases of interest. As one example, we will obtain the

precise competitive predictability exponent for any Gaussian process, a result which appears to be

new even for R = 0.

Finally, we shall consider the universal setting, where one seeks a predictor set which minimizes its

worst-case competitive predictability over all sources in a given family. The problem will be seen to

significantly diverge from its non-universal origin when the effective number of sources in the family

grows exponentially with n, a setting which naturally arises, e.g., in speech coding applications.

The optimal predictor set for this problem will be obtained by a union over the optimal predictor

sets corresponding to a certain representative subset of the original family of sources. This subset

is induced by the capacity-achieving code-book corresponding to the “channel” from the family of

sources to their realizations. As a concrete prototype, we shall give a detailed treatment of the

case where the source sequence is known to be autoregressively generated via an arbitrarily varying

innovation process. For this case the “achievable region” will be precisely characterized.

The remainder of this work is organized as follows. Section 2 will be dedicated to some notation,

conventions, and preliminaries. In Section 3, we shall formulate the problem and present our main

results for the non-universal case, outline the ideas behind their proofs, and discuss some of their
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implications. Section 4 will be dedicated to a presentation of our framework for the universal setting,

a discussion of our general approach to the problem, a presentation of the main result, and an outline

of its proof. The two subsequent sections will contain formal proofs and derivation of results: In

Section 5, the results pertaining to the non-universal setting will be proven and some additional

corollaries derived, and in Section 6, a formal proof of the main result from the universal setting will

be given. Finally, in Section 7, we discuss some related directions for future research.

2 Notation, Conventions, and Preliminaries

Throughout, X will denote the source alphabet which will be either the real line or a finite set,

in which case a group structure will be assumed so that addition and subtraction of elements are

well-defined. For any n and xn ∈ Xn, let pxn
def= 1

n

∑n
i=1 δxi

denote the empirical measure induced

by xn. Let M(X ) denote the space of all (Borel, when X = R) probability measures on X and

Mn(X ) def= {pxn : xn ∈ Xn} denote the subset of M(X ) consisting of nth-order empirical measures.

For a sequence {P (n)}, P (n) ∈ M(X ), let P (n) → P denote weak convergence. For P ∈ Mn(X ), let

TP denote the type of P , i.e., TP = {xn ∈ Xn : pxn = P}. For xn, yn ∈ Xn, with the usual abuse of

notation, we write ρ(xn, yn) for 1
n

∑n
i=1 ρ(xi − yi).

Assume throughout a fixed loss function ρ satisfying ρ(0) = 0. For P ∈ M(X ), we let H(P )

denote the entropy (differential entropy, when X = R). Define

φ(d) def= sup
P :EP ρ(Z)≤d

H(P ), (1)

where EP ρ(Z) denotes expectation when Z ∼ P . The function φ(d) defined in (1) is well-known

(cf., e.g., [21, 22]) to have a closed form representation. Specifically, for finite X , let

λ(β) = − log

[∑
x∈X

e−βρ(X )

]
, β > 0, (2)

denote the log-moment generating function associated with the loss function ρ. Then, φ is given by

the one-sided Fenchel-Legendre transform of λ:

φ(d) = inf
β>0

[βd − λ(β)], d ≥ 0. (3)

The significance of the function φ(d) is that it conveys the precise exponential behavior of the size

of the n-dimensional ρ-ball (cf., e.g., [22]):

φn(d) def=
1
n

log

∣∣∣∣∣
{

xn ∈ Xn :
1
n

n∑
i=1

ρ(xi) ≤ d

}∣∣∣∣∣ n→∞−→ φ(d). (4)

When X = R, the summation in (2) is replaced by integration and ρ will be assumed to be sufficiently

steep such that the integral exists and is finite for all β > 0. For this case φ is defined as in (3) and

the analogue of (4) for this case is

φn(d) def=
1
n

log Vol

{
xn ∈ R

n :
1
n

n∑
i=1

ρ(xi) ≤ d

}
n→∞−→ φ(d). (5)
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For simplicity, our treatment of the universal competitive predictability problem in the case of

an arbitrarily varying innovation process will be restricted to the case of a finite alphabet X , as well

as a finite state-space S associated with the arbitrarily varying innovation process. This will allow

our analysis to heavily rely on the method of types a la Csiszár and Körner [16]. We shall thus

adopt some of the notation and conventions of [16]. Specifically, for P ∈ M(S), a sequence sn ∈ Sn

is called P -typical with constant δ if |{1 ≤ i ≤ n : si = a}/n − P (a)| ≤ δ for every a ∈ X . The set

of all sequences sn ∈ Sn that are P -typical with constant δ are denoted by Tn
[P ]δ

. Further let, for

the channel V (w|s) and sn ∈ Sn, Tn
[V ]δ

(sn) denote the set of all wn ∈ Xn that are V -typical under

the condition sn ∈ Sn with constant δ (cf. [16, Definition 2.9]). An immediate consequence of the

definitions of δ-typical sequences is (cf. [16, Lemma 2.10]):

If sn ∈ Tn
[P ]δ

and wn ∈ Tn
[V ]δ′

(sn) then (sn, wn) ∈ Tn
[P×V ]δ+δ′

. (6)

We shall adopt throughout this work the “delta-convention” of [16]. Specifically, we assume a fixed

sequence of positive reals {δn}n≥1 satisfying

δn → 0,
√

nδn → ∞ as n → ∞ (7)

and, for any n, P ∈ M(S), channel V and sn ∈ Sn, we write Tn
[P ] for Tn

[P ]δn
and Tn

[V ](s
n) for

Tn
[V ]δn

(sn). We omit the superscript n, writing T[P ] and T[V ](sn), when no confusion can arise.

Throughout, capital letters will denote random variables while the respective lower case letters

will denote individual sequences or specific sample values. For probability measures P and Q on X ,

we let R(P, ·) denote the rate-distortion function associated with P under the distortion measure ρ

and D(P‖Q) denote the Kullback-Leibler divergence between P and Q. EP ρ(W ) denotes expectation

when W ∼ P . For P ∈ M(S), let P × V denote the distribution of the pair (S,W ) when S is

generated according to P and W is the output of the channel V whose input is S. We let I(P ;V )

and H(V |P ) denote the mutual information between S and W , and the entropy of W given S,

respectively, when jointly distributed according to P × V . Finally, let [c]+ =
{

c c ≥ 0
0 otherwise. and

define the minimum over the empty set as ∞.

3 Competitive Predictability in the Non-Universal Setting

A Competitive Predictability Defined

A predictor F for a sequence x1, x2, . . ., xt ∈ X , |X | < ∞ (| · | denoting cardinality) is a sequence of

functions F = {Ft}t≥1, where Ft : X t−1 → X . Let F denote the set of all such predictors and assume

that the subtraction operation between elements of the alphabet X is well-defined (e.g., enough that

(X ,+) is a group). For a loss function ρ : X → [0,∞) and a sequence xn = (x1, . . . , xn), denote the

normalized cumulative loss of the predictor F by

LF (xn) def=
1
n

n∑
t=1

ρ(xt − Ft(xt−1)). (8)
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For a predictor set G ⊆ F , define the competitive predictability of G on xn by

L(G, xn) def= min
F∈G

LF (xn), (9)

i.e., the loss of the best predictor in G for the sequence xn.

Suppose now that X = X1,X2, . . . is a stochastic process and that, for a given M and sequence

length n, we seek to minimize the competitive predictability over all predictor sets of size at most

M . Since for any G ⊆ F , L(G,Xn) is a random variable, a natural goal here would be to minimize

the expected competitive predictability. In other words, we are interested in

min
|G|≤M

EL(G,Xn) (10)

and in the predictor set G achieving it. Note, however, that for any given set of predictors G, the

theory of universal prediction guarantees the existence of a predictor F ∈ F such that

sup
xn

[LF (xn) − L(G, xn)] ≤ K

√
log |G|

n
, (11)

where K is a constant depending only on the loss function ρ and the alphabet X . A predictor F

satisfying (11) can always be constructed via the exponential weighting approach (cf., e.g., [12, 13]).

It follows from (11) that if M is sub-exponential in n, then min|G|≤M EL(G,Xn) is asymptotically

equivalent to minF∈F ELF (Xn), where the latter is the “Bayesian envelope” of the classical problem

of optimal prediction in the stochastic setting (cf. [2, 3] and references therein). Thus, the quantity

in (10) can become interesting and significantly deviate from the classical optimal prediction problem

when M grows exponentially in n. This is the motivation for focusing on the case where M = enR,

R > 0.

