
Multi-Channel Post-Filtering in Non-Stationary Noise

Environments

Israel Cohen

Department of Electrical Engineering, Technion — Israel Institute of Technology,

Technion City, Haifa 32000, Israel

E-mail: icohen@ee.technion.ac.il; Tel.: +972 4 8294731; Fax: +972 4 8323041.

Abstract

In this paper, we present a multi-channel post-filtering approach for minimizing the log-spectral ampli-

tude distortion in non-stationary noise environments. The beamformer is realistically assumed to have a

steering error, a blocking matrix that is unable to block all of the desired signal components, and a noise

canceller that is adapted to the pseudo-stationary noise, but not modified during transient interferences. A

mild assumption is made, that a desired signal component is stronger at the beamformer output than at any

reference noise signal, and a noise component is strongest at one of the reference signals. The ratio between

the transient power at the beamformer output and the transient power at the reference noise signals is used

for indicating whether such a transient is desired or interfering. Based on a Gaussian statistical model and

combined with an appropriate spectral enhancement technique, we derive estimators for the signal presence

probability, the noise power spectral density, and the clean signal. The proposed method is tested in various

non-stationary noise environments. Compared to single-channel post-filtering, a significantly reduced level

of non-stationary noise is achieved without further distorting the desired signal components.
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I. Introduction

M
ULTI channel systems are often used for high quality hands-free communication in rever-

berant and noisy environments [1]. Compared to single channel systems, a substantial gain

in performance is obtainable due to the spatial filtering capability to suppress interfering signals

coming from undesired directions. However, in cases of spatially incoherent noise fields, beamform-

ing alone does not provide sufficient noise reduction, and post-filtering is normally required [2],

[3].

Multi-channel post-filtering, generalized to an arbitrary number of sensors, was first introduced

by Zelinski [4], [5]. Accordingly, the output of a delay-and-sum beamformer is post-filtered using

an adaptive Wiener filtering in the time domain, based on the auto and cross spectral densities

of the sensor signals. However, Zelinski’s approach overestimates the noise power density, and

therefore is not optimal in the Wiener sense [6]. A modified post-filtering version was suggested by

Simmer and Wasiljeff, which employs the power spectral density of the beamformer output, rather

than the average of the power spectral densities of individual sensor signals [6]. The underlying

assumption is that noise components at different sensors are mutually uncorrelated. Unfortunately,

in a diffuse noise field, where the low-frequency noise components are coherent, the noise reduction

performance severely deteriorates.

To overcome this problem, Fischer et al. [7], [8], [9] proposed a noise reduction system, which

is based on the generalized sidelobe canceller (GSC). The GSC reasonably suppresses the coherent

noise components, while a Wiener filter in the look direction is designed to suppress the spatially

incoherent noise components. Bitzer et al. analyzed the performance of the GSC and adaptive

post-filtering techniques in various noise fields [10], [11]. They showed that in a diffuse noise field,

neither the GSC nor the adaptive post-filtering performs well at low frequencies. Therefore, at the

output of a GSC with standard Wiener post-filtering they used a second post-filter to reduce the

spatially correlated noise components [12], [13]. Le Bouquin-Jeannès et al. suggested to modify

the cross power spectrum estimation and the Wiener post-filtering to take the presence of some

correlated noise components into account [14]. The cross power spectrum of the noise signals is

averaged during pauses in the desired signal. Subsequently, it is subtracted from the cross power
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spectrum of the sensor signals, calculated during signal presence. Meyer and Simmer [15] proposed

to combine a delay-and-sum beamformer with Wiener filtering and spectral subtraction. The

Wiener filtering is applied in the high-frequency band for the suppression of low-coherence noise

components, while the spectral subtraction is used in the low-frequency band for high-coherence

noise reduction. Mamhoudi [16] and Mamhoudi and Drygajlo [17] considered a nonlinear coherence

filtering in the wavelet domain to improve the performance of the Wiener post-filtering. Instead of

the conventional coherence between the individual sensor signals, they used the coherence between

the output and the input of the beamformer sensor signals, which is assumed to be low even for

correlated noise components. Fischer and Kameyer [18] suggested to apply Wiener filtering to the

output of a broadband beamformer, that is built up by several harmonically nested subarrays.

