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Abstract

QoS routing mechanisms allow users identify paths that can accommodate their performance re-
quirements and reserve the necessary resources. An important problem is how to conduct such
resource allocation efficiently, not only from the single-connection, but also from the network point
of view. We propose the use of pricing mechanisms as a means to regulate the users’ decisions in
a networkwide efficient manner. Focusing on QoS architectures that employ rate-based schedulers,
we formulate a congestion-based pricing scheme. We establish the structure of the corresponding
user-optimal response, i.e., a path selection algorithm that satisfies the user’s requirements at mini-
mal cost. We show that the underlying noncooperative game among users has a unique equilibrium,
for any particular choice of price functions. Then, we establish the existence of incentive compatible
price functions, which drive the network into an equilibrium point that coincides with the optimum
of a social function. Specifically, these price functions are the derivatives of the social function. We
then extend our results to scenarios in which users can identify only sub-optimal paths, as is often
the case with multi-constrained path optimization.
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1 Introduction

Broadband integrated services networks are expected to support multiple and diverse applications,
with various quality of service (QoS) requirements. Accordingly, a key issue in the design of broadband
architectures is how to provide resources in order to meet the requirements of each connection, and,
moreover, how to meet that goal in a networkwide efficient manner. The establishment of efficient QoS
routing schemes is one of the major building blocks in such architectures. QoS routing has been the

subject of several studies and proposals (see, e.g., [1, 2, 5, 19, 23, 26, 29] and references therein).

One of the major problems in the establishment of a connection with QoS guarantees arises from
the need to map end-to-end requirements, such as delay and/or jitter, onto local (nodal) requirements,
which would indicate how to reserve resources along the route. The ability to derive such a mapping
depends to a large extent on the scheduling policy and service discipline employed at the nodes. Such
disciplines are characterized by bounds on the maximal delay that any node can incur, and hence a
corresponding bound on the end-to-end delay can be derived. This way, the routing problem can be
formulated as identifying the path that has the best performance according to that bound and with
respect to the QoS requirement. Several studies have proposed schedulers that map delay guarantees
into rate requirements and have each node advertise its residual rate [10, 25, 30]. The Guaranteed Service
Class proposed for the Internet [28] is based on such rate-based principles. Based on the properties of
such schedulers, several studies [11, 12, 19, 23, 26] have analyzed algorithms for computing paths that
satisfy end-to-end delay bounds. In particular, it has been shown in [11] that for a given connection
with an end-to-end delay constraint, the existence and identity of a feasible path can be obtained
through up to M executions of a standard shortest path algorithm, where M is the number of network
links. In [19, 26] , it was shown that, through this scheme, one can accommodate additional connection

requirements such as jitter.

An important problem that has not been sufficiently addressed in the literature on QoS routing
is that of efficient allocation of resources, namely “rates” or “bandwidth”, not only from the single-
connection, but also from the network point of view. In particular, while each connection® can choose the
path between source and destination along with the corresponding bandwidth reservations, the network
provider/manager typically aims at an allocation of resources that is deemed efficient with respect to
the overall network performance. The underlying assumption in previous studies on QoS routing is that
efficient usage of network resources can be enforced through appropriate choice of pricing strategies.
What constitutes “efficient” resource utilization and how it can be achieved through pricing mechanisms

are still open problems. Both these open problems are addressed in the present study.

Pricing as an allocation mechanism that makes decentralized decisions compatible with overall ef-
ficiency has been studied in the context of queueing systems, e.g., [21]. In computer networks, pricing
has been receiving increasing attention from both the research and the corporate world, mostly due to

the explosive growth of the Internet, which is evolving from a heavily subsidized network to a com-

IThe terms “connection” and “user” are used interchangeably.



mercial enterprise, e.g., [7, 14, 15, 16, 17, 20, 24, 27]. The research community has taken a normative
approach, proposing usage-based pricing mechanisms that will motivate the users to adopt a social
behavior, e.g., by regulating their traffic, or by requesting lower grade of service. Network providers,
on the other hand, will benefit from using network-efficient pricing schemes, but at the same time are
interested in mechanisms that first generate profit and second are more appealing to the end users than

the mechanisms of their competitors.

The interface between the performance- and the market-oriented approach to pricing, is one of the
main factors that will define the future evolution of public networks — networks where access is not
restricted to members of an enterprise — such as the Internet. In an attempt to delineate this interface,
various debates have arisen within both communities. There seems to be a consensus, though, that
some type of usage-constraining pricing is necessary mainly due to congestion considerations. In the
present study we do not attempt to enter these debates. Rather, within the framework of the normative
approach, we demonstrate how pricing strategies can be used to drive the network to an operating point

that is deemed efficient with respect to the overall network performance.

More specifically, we consider a general network with nodal schedulers that belongs to the rate-based
class as described in the specification of the Guaranteed Service for IP. Each connection is characterized
by its source-destination nodes, maximal packet size, maximal burst, and an upper bound on the end-
to-end delay. The properties of rate-based schedulers allow the derivation of an upper bound on the

end-to-end delay of a connection when it is routed over a given path at a given reserved rate.

There is a cost associated with reserving a unit of rate over a link, which is the price of the link.
Focusing on congestion pricing, we assume that the price of a link is a function of the aggregate rate
reserved at the link. FEach connection is established so as to minimize the total usage cost while
satisfying its end-to-end delay constraint. The interaction among the various connections that decide
independently on their individual routing strategies can be modelled as a game [8, 22]. Any operating
point of the network is a Nash equilibrium of that game, that is, a collection of routing strategies from

which no user has an incentive to deviate unilaterally.

Link price functions are determined by the network provider/manager. The goal of the manager
is to drive the users to a Nash equilibrium that is efficient from the network’s point of view. More
specifically, we assume that efficiency is defined as minimizing a global (social) cost function that
quantifies the overall network performance and is the sum of link cost functions. The manager seeks a
pricing strategy that enforces a unique Nash equilibrium that minimizes this social cost function. Any

such pricing strategy is called incentive compatible.