B Main Results

Let φ−1 denote the generalized inverse function of φ defined by φ−1(α) def= inf{d : φ(d) > α}. For a

stochastic process X, let

H(X) def= lim inf
n→∞ H(Xn), (12)

where H(Xn) on the right side is the entropy of the random vector Xn and

D(X, R) def= lim sup
n→∞

D(Xn, R), (13)

where the right side is the distortion-rate function associated with Xn. For any predictor F , we

refer to the process WF = WF
1 ,WF

2 , . . . defined by

WF
t = Xt − Ft(Xt−1) (14)

as the innovation process1 associated with the process X and the predictor F . For this case, we shall

say that X has an autoregressive representation via the predictor F and innovation process WF .
1Note that in our definition, the innovation process can be a general process and, in particular, its components

may not be independent.
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Theorem 1 Let X = X1,X2, . . ., Xi ∈ X , be any stochastic process and R ≥ 0.

Lower bound:

lim inf
n→∞

[
min

|G|≤exp(nR)
EL(G,Xn)

]
≥ φ−1(H(X) − R) (15)

Upper bound:

lim sup
n→∞

[
min

|G|≤exp(nR)
EL(G,Xn)

]
≤ inf

F∈F
D(WF , R), (16)

where WF , on the right side of (16), is the innovation process associated with the process X and the

predictor F .

Note that Theorem 1 is formulated in terms of the expected competitive predictability EL(G,Xn).

As will be clear from its proof, however, a similar statement holds for the “with high probability”

setting. Namely, the proof of the lower bound will actually be seen to imply that for any ε > 0

lim
n→∞ min

|G|≤exp(nR)
Pr
(
L(G,Xn) ≥ φ−1(H(X) − R) − ε

)
= 1,

while the proof of the upper bound will be seen to easily be modified to establish that for any ε > 0

lim
n→∞ min

|G|≤exp(nR)
Pr
(

L(G,Xn) ≤ inf
F∈F

D(WF , R) + ε

)
= 1.

As was shown in [22], the entropy (rate) of a process equals the entropy (rate) of the associated

innovation process relative to any predictor. Thus, given a process X and any predictor F , H(X) =

H(WF ). Recall that the SLB (cf. [7, 14, 25]) on the rate-distortion function of the source X at

distortion level d is H(X)−φ(d). Furthermore, since the SLB is dependent on the source only through

its entropy, it is clear that R(WF , d) ≥ H(X) − φ(d) for all F or, in terms of the distortion-rate

function,

D(WF , R) ≥ φ−1(H(X) − R) ∀F (17)

Note that (17) follows from Theorem 1 as well since the left side is shown to be achievable while the

right side is a lower bound on the achievable loss. In this context, we make the following observation.

Corollary 2 Let X be a stochastic process and suppose there exists a predictor F such that D(WF , R)

meets the SLB with equality. Then

lim
n→∞

[
min

|G|≤exp(nR)
EL(G,Xn)

]
= D(WF , R). (18)

In plain words, Corollary 2 tells us that whenever the process X has an autoregressive representation

via any predictor F , i.e., Xt = Ft(Xt−1)+Wt, and {Wt} has a rate-distortion function achieving the

SLB with equality, the attainable limitation on competitive prediction of the source X is precisely the

rate-distortion function of the innovation process. In subsection D we shall recall the general condi-

tion for the SLB to hold with equality, which is the case, e.g., for Bernoulli, Gaussian and Laplacian

distributions under Hamming-, squared-, and absolute-error distortion measures, respectively.

For the case where the process X has an autoregressive representation with i.i.d. innovations, we

obtain considerably more refined results on the error exponents for competitive prediction.
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Theorem 3 Let X be a stochastic process for which there exists a predictor F such that WF is an

i.i.d. process with a marginal distribution Q.

Upper Bound:

lim sup
n→∞

[
− 1

n
log min

|G|≤exp(nR)
Pr (L(G,Xn) > d)

]
≤ min

P :H(P )−φ(d)≥R
D(P‖Q) (19)

Lower Bound:

lim inf
n→∞

[
− 1

n
log min

|G|≤exp(nR)
Pr (L(G,Xn) > d)

]
≥
{

Fd(R − 0) if R > 0
minP :EP ρ(W )≥d D(P‖Q) if R = 0,

(20)

where Fd(R) def= minP :R(P,d)≥R D(P‖Q) is Marton’s source coding error exponent function [20].

Evidently, Theorem 3 gives the precise exponents when minP :H(P )≥R+φ(d) D(P‖Q) coincides with

the right side of (20). In particular, for rate R = 0, this will be shown to happen whenever Q = Q(β)

is a maximum-entropy distribution w.r.t. ρ, i.e.,

Q(β)(w) = e−βρ(w)+λ(β), (21)

for some β positive, λ(β) being the normalizing factor. We let Qd denote the max-entropy distribu-

tion (21) when the parameter β is tuned so that EQ(β)ρ(W ) = d.

Corollary 4 Let X be a stochastic process for which there exists a predictor F such that WF is an

i.i.d. process with a maximum-entropy marginal Q. Then

lim
n→∞

[
− 1

n
log min

G∈F
Pr (LG(Xn) > d)

]
= lim

n→∞

[
− 1

n
log Pr (LF (Xn) > d)

]
(22)

=
{

D(Qd‖Q) for d > EQρ(Z)
0 otherwise. (23)

Note that Corollary 4 explicitly addresses the case of one predictor, though it should be clear,

following the discussion in subsection A, that the competitive predictability of any sub-exponential

number of predictors would give rise to the same large deviations behavior. As far as the authors

are aware, Theorem 3 at R = 0 and Corollary 4 are the first to explicitly characterize the large

deviations performance for the prediction problem.

More generally, observe that a sufficient condition for the right sides of (19) and (20) to coincide

is that the distribution achieving minP :R(P,d)≥R D(P‖Q) will be one for which the SLB holds with

equality. This is easily seen to be the case, e.g., for the binary alphabet under Hamming loss, as will

be made explicit in Section 5 (Corollary 8).

To simplify the exposition, we assume a finite alphabet. As will be elaborated on in Section 5,

all the results carry over to the case where the alphabet is the real line and attention is restricted to

Ft : R
t−1 → R that are continuously differentiable for all t. Accordingly, throughout this work, when

the alphabet is the real line, the assumption is that F consists of all the continuously differentiable

predictors. As will be discussed in Section 5, much less than continuous differentiability is needed.
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As an example of a concrete application of these results for a real-valued process, the following

will be argued in subsection D to be a consequence of Theorem 1.

Corollary 5 Let X be a stationary Gaussian process and let σ2 = exp
{

1
2π

∫ π

−π
ln f(λ)dλ

}
, where f

is the density function associated with the absolutely continuous component in the Lebesgue decom-

position of its spectral measure. Then

lim
n→∞

[
min

|G|≤exp(nR)
EL(G,Xn)

]
= σ22−2R. (24)

For the Gaussian case, the bounds on the error exponents given in (the continuous analogue of)

Theorem 3, also turn out to be tight, leading to

Corollary 6 Let X be a stationary Gaussian process as in Corollary 5. Then

lim
n→∞

[
− 1

n
log min

|G|≤exp(nR)
Pr (L(G,Xn) > d)

]
=

{
1
2

[
log
(

σ2

2·22Rd

)
+ 22Rd

2σ2

]
if d > σ22−2R

0 otherwise
(25)

In particular, taking R = 0 in Corollary 6, gives the complete characterization of the best attainable

large deviations performance in prediction of Gaussian processes, a result which appears to be new

(cf. discussion in [23]).

C Proof Ideas

At the heart of the proofs of the lower bounds presented above for the non-universal finite-alphabet

case, lies the following “counting” argument. Every predictor F defines a one-to-one correspondence

from Xn into itself by mapping xn ∈ Xn into en ∈ Xn according to: et = xt−Ft(xt−1), t = 1, . . . , n.

To see this, one must simply notice that given en and F , xn can be uniquely recovered2. Since, by

definition, LF (xn) = 1
n

∑n
i=1 ρ(ei), where en on the right side is the error sequence associated with

xn and F , it follows that for any F and d ≥ 0

|{xn : LF (xn) ≤ d}| =

∣∣∣∣∣
{

en :
1
n

n∑
i=1

ρ(ei) ≤ d

}∣∣∣∣∣ def= enφn(d). (26)

Consequently, for any set of predictors G ⊆ F ,

|{xn : L(G, xn) ≤ d}| =

∣∣∣∣∣
⋃

F∈G
{xn : LF (xn) ≤ d}

∣∣∣∣∣ ≤
∑
F∈G

|{xn : LF (xn) ≤ d}| = |G|enφn(d). (27)

The fact that φn(d) → φ(d), combined with (27), leads to the following conclusions (stated qualita-

tively here and made precise in Section 5):

1. If R + φ(d) < H(X), then for large n and any predictor set G with |G| ≤ enR, the set

|{xn : L(G, xn) ≤ d}| is exponentially smaller than enH(X) and hence, by the converse to the

asymptotic equipartition property (AEP), Pr (L(G,Xn) ≤ d) is very (exponentially) small. In

simple words, the set G is too small to cover the set of typical sequences of Xn.
2This is precisely the idea on which predictive coding techniques are based.
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2. Suppose that the process X has been auto-regressively generated via the predictor F and

the i.i.d. innovation process WF . For large n, any predictor set G with |G| ≤ enR and any

probability measure P on X , if R+φ(d) < H(P ), then “most” of the innovations sequences with

empirical measure (close to) P are such that the source sequence that they generate lies outside

the set {xn : L(G, xn) ≤ d}. This is because the size of the set of sequences with empirical

measure close to P (and, by the above observations, the size of the set of source sequences

generated by these innovations sequences) is ≈ enH(P ) which, by (27), is exponentially more

than |{xn : L(G, xn) ≤ d}| whenever R + φ(d) < H(P ). Thus, Pr (L(G,Xn) > d) is essentially

lower bounded by the probability that the innovations vector Wn will be P -typical, namely,

≈ e−nD(P‖Q) (Q being the marginal distribution of the innovations process).