They showed that the resulting noise reduction system performance is nearly independent of the

correlation properties of the noise field. This structure has been further analyzed by Marro et

al. [2]. McCowan et al. used a near-field super-directive beamforming and investigated the effect

of a Wiener post-filter on speech recognition performance [19]. They showed that in the case of

nearfield sources and diffuse noise conditions, improved recognition performance can be achieved

compared to conventional adaptive beamformers. A theoretical analysis of Wiener multi-channel

post-filtering is presented in [3].

A major drawback of existing multi-channel post-filtering techniques is that highly non-stationary

noise components are not dealt with. The time variation of the interfering signals is assumed to

be sufficiently slow, such that the post-filter can track and adapt to the changes in the noise

statistics. Unfortunately, transient interferences are often much too brief and abrupt for the above

post-filtering methods. Furthermore, Wiener filtering minimizes the mean-square error (MSE)

distortion of the signal estimate, which is essentially not the optimal criterion for enhancing noisy

speech. A more appropriate distortion measure for speech enhancement systems is based on the

MSE of the spectral, or log-spectral, amplitude [20], [21].

In this paper, we present a multi-channel post-filtering approach for minimizing the log-spectral

amplitude distortion in non-stationary noise environments. Presumably, a desired signal component

is stronger at the beamformer output than at any reference noise signal, and a noise component is

strongest at one of the reference signals. Hence, the ratio between the transient power at beam-
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former output and the transient power at the reference signals indicates whether such a transient

is desired or interfering. Based on a Gaussian statistical model [20], and an appropriate decision-

directed a priori SNR estimate [22], we derive an estimator for the signal presence probability.

This estimator controls the rate of recursive averaging for obtaining a noise spectrum estimate by

the Minima Controlled Recursive Averaging (MCRA) approach [22], [23]. Subsequently, spectral

enhancement of the beamformer output is achieved by applying an optimal gain function, which

minimizes the MSE of the log-spectra. The performance of the proposed post-filtering approach

is evaluated under non-stationary noise conditions using objective quality measures, a subjective

study of speech spectrograms and informal listening tests. We show that single-channel post-

filtering is inefficient at attenuating highly non-stationary noise components, since it lacks the

ability to differentiate such components from the desired source components. By contrast, the

proposed multi-channel post-filtering approach achieves a significantly reduced level of background

noise, whether stationary or not, without further distorting the signal components.

The paper is organized as follows. In Section II, we review the linearly constrained adaptive

beamformer, and derive relations in the power-spectral domain between the beamformer output,

the reference noise signals, the desired source signal, and the input transient interferences. In

Section III, the problem of signal detection in the time-frequency plane is addressed. Signal com-

ponents are discriminated from transient noise components based on the transient power ratio

between the beamformer output and the reference signals. In Section IV, we introduce an estima-

tor for the time-varying spectrum of the beamformer output noise, and describe the multi-channel

post-filtering approach. Finally, in Section V, we evaluate the proposed method, and present ex-

perimental results, which validate its effectiveness.

