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Abstract

We consider the Shannon cipher system with a variable key rate, and study the
necessary and sufficient conditions for perfect secrecy in the sense that the exponential
rate of the probability of breaking into the system would not be improved by observing
the cryptogram. For a memoryless plaintext source, we derive achievable lower bounds
on the number of key bits needed for almost every plaintext sequence in every type class.
The corresponding minimum achievable average key rate turns out to be the negative
logarithm of the probability of the most likely plaintext letter, which is in general,
smaller than the entropy.
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1 Introduction

In the classical Shannon-theoretic approach to cryptology [5], the security of cipher systems
is traditionally measured in terms of the equivocation, that is, the conditional entropy of the
plaintext (or the key) given the cryptogram. As is well known (see, e.g., [3]), this conditional
entropy can be at most as large as the rate of the purely random key stream. Thus, perfect
theoretical secrecy is attainable if and only if the key rate is at least as large as the message
rate. Other, less pessimistic, information—theoretic notions of security were also proposed.
For example, Hellman [2] proposed to measure the degree of security of a cryptosystem in
terms of the expected number of spurious messages, i.e., the expected number of plaintext-
key combinations that may explain the given cryptogram. The assumption in [2] is that
the number of meaningful messages of a given length n within the language of the source,
is very small compared to the total number of possible n-vectors. Another interesting
definition is Maurer’s conditionally—perfect security as well as his construction of a low
key-rate randomized cipher [4], which is secure (in Shannon’s sense) provided that a certain
event occurs whose probablity is high unless the cryptanalyzer performs a computationally
infeasible task.

In this correspondence, we propose to define secrecy in a large—deviations sense: A
cryptosystem will be considered secure if the presence of the cryptogram does not improve
the exponential rate of the probability of breaking into the system, namely, deciphering the
correct message without access to the key. More specifically, we consider Shannon’s model
of a secrecy system [5], where a plaintext message X = (X1,...,X,), emitted by a discrete
memoryless source P, is to be communicated as securely as possible from a transmitter to a
legitimate receiver. The transmitter and receiver have access to a common key string U of
purely random bits, whose length K = K (X) may depend on X. The transmitter generates
a cryptogram

Y = ¢(X,U)

and sends it over a public channel to the receiver. The cryptogram Y is a string (possibly,
of variable length) over an alphabet that is not necessarily the same as the source alphabet.
The encryption function is invertible given the key in the sense that there exists an inverse
decryption function

X = ¢} (Y,U)



to be used by the legitimate receiver who observes both Y and U. An enemy wiretapper,
who knows the encryption function ¢ (and hence also the decryption function ¢~!) and
the statistics of the plaintext source, but not the key itself, aims at decrypting X from the
observed cryptogram Y only.

Clearly, the probability of correctly guessing the plaintext, based only on knowing the
probability mass function P, but without the cryptogram, is given by

max P(x) = [mﬁx P(z)]" =27,

where z is a single plaintext symbol, x is a plaintext string of length n, and
A
I's = —log max P(z).
xr

The question we address is then the following: How many key bits, K(X), should be used
to encrypt every X so as to guarantee that the probability Po of correctly deciphering X
by an eavesdropper who observes Y (but not U), will continue to decay at the exponential
rate of 277's?

Our main result is that a necessary condition for this to be the case is that for almost
every sequence X in every type class T (where @ is the empirical probability mass function

of single letters associated with X), K(X) must be essentially at least as large as

nl's = D(Q[|P)]+,

where [u]4+ 2 max{u,0}. On the other hand, it is easy to show that there exists a simple
cipher system with K(X) = n[I's—D(Q||P)]+ for all X, which satisfies the above—mentioned
security requirement, namely, Po ~ 27"I's. Therefore, essentially the same condition is
sufficient as well.

An immediate consequence of this result is that the needed key rate R(X) = K(X)/n
for each X essentially never exceeds I'g, which is in turn less than or equal to the entropy
of the source Hg (with equality when all letters are equally likely). Therefore, this notion
of secrecy is less pessimistic than Shannon’s notion of equivocation.

One might argue, on the other hand, that this may be even overly optimistic, because
if the eavsdropper deciphers correctly as many as 99% of the plaintext symbols (but not
the remaining 1%), this is considered as a failure from the viewpoint of breaking into the

system. In some applications, this assumption is indeed well-justified, for example, when



X is a secret personal verification message, like a password of a computer account or a bank
account number accessed via the Internet. In other applications, a more plausible approach
would be to adopt a criterion that provides better protection even when the eavesdropper’s
estimate X is only close to the true message under some fidelity criterion p(X, X) (see, e.g.,
[6]). For example, instead of maintaining the exponential rate of Po as proposed above,
one might be interested to maintain the exponential rate of the probability of the event
p(X,X) < nD (for a given D) at the same level as in the absence of a cryptogram. We

have not pursued this direction in this work.