The observation made in the first of the above items leads to the converse part of Theorem 1, while

the second observation leads to the large deviations converse (upper bound on the exponent) in

Theorem 3.

The idea underlying the upper bounds of the non-universal setting is the following. Fix any

random process X, any predictor F , and R ≥ 0. To any ŵn ∈ Xn, we associate the predictor G,

specified by

Gt(xt−1) = Ft(xt−1) + ŵt. (28)

In this way, for any Cn ⊆ Xn we can look at the predictor set Gn consisting of the predictors

associated with the members of Cn. We shall refer to Gn as the predictor set induced by the code-book

Cn and the predictor F . By the definition of WF (recall equation (14)) it follows that for any Cn,

with probability 1,

min
ŵn∈Cn

1
n

n∑
t=1

ρ(WF
t − ŵt) = L(Gn,Xn), (29)

where the Gn on the right side is that induced by Cn and F . Thus,

1. For large n, rate-distortion theory guarantees the existence of a code-book, Cn ⊆ Xn, for

the innovation process WF such that |Cn| ≤ enR and E
[
minŵn∈Cn

1
n

∑n
t=1 ρ(WF

t − ŵt)
] ≈

D(WF , R). Consequently, it follows from (29) that by letting Gn be the predictor set induced

by Cn and F , we get EL(Gn,Xn) ≈ D(WF , R).

2. Suppose that the process X has been autoregressively generated by the predictor F and the

i.i.d. innovation process WF . For R, d ≥ 0, take Cn to be a code-book which is optimal in

Marton’s error-exponent sense [20], i.e., for which Pr
(
minŵn∈Cn

1
n

∑n
t=1 ρ(WF

t − ŵt) > d
) ≈

e−nFd(R). For the Gn induced by Cn and F , (29) implies Pr (L(Gn,Xn) > d) ≈ e−nFd(R).

The above two observations lie at the heart of the proofs of the direct parts of Theorem 1 and

Theorem 3, respectively.
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As mentioned in subsection B, the results will be shown to carry over to the case of the continuous,

real-valued, alphabet. For this case, in the line of argumentation described above the “counting”

arguments are replaced by “volume-preservation” ones.

We mention in passing that “counting” and “volume-preservation” arguments of the type we

employ here were used in a recent work [22] to characterize the fundamental limitations on scan-

diction performance, where a scandictor is any scheme for the sequential scanning and prediction

of (usually multi-dimensional-) data. Indeed, it was shown in that work that equation (26) (and its

volume-preservation analogue for the real-valued alphabet) continues to hold also for any scandictor.

Consequently, all the above described results carry over to the more general setting of “competitive

scandictability”. Specifically, all the results remain valid when the minimum is taken, rather than

only over predictor sets of size |G| ≤ enR, over all scandictor sets with the same size limitation.

Similarly, those parts of the results pertaining to the auto-regressive representation of a process via

a predictor remain true more generally for the autoregressive representation of the process via any

scandictor (cf. [22] for the precise definition of this notion).

D Discussion of Results

As was discussed and shown in subsection B (Corollary 2, in particular), if the process X has an

autoregressive representation via some predictor F and an innovation process achieving the SLB with

equality at a certain rate R, then the competitive predictability of the process at rate R is completely

characterized, namely, it is given by the distortion-rate function of the innovation process. It is thus

of interest to recall the necessary and sufficient condition for the tightness of the SLB, in the case

of an i.i.d. source (cf., e.g., [7, Theorem 4.3.1]). To this end, recall first that φ(d) is the entropy3

of the maximum-entropy distribution (21), when the parameter β is tuned so that EQ(β)ρ(Z) = d

(cf., e.g., [22]), i.e., φ(d) = H(Qd). The reason for the term “maximum-entropy distribution” is the

property that

EQρ(Z) ≤ EQ(β)ρ(Z) ⇒ H(Q) ≤ H(Q(β)). (30)

The condition for the tightness of the SLB can be summarized as

R(P, d) = H(P ) − φ(d) ⇔ ∃P̂ : P = P̂ ∗ Qd, (31)

where ∗ denotes convolution. The conclusion, for our context, is that if the source X has an auto-

regressive representation with i.i.d. ∼ P innovations, and if P satisfies the right side of (31), then

the competitive predictability of X at rate R = R(P, d) is d.

Examples of distributions for which the SLB holds with equality include the Gaussian distri-

bution under squared-error distortion, the Laplacian distribution under absolute-error distortion,

the Bernoulli distribution under Hamming loss, and infinitely many more (cf. [7, 25]). Using such

3The differential entropy for the continuous alphabet.
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distributions, we can construct an infinite spectrum of examples for which the bounds of Theorem

1 coincide or, in other words, for which Corollary 2 is applicable. Two such representative examples

follow.

Example 1. Stationary Gaussian Source under Squared Error: If X is any zero-mean stationary

Gaussian source then, by letting Ft(Xt−1) = E(Xt|Xt−1), it is well-known that we have the auto-

regressive representation Xt = Ft(Xt−1)+Wt, where the Wt’s are independent zero-mean Gaussian,

with decreasing variances converging to σ2 = exp
{

1
2π

∫ 2π

0
log fX(λ)dλ

}
, fX being the density as-

sociated with the absolutely continuous component in the Lebesgue decomposition of the spectral

measure of X. The entropy rate and distortion-rate function of {Wt} are easily seen to coincide with

those of the i.i.d. ∼ N(0, σ2) source. Thus, we obtain that the attainable lower bound to competitive

prediction at rate R of any Gaussian source is given by σ2 exp(−2R), the distortion-rate function of

the i.i.d. N(0, σ2) source, which is precisely Corollary 5.

Example 2. First-Order Symmetric Binary Markov Source under Hamming Loss: If X is a first-

order Markov process taking values in {0, 1} with a symmetric transition matrix
(

1 − ε ε
ε 1 − ε

)
(ε ≤ 1/2), then X can clearly be represented autoregressively represented via Xt = Xt−1 + Wt,

{Wt} being i.i.d. Bernoulli (ε) (and addition here is modulo 2). Since the Bernoulli source attains

the SLB with equality, we find that the attainable lower bound to competitive prediction at rate

R of this source is given by the distortion-rate function of the Bernoulli(ε) source at R (namely,

h−1(h(ε) − R), h−1(·) being the inverse function of h(·) restricted to [0, 1/2]).

As described in the previous subsection, the predictor sets constructed for the upper bounds

are those induced by rate-distortion code-books for the innovations. The predictors in these sets

quantize the innovations in a data-independent way (as clearly ŵt in (28) does not depend on xt−1),

not making full use of their “predictive power”. It would therefore seem natural to expect such

predictor sets to be suboptimal. It is thus remarkable that in the above examples, as well as in all

other cases where the innovations achieve the SLB with equality, such predictor sets are, in fact,

optimal. To further ponder on the implications of this fact, we make the following two observations:

Distortion-Rate Source Coding with Perfect Past Side-Information: Suppose we wish to store the

i.i.d. data (W1, . . . , Wn) (with distortion) in our computer and the memory at our disposal is nR bits.

Suppose further that we are required to give the reconstructed symbol Ŵ1 by January 1st (2002),

Ŵ2 by January 2nd, and so forth. We know, however, that the original data (W1, . . . , Wn) is going

to be posted on the Internet (to which our computer has access), a little while later, say, starting

January 2nd, one new symbol every day. The question is: how should we use our available computer

memory so that the overall distortion of the reconstructed symbols is minimized? Corollary 2 implies

that when the distribution of the Wi-s achieves the SLB with equality, there is nothing to gain from

the perfect (as opposed to quantized) observations of the past source sequence. At first glance, this

12



observation is not surprising because the Wi-s are independent so it seems natural that there is

nothing to gain from observing the past sequence for reconstruction of the present symbol. This

observation is, however, somewhat surprising in the context of Shannon theory which tells us that

other sequence components are very relevant for the coding of each symbol, even when the source

is i.i.d. The point to emphasize in the context of this example is that the sequence of predicted

values of every predictor Gt (28), cannot be considered a code-word for Xn as it is autoregressively

constructed from the clean (non-quantized) source, rendering the connection with rate-distortion

theory rather intriguing.