II. Linearly Constrained Adaptive Beamforming

Let x(t) denote a desired source signal, and let signal vectors ds(t) and dt(t) denote multi-channel

uncorrelated interfering signals at the output of M sensors. The vector ds(t) represents pseudo-

stationary interferences, and dt(t) represents undesired transient components. The observed signal

at the i-th sensor is given by

zi(t) = ai(t) ∗ x(t) + dis(t) + dit(t) , i = 1, . . . , M (1)
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where ai(t) is the transfer function from the desired source to the i-th sensor, ∗ denotes convolution,

and dis and dit are the interference signals corresponding to the i-th sensor. The observed signals

are divided in time into overlapping frames by the application of a window function and analyzed

using the short-time Fourier transform (STFT). Assuming time-invariant transfer functions [24],

we have in the time-frequency domain

Z(k, `) = A(k)X(k, `) + Ds(k, `) + Dt(k, `) (2)

where k represents the frequency bin index, ` the frame index, and

Z(k, `)
4
= [Z1(k, `) Z2(k, `) · · · ZM (k, `) ]T

A(k)
4
= [A1(k) A2(k) · · · AM (k) ]T

Ds(k, `)
4
= [D1s(k, `) D2s(k, `) · · · DMs(k, `) ]T

Dt(k, `)
4
= [D1t(k, `) D2t(k, `) · · · DMt(k, `) ]T .

We note that in [24], transient interferences are not dealt with; The interfering signals are assumed

to be stationary, and signal enhancement is based on the non-stationarity of the desired source

signal. In our case, we have to include a mechanism that discriminates interfering transients from

desired signal components.

Fig. 1 shows a generalized sidelobe canceller structure for a linearly constrained adaptive beam-

former [25], [26], which is also utilizable in the case of arbitrary transfer functions [24]. The

beamformer comprises three parts: 1) A fixed beamformer W, proportional to the transfer func-

tion ratios A−1
1 A; 2) A blocking matrix B, which takes into account the assumed propagation path

and constructs the reference noise signals {Ui : 2 ≤ i ≤ M}; 3) A multi-channel adaptive noise

canceller {Hi : 2 ≤ i ≤ M}, which eliminates the stationary noise that leaks through the sidelobes

of the fixed beamformer. We assume that the noise canceller is adapted only to the stationary

noise. It is not modified during transient interferences, which are characterized by brief and abrupt

variations. Furthermore, we assume that the source is distributed and that steering error might

occur. Accordingly, some desired signal components may pass through the blocking matrix.

The reference noise signals U(k, `) = [ U2(k, `) U3(k, `) · · · UM (k, `) ]T are generated by ap-
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plying the blocking matrix to the observed signal vector:

U(k, `) = BH(k)Z(k, `)

= BH(k) [A(k)X(k, `) + Ds(k, `) + Dt(k, `)] . (3)

The reference signals are emphasized by the adaptive noise canceller and subtracted from the output

of the fixed beamformer, yielding

Y (k, `) =
[

WH(k) − HH(k, `)BH(k)
]

Z(k, `) , (4)

where H(k, `) = [H2(k, `) H3(k, `) · · · HM (k, `) ]T . The optimal solution for the filters H(k, `)

is obtained by minimizing the output power of the stationary noise [27]. Let ΦDsDs
(k, `) =

E
{

Ds(k, `)DH
s (k, `)

}

denote the power-spectral density (PSD) matrix of the input stationary noise.

Then, the power of the stationary noise at the beamformer output is minimized by solving the un-

constrained optimization problem:

min
H

{

[W(k) − B(k)H(k, `)]H ΦDsDs
(k, `) [W(k) − B(k)H(k, `)]

}

. (5)

The multi-channel Wiener solution is given by [28]

H(k, `) =
[

BH(k)ΦDsDs
(k, `)B(k)

]−1
BH(k)ΦDsDs

(k, `)W(k) . (6)

If we assume that the stationary, as well as transient, noise fields are homogeneous, then the PSD-

matrices of the input noise signals are related to the corresponding spatial coherence matrices,

Γs(k, `) and Γt(k, `), by

ΦDsDs
(k, `) = λs(k, `)Γs(k, `)

ΦDtDt
(k, `) = λt(k, `)Γt(k, `)

where λs(k, `) and λt(k, `) represent the input noise power at a single sensor. The input PSD-matrix

is therefore given by

ΦZZ(k, `) = λx(k, `)A(k)AH(k) + λs(k, `)Γs(k, `) + λt(k, `)Γt(k, `) (7)
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where λx(k, `)
4
= E