We investigate the structure of the QoS-routing game and show that, for any given set of link price
functions (conforming to a set of general assumptions), it has a unique Nash equilibrium. Moreover, we
establish a set of necessary and sufficient conditions for a feasible (link) flow vector to be the equilibrium
of the game. Having established these results, we turn our attention to the problem of incentive

compatible pricing strategies. We show that if the network manager imposes link price functions that



are equal to the derivatives of the link cost functions, the unique equilibrium of the QoS-routing game
coincides with the network optimum. We note that this type of price functions have been known
to enforce the network optimum when the users implement a much simpler class of optimal routing

strategies, such as in transportation networks (Dafermos and Sparrow (1971)).

In the sequel, we turn our attention to connections that conduct multi-constrained path optimization.
A typical setting is to identify a path that minimizes some target function, e.g., administrative costs,
while observing two or more constraints, such as end-to-end delay and jitter. For this setting we
show that the previous results about the routing game and the incentive compatible prices still apply.
These results are based on the assumption that the users are able to determine optimal routes that
provide both delay and jitter guarantees. However, such multi-constrained path optimization problems
are, in general, NP-complete (Garey and Johnson (1979)), therefore optimal routing solutions are
prohibitively complex. On the other hand, there are efficient approximation schemes which provide

e-optimal solutions within polynomial time complexity (see, e.g., Hassin (1992)).

This means that users can be expected to make not self-optimizing but only sub-optimal decisions.
This situation presents a harder challenge for network management, as the response of users to manage-
ment schemes becomes unpredictable. An important question is, then, whether there is still a pricing
scheme that drives the network to an efficient operating point. We indicate that the answer is affir-
mative. Moreover, we show that the required prices are exactly those that correspond to the standard

scenario of self-optimizing users.

The rest of the paper is structured as follows. In Section 2 we present the QoS-routing model and
formulate the problem of incentive compatible pricing. Focusing on end-to-end delay constraints, in
Section 3 we investigate the structure of the QoS-routing game and study the problem of incentive com-
patible pricing. The multi-constrained path optimization case is considered in Section 4. Conclusions

are presented in Section 5.

2 Model and Problem Formulation

We consider a network G(V, £), where V is the set of nodes and £ C V x V is the set of links, and let
N = V| and M = |L|. We denote by H the maximal possible number of hops (links) in a path. For any
link [ = (u,v) € L, define S(I) = u and T(I) = v. Considering a node u € V, let In(v) = {l: T(l) = u}
denote the set of its ingoing links, and Out(v) = {l : S(I) = u} the set of its outgoing links. Each link

[ € L is characterized by the following parameters:

e A mazimal rate (capacity) R;, which the link can offer to a new connection. When a new connec-

tion with a rate r < R; is established through link [, the value of R; becomes R; — r.?

e A constant delay d;, related to the link’s speed, propagation delay and maximal transfer unit. We

assume that d; takes integer values.

2If the maximal available rate is a nodal property, then we associate it with all its outgoing links.



Connections belong toaset Z = {1,2,...,I} of “types.” A connection (of type) i € 7 is characterized

by the following parameters:

e 3 pair of source and destination nodes, taken from a set S CV x V,
e a bias o, related to the connection’s maximal burst,

a maximal packet size ¢!,

an end-to-end delay QoS requirement D?, which, without loss of generality, is assumed to take

integer values,

a bandwidth QoS requirement b.

A connection should be routed through some path p between the corresponding source and destina-
tion nodes. We shall denote by n(p) the number of hops of a path p, and by r(p) its maximal available
rate, that is, r(p) = minjep R;. We assume that the scheduling policy in the network belongs to the
rate-based class [10, 25, 30] as in the specification of the Guaranteed Service for IP [28]. Accordingly,
when a connection 7 is routed over a path p with a reserved rate r < r(p), its end-to-end delay is upper
bounded by:

; o +n(p)c
Ditpr) = T 4 Y (1)
Let Di(p) = Di(p,7(p)) denote the minimal possible value of D?(p,r), which shall be referred to as
the guaranteed delay of p. A path p between the source and destination nodes of a connection of type
i is said to be feasible for connection i if Di(p) < D! and r(p) > b. Paths that cannot accommodate
the bandwidth requirement of the connection can be eliminated, thus the bandwidth constraint can be

treated as absent. Therefore, denoting by af(p) = % the minimal rate that satisfies the delay
N lep !

constraint of connection ¢ on path p, the feasibility of a path can be defined as follows.

Definition 2.1 A path p between the source and destination nodes of a connection of type i is said to
be feasible for a connection (of type) i, if D' > Yiepdi and r(p) > a'(p). Let Pt denote the set of all

feasible paths for that connection.

We assume that the number of connections is very large and the rate required by each is very small
compared to link capacities. Hence, a continuous approximation is appropriate, and the (normalized)
number of connections can be assumed to take continuous values. Denote by 7% (j) the expected number
of type i connections with source node u and destination node j. There is a usage cost w; associated
with reserving a unit of bandwidth on link I € £ that will be referred to as the price of the link.

The total cost for reserving bandwidth r over path p is, then, r - ElEp w;. Each user makes its

routing decisions (choice of path(s) between source and destination and corresponding reserved rate)



independently, according to its individual QoS requirements and cost considerations. More specifically,

each connection is established so as to minimize its total cost, while satisfying its delay constraint.

The price for usage of a link is the same for all connections and depends only on the aggregate rate
reserved on the link. More specifically, if f; denotes the total rate reserved by all connections on link /,
then the cost for reserving a unit of bandwidth (price) on the link is w;(f;). f; will be referred to as
the “flow” on link [. Here, it is important to note the underlying dynamics of the network; users choose
feasible paths according to link prices, which, in turn, are functions of the aggregate rates reserved on
the links, thus depend on the choices made by the users. This dynamic behavior can be modeled as a
noncooperative game. An equilibrium of the network, that is, a link flow distribution £ = {f; : l € L}
where prices and aggregate rates remain unchanged, is a Nash equilibrium of the underlying QoS-routing

game.