Stationary Gaussian Source under Squared Error: In the context of Example 1 above, recall (e.g.

[7]) that the distortion-rate function of the stationary Gaussian source with one-step prediction error

σ2 is given by

D(R) =
{

σ22−2R R ≥ Rcrit

more than σ22−2R R < Rcrit,

where Rcrit = 1
2 log

[
σ2

minλ∈[0,2π) fX(λ)

]
. On the other hand, Corollary 5 tells us that the competitive

predictability of the Gaussian source is σ22−2R at all rates. Two conclusions this leads to are:

1. For R ≥ Rcrit, one can use codewords from the optimal R-D code-book as “predictors” and

attain optimal competitive predictability performance.

2. For R < Rcrit, codewords from the optimal R-D code-book are strictly sub-optimal if used

as predictors. Reassuringly, this is in accordance to what we know to be the case for R = 0

(where the best predictor achieves distortion σ2, yet the best code-word achieves distortion

Var(X1)).

The first conclusion is surprising because for a general stationary Gaussian process, which may be far

from memoryless, one would expect a predictor set consisting of memoryless predictors to be strictly

sub-optimal. This counter-intuitive fact may be connected to the confounding relation between the

rate-distortion function of the Gaussian source and that of its innovation process, as discussed in [8,

Subsection V.D].

4 Universal Case: Competitive Predictability w.r.t. an Ex-
ponentially Large Family of Sources

Suppose now that the process X is known to have been generated autoregressively via a certain

predictor F and an innovation process W whose distribution, rather than being completely known,

is only known to belong to some set of distributions. More concretely, suppose that the distribution

of the innovation vector Wn generating Xn via F is known to lie in Θn. Our interest in this

setting is to find, given a distortion level d, the smallest possible predictor set whose competitive

predictability, for large enough n, does not exceed d for all sources θ ∈ Θn. Letting Pθ denote the

probability measure corresponding to the innovation source θ, we formalize this as follows.
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Definition 1 The pair (R, d) will be said to be achievable w.r.t. {Θn}n≥1 if there exists a sequence

of predictor sets {Gn} with |Gn| ≤ enR such that

lim
n→∞ min

θ∈Θn

Pθ (L(Gn,Xn) ≤ d) = 1. (32)

The achievable region is the closure of the set of all achievable pairs.

When the effective size4 of Θn is sub-exponential in n, there is no essential price for universality, as

the size of the predictor set resulting from the union of predictor sets of size ≈ enR corresponding

to the (effective) different members of Θn is exponentially the same. Thus, when the Θn’s are, for

example, parametric classes corresponding to all possible i.i.d. innovation sources over the simplex,

the problem of competitive predictability as introduced in Definition 1 does not digress from its

non-universal origin. When the effective size of Θn is exponential, on the other hand, the problem

becomes interesting both from a practical and a theoretical point of view.

One important example for the practical significance of the setting where the data is known

to be autoregressively generated via one certain predictor F , yet with an innovation process whose

distribution lies in an exponentially large class, is that of multi-pulse and stochastically excited linear

predictive coders (MELP) in the context of speech compression (cf., e.g., [9, 5, 1, 26] and the many

references therein and thereto). In these problems, the data is assumed to be generated according

to Xt = F
(η)
t (Xt−1) + Wt, where {F (η)} is typically the parametric family of linear predictors of a

given order. The innovation process is allowed to be non-stationary, and in the language of signal

processing, it is exactly the multipulse excitation. Since, as mentioned above, universality w.r.t. a

smooth parametric family is not an issue in our case because its richness is sub-exponential, it is

essentially like assuming that η is known. Since the family of possible distributions governing the

non-stationary innovation process is exponentially large, this case naturally falls within the setting on

which we shall focus henceforth, namely, that where the process X is generated via a known predictor

F and an innovation process governed by a distribution from an exponentially large family. One

important and naturally occurring (e.g., in the context of the speech compression setting) example

for such an exponentially large family is that of the arbitrarily varying source (AVS), on which we

shall focus in subsection B.

A Qualitative Approach to Derivation of Results

Our aim in this subsection is to schematically and informally present our basic approach to the

problem. In particular, we shall see how the notion of channel capacity naturally arises.

A necessary condition for the competitive predictability value d to be achievable at rate R for
4By “effective size of Θn” we loosely mean here the size of a representative subset of sources in Θn needed to

approximate Θn.
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all sources in Θn is essentially the existence of a set G with |G| ≤ enR such that

⋃
θ∈Θn

Typical setθ ⊆ {xn : L(G, xn) ≤ d}, (33)

where by “Typical setθ”, we loosely mean the exponentially smallest set containing “most” of the

probability mass under Pθ. Since Vol({xn : L(G, xn) ≤ d}) ≤ en(R+φ(d)), a necessary condition for

(33) is

Vol

( ⋃
θ∈Θn

Typical setθ

)
≤ en(R+φ(d)). (34)

Thus, for any subset {θ(i)}M
i=1 ⊆ Θn such that the Typical setθ(i) are essentially disjoint:

M∑
i=1

Vol (Typical setθ(i))
·
< Vol

( ⋃
θ∈Θn

Typical setθ

)
≤ en(R+φ(d)), (35)

·
< denoting inequality up to sub-exponential terms. To construct such a set {θ(i)}M

i=1, we think of

the “channel” from θ ∈ Θn into the realization of the source Pθ. In particular, if the capacity of

this channel is ≈ C, then we can find a channel code-book {θ(i)}enC

i=1 for which {Typical setθ(i)}
are essentially disjoint. If, in addition, the code-book has constant composition in the sense that

Hθ(i)
def= 1

n log Vol (Typical setθ(i)) are approximately all equal, say to H, then considering this code-

book in (35) leads to the converse statement

C + H
<∼ R + φ(d), (36)

<∼ denoting inequality up to asymptotically negligible terms. For a direct result, suppose that the

“channel” described above has a strong converse. This will essentially imply that if we take a code-

book of size {θ(i)}en(C+ε)

i=1 then
⋃

i Typical setθ(i) =
⋃

θ∈Θn
Typical setθ, i.e., covers the whole space

of typical sequences corresponding to all sources. Thus, by taking, for each i, the optimal predictor

set which guarantees competitive predictability level d for the source Pθ(i) , the predictor set obtained

by the union of these sets is guaranteed of achieving competitive predictability level d for all sources

θ ∈ Θn. Letting R(Pθ, d) denote the distortion-rate function of the source Pθ, it follows from the

upper bound in Theorem 1 that there exists a predictor set of size enR(θ(i),d) whose competitive

predictability is at most d under Pθ(i) . Thus, by unifying the predictor sets corresponding to the

sources {θ(i)}, we obtain a predictor set whose size enR is <∼ en(maxi R(θ(i),d)+C) and which attains a

competitive predictability value of at most d for all sources θ ∈ Θn. Note, in particular, that when

the R(θ(i), d) are all equal and attain the SLB with equality, namely, R(θ(i), d) = H − φ(d), we get

R
<∼ H − φ(d) + C, i.e., the reverse inequality to (36). Thus, when this is the case, the predictor

set constructed this way is optimal and the achievable region (in the sense of Definition 1) is fully

characterized: (R, d) is an achievable pair if and only if it satisfies (36).

The above is a description of our basic approach to characterizing the competitive predictability in

the universal setting. To make it precise, the exact structure of the sources Pθ must be considered on
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a case-by-case basis. In the next subsection, we shall present our main result and informally outline

how the approach presented above is specialized for the concrete problem where the innovations

source is an AVS.

B The Arbitrarily Varying Innovation Process

The prototypical exemplar for an exponentially large class of sources is the case where the innovation

process is an arbitrarily varying source. Specifically, suppose that the innovation process is known

to be generated by an AVS characterized by the “channel” V (w|s). I.e., for every wn ∈ Xn,

Pr(Wn = wn) =
∏n

i=1 V (wi|si), where sn = {si}n
i=1 is an unknown state sequence, si ∈ S, S being

a finite state space, as well as |X | < ∞ . In accordance with the notation introduced above, we

let Psn denote5 the probability measure corresponding to the innovation source indexed by sn. To

present our main result for this setting, let [P ×V ]W denote the marginal distribution of W induced

by P × V . Our main result for this setting is the following.

Theorem 7 Suppose that V (·|s) attains the SLB with equality for all s ∈ S. The pair (R, d) is in

the achievable region w.r.t. {Sn} (namely, w.r.t. all AVS’s) if and only if

max
P∈M(S)

H ([P × V ]W) ≤ R + φ(d). (37)

Note that, for a given rate R, the definition of an achievable loss value d requires the competitive

predictability to be below d (with high probability) for all sources (worst case). As will be seen in the

proof of the direct part of Theorem 7 in Section 6, however, when (R, d) satisfy (37) one can construct

predictor sets having competitive predictability value significantly less than d for many of the sources.