{

|X(k, `)|2
}

is the PSD of the desired source signal. Using (3) and (4), the

PSD-matrix of the reference signals and the PSD of the beamformer output are obtained by

ΦUU(k, `) = BH(k)ΦZZ(k, `)B(k) (8)

φY Y (k, `) = [W(k) − B(k)H(k, `)]H ΦZZ(k, `) [W(k) − B(k)H(k, `)] . (9)

Substituting (7) into (8) and (9), we have the following linear relation between the PSD’s of the

beamformer output, the reference signals, the desired source signal, and the input interferences:













φY Y (k, `)
φU2U2

(k, `)
...

φUMUM
(k, `)













=







C11(k, `) C12(k, `) C13(k, `)
...

...
...

CM1(k, `) CM2(k, `) CM3(k, `)













λx(k, `)
λs(k, `)
λt(k, `)






(10)

where

[ C11 C12 C13 ] = [W − BH]H
[

AAH Γs Γt

]

(I3 ⊗ [W − BH]) (11)

[ C21 · · · CM1 ] = diag
{

BHAAHB
}

(12)

[ C22 · · · CM2 ] = diag
{

BHΓsB
}

(13)

[ C23 · · · CM3 ] = diag
{

BHΓtB
}

, (14)

I3 is a 3-by-3 identity matrix, ⊗ denotes Kronecker product, and diag{·} represents a row vector

constructed from the diagonal of a square matrix.

III. Detection of Source Signals in Non-Stationary Noise

Generally, the beamformer output comprises three components. Substituting (2) into (4), we have

a non-stationary desired source component, a pseudo-stationary noise component, and a transient

interference. Our objective is to detect the desired signal components at the beamformer output,

and to differentiate them from the transient interference components.

We assume that the beamformer output and reference noise signals are obtained by adaptively

aiming the beamformer at the desired source. Presumably, a desired signal component is stronger

at the beamformer output than at any reference noise signal, and a noise component is stronger at

one of the reference signals than at the beamformer output. Hence the transient beam-to-reference
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ratio (TBRR), defined by the ratio between the transient power at beamformer output and the

transient power at the reference signals, indicates whether such a transient is desired or interfering.

First, we detect transients at the beamformer output. Then, if there are no simultaneous tran-

sients at the reference signals, we determine that these transients are likely source components.

In that case, a cautious enhancement would be involved. On the other hand, if a simultaneous

transient at one of the reference signals is detected, then the TBRR would determine the extent to

which such a transient is suppressed or preserved.

A. Detection of transients at the beamformer output

Let S be a smoothing operator in the power spectral domain, and let M denote a single-channel

estimator for the PSD of the background pseudo-stationary noise. For example, a causal S may be

defined by recursively averaging past spectral power values of the noisy measurement:

SY (k, `) = αs · SY (k, ` − 1) + (1 − αs)
w
∑

i=−w

bi|Y (k − i, `)|2 (15)

where αs (0 ≤ αs ≤ 1) is a forgetting factor for the smoothing in time, and b is a normalized

window function (
∑w

i=−w bi = 1) that determines the order of smoothing in frequency. A useful

estimator M, particularly under low SNR and non-stationary noise conditions, can be obtained by

the Minima Controlled Recursive Averaging approach [22], [23].

For a given signal, we define its local non-stationarity (LNS) by the local ratio between the total

and pseudo-stationary spectral power:

Λ (Y (k, `)) =
SY (k, `)

MY (k, `)
. (16)

The LNS is a statistic of Y , fluctuating about one in the absence of transients, and expectedly well

above one in the neighborhood of time-frequency bins that contain transients.