2 Definitions and Notation Conventions

Throughout this correspondence, scalar random variables will be denoted by capital letters
while their sample values will be denoted by the respective lower case letters. A similar
convention will apply to random vectors and their sample values, which will be denoted
by boldface letters. Thus, for example, if X denotes a random vector (X7, ..., X,), then
x = (%1, ..., 2,) would designate a specific realization of X.

The plaintext message will be assumed to be drawn from a discrete memoryless source
(DMS) with a finite alphabet X and probability mass function (PMF) P = {P(x), =z € X'}.
The probability of a vector x, will be denoted P(x), which is given by []i"; P(z;). The nth
order Cartesian power of X', that is, the space of all n-vectors over X', will be denoted by
X™. The probability of an event A C X™ will be denoted by P(A) or Pr{A}. We shall use
the letter ) to denote a generic DMS over the alphabet X, and use the same notational
conventions as for P.

For a DMS @, we recall that the Shannon entropy is given by

- > Q(z)log Q(x), (1)
zeX
where logarithms throughout the sequel are taken to the base 2. The relative entropy

between () and P is defined as

DQIP) = Y Q) log ) 2

TEX ( )
For a given source vector x € X", the empirical probability mass function (EPMF)
is the vector Qx = {Qx(a),a € X}, where Qx(a) = nx(a)/n, nx(a) being the number of

occurrences of the letter a in the vector x. The set of all EPMF’s of vectors in A", that is,



rational PMF’s with denominator n, will be denoted by Q,,. The type class Tx of a vector
x is the set of all vectors x’ € X™ such that Qx = Qx. When we need to attribute a type
class to a certain rational PMF @ € O, rather than to a sequence in X", we shall use the
notation T. It is well-known [1] that the number of type classes of n-vectors is bounded
by (n + 1)I¥I~1 where |X| denotes the cardinality of X'. The standard reference about the
method of types is the book by Csiszar and Koérner [1]. Finally, throughout the sequel, o(n)

designates a quantity that grows sub-linearly with n, i.e., o(n)/n — 0 as n — oo.

3 Main Results

For a given cipher system ¢, let P(y|x) denote the induced conditional probability of the
cryptogram y given the plaintext x. Similarly, let P(x,y) = P(x)P(y|x) denote the joint
probability mass function, and let P(x|y) and P(y) be the induced conditional probability
of x given y and the marginal of y, respectively.

Since the best estimator of x given y (in the sense of maximizing P¢) is given by
x = argmax, P(x|y),

then the probability of optimum correct decryption of X in the presence of the cryptogram

is clearly given by
Pe =7 P(y)max P(xly) = ) max P(x,y). (3)
y y

Our first result tells that for Po to decay as fast as 27"F, almost all sequences within
every type class, T, must be encrypted using essentially at least n[E — D(Q||P)]; random

bits. Perfect security then corresponds to the special case where £ =T'g.

Theorem 1 For a given E > 0, if Pc < 27" then for every type class Tq, the following

holds: For every € > 0,

To N {x: K(x) <n((E - DQIP))+ —e)}] < 200871y, (4)

Proof. First observe that for type classes {Tg} where D(Q||P) > E, the assertion of the
theorem is trivial since the set {x : K(x) < 0} is empty. Consider then an arbitrary type
class for which D(Q||P) < E, in which case, the operation [-]; is neutral. By the same
token, if e > E — D(Q||P), the assertion of the theorem is again trivial. Assume then that
0<e<E-D(Q|P).



For a given cipher system ¢, let ¢~'(y) denote the set of all x for which there exists
a key string u = (u1,...,uk(x)) such that y = ¢(x,u). Also, for a non-negative integer

s€{0,1,...,[nlog|X|]}, let
TH=ToN{x: K(x) = s}
Note that the number of distinct sets {7} is upper bounded by
M, = |Qu| - ([nlog|X[] +1) < (nlog|X| +2) - (n+ DI,
which is a polynomial in n. Now,

Pe = ZP max P(x|y)

x6¢ )
= ZPy Xerqrslax )P( TolY)

= P(y)max max P(Tply)P(x|T),y
; x| PTG PIT,)