The set of network equilibria depends on the link price functions that are determined by the network
manager and/or provider. Depending on the way the network is financed and the market structure, the
manager /provider might choose prices according to various objectives that combine, in general, the aim
to operate the network efficiently and, at the same time, generate revenue. in determining prices, the
structure of the user community, as well as competition by other providers should also be taken into
account. We do not attempt to address all these issues here. Rather, we aim at a rigorous investigation

of pricing strategies that lead to efficient utilization of network resources.

Network efficiency is typically defined as achieving an operating point that minimizes a global
(social) cost function J(f) that quantifies the overall network performance: the higher J(f), the lower
the network performance under f is. We focus on social cost functions J(f) = >, . Ji(fi) that are the
sum of link cost functions, where the cost of link [ depends only on the total flow f; on the link and

satisfies the following.

Assumptions G:
G1. J; : [0, R;] — [0, 0] is continuous.
G2. J; is increasing and strictly convex.

G3. J; is continuously differentiable.

Under Assumptions G, there exists a unique operating point that minimizes .J, which shall be
referred to as the network optimum. The goal of the network manager is to determine a pricing strategy
(collection of price functions) {w;(fi) : I € L} that provides incentives to the users to make choices
that lead to a unique network equilibrium that coincides with the network optimum.®? Any such pricing
strategy is called incentive compatible. Here, we concentrate on price functions {w;(f;)} that satisfy the

following.

3Depending on the pricing scheme, the network might have multiple equilibria, a unique equilibrium, or no equilibrium
at all. Evidently, the manager would avoid pricing schemes that prevent the network from reaching an operating point.
Similarly, schemes that lead to multiple equilibria are, in general, undesirable, since the operating point of the network

depends on its initial state and there is no guarantee that it is the equilibrium that corresponds to the desired point.



Assumptions P:

P1. w;(f;) is nonnegative.

P2. w; : [0, R;] = [0, o0] is continuous.
P3. wi(f;) is increasing.

Existence of incentive compatible pricing strategies is investigated in the following section. It is
shown that an incentive compatible pricing strategy of the manager always exists and its structure is
specified explicitly.

As already explained, each connection is established so as to minimize its total cost while satisfying
its QoS constraint. Till now, we have only considered connections with end-to-end delay constraints.
In general, a connection might have multiple QoS constraints, for example, end-to-end delay and jitter.
The underlying QoS-routing game and the related pricing problem, under multiple QoS constraints, are

investigated in Section 4.

Throughout the paper, we assume that the network can accommodate the total offered load, i.e.,

that there is a stable network operating point f, in the sense that f; < R; for all links [ € L.

3 Incentive Compatible Pricing Strategies

In this section we investigate the existence of incentive compatible pricing strategies, that is, price
functions {w;(f;) : I € £} that induce a unique network equilibrium that coincides with the network
optimum. To do so, we first need to analyze the structure of the QoS-routing game for given link price
functions. For ease of exposition, we consider first, in Subsection 3.1, the simple case of a homogeneous

network. The results are extended to the case of a general network in Subsection 3.2.

3.1 Homogeneous Network

Consider a network with homogeneous connections —i.e., D* = D, 0" = o and ¢* = ¢ — and homogeneous

links —i.e., d; = d — that will be referred to as a homogeneous network. Denote by =, (j) the expected

o+nc

number of connections between a source node u and a destination node j. Let o = =27, ie., a”

denotes the minimal rate required by a connection over an n-hop path.
Let us start by studying the routing problem faced by a user. Given a set of nonnegative link prices

{w;}, the routing problem of a type i user can be defined as follows.

Homogenous Network — User Problem (HU):
Find a path p* € P? that achieves the minimum:

ol n(p)
min —————

. - wig.
peP D' =3 e di £

P

It is easy to see that Problem HU is solved by the following algorithm.



Algorithm HU:

1. For all 1 < n < £ run a Bellman-Ford shortest-path algorithm [4], with respect to the metric
{w}, in order to ﬁnd a shortest path p™, among those that have at most n hops. Denote: W™ =

ZZEp" w
2. Letn* = argmin1§n<% a"W". The required path is p* = p™

We now proceed to characterize the structure of the QoS-routing game. Considering the network
at equilibrium (assuming that one exists), denote by 77 (j) the expected number of connections from
source node u to destination node j, which are established over n-hop paths. Similarly, let f*(j) be the
aggregated flow over a link [, corresponding to connections destined to node j, which are routed over
paths for which link [ is the n-th hop away from the destination. By a slight abuse of notation, define
the link flow vector f = {f*(j) : 1 <n < £,1 € £,j € V}. Similarly, define v = {77(j) : 1 < n <
%, u,j € V,u # j}. Flow vectors f and « must satisfy the following feasibility constraints.

Constraints FH:
1. Vj,uEVu#j,V1§n< %: ZUEV 171)(]) :Zvevfn+1( )+7u( ) 5

2. VjueVu#j: il i) = ()
3.VJjEV,V(uv)eL,V1I<n< L fr(j)>0;

4L VjueVu#jV1i<n<Z: 4 >o0.

The first constraint is a flow conservation constraint: it states that ) _,, f,(j), i.e., the aggregate
flow to a destination j for which a node u is at the starting-point of the n-th hop, is equal to the sum of
Y ovey foFL(4), i.e., the aggregate flow to j for which node u is at the end-point of the (n + 1)-st hop,
plus 7(j)am", i.e., the aggregate rate of connections established between u and j over n-hop paths.?
The second constraint simply states that each connection should be routed over some path. The third
and forth are obvious nonnegativity constraints. Let F7# denote the set of feasible flow vectors (f, )

for the homogeneous network, i.e., those that obey the above four constraints.