Let three hypotheses H0s, H0t, and H1 indicate respectively absence of transients, presence of an

interfering transient, and presence of a source transient at the beamformer output. Let Λ0 denote

a threshold value of the LNS for the detection of transients at the beamformer output (i.e., accept

H1 ∪H0t if Λ(Y ) > Λ0, and accept H0s otherwise). Then, the false alarm probability is defined by

Pf,Y = P (Λ(Y ) > Λ0 | H0s)
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= P (SY (k, `) > Λ0 · MY (k, `) | H0s) . (17)

Since SY (k, `) is approximately chi-square distributed with µ degrees of freedom (Appendix A),

FSY (k,`)(x) ≈ Fχ2;µ

(

µ x

φY Y (k, `)

)

,

and since MY (k, `) approximates the PSD of Y when H0s is true, we have

Pf,Y ≈ 1 − Fχ2;µ

(

µ Λ0 · MY (k, `)

φY Y (k, `)

)∣

∣

∣

∣

H0s

≈ 1 − Fχ2;µ (µ Λ0) . (18)

From this equation, the required threshold value for a specified Pf,Y is

Λ0 =
1

µ
F−1

χ2;µ (1 − Pf,Y ) . (19)

The probability of detection is given by

Pd,Y = P (Λ(Y ) > Λ0 | H1 ∪ H0t)

= P (SY (k, `) > Λ0 · MY (k, `) | H1 ∪ H0t)

≈ 1 − Fχ2;µ

(

µ Λ0 · MY (k, `)

φY Y (k, `)

)∣

∣

∣

∣

H1∪H0t

. (20)

Using Eq. (10) and the approximation MY ≈ φY Y |H0s
yields

Pd,Y ≈ 1 − Fχ2;µ

(

µ Λ0 C12λs

C11λx + C12λs + C13λt

)

. (21)

Substituting (19) into (21) we obtain that for a specified false alarm probability, the detection

probability is

Pd,Y = 1 − Fχ2;µ

[

1

1 + ξY
F−1

χ2;µ (1 − Pf,Y )

]

(22)

where

ξY
4
=

C11λx + C13λt

C12λs
(23)

represents the ratio between the transient and pseudo-stationary power at the beamformer output.

Fig. 2 shows the receiver operating characteristic (ROC) curve for detection of transients at the

beamformer output, with the false alarm probability as parameter, and µ set to 32.2 (this value of µ

is obtained for a smoothing S of the form (15), with αs = 0.9, and b = [ 0.25 0.5 0.25 ]). Suppose
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that we require a false alarm probability no larger than Pf,Y = 10−2, and suppose that transients

at the beamformer output are defined by ξY ≥ 2. Then, the detection probability obtained using

a detector Λ(Y ) > Λ0 = 1.67 is Pd,Y = 0.98.

B. Detection of transients at the reference noise signals

Given that a transient was detected at the beamformer output, its modification rule depends on

the presence of a simultaneous transient at one of the reference signals. Let

Λ(U(k, `)) = max
2≤i≤M

{

SUi(k, `)

MUi(k, `)

}

(24)

denote the LNS of the reference signals, and let Λ1 be a corresponding threshold value for detecting

transients. Then the false alarm probability is defined by

Pf,U = P (Λ(U(k, `)) > Λ1 | H0s)

= P

(

max
2≤i≤M

{

SUi(k, `)

MUi(k, `)

}

> Λ1 | H0s

)

. (25)

Assuming that
{

SUi(k,`)
MUi(k,`)

}M

i=2
are statistically independent, we have

Pf,U = 1 −
M
∏

i=2

P

(

SUi(k, `)

MUi(k, `)
≤ Λ1 | H0s

)

≈ 1 −
M
∏

i=2

Fχ2;µ

(

µ Λ1 · MUi(k, `)

φUiUi
(k, `)