This will be done by constructing, for each type P ∈ Mn(S), a predictor set of exponential size enR

with worst-case distortion d (relative to TP ) satisfying H ([P × V ]W) = R + φ(d). Since Mn(S) is

polynomial, the unification of these predictor sets gives one predictor set of the same rate R and

worst-case distortion attaining (37) with equality, yet achieving lesser distortion on all types P ′ for

which H ([P ′ × V ]W) < maxP∈M(S) H ([P × V ]W). It will also be seen that the converse part of

Theorem 7 holds for any AVS, regardless of whether V attains the SLB or not. In the remainder of

this section, we informally outline the idea behind the proof of Theorem 7.

Note first that Vol(Typical setsn) ≈ enH(W |S), H(W |S) denoting the conditional entropy when

S,W are jointly distributed according to psn ×V . For P ∈ M(S) let now C(P ) denote the capacity

of the channel V (w|s) when the codewords are constrained to be of type P and let {c(i)}enC(P )

i=1 ⊆ Sn

denote a code-book (approximately) achieving the C(P )-capacity of this channel. For each 1 ≤ i ≤
enC(P ) we have Vol(Typical setc(i)) ≈ enH(W |S), where S in the conditional entropy is distributed

according to P . Since {c(i)}enC(P )

i=1 is a channel code, the {Typical setc(i)} are essentially disjoint.

5Throughout, Psn is the probability measure corresponding to the innovation W n when the state sequence is sn.
This should not be confused with psn ∈ Mn(S), the empirical measure of sn.
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Thus, we get

Vol

( ⋃
sn∈Sn

Typical setsn

)
≥ Vol


 ⋃

1≤i≤enC(P )

Typical setc(i)


 ≈ enC(P )enH(W |S) = enH([P×V ]W).

(38)

Combined with (34), this gives

H([P × V ]W) ≤ R + φ(d), (39)

which, by the arbitrariness of P , implies the converse part of Theorem 7. Note that here, the

assumption that V (·|s) attains the SLB with equality is not needed.

To establish the direct part of Theorem 7 we construct a predictor set as follows. For each

P and each of the code-words {c(i)}en(C(P )+ε)

i=1 we construct the predictor set achieving competitive

predictability dP for the source Pc(i) , made up of enR(c(i),dP ) predictors, where R(c(i), dP ) denotes

the R-D function (at distortion level dP ) of the innovation source indexed by c(i). This is essentially

guaranteed to be possible by the direct part of Theorem 1. We let GP be the predictor set obtained

by the union of all these sets over 1 ≤ i ≤ en(C(P )+ε) and let G denote the union of GP over all types

P . By a strong converse to channel-coding with constant-composition codes (which we prove below),

the predictor set GP is guaranteed of achieving competitive predictability value of at least dP for all

sources indexed by state sequences which are P -typical (as discussed above, following (36)).

Since for each P the corresponding {c(i)} have empirical distributions P , the R(c(i), d)-s all

equal R(c(1), d) and hence |GP | ≈ en(C(P )+R(c(1),dP )). One can show that if for each s R(V (·|s), d) =

H(V (·|s))−φ(d) (namely, achieves the SLB with equality), then R(c(1), d) =
(∑

s∈S H(V (·|s))pc(1)(s)
)−

φ(d) = H(W |S)−φ(d), where (S,W ) are jointly distributed as the input-output pair of the channel

V (w|s) with the input distribution P . Thus 1
n log |GP | ≈ C(P )+R(c(1), dP ) ≈ H([P ×V ]W)−φ(dP ),

so that the rate of the predictor set |G| is essentially R = maxP [H([P × V ]W) − φ(dP )]. In partic-

ular, constructing a predictor set for dP = d for all P (or better yet, as we shall do in Section 6

and as discussed above, we take dp ≤ d
def= maxP ′ dP ′ with H([P × V ]W) − φ(dP ) constant in P ),

gives a worst-case distortion, over all sources sn ∈ Sn, of d and rate maxP H([P × V ]W) − φ(d).

Consequently, the rate of this predictor set and the worst-case distortion it achieves, d, satisfy (37)

with equality. This is the idea behind the construction, made precise in the formal proof of Theorem

7, to which Section 6 is dedicated.

5 Proofs for Results in Non-Universal Setting

A Proof of Theorem 1

Proof of lower bound: Fix d for which R+φ(d) < H(X). It will be enough to show that the left side

of (15) is lower bounded by d. Thus, given any sequence {Gn} of predictor sets with |Gn| ≤ enR, it
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remains to show that

lim inf
n→∞ EL(Gn,Xn) ≥ d. (40)

To this end define, for each n, An ⊆ Xn via

An = {xn : L(Gn, xn) ≤ d}. (41)

By (27),

|An| ≤ en(R+φn(d)). (42)

Since R + φ(d) < H(X) and φn(d) → φ(d) (equation (4)) it follows that for sufficiently small ε > 0

and all sufficiently large n

|An| ≤ en(H(X)−ε). (43)

The proof of the strong converse to the AEP for i.i.d. sources (cf., e.g., [14, Ch. 3, Problem 7])

easily extends to a general source, asserting that for any ε > 0 and sequence {Ãn}, Ãn ⊆ Xn

with |Ãn| ≤ en(H(X)−ε), Pr(Xn ∈ Ãn) → 0 (exponentially rapidly). Thus, by (43) and the strong

converse,

Pr(L(Gn,Xn) ≤ d) = Pr(Xn ∈ An) → 0. (44)

The proof is completed by noting that (44) implies (40). �

Proof of the upper bound: Fix an arbitrary predictor F ∈ F . It will suffice to establish the existence

of a sequence {Gn} of predictor sets with |Gn| ≤ enR for which

lim sup
n→∞

EL(Gn,Xn) ≤ D(WF , R). (45)

Recall first that rate-distortion theory guarantees the existence of a sequence of code-books {Cn},
Cn ⊆ Xn with |Cn| ≤ enR (which we fix henceforth), for which

lim sup
n→∞

E

[
min

ŵn∈Cn

1
n

n∑
t=1

ρ(WF
t − ŵt)

]
≤ D(WF , R). (46)

Let now Gn be the predictor set induced by the code-book Cn and the predictor F (recall (28)). The

predictor sets {Gn} satisfy |Gn| ≤ enR and (29). This, by (46), implies (45) and completes the proof.

�

B Proof of Theorem 3

Proof of the lower bound: The continuity of H(·) and D(·‖Q) imply that the right side of (19) equals

infP :H(P )>R+φ(d) D(P‖Q). Hence, for a fixed P ∈ M(X ) with H(P ) > R+φ(d), it will be enough to

show that the left side of (19) is upper bounded by D(P‖Q). Given any sequence {Gn} of predictor

sets with |Gn| ≤ enR, it thus remains to show that

lim sup
n→∞

[
− 1

n
log Pr (L(Gn,Xn) > d)

]
≤ D(P‖Q). (47)
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Let {P (n)} be any sequence such that P (n) ∈ Mn(X ) and P (n) → P . The fact that H(P ) > R+φ(d)

and the continuity of H(·) guarantee the existence of ε > 0 such that

H(P (n)) ≥ R + φn(d) + ε (48)

for all sufficiently large n. Now, for all sufficiently large n,

Pr (L(Gn,Xn) > d) = Pr (Ac
n) (49)

≥ Pr
(
Ac

n ∩ {(WF
1 , . . . , WF

n ) ∈ TP (n)}) (50)

= Pr
({(WF

1 , . . . , WF
n ) ∈ TP (n)})− Pr

(
An ∩ {(WF

1 , . . . , WF
n ) ∈ TP (n)})

≥ (|TP (n) | − |An|)e−n[D(P (n)‖Q)+H(P (n))] (51)

≥ ((n + 1)−|X|enH(P (n)) − en(R+φn(d)))e−n[D(P (n)‖Q)+H(P (n))] (52)

≥ ((n + 1)−|X|enH(P (n)) − en(H(P (n))−ε))e−n[D(P (n)‖Q)+H(P (n))] (53)

≥ 1
2
(n + 1)−|X|e−nD(P (n)‖Q), (54)

where An was defined in (41) and the c superscript denotes complementation. Inequality (51) follows

from the 1-1 correspondence between source sequences and innovation sequences. Inequality (52)

follows from the bound in (42), and inequality (53) follows from (48). Considering the two ends of

the above chain implies that the left side of (47) is upper bounded by lim supn→∞ D(P (n)‖Q) which,

in turn, implies (47) by the continuity of D(·‖Q).