Let (f, ) be an equilibrium flow vector. Then, the total flow on any link ! € Lis f; = Z( z1=1 > jev f0)-
By Algorithm HU, it is clear that a path chosen by a user is a shortest n-hop path with respect to the

metric {w;(f;)}, for some n, 1 < n < £. This observation leads to the following equilibrium conditions:

= wa(fu) + NG IR >0y
< wa(fu) +A21G) 5 ) =0

4Indeed, the expected number of such connections is Y%(j), and each requires a reservation of a™ units of rate.

Yu,j € V,u # j,Yv € Out(u), 1<n<%: )\Z(j){




(e A(G) =0 ®
X () = Xi(j) = 0. (4)

The equilibrium conditions can be explained as follows. AZ(j) is the minimal equilibrium price for
reserving one unit of rate over an n-hop path between a source u and a destination j; expression (2)
simply states that, among paths with the same number of hops, users will prefer those with minimal per-
unit rate prices. Au (4), in turn, is the minimal equilibrium cost for establishing a connection between

a source u and a destination j; expression (3) is just a restatement of the observation made above.

The structure of the QoS-routing game in a homogeneous network is given by the following theorem,

the proof of which is presented at the end of this subsection.

Theorem 3.1 In a homogeneous network, for any set of link price functions {wi(f;)} that satisfy

Assumptions P:
1. There ezists a unique equilibrium flow vector (f,~v) € FH.

2. Conditions (2)—(4) are necessary and sufficient for equilibrium, that is: a flow vector (f,v) € FH
is an equilibrium if and only if there exist finite numbers {\(j):1 <n < %,u,j €V,u#j} and
{Au(G) s u,j € V,u # j}, such that (2)-(4) hold.

We now turn our attention to the manager’s problem. The manager aims at enforcing the network
optimum, i.e., a flow vector (f,~) that minimizes the social function J(-) over the set of all feasible flow
vectors. The manager can only decide upon link price functions {w;(f;)}. According to Theorem 3.1,
each choice of a set of link price functions that comply with Assumptions P induces a unique network

equilibrium. Therefore, the problem faced by the network manager can be stated as follows.

Homogeneous Network — Manager Problem (HM):

Find a set of link price functions {w;(f;)} that satisfy Assumptions P and lead to a network equilibrium,
which coincides with the network optimum, i.e., a flow vector (£,7) that solves the following problem.
Minimize:

rz1-1

JO=3 A=Y > ¥

el leL n=1 je

o

),

subject to Constraints FH.

Before we investigate the existence of incentive compatible pricing strategies, let us first prove
the following proposition, which characterizes the structure of the network optimum through a set of

necessary and sufficient conditions.

Proposition 3.1 Given a social cost function J(-) that conforms with Assumptions G and a homoge-

neous network, a flow vector (£,7) is the network optimum if and only if there exist (Lagrange mul-

tipliers) {A\(j) : 1 < n < %,u,j e V,u # j} and {\,(j) : u,j € V,u # j}, such that the following



(Kuhn-Tucker) conditions are satisfied:

_ 7 n—1/,. n (;
Vu,j6V,u#j,Vv€Out(u),V1§n<%: /\Z(j){ ;?"E?;i;nflg; %8;;8 . (5)
vujevazivisn< Do ap{ 230 >0 ©)
A7) = () = 0. (7)

Proof: FH is a convex set, and, by assumption, the cost function J(-) is convex in (f,~). Consequently,
any local minimum of J is also a global one [18]. The stability assumption, that is, that the network
can accommodate the total offered load, implies that Slater’s “interiority” condition [3] is satisfied. The
Kuhn-Tucker saddle point theorem, then, guarantees the existence of the respective (finite) Lagrange

multipliers. Therefore, if we form the Lagrangian:

T(E v, A n,10) =
r1-1
ZZJuvfuv+ZZ > NGon@at+ > f - Z
u€V veOut(u) JEV ueV,u#tj n=1 vEIn(u) vEOQut(u
i [21-1 Fics
JEV UEV u#j n=1 JEV ueEV,u#j veOut(u) n=1

>y i (v (i),

JEV ueV,u#j n=l1

where, for all u € V and v € Out(u):
My <0 (8)
and
nuv ’ZZU = 07 (9)

a flow vector (f, ) minimizes J if and only if it is stationary with respect to J [18]. Taking derivatives

and equating to zero, one obtains:

8-.7 ! n—1 n n N
0=7 " 7) = Ju T AT (G) = AL () + 10y (9)s (10)
8j ne- n I . ~N [ :
=) Au ()™ = Xy (5) + 71 (4)- (11)

Finally, (8)-(9) imply that eqs. (10)—(11) are equivalent to (5)—(7), hence establishing the result. O

Proof of Theorem 3.1: As already explained, conditions (2)—(4) are necessary for a flow vector

(f,~) € FH to be an equilibrium.



Given a set of link price functions {w;(f;} that satisfy Assumptions P, consider the social cost

function J(-) = >,., Ji(-) defined by Ji(f7) 2 Jwi(f)dfi, for all I € L. Tt is easy to see that cost
functions J;(fi) conform to Assumptions G. According to Proposition 3.1 there exists a unique flow
vector (f,7), which satisfies the optimality conditions (5)—(7). Since J,, (fuv) = Wuv (fuv), conditions
(5)—(7) are equivalent to (2)—(4). Thus, there is a unique flow vector, namely (f,7), that satisfies
(2)—(4), as claimed by the first part of the Theorem.

It remains to be shown that conditions (2)—(4) are sufficient for a flow vector (f,~v) € FH to be an

equilibrium. This is immediate, since .J is strictly convex. m|

Theorem 3.1 and Proposition 3.1 imply that link price functions {.J/(f;)} lead to a unique equilibrium

that minimizes the social cost function. We have, thus, established the main result of this subsection.

Theorem 3.2 For link price functions wi(f;) = Ji(f1), 1 € L, the flow vector (£*,~*) that minimizes

the social cost function J over FH is the unique equilibrium of the homogeneous network.