)∣

∣

∣

∣

H0s

≈ 1 − FM−1
χ2;µ (µ Λ1) (26)

where the last approximation was obtained by using MUi ≈ φUiUi
|H0s

. Thus, for a specified false

alarm probability, Pf,U, the threshold value is

Λ1 =
1

µ
F−1

χ2;µ

[

(1 − Pf,U)
1

M−1

]

. (27)

The detection probability of a transient at one of the reference signals is given by

Pd,U = P (Λ(U(k, `)) > Λ1 | H1 ∪ H0t)
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= 1 −
M
∏

i=2

P

(

SUi(k, `)

MUi(k, `)
≤ Λ1 | H1 ∪ H0t

)

≈ 1 −
M
∏

i=2

Fχ2;µ

(

µ Λ1 · Ci2λs

Ci1λx + Ci2λs + Ci3λt

)

. (28)

Substituting (27) into (28), and denoting by ξUi
= Ci1λx+Ci3λt

Ci2λs
the ratio of transient to pseudo-

stationary power at the i-th reference signal, we have

Pd,U ≈ 1 −
M
∏

i=2

Fχ2;µ

(

1

1 + ξUi

F−1
χ2;µ

[

(1 − Pf,U)
1

M−1

]

)

≥ 1 − (1 − Pf,U)
M−2

M−1 · Fχ2;µ

(

1

1 + ξU
F−1

χ2;µ

[

(1 − Pf,U)
1

M−1

]

)

(29)

where ξU
4
= max {ξUi

| 2 ≤ i ≤ M}. Equality in (29) is derived when all ξUi,t but one are identically

zero. Fig. 3 shows the receiver operating characteristic (ROC) curve for detection of transients at

the reference noise signals, with the false alarm probability as parameter. Four sensors are used,

and µ is set to 32.2. Suppose that we require a false alarm probability no larger than Pf,U = 10−2,

and suppose that transients at the reference outputs are defined by ξU ≥ 2. Then, the detection

probability obtained using a detector Λ(U) > Λ1 = 1.81 is Pd,U = 0.96.

C. The transient beam-to-reference ratio

The TBRR is a useful statistic to determine the origin of a transient, once detected simultaneously

at the beamformer output and at one of the reference noise signals [29]. Since the operator S gives

a measure of local spectral power, and M estimates the background pseudo-stationary power, then

their difference yields a measure of the local transient power1. We define the TBRR by

Ω(Y,U) =
SY −MY

max
2≤i≤M

{SUi −MUi}
. (30)

Transient signal components are relatively strong at the beamformer output, whereas transient

noise components are relatively strong at one of the reference signals. Hence, we expect Ω(Y,U)

to be large for signal transients, and small for noise transients. Let Ω0 denote a threshold value of

1Recall that transient components are assumed to be uncorrelated with pseudo-stationary noise components
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the TBRR for the decision between signal and noise (i.e., accept H1 only if Ω(Y,U) > Ω0). The

conditional false alarm probability is defined by the probability of accepting H1 in the absence of

a source signal, given that a transient was simultaneously detected at the beamformer output and

at one of the reference signals:

Pf,Ω = P {Ω(Y,U) > Ω0 | (H0s ∪ H0t) ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)} . (31)

Assuming that during absence of transients (H0s), simultaneous transients at the beamformer

output and at the reference signals are improbable (i.e., the threshold Λ0 and Λ1 are chosen such

that P {H0s ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)} is negligible), and assuming that transient beam-to-

reference ratios for individual reference signals ( SY −MY
SUi−MUi

) are statistically independent, we have

Pf,Ω ≈ P {Ω(Y,U) > Ω0 | H0t ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)}

≈
M
∏

i=2

P

{

SY −MY

SUi −MUi
> Ω0 | H0t ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)

}

≈
M
∏

i=2

P







C12

(

λ̂s − λs

)

+ C13λ̂t

Ci2

(

λ̂s − λs

)

+ Ci3λ̂t

> Ω0 | H0t ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)







, (32)

where we used Eq. (10) and the fact that S is an estimator for the PSD:













SY (k, `)
SU2(k, `)

...
SUM (k, `)













=







C11(k, `) C12(k, `) C13(k, `)
...