Proof of the upper bound: Assume first R > 0. It will suffice to establish the existence of a sequence

{Gn} of predictor sets with |Gn| ≤ enR for which

lim inf
n→∞

[
− 1

n
log Pr (L(Gn,Xn) > d)

]
≥ Fd(R − 0). (55)

The proof proceeds similarly as that of the direct part of Theorem 1, where we construct the {Gn}
induced by a sequence of rate-distortion code-books {Cn} and the predictor F . The only difference

is that here we take a sequence which is optimal in Marton’s error exponent sense. Specifically, we

recall from [20, Theorem 1] the existence of a sequence of code-books {Cn}, Cn ⊆ Xn with |Cn| ≤ enR,

for which

lim inf
n→∞

[
− 1

n
log Pr

(
min

ŵn∈Cn

1
n

n∑
t=1

ρ(WF
t − ŵt) > d

)]
≥ Fd(R − 0). (56)

Thus, the predictor set sequence {Gn} constructed via the sequence satisfying (56), by (29), satisfies

(20) and completes the proof for R > 0. For the case R = 0, it will clearly suffice to establish the

existence of a predictor, say G, for which

lim inf
n→∞

[
− 1

n
log Pr (LG(Xn) > d)

]
≥ min

P :EP ρ(Z)≥d
D(P‖Q). (57)

Letting G = F (F being the predictor corresponding to the auto-regressive presentation of X via

the i.i.d. process WF ), clearly {LG(Xn) > d} = {1/n
∑n

i=1 ρ(WF
i ) > d} so (57) holds for this choice

of G by classical large deviations theory for i.i.d. random variables. �
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C The Case X = R

The above proofs were suited for the case of X finite. Suppose now that X = R, fix an arbitrary

predictor F ∈ F , and consider the transformation taking the source sequence xn into the sequence

of prediction errors en = (x1−F1, x2−F2(x1), . . . , xn−Fn(xn−1)). The argumentation in subsection

3.C carries over verbatim to conclude that this transformation is one-to-one and onto. Furthermore,

the Jacobian of this transformation is readily seen to be lower-triangular with diagonal entries all

equal to 1, implying that this mapping is volume-preserving. Thus, we get the analogue of (26) (cf.

[22, Theorem 5 ]),

Vol ({xn : LF (xn) ≤ d}) = Vol

({
en :

1
n

n∑
i=1

ρ(ei) ≤ d

})
def= enφn(d), (58)

leading to the analogue of (27),

Vol ({xn : L(G, xn) ≤ d}) ≤ |G|enφn(d). (59)

The above proofs carry over by replacing throughout (4) with (5), (27) with (59), | · | with Vol(·),
and entropies with differential entropies.

Note that the continuous differentiability of the predictors was needed for the existence of the

Jacobian, though ultimately the point was the volume-preservation property of the transformation

taking the source sequence into the prediction error sequence. For this property to reign, clearly

less is needed, e.g., piecewise continuous differentiability. It is, in fact, the unproven conjecture of

the authors that the volume-preservation property holds for all predictors (consisting of measurable

functions).

D Tightness of the Large Deviations Bounds

Corollary 4 can be shown to follow from the “Pythagorean Theorem of the Divergence” [15]. In the

proof that follows we derive it from first principles.

Proof of Corollary 4: Standard large deviations theory for i.i.d. random variables gives

lim
n→∞

[
− 1

n
log Pr (LF (Xn) > d)

]
= lim

n→∞

[
− 1

n
log Pr

(
n∑

i=1

ρ(WF
i ) > d

)]
= min

P :EP ρ(Z)≥d
D(P‖Q).

(60)

Hence, by the converse part of Theorem 3 for R = 0, it will suffice to show that

min
P :H(P )≥φ(d)

D(P‖Q) = min
P :EP ρ(Z)≥d

D(P‖Q) =
{

D(Qd‖Q) for d > EZ∼Qρ(Z)
0 otherwise. (61)

Since (61) clearly holds for d ≤ EZ∼Qρ(Z), assume d > EZ∼Qρ(Z). As minP :H(P )≥φ(d) D(P‖Q) ≥
minP :EP ρ(Z)≥d D(P‖Q) (since by the max-entropy property (30) H(P ) ≥ φ(d) implies EP ρ(Z) ≥ d)

and H(Qd) = φ(d), it will suffice to show that minP :EP ρ(Z)≥d D(P‖Q) = D(Qd‖Q) or, in other

words, that

D(P‖Q) ≥ D(Qd‖Q) (62)
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for any distribution P with EP ρ(W ) ≥ d. Letting P denote any such distribution and β, β′ the

parameters for which Qd = Q(β′) and Q = Q(β) we have

D(P‖Q(β)) = EP log
P (W )

Q(β)(W )
(63)

= EP log

[
P (W )

Q(β′)(W )
Q(β′)(W )
Q(β)(W )

]
(64)

= D(P‖Q(β′)) + EP [−β′ρ(W ) + λρ(β′) + βρ(W ) − λρ(β)] (65)

= D(P‖Q(β′)) + (β − β′)EP ρ(W ) + λρ(β′) − λρ(β) (66)

≥ D(P‖Q(β′)) + (β − β′)d + λρ(β′) − λρ(β) (67)

= D(P‖Q(β′)) + D(Q(β′)‖Q(β)), (68)

where the inequality follows since EP ρ(W ) ≥ d and β − β′ > 0. �

Corollary 4 gives us the precise error exponent at rate R = 0 when the source has an auto-

regressive representation via an i.i.d. innovation process with a maximum-entropy distribution. It

shows that, in this case, the achiever of minP :EP ρ(Z)≥d D(P‖Q) is a maximum-entropy distribution,

implying it is also the achiever of minP :H(P )≥φ(d) D(P‖Q) and, hence, the upper and lower bounds

on the exponent, (19) and (20), coincide at R = 0. As discussed in subsection 3.B, for general R ≥ 0

and for a similar reasoning, a sufficient condition for (19) and (20) to coincide is that the distribution

achieving minP :R(P,d)≥R D(P‖Q) will be one for which the SLB holds with equality. One situation

where this would always be the case is the binary alphabet under Hamming loss, as the SLB is

achieved with equality for all Bernoulli sources. This leads to the precise characterization of the

exponent.

Corollary 8 Let X = {0, 1} and ρ be Hamming. Let X be a stochastic process for which there exists

a predictor F such that WF is an i.i.d. Bernoulli(q) (q ≤ 1/2) process. Then for all q ≤ d ≤ 1/2

lim
n→∞

[
− 1

n
log min

|G|≤exp(nR)
Pr (L(G,Xn) > d)

]
= D(h−1(h(d) + R)‖q), (69)

where D(p‖q) is an abbreviation of D(Bernoulli(p)‖Bernoulli(q)).

Another case for which the bounds in Theorem 3 coincide is that of Gaussian processes under

squared error loss. Indeed, when Q is Gaussian, minP :R(P,d)≥R D(P‖Q) is known to be achieved by

the Gaussian distribution P whose variance is tuned such that R(P, d) = R (cf., e.g., [4]). Since the

Gaussian distribution achieves the SLB with equality, we have for this case minP :R(P,d)≥R D(P‖Q) =

minP :H(P )−φ(d)≥R D(P‖Q), namely, equality between the upper and lower bounds of Theorem 3.

Consequently, Theorem 3 gives the precise large deviations asymptotics for the competitive pre-

dictability of any process having an auto-regressive representation with i.i.d. Gaussian innovations.

Since this, in particular, is the case for any stationary Gaussian source, we obtain Corollary 6 (where

the right side of (25) is nothing but D(N(0, σ̃2)‖N(0, σ2)), σ̃2 tuned such that R(N(0, σ̃2), d) = R).
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6 Proof of Main Result in the Universal Setting

We now prove Theorem 7, where X and S are assumed finite. Theorem 7 is a direct consequence of

the following two lemmas (recall Definition 1 for the meaning of “achievable pair”).

Lemma 9 Let P (n) ∈ Mn(S), be such that P (n) → P , P ∈ M(S). If (R, d) is achievable w.r.t.

{TP (n)} then

H ([P × V ]W) ≤ R + φ(d). (70)

Clearly, if (R, d) is achievable w.r.t. {Sn} then it is achievable w.r.t. any {TP (n)}n≥1 as in Lemma 9

and hence the converse part of Theorem 7 follows.

For any R ≥ 0 and sn ∈ TP we define dR
sn

def= φ−1([H ([P × V ]W) − R]+). The direct part of

Theorem 7 is a consequence of the next lemma.

Lemma 10 Suppose that V (·|s) attains the SLB with equality for all s ∈ S. Fix an arbitrary ε > 0

and suppose that maxP∈M(S) H ([P × V ]W) − φ(d) + ε ≤ R. There exists a sequence of predictor

sets {Gn} with |Gn| ≤ en(R+ε) such that

lim
n→∞ min

sn∈Sn
Psn

(
L(Gn,Xn) ≤ dR

sn

)
= 1. (71)

Note that for fixed R, if d satisfies (37), then dR
sn ≤ d for all sn ∈ Sn. Hence, Lemma 10 implies

that if d satisfies (37) then (R, d) is in the achievable region, namely, the direct part of Theorem

7. The Lemma, however, is somewhat stronger and more informative as it implies the existence

of rate-R predictor sets such that the achievable distortion is below the worst-case distortion for

many sources. Specifically, for such predictor sets, if the state sequence belongs to type P then

the distortion achieved is φ−1([H ([P × V ]W) − R]+) which, for most types, will be less than the d

dictated by (37).