The implication of Theorem 3.2 is that, by setting link price functions that are equal to the derivatives
of the social cost functions, the manager can drive a homogeneous network to the required social

optimum.

3.2 General Network

We consider now the general case, i.e., general connections — with values D?, 0%, ¢! — and general links —

with values d;. Let ™% = %, where 1 <n < H,i€Z,and 1 <d< D% ie., ™% is the minimal

rate required by a type-i connection established over a path of n hops and total constant delay d.
Again, we start by studying the routing problem faced by a user. Given a set of nonnegative link

prices {w;}, the routing problem of a type-i user in a general network can be defined as follows:

General Network — User Problem (GU):
Find a path p* € P! that achieves the minimum.:
ol + n(p)ct

min ——————— E wy.
i T __
PEP D ZlEp dl lep

The above problem belongs to a class of combinatorial path optimization problems with rational 0b-
jective functions. That class has been investigated in [11], where a polynomial solution was established.

The complexity of that solution, when applied to our case, is O(N?M log(N =2Xe£ XL i)y Although

minleL wq
the complexity here is higher than in the homogeneous case, it is still of a reasonable polynomial rank.
Thus, just as in the homogeneous case, users can be expected to identify their optimal paths, given a

set of link prices. To summarize:



Proposition 3.2 Problem GU is solvable through a polynomial, O(N?2M (log( N 22XEeLXL Diy) glgo-

min;c . wi

rithm.

We now proceed to characterize the structure of the QoS-routing game in a general network. Con-
sidering the network at equilibrium (assuming that one exists), denote by 7/%(j) the expected number

of type-i connections from source node u to destination node j, which are established over paths with n

hops and total constant delay d. Similarly, let f,* d, Z( i) be the aggregate flow over a link [, corresponding
to type-i connections destined to node j, which are routed over paths, for which link [ is the n-th hop

away from the destination and the total constant delay on the remainder of the path is d. By a slight
abuse of notation, define the link flow vector f = {f”’d’i( ):1<n<H,i€cZ,0<d<DleL,jeV}
Similarly, define v = {y»%¥(j) : 1 <n < H,i € Z,0 < d < D%, u,j € V,u # j}. Flow vectors f and ~

must satisfy the following feasibility constraints.

Constraints FG:

1.Vi,VjjueVu#j,V1<n<H/V0<d< D"

Z fn ,d, z Z n+1 d+dw,z ]) + ’)/g’d’i(j)an’d’i;

veEVY veEY

2.V i, VjueVu#j Yo Yala () = 70
3.Vi,VieEV,V (u,v) €L,V1<n<H,V0<d<D: fhdbi(5) > 0;
4. VjueVu#j,V1<n<HV0<d<D: yndi(5) > 0.

The above constraints are similar to the set of constraints FH, except that now we differentiate
flows not only according to the destination and remaining number of hops, but also according to the
connection type and remaining units of constant delay. Let FG denote the set of feasible flow vectors

(f,~) for a general network, i.e., those that obey the above four constraints.

Let (f, ) be an equilibrium flow vector. Then, the total flow on any link ! € Lis f; = Zn | DieT d N EjEV i o, l(

We observe that a path chosen by a user (i.e., that solves Problem GU) has a minimal price among
paths between the same source and destination with the same number of hops and constant delay. This
implies that chosen paths have the following local optimality property: if p; and p2 are two paths be-
tween a node u and a destination node j, each of n hops and having the same propagation delay d (that

is, Zlepl d; = El€p2 d; = d), and if py is a subpath of a path chosen by some user whose destination

is j, then Zlepl wy < El€p2 wy. This observation leads to the following equilibrium conditions:

Vi, Yu,j €V ,u#j,Yv€ Out(u),V1<n<HV0<d< D':

n,d [ = wuv(fuv) + AZ_Ld_duu (.7) 3 313d7z(.7) >0
W] Suntin D) ) 20 12



Vi, Yu,j €V ,u#jV1<n<HVY0<d<D':

G d =A@t i) >0
K| S Naamas | a0 =

AP(j) = i) = 0. (14)

The equilibrium conditions can be explained as follows. A™%(5) is the minimal equilibrium price for
reserving one unit of rate between a source v and a destination j, over a path with n hops and constant
delay d; expression (12) simply states that, among paths with the same number of hops and constant
delay, users will prefer those with minimal per-unit rate prices. S\Z (7), in turn, is the minimal equilibrium
cost for establishing a connection of type i between a source u and a destination j; expression (13) is

just a restatement of the observation made above.

The structure of the QoS-routing game in a general network is given by the following theorem, the

proof of which is presented at the end of this subsection.

Theorem 3.3 In a general network, for any set of link price functions {w;(f;)} that satisfy Assump-

tions P:

1. There exists a unique equilibrium flow vector (f,7) € FG.

2. Conditions (12)—-(14) are necessary and sufficient for equilibrium, that is: a flow vector (f,v) €
FG is an equilibrium if and only if there exist finite numbers {A\™%(j) : 1 < n < H,0 < d <
max;ez D, u,j € V,u# j} and {\i(j) :i € T,u,j € V,u # j}, such that (12)-(14) hold.

We now turn our attention to the problem of the manager. As before, the manager aims at selecting
link price functions {w;(f;)} that enforce the network optimum, i.e., a flow vector (f,~) that minimizes
the social function J(-) over the set of all feasible flow vectors. According to Theorem 3.3, each choice
of a set of link price functions that comply with Assumptions P induces a unique network equilibrium.
Therefore, the problem faced by the network manager can be stated as follows.

General Network — Manager Problem (GM):

Find a set of link price functions {w(f;)} that satisfy Assumptions P and lead to a network equilibrium,
which coincides with the network optimum, i.e., a flow vector (£,7) that solves the following problem.
Minimize:

Di—1

H
TE =0 = 10"3 > S 5M0)
%

lec lec i n=1 d=0 je
subject to Constraints FG.