...
...

CM1(k, `) CM2(k, `) CM3(k, `)













λ̂x(k, `)

λ̂s(k, `)

λ̂t(k, `)






. (33)

Given that H0t is true, detection of a transient at the beamformer output implies C12λ̂s + C13λ̂t >

Λ0C12λs. Detection of a transient at one of the reference signals implies that there exists i ∈ [2, M ]

such that Ci2λ̂s +Ci3λ̂t > Λ1Ci2λs. Furthermore, since we assume that the pseudo-stationary noise

at the beamformer output is weak compared to that associated with any reference noise signal

(C12/C13 ≤ Ci2/Ci3 for all i ∈ [2, M ]), then with probability one there exists i ∈ [2, M ] such that

C12

(

λ̂s − λs

)

+ C13λ̂t

Ci2

(

λ̂s − λs

)

+ Ci3λ̂t

≤
C13

Ci3
. (34)
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Accordingly, by choosing

Ω0 ≥
C13

min
2≤i≤M

{Ci3}
(35)

we have that Pf,Ω = 0 with probability one.

The conditional detection probability is defined by the probability of accepting H1 in the presence

of a desired signal, given that a transient was simultaneously detected at the beamformer output

and at one of the reference signals:

Pd,Ω = P {Ω(Y,U) > Ω0 | H1 ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)} . (36)

Assuming that desired and interfering transients do not overlap in the time-frequency domain, we

have

Pd,Ω ≈
M
∏

i=2

P

{

SY −MY

SUi −MUi
> Ω0 | H1 ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)

}

≈
M
∏

i=2

P







C11λ̂x + C12

(

λ̂s − λs

)

Ci1λ̂x + Ci2

(

λ̂s − λs

) > Ω0 | H1 ∩ (Λ(Y ) > Λ0) ∩ (Λ(U) > Λ1)







. (37)

Since there is no correlation between the desired signal, transient noise, and pseudo-stationary

noise components, the distributions of λ̂x and λ̂s are the same as the distribution of SY (chi-square

with µ degrees of freedom). Accordingly, E
{

λ̂x

}

= λx, V ar
{

λ̂x

}

= 2
µλ2

x, E
{

λ̂s

}

= λs, and

V ar
{

λ̂s

}

= 2
µλ2

s. For µ � 1, the transient power at the beamformer output is relative to C11λ̂x,

and at a reference signal is relative to Ci1λ̂x. Therefore, to retain a high detection probability, Pd,Ω,

we require

Ω0 ≤ min
2≤i≤M

{

C11

Ci1

}

=
C11

max
2≤i≤M

{Ci1}
. (38)

Let

Q
4
=

C11

C13
·

min
2≤i≤M

{Ci3}

max
2≤i≤M

{Ci1}
(39)

define a transient discrimination quality (TDQ) of a beamformer. Then from Eqs. (35) and (38) it

follows that discrimination between transient noise and desired signal components is possible when

Q ≥ 1 (in practice, we obtained good performance, Pf,Ω → 0, Pd,Ω → 1, for Q ≥ 3).
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Fig. 4 summarizes a block diagram for the detection of desired source components at the beam-

former output. The detection is carried out in the time-frequency plane for each frame and frequency

bin. Case 1 is reached when no transients have been detected at the beamformer output, or when

the TBRR is lower than the threshold Ω0. In this case, presumably no desirable transients are

present at the beamformer output, and consequently strong noise suppression is applicable. Con-

sidering Case 2, a transient has been detected at the beamformer output, but not at any reference

signal. This case indicates that the transient is likely a desirable source component, and a cautious

noise suppression would therefore be involved. Finally, Case 3 is determined when transients are

simultaneously detected at the beamformer output and at a reference signal, and conjunctionally

the value of the TBRR is above Ω0. In this case, the larger the TBRR is, the higher the likelihood

that a transient comes from a desired source.