Proof of Lemma 9: Fix a pair (R, d) which is achievable w.r.t. {TP (n)} and an arbitrary ε > 0. By

Definition 1 there exists a sequence of predictor sets {Gn} with |Gn| ≤ enR and an n0 such that for

all n ≥ n0 and sn ∈ TP (n)

Psn (L(Gn,Xn) ≤ d) ≥ 1 − ε. (72)

On the other hand, for each sn ∈ Sn

Psn (L(Gn,Xn) ≤ d) ≤ Psn

(
Wn ∈ T c

[V ](s
n)
)

+ Psn

({Wn ∈ T[V ](sn)} ∩ {L(Gn,Xn) ≤ d})
≤ |X ||S|

4nδ2
n

+ Psn

({Wn ∈ T[V ](sn)} ∩ {L(Gn,Xn) ≤ d}) . (73)

Hence, by (72) and (73), for sn ∈ TP (n)

Psn

({Wn ∈ T[V ](sn)} ∩ {L(Gn,Xn) ≤ d}) ≥ 1 − ε − |X ||S|
4nδ2

n

. (74)
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From (74) and [16, Lemma 2.14] it follows that for sn ∈ TP (n)

1
n

log |T[V ](sn) ∩ {Wn : L(Gn,Xn) ≤ d}| ≥ H(V |P (n)) − εn, (75)

where εn → 0 is independent of sn. For an arbitrary δ > 0, the fact that P (n) → P , combined with

Lemma 14 of the Appendix, imply the existence of {sn
(i)}en(I(P ;V )−δ)

i=1 ⊆ TP (n) such that∣∣∣∣∣∣T[V ](sn
(i)) ∩

⋃
j 	=i

T[V ](sn
(j))

∣∣∣∣∣∣ ≤ exp
(

n[H(V |P ) − I(P ;V ) + I(P ;V ) − δ

2
+ ηn]

)
≤ exp

(
n[H(V |P ) − δ

3
]
)

,

(76)

provided that n ≥ n1(|S|, |X |, δ). Note that it follows from (76) and (75) that for all 1 ≤ i ≤
en(I(P ;V )−δ) ∣∣∣∣∣∣{Wn : L(Gn,Xn) ≤ d} ∩


T[V ](sn

(i)) \
⋃
j 	=i

T[V ](sn
(j))



∣∣∣∣∣∣ ≥ en(H(V |P )−δ) (77)

provided n ≥ n2(|S|, |X |, δ). Consequently,

|{Wn : L(Gn,Xn) ≤ d}| ≥
∣∣∣∣∣{Wn : L(Gn,Xn) ≤ d} ∩

⋃
i

T[V ](sn
(i))

∣∣∣∣∣ (78)

≥
∣∣∣∣∣∣{Wn : L(Gn,Xn) ≤ d} ∩

⋃
i


T[V ](sn

(i)) \
⋃
j 	=i

T[V ](sn
(j))



∣∣∣∣∣∣ (79)

=
∑

i

∣∣∣∣∣∣{Wn : L(Gn,Xn) ≤ d} ∩

T[V ](sn

(i)) \
⋃
j 	=i

T[V ](sn
(j))



∣∣∣∣∣∣ (80)

≥ en(I(P ;V )−δ)en(H(V |P )−δ) = en(H([P×V ]W)−2δ), (81)

where (81) follows from (77). On the other hand, in the proof of Theorem 1 it was seen that

|{Wn : L(Gn,Xn) ≤ d}| ≤ en(R+φn(d)). Combined with (81), this implies that for all sufficiently

large n

R + φn(d) ≥ H ([P × V ]W) − 2δ. (82)

Letting n → ∞, the arbitrariness of δ > 0 completes the proof. �

A Proof of Lemma 10

We begin with a strong converse for constant-composition codes.

Lemma 11 For any P ∈ Mn(S), let {sn
(i)}M

i=1 ⊆ TP be an arbitrary code-book of composition P . Let

PC be the associated probability of correct decision under the optimal (maximum-likelihood) decision

rule for the channel V (w|s). If M ≥ en(I(P ;V )+2ε) then

PC ≤ e−nε +
K

nε2
, (83)

where K = K(V ) is a constant dependent only on the channel V .

23



Proof: Let {sn
(i)}M

i=1 ⊆ TP be a code-book of composition P . Let {Λi}M
i=1 be a partition of Wn

induced by an optimal (maximum-likelihood) decision rule associated with this code-book and the

channel V . Finally, let Pe|i denote the probability of error when the channel input is sn
(i). For any

q ∈ M(W) and I ≥ 0

enI

M
=

enI

M

M∑
i=1

∑
wn∈Λi

qn(wn) (84)

≥ enI

M

M∑
i=1


 ∑

wn∈Λi∩{V (wn|sn
(i))≤qn(wn)enI}

qn(wn)


 (85)

≥ 1
M

M∑
i=1


 ∑

wn∈Λi∩{V (wn|sn
(i))≤qn(wn)enI}

V (wn|sn
(i))


 (86)

=
1
M

M∑
i=1

[
1 − Pr

(
error ∪ {V (Wn|sn

(i)) > qn(Wn)enI}|sn
(i)

)]
(87)

≥ 1
M

M∑
i=1

[
1 − Pe|i − Pr

(
V (Wn|sn

(i)) > qn(Wn)enI |sn
(i)

)]
(88)

= PC − Pr

(
V (Wn|sn

(1))

qn(Wn)
> enI

∣∣∣∣∣ sn
(1)

)
, (89)

where the last equality follows since Pr
(
V (Wn|sn) > qn(Wn)enI |sn

)
depends on sn only through

its type. Thus, for M = enR, we get

PC ≤ e−n(R−I) + Pr

(
1
n

n∑
i=1

log
V (Wi|si)

q(Wi)
> I

∣∣∣∣∣ sn

)
, (90)

where sn ∈ TP . In particular, taking q = [P × V ]W , the expectation of 1
n

∑n
i=1 log V (Wi|si)

q(Wi)
for a

state sequence sn ∈ TP is precisely I(P ;V ) and its variance is K/n, K being a constant dependent

on the channel V only. Thus, letting I = I(P ;V ) + ε, we obtain by Chebyshev’s inequality

PC ≤ e−n(R−I(P ;V )−ε) +
K

nε2
.� (91)

The significance of Lemma 11, for our problem, is that it implies that the typical set of any source

Psn , sn ∈ TP , is covered by the union of the typical sets of the sources indexed by the words

{sn
(i)}M

i=1 ⊆ TP . More precisely:

Lemma 12 For any P ∈ Mn(S) and ε > 0 there exists a set {sn
(i)}M

i=1 ⊆ TP , M = en(I(P ;V )+ε),

such that for every sn ∈ TP

Psn

(
Wn ∈

⋃
i

T[V ](sn
(i))

)
≥ 1 − αn, (92)

where αn → 0 is a sequence which depends only on ε and V .
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Proof: For any code-book {s̃n
(i)}M

i=1 ⊆ Sn, consider the following sub-optimal decoding rule:

î(Wn) = arg min{1 ≤ i ≤ M : Wn ∈ T[V ](s̃n
(i))}, (93)

where an error is declared if the set on the right side is empty. For P ∈ Mn(S), let P̃n
E(P,M) denote

the minimal probability of error among all code-books of size M which have constant composition

P , i.e., {s̃n
(i)}M

i=1 ⊆ TP , when the decoding rule in (93) is used. It is easy to verify that P̃n
E(P,M) is

monotonically increasing in M as, given a code-book of any size, a code-book with lower probability

of error (under the decoding rule of (93)) results by expurgating that word in the code-book with

highest Pe|i. Now, Lemma 11 implies that

P̃n
E(P, en(I(P ;V )+ε)) ≥ 1 − e−nε/2 − 4K

nε2
, (94)

where K is a constant depending on V only. Let {sn
(i)}M

i=1 ⊆ TP , M = en(I(P ;V )+ε), be the code-book

achieving P̃n
E(P, en(I(P ;V )+ε)). It will suffice to show that for every sn ∈ TP

Psn

(
Wn ∈

M⋃
i=1

T[V ](sn
(i))

)
≥ 1 − e−nε/2 − 4K

nε2
− 2εn, (95)

where εn → 0 is the sequence from [16, Lemma 2.12 ]. Assume, by contradiction, the existence of

s̃n ∈ TP for which

Ps̃n

(
Wn ∈

M⋃
i=1

T[V ](sn
(i))