- Yp P(TSy) - P(x|T
> P(y)max P(Tgly) - max (x|T5,y)

v o x€¢~ ! (y)NTY
1
> oY Py Y PIly) - max  PTSy)
noy Tg: P(Tgly)>0 x€p~H(y)NTg
1
= — max  P(T))P(x|TH)P(y|x)
My zy:Tg); P(XTc;)y»o xepinnry ¢ ¢
1
= — max P(T§ 27%
nzy:TS P(ET:S >0 X€¢7 WINTG o 75
5]
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— LSy Pyl > 0y D02y
1 P(T})
> ST 2@ g
- Mn;' l 73]
1
P P(TS)-27° 5

where in the second to the last inequality we have used the fact that the set {y : P(Tgly) >
0} is actually identical to the set {y = ¢(x,u) : u € {0,1}5K®) x ¢ T{)}, whose cardinality



cannot be smaller than |T¢)| since ¢ must be invertible given u. It now follows from the

hypothesis of the theorem that for every Q and s

9—nk - LP(TS) B L @ .9~ nD(Q|IP)—s (6)
- M, ¢ = M2 |Tq]
or, equivalently,
T3] < 2° My |Tq| - 27"F=P(QIPL (7)

Thus, for every non-negative z,

L=

[Ton{x: K(x)<z}| = > |1}
s=0
< 2M§-|TQ|-2 n[E— D(QHP)]. z, (8)

and the proof is completed by setting z = n[FE — D(Q||P) — €] and using the fact that
log M,, = O(logn). O

We next demonstrate a conceptually simple cipher system for which
K(x) < nll's — D(QxlIP)+

for all x, while keeping P no larger than the exponential order of 27"I's .

This cipher system works as follows: First, compress x losslessly into a binary vector of
two fields. The first field encodes the index of the type class Tx using O(logn) bits, and the
second field contains the index of x within 7% using [log |Tx|] bits. If D(Qx||P) > I'g, do not
encrypt at all, and let y be just the compressed bit string of x. Otherwise, encrypt the first!
K (x) = n[I's — D(Qx||P)] bits of the second field by applying a bit-by-bit XOR operation
with the same number of key bits. The cryptogram y is then the partially encrypted binary
codevector for x.

To see why this scheme gives the desired behavior of Pg, first observe that the contri-
bution of type classes for which D(Q||P) > I's can be neglected because their probabilities
decay faster than the target exponential rate of 27"I's. Confining then attention to the
remaining type classes, repeat the chain of equations (5) with the above described scheme

in mind, where in this case, {T}} are all empty except for s = 5(Q) 2 n[l's — D(Q||P)],

Tt is easy to see that n[['s — D(Qx||P)] never exceeds nH(Qx), which is the approximate size of the
second field.



as Té(Q) is populated by the entire type class Tp. Now, the first and the last inequalities
in (5) are always exponentially tight. Thus the only possible cause of lack of exponential
tightness in eqs. (5) might be the second to the last inequality, which is nevertheless tight

as well (according to the explanation that follows (5)) if our scheme satisfies
[y = ¢(x,u) : we {0,1}7%, x e To}| = |Tgl.

But this is clearly the case, because the left-hand side corresponds to all |Tg| possible
binary vectors in the second field.

Thus, according to (6), P is of the exponential order of

mgx 9—nD(Q|IP)—sq — mgx 9—nD(Q[|P)—n[l's=D(Q[|P)] _ 9—nl's (9)

4 Discussion

The last few lines of the proof of Theorem 1 suggest that, in fact, a somewhat more gen-
eral and more refined argument can be made: If Po decays at the exponential order of
27"F then for every type class Tq, the fraction of sequences that may be encrypted by no
more than nR random bits (assuming 0 < R < E — D(Q||P)) essentially cannot exceed
2—nlE-D(QIP)=R] " Thig actually characterizes a bound on the best achievable distribu-
tion of key length assignments within each type class. This distribution is simulatenously
achievable for the entire interesting range of R by using a modified version of the above—
described encryption algorithm, where each type class is sub—partitioned into subsets of
sizes |Tg| - 2 F~PQIP)=R] and where in each such subset n(E — D(Q||P) — R) bits are
used for encryption. However, this modification does not improve the typical behavior of
the random variable R(X) = K(X)/n since most of the sequences within each type class
still need essentially n[E — D(Q||P)] random key bits.

Another interesting variant of our problem corresponds to the case where the plaintext
source P is unknown to the encrypter (except for the fact of being memoryless), but we
would like to guarantee that Po continues to decay at the exponential rate of 27"'s for
every memoryless P, and even if the cryptanalyzer knows the statistics. It is easy to show
that the derivations above extend straightforwardly and the minimum number of key bits

needed (for most) sequences within each type class T is given by

max[Ts(P) - D(Q|IP)L
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