The following proposition characterizes the structure of the network optimum through a set of

necessary and sufficient conditions.



Proposition 3.3 Given a social function J(-) that conforms with Assumptions G and a general net-

work, a flow vector (f,7) is the network optimum if and only if there exist (Lagrange multipliers)
{AnAd(45) 1 j,u € Vyu # 5,1 <n < H,0<d < max;er D'} and {S\U(]) 2 j,u € V,u # j}, such that the
following (Kuhn-Tucker) conditions are satisfied:

Vi, Yu ,j€V,u#j,Yve Out(u),V1<n<HNV0<d<D:

) — J’ (f ) + )\nfl,dfd,“, (]) n,d,i(j) >0
n,d uv \J uv v ’ uv
Ay (]) { < Jqlw(fuv) + )\gfl,dfdw (]) ’ ,%d’l(j) —0 - (15)

Vi, Yu ,jeEVu#jV¥1<n<HNY0<d< D' X)) :

I — /\n,d(j)an,d,i ’Yn’d’i(j) >0
A w o c 16
u(J) { S Az,d(])an,d,z , ,Y;L,d,z(.]) =0 ( )
APG) = XG) = 0. (17)
Proof: Again, 7§ is a convex set, and the proof follows closely that of Proposition 3.1. O

Proof of Theorem 3.3: Follows closely that of Theorem 3.1, by considering Jy, (fuv) = J wuo (Fuv)dfuo-
O

We have thus established the main result of this section.

Theorem 3.4 For link price functions

wi(f1) 2 Ji(f), 1€ L, (18)

the flow vector (£*,~*) that minimizes the social cost function J over FG is the unique equilibrium of

the general network.

Again, the implication of Theorem 3.4 is that, by setting link price functions that are equal to the
derivatives of the social cost functions, the manager can drive a general network to the required social

optimum.

Remark 3.1 It is important to note that, while the equilibrium conditions (12)—(14) are stated with
a considerably large number of variables, namely O(max;cz D' - H - N - M) Lagrange multipliers, the
optimality problem faced by each user is of polynomial size, as established by Proposition 3.2. Similarly,
the large number of variables with which the optimality conditions (15)—(17) are stated has no implication

on the manager: as established by Theorem 3.4, the size of its strategy, i.e., optimal price vector, is just

O(M).

3.3 Big User

Suppose that, except for the (infinitely) many (infinitely) small users, each controlling a single con-

nection, there is one “big” user, i.e., with a non-negligible amount of flow, which controls (infinitely)



many connections. For example, consider a network service provider that implements its infrastructure
on top of the considered network. It is easy to verify that, in the presence of such a user, our regular
pricing scheme will not work. Intuitively, such a user should take into account the externalities imposed
by its routing decisions, i.e., the effect that each connection has on the rest of the user’s flow. Hence,
its optimal policy is different than that implied by Problemm GU. In this subsection we devise a pricing
scheme for the big user, which, together with the regular scheme elaborated for small users, constitute

an incentive-compatible pricing strategy.
Denote by v2:i(j)the expected number of type i connections corresponding to the big user, with
source node u and destination node j. Considering a network at equilibrium, denote by vZ:%%i(j) the

expected number of type-i connections corresponding to the big user, with source node u and destination

node j, which are established over paths with n hops and total constant delay d. Denote by le the
aggregate flow of the big user on link /. Then, fl_B = fi — f{ is the aggregate flow of all other (small)
users.

We impose on the big user a pricing scheme {w?}, which depends both on the aggregate link flow

fi and on the user’s flow £, i.e., w? = wpP(fP, fi). Given such price functions, and given f~B, the big

user’s problem on a general network can be stated as follows.

General Network — Big User Problem (GBU):

Minimize:

H
Zwl (fF, f) = wi (fP :fz Zwl ZZ

Di-1
leL leLl i n=1 d=

E: l?ndt —B)
JjeEV

0

subject to:

I.Vi,VjueVu#j,V1<n<H,V0<d< D

Z fB n,d, z Z fB n+1, d+du1}7l(]) + ’)/5’n7d’i(j)01n’d’i;

veEVY veEVY

2V i, VjueVuj N TPl Badi(y = yBi();
3.V, VjeEV,Y (uw)€L,V1<n<H VY0<d< Di: fBdi(j)>0;

4 VijiueVu#j,V1<n<H,V0<d< Di:yBndi >0,

Problems GM and GU remain the same, except that now the y-values include the connections of

both the small users and the big user.

Consider the following price functions:

wl (FP, f) = J(f) = J(fi = 1P). (19)



Intuitively, sz ( le , /1) charges the big user for the increment in the function J; induced by its aggregate

flow fP.

Let f* be the unique solution of Problem GM. f* can be decomposed into flows fB* and f—B*.

Lemma 3.1 Given an aggregate flow £~B* of the small users and price functions as in (19) for the big

user, fB* is the unique solution of Problem GBU.

Proof: Problem GBU is convex, hence a set of necessary and sufficient optimality conditions can

be constructed; this set is similar to (15)—(17), except that the derivatives J; are replaced with ?;—’;
1
However:
B _ ¢B -B
8wl _ 8Jl(fl) _ aJl(fl fl ) — Jll_ 6Jl(fl ) — Jll- (20)

o1F ~ofP T P o1P
(20), together with the implication fZ (j) > 0 — fu»(j) > 0, imply that the set of Lagrange multipliers
that satisfy (15)—(17), at the optimum flow f*, satisfy also the optimality conditions of Problem GBU

at (fB*,£~B*); the lemma follows. O

Lemma 3.2 Given an aggregate flow £8* of the big user and price functions as in (18) for the small

5 —Bx
, f

users is the unique solution of Problem GU.

Proof: Similar to that of Theorems 3.3 and 3.4. O

We have thus established:

Theorem 3.5 Let the price functions imposed on the small users be as in (18), and the price functions
imposed on the big user be as in (19). Then, the flow vector £* that minimizes J(f) over FG is the

network’s unique equilibrium.