)
< 1 − e−nε/2 − 4K

nε2
− 2εn (96)

and let {sn
(i)}M+1

i=1 be the code-book obtained by appending to the code-book achieving P̃n
E(P, en(I(P ;V )+ε))

the code-word sn
(M+1) = s̃n. This gives a code-book of size M + 1 whose probability of error under

decoding rule (93) is given by

M

M + 1
P̃n

E(P,M) +
1

M + 1
Pe|M+1, (97)

where Pe|M+1 is the probability of error given that sn
(M+1) = s̃n was transmitted, so that

Pe|M+1 = Pr

({
Wn ∈

M⋃
i=1

T[V ](sn
(i))

}
∪
{

Wn ∈ T c
[V ](s

n
(M+1))

}
|sn

(M+1)

)
(98)

≤ Pr

(
Wn ∈

M⋃
i=1

T[V ](sn
(i))|sn

(M+1)

)
+ Pr

(
Wn ∈ T c

[V ](s
n
(M+1))|sn

(M+1)

)
(99)

= Ps̃n

(
Wn ∈

M⋃
i=1

T[V ](sn
(i))

)
+ Pr

(
Wn ∈ T c

[V ](s
n
(M+1))|sn

(M+1)

)
(100)

≤ 1 − e−nε/2 − 4K

nε2
− 2εn + εn (101)

< P̃n
E(P,M), (102)

where the last inequality follows from (94). This implies that the expression in (97) is strictly less

than P̃n
E(P,M). On the other hand, the expression in (97) is the probability of error associated with
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a code-book of size M + 1 so it is lower bounded by P̃n
E(P,M + 1), thus contradicting the fact that

P̃n
E(P,M) is increasing in M . �

We are now almost in a position to give the proof of Lemma 10 via the construction of the

predictor set outlined in subsection A. We first need to state the following version of the type

covering lemma of [16] to the case of the AVS.

Lemma 13 Assume that V (·|s) attains the SLB with equality for all s ∈ S. For d ≥ 0 and ε > 0

we have the following. For every P ∈ Mn(S) and sn ∈ TP there exists a set B ⊆ Xn such that

ρ(wn, B) def= min
w̃n∈B

ρ(wn, w̃n) ≤ d for every wn ∈ T[V ](sn) (103)

and
1
n

log |B| ≤ H(V |P ) − φ(d) + ε (104)

provided that n ≥ n0(ρ, ε).

Noting that H(V |P )−φ(d) is nothing but the rate-distortion function of Wn when distributed under

Psn , the proof is a straightforward extension of that of [16, Lemma 4.1] and is therefore omitted.

Proof of Lemma 10: Fix an arbitrary ε > 0 and R ≥ maxP∈M(S) H ([P × V ]W)−φ(d)+ε. Note that

R ≥ I(P ;V ) + ε for all P ∈ M(S) as maxP∈M(S) H ([P × V ]W) − φ(d) ≥ H ([P × V ]W) − φ(d) =

I(P ;V )+H(V |P )−φ(d) ≥ I(P ;V ). Note also that H(V |s)−φ(d) ≥ 0 for all s (as the left side is the

rate-distortion function of V (·|s)) and, consequently, H(V |P )−φ(d) ≥ 0. For each type P ∈ Mn(S)

we construct a predictor set Gn(P ) as follows. Take the set {sn
(i)}M

i=1 ⊆ TP , M = en(I(P ;V )+ε) from

Lemma 12. For each code-word in that set sn
(i) ∈ TP , let the predictor set, G(sn

(i)), be that induced

by the set B from Lemma 13 corresponding to distortion level d = dR
sn
(i)

and to sn = sn
(i), i.e., the

set B satisfying

ρ(wn, B) ≤ dR
sn
(i)

for every wn ∈ T[V ](sn
(i)) (105)

and

1
n

log |B| ≤ H(V |P ) − φ(dR
sn
(i)

) + ε = H(V |P ) − [H ([P × V ]W) − R]+ + ε ≤ R − I(P ;V ) + ε (106)

Note that Lemma 13 asserts the existence of the set B satisfying (105) and (106) for n sufficiently

large, dependent only on ε. So we assume henceforth that n is sufficiently large. Let now Gn(P ) =⋃en(I(P ;V )+ε)

i=1 G(sn
(i)). Clearly, by (106), |Gn(P )| ≤ en(I(P ;V )+ε)en(R−I(P ;V )+ε) = en(R+2ε). Finally, let

Gn =
⋃

P∈Mn(S) Gn(P ), so that we have |Gn| ≤ exp{n(R + 2ε + 1
n |S| log(n + 1))}. Now, for every

P ∈ Mn(S) and sn ∈ TP ,

Psn

(
L(Gn,Xn) ≤ dR

sn

) ≥ Psn

(
L(Gn(P ),Xn) ≤ dR

sn

)
(107)

≥ Psn

(
Wn ∈

⋃
i

T[V ](sn
(i))

)
, (108)
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where sn
(i) are those through which Gn(P ) was constructed and the inequality in (108) follows since,

by the construction of G(sn
(i)), if the innovation vector wn lies in T[V ](sn

(i)) for some i then there exists

a predictor G ∈ G(sn
(i)) for which LG(xn) ≤ dR

sn
(i)

(xn being the source sequence associated with the

innovation vector wn). Combining (108) with Lemma 12 gives maxsn∈Sn Psn

(
L(Gn,Xn) ≤ dR

sn

) ≥
1 − αn and completes the proof. �

7 Future Directions

The most interesting question remaining open in the context of this work is whether the lower bound

on competitive predictability in Lemma 1 is tight in general, even when the rate-distortion function

of the innovation process does not attain the SLB with equality. If tight, this would imply that, in

general, predictor sets induced by rate-distortion code-books are strictly sub-optimal, as one would

intuitively suspect. If the lower bound is not tight in general then the question of the optimality of

predictor sets induced by rate-distortion code-books would still remain open and interesting.

Another interesting direction would be to extend the scope of the problem to general, non-

difference, distortion measures, where it is unclear if and how the volume-preservation arguments

can be applied.

Appendix

A Sphere-Packing Lemma

Lemma 14 For every R > 0, δ > 0, and every P ∈ Mn(S) satisfying H(P ) > R, there exist

en(R−δ) distinct sequences sn
(i) ∈ TP such that for every pair of stochastic matrices V : S → X ,

V̂ : S → X and every i∣∣∣∣∣∣T[V ](sn
(i)) ∩

⋃
j 	=i

T[V̂ ](s
n
(j))

∣∣∣∣∣∣ ≤ exp
(
n[H(V |P ) − I(P ; V̂ ) + R + ηn]

)
, (A.1)

provided that n ≥ n0(|S|, |X |, δ), where ηn → 0 depends only on |S| and |X |.

Note that Lemma 14 is essentially [16, Lemma 5.1]. The difference is in that here we take T[V ]

instead of TV .

Proof of Lemma 14: [16, Lemma 5.1] guarantees that for every R > 0, δ > 0, and every P ∈ Mn(S)

satisfying H(P ) > R, there exist en(R−δ) distinct sequences sn
(i) ∈ TP such that for every pair of

stochastic matrices U : S → X , Û : S → X and every i∣∣∣∣∣∣TU (sn
(i)) ∩

⋃
j 	=i

TÛ (sn
(j))

∣∣∣∣∣∣ ≤ exp
(
n[H(U |P ) − I(P ; Û) + R + εn]

)
, (A.2)
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provided that n ≥ n0(|S|, |X |, δ), where εn → 0 is our sequence from the ε-convention. Now, for the

given V (resp. V̂ ), T[V ](·) (resp. T[V̂ ](·)) is the union of at most (n + 1)|S||X | disjoint U -shells (resp.

Û -shells) TU (·) (resp. TÛ (·)). Hence, taking the set {sn
(i)}en(R−δ)

i=1 that satisfies (A.2) we have for all i∣∣∣∣∣∣T[V ](sn
(i)) ∩

⋃
j 	=i

T[V̂ ](s
n
(j))

∣∣∣∣∣∣ (A.3)

=

∣∣∣∣∣∣
(⋃

U

TU (sn
(i))

)
∩

⋃

Û

⋃
j 	=i

TÛ (sn
(j))



∣∣∣∣∣∣ (A.4)

=

∣∣∣∣∣∣
⋃
U

⋃
Û


TU (sn

(i)) ∩
⋃
j 	=i

TÛ (sn
(j))



∣∣∣∣∣∣ (A.5)

≤ (n + 1)2|S||X | exp
(

n[max
U,Û

(H(U |P ) − I(P ; Û)) + R + εn]
)

, (A.6)

where the unions and maximization are over those U and Û associated with T[V ] and T[V̂ ], respec-

tively. Standard continuity arguments give (cf., e.g., proof of [16, Lemma 2.13])

|(H(V |P ) − I(P ; V̂ )) − max
U,Û

(H(U |P ) − I(P ; Û))| ≤ −2|S||X |δk log δk, (A.7)

where {δk} is the sequence from the δ-convention. Combining (A.7) with (A.6) completes the proof.

�
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