4 Incentive Compatible Pricing Strategies for Multi-Constrained
Path Optimization

We turn to consider the case where a connection needs to accommodate additional constraints, besides
end-to-end delay. In order to concretize the discussion, we focus on jitter constraints, and denote by 7’

the mazimal end-to-end jitter constraint of a type ¢ connection.
As before, we assume that the scheduling policy in the network belongs to the “rate-based” class
[28]. Accordingly, when a connection i is routed over a path p with a reserved rate r < r(p), the

following upper bound 7¢(p,r) on the end-to-end jitter applies:

' P4 i
rp,) = TR S 1)
lep

Le., wi(f;) = J](f1)-



where §; < d; is a constant component that depends on the maximal transfer unit and on the link’s
speed (but not on its propagation delay).
Let 7'(p) = 7¢(p,r(p)) denote the minimal possible value of 7¢(p,r), which will be referred to as

the guaranteed jitter of p. Accordingly, a path p between s’ and #’ is said to be feasible for connection i

if Di(p) < D, r(p) > b?, and 7' (p) < 7%; as before, we can disregard the bandwidth constraint b®. Let:

o' +n(p)c’ o' +n(p)c’
T — ZlEp &’ Dt — ElEp dy

a'(p) = max( ) (22)
denote the minimal rate that satisfies both the delay and the jitter constraints of connection ¢ over path
p. The set P? of paths between source s and destination # that are feasible for a connection (of type)
i is defined as in Definition 2.1, where a!(p) is given by eq. (22). Therefore, the QoS-routing problem
faced by a user ¢ can be stated as follows.

Jitter—Delay Problem (JD):

Find a path p* € P? that achieves the minimum:

min (o' 4 n(p)c’) max( !

1
: ,— wy.
pEPi Tt ZlEp 6[ Di — ElEp dl ) Z l

lep
Proposition 4.1 Problem JD is NP-Complete.

Proof: Clearly, Problem JD is in NP. Consider an instance of the Constrained Shortest Path (CSP)
problem, which is known to be NP-Complete [9]: given a graph G(V, L), with weight a; € Z* and
length b; € ZT for each [ € L, specified vertices s, € V and a positive integer B, find a simple path in

G from s to t of minimum weight, among those with total length B or less.

We transform it into an instance of Problem JD. Set w; = a;, d; = by, 6; = 0, and consider a user i
with source s* = s, destination t! = ¢, delay constraint D! = B + 1, jitter constraint ¢ = 1, bias o = 1
and maximal packet size ¢! = 0.°

For that user, Problem JD translates into the following problem: find a (simple) path p* between s

and ¢ that minimizes

1
max(l, —————) - ) q
B+1- Elep b g

over all paths for which >, oy <B+1, e, >, b <B.

We observe that, for a path p with ZlEp by < B, we have:

1

max(l, ———————
( B+1_Elepbl

) =1,

6¢i = 0 is chosen for simplicity; the proof could be accommodated also for a small enough but positive value.



therefore

1
max(l, ———————) - zal = Zal. (23)
B+1-— Elep b len len

We now claim that, if there is a path with Zlep by < B, then the solution of Problem JD is the
solution of the above instance of Problem CSP. Indeed, suppose that pi is a solution to Problem JD.
Then, Elem d; < D* meaning that Zlem b; < B. Then, by (23), p1 minimizes Elep a; among the
paths that comply with the constraint B, therefore it is a solution to the constrained shortest-path

problem.

Since it can be checked in polynomial time whether there is a path with ZlEp by < B, the above

establishes a polynomial reduction of Problem CSP into an instance of Problem JD, hence proving that
Problem JD is NP-Complete. a

The above situation is typical of multi-constrained path optimization. These problems are, in gen-
eral, intractable, but solvable through pseudo-polynomial algorithms, based on dynamic programming
principles. A pseudo-polynomial solution for Problem JD would incur a time complexity of O(D*MH).
If users could be expected to afford such a solution, the equilibrium conditions would be the same as

(12)—(14), only that a™%* now becomes:

nd,i o +nc o +nc

a™®' = max(— -
(Tl_zlepél’Dl_ZlEpdl

). (24)

Proceeding as before, it can be shown that theorems 3.3 and 3.4 hold here too, i.e., the manager can
lead the users to the (system’s) optimal point by setting w; = J;. However, pseudo-optimal solutions are
usually prohibitively complex for connection establishment. We thus conclude that, when facing both
delay and jitter constraints, users cannot be expected to identify their optimal solutions. This means
that we cannot establish equilibrium conditions that are based on user-optimality considerations. On the
other hand, such multi-constrained path optimization problems have efficient approximation schemes,
which provide e-optimal solutions within polynomial time complexity (e.g., [13, 23] and references

therein).

In the following, we investigate the possible design of efficient pricing schemes when users employ
such e-optimal approximations. In order to concretize the discussion, we focus on approximations that
are based on scaling techniques [13]. In our context, that means that users replace the original set of
link prices {w;} with a new set {w;} of scaled values. Compared to prices {w;}, scaled prices {w;}
take values in a smaller set, thus reducing the size of the problem. To simplify the presentation, we
assume that there is a lower bound wmin on the price that can be imposed on a link (per unit of
rate). By considering the scaled prices {w;} and running an appropriate (dynamic-programming based)
algorithm, a user can identify a feasible path whose price is at most 1+ € times larger than the optimal
value. Time complexity varies among the various algorithmic versions, however it is polynomial in the

input size (N,log D?) and linear in .



The structure of the QoS-routing game is similar to the simpler case of Problem GU. Equilibrium
flow vectors f and v must satisfy the feasibility constraints FG. The equilibrium conditions are identical

o (12)—(14), where {wy, (fuv}) are replaced with {@Wyy(fuv)}-

Let J;(f) 2 J wi(fi)df; and J(f) 2 Yier Ji(f;). Following the same steps as in the analysis of
Problems GU and GM, one can prove that Proposition 3.3, and Theorems 3.3 and 3.4, hold in this case

~

too, but for link price functions {w;(f;)} and a social function J(f). In particular, this means that the
network has a unique equilibrium (?, 7), which minimizes the cost function J over FG.

The relation between w; and w; depends on the precise scaling method used by the user. A general

(and quite conservative) bound is the following:

wi(fi) < wi(fi) < wi(fi) + €Wmax (25)

where wnax is an upper-bound on the price of a link under a network flow that is fairly close to the
optimum f*; in other words, it is a bound on the price at a link under reasonable congestion conditions.

Consequently, we obtain the following result.

Theorem 4.1 For link price functions w;(f;) 2 J/(fi), 1 € L, the network has a unique equilibrium

o~

(f,7), for which the following relation holds:

J(E) < J(E) - (1 4 e2maxy, (26)

Wmin

Proof: Since wi(f;) = J/(fi) and w;(f;) = :]\l’(fl), the second inequality in (25) implies that, for any

~

feFG, J(f) < J(f) + €wmax ;e f1- However, since wy(fi) > Wmin, we have Ji(fi) > wmin fi, hence:

~ ~

J(£) < J(f) - (1 + e¥max) f € FG. In particular, the relation holds for f = f*. Since (f,7) minimizes

max
Wmin

A~ A~ ~

J(-), we have J(f) < J(f*), hence:

J(E) < J(£*) - (1 4 ¢maxy, (27)

Wmin

~

On the other hand, the first inequality in (25) implies that, for any £ € FG, J(f) < J(f), hence

~ A~ A~

J(f) < J(f), which, together with (27), complete the proof. ad
As prices can be expected to take small values, i.e., around wni,, at operating points that are in the

proximity of £*, we conclude that the ratio % is typically small. Hence, the above theorem establishes

that, by setting link price functions that are equal to the derivatives of the social cost functions, the

manager can drive the network into an efficient equilibrium.

Remark: Consider a general constrained path optimization problem, in which links are characterized

by flow-sensitive costs {¢;(f;)} and constant delays {d;}, and users attempt to identify paths of minimal

cost while obeying an end-to-end delay constraint D. That is, the user problem is to identify a path



p such that 3, ¢ is minimal while >, d; < D. Under this setting there is no direct dependence
of path costs and delays — as opposed to Problem GU where the two values depend on the rate —
making the problem NP-complete. Hence, users are expected to employ suboptimal approximations.
The analysis in this section can accommodate this general scenario, by simply dropping the dependence

on the hop count, setting w;(f;) < c¢;(f;) on all | € £, and setting the a™%? values to 1.

5 Conclusion

QoS network architectures that employ rate-based scheduling mechanisms have been widely investi-
gated, and eventually consolidated into concrete proposals, e.g., [28]. However, the efficient consumption
of rates throughout the network remained an open problem, whose successful resolution is a requisite for
the successful deployment of such architectures. In this study we established a novel solution method-

ology, based on a load-sensitive pricing mechanism.

Congestion pricing, as a network management tool, has been proposed in the past, both in the
context of best-effort communication networks (e.g., [16, 20]), as well as in the (rather similar) context
of transportation networks [6]. A novelty of the present study is to consider congestion at the rate
reservation level, and price rates accordingly. A major complication in such a framework is that the
path optimization problems faced by the users are considerably more complex than in a best-effort (or
transportation) network. Indeed, in the latter, the user’s routing scheme consists of a simple shortest-
path computation; while with QoS routing, the user’s scheme has been shown to be much more complex,
in particular when rate-based schedulers are involved [19, 23, 26]. Moreover, many QoS routing problems
are intractable, hence only sub-optimal solutions can be sought. Yet, we have shown that, in spite of

these difficulties, simple and efficient pricing schemes can be constructed.

More specifically, we considered the employment of a pricing scheme that is based on rate consump-
tion and depends on the aggregate reservation at the various links. Investigation of the users’ response
to such prices revealed the existence of a unique network equilibrium. Consequently, we established a
fundamental result: in spite of the complexity of the QoS routing schemes employed by the users, the
network manager can drive the system into social optimum, by employing a simple pricing scheme. The
corresponding incentive compatible prices are the derivatives of the social function. It is remarkable
that the solution is as simple as in the much simpler setting of a single-class transportation network [6].
Moreover, we indicated that other related problems of special interest can be accommodated as special

cases of our general setting.

Our study is also the first to consider the relation between pricing schemes and multi-constrained
path optimization. Specifically, we established the intractability of the related QoS routing problem
when both pricing optimization as well as delay and jitter requirements are considered. The implication
of this result is that, in general, users cannot identify their optimal paths, however we indicated that

e-optimal solutions can be expected. Accordingly, we established that, under certain conditions, the



manager can still drive the network to an efficient operating point. Moreover, the corresponding pricing
scheme is the same as in the standard setting, i.e. when users do identify their optimal paths. We
generalized our analysis to constrained path optimization problems that are not necessarily related to

rate-based schedulers.

An important implication of our results is that the manager does not need to know the exact
characteristics or behavior of the network users. Specifically, the manager does not need to be aware
of the specific values of the connection parameters and QoS requirements, neither it should know the
exact structure of their QoS routing schemes. Moreover, the manager can choose to neglect some of the
link properties, such as the constant delays. Indeed, the pricing solution is insensitive to all these, and

depends solely on the corresponding social function.

Some important issues remain for future investigation. One is the incorporation of such pricing
schemes in actual protocols. Another issue of practical importance is the dynamic behavior and conver-
gence properties of these schemes. In addition, we conjecture that better performance bounds can be
established for the multi-constrained (e-optimal) case. While much is yet to be learned and understood,
we believe that the findings of the present study provide encouraging support for the deployment of

incentive compatible pricing schemes in rate-based QoS network architectures.
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