IV. Multi-Channel Post-Filtering

In this section, we address the problem of estimating the time-varying spectrum of the beam-

former output noise, and present the multi-channel post-filtering approach. Fig. 5 describes the

block diagram of the proposed multi-channel post-filtering. Desired source components are detected

at the beamformer output, and an estimate q̂(k, `) for the a priori signal absence probability is

produced. Based on a Gaussian statistical model [20], and a decision-directed estimator for the a

priori SNR under signal presence uncertainty [22], we derive an estimator p(k, `)
4
= P (H1 | Y,U)

for the signal presence probability. This estimator controls the components that are introduced as

noise into the PSD estimator. Finally, spectral enhancement of the beamformer output is achieved

by applying an optimally-modified log-spectral amplitude (OM-LSA) gain function [22]. This gain

minimizes the mean-square error of the log-spectra under signal presence uncertainty.

Referring to Fig. 4, Cases 1 and 2 imply presumable signal absence and presence, respectively.

Therefore, we set q̂(k, `) to 1 in Case 1, and to 0 in Case 2. However, when transients are simulta-

neously detected in both the beamformer output and one of the reference signals, and the TBRR

is larger than Ω0 (Case 3), then the value of the a priori signal absence probability is determined
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according to

q̂(k, `) =











1, if γs(k, `) ≤ 1
0, if γs(k, `) > γ0 and Ω(Y,U) ≥ 3 Ω0

max
{

γ0−γs(k,`)
γ0−1 , 3 Ω0−Ω(Y,U)

2 Ω0

}

, otherwise,
(40)

where γs(k, `)
4
= |Y (k, `)|2/MY (k, `) represents the a posteriori SNR at the beamformer output

with respect to the pseudo-stationary noise, and γ0 denotes a constant satisfying

P (γs(k, `) ≥ γ0 | H0s) < ε (41)

for a certain significance level ε. Eq. (40) suggests that the likelihood of signal presence increases

with the values of γs and Ω(Y,U). Indeed, from (41) we have that when the a posteriori SNR is

larger than γ0, either H1 or H0t is true (H0s is very unlikely). On the other hand, Ω(Y,U) dis-

criminates between desired source components (H1) and noise transients (H0t). Therefore, Eq. (40)

is obtained by combining conditions on γs and Ω(Y,U), and assuming smooth bilinear transition

from signal absence to presence in the regions γs ∈ [E{γs|H0s}, γ0] and Ω(Y,U) ∈ [Ω0, 3 Ω0].

Under the assumed statistical model, the distribution of γs(k, `), in the absence of transients, is

exponential [23]:

f (γs(k, `) | H0s) = e−γs(k,`)u(γs(k, `)) (42)

where u(·) is the unit step function (i.e., u(γ) = 1 for γ ≥ 0 and u(γ) = 0 otherwise). Accordingly,

γ0 = − log(ε) (typically, we use ε = 0.01, so γ0 = 4.6). Furthermore, the signal presence probability

is given by

p(k, `) =

{

1 +
q(k, `)

1 − q(k, `)
(1 + ξ(k, `)) exp(−υ(k, `))

}−1

(43)

where ξ(k, `)
4
= E

{

|X(k, `)|2
}

/λd(k, `) is the a priori SNR, λd(k, `) is the noise PSD at the beam-

former output, υ(k, `)
4
= γ(k, `) ξ(k, `)/(1 + ξ(k, `)), and γ(k, `)

4
= |Y (k, `)|2 /λd(k, `) is the a poste-

riori SNR. The a priori SNR is estimated by [22]

ξ̂(k, `) = αG2
H1

(k, ` − 1)γ(k, ` − 1) + (1 − α) max {γ(k, `) − 1, 0} (44)

where α is a weighting factor that controls the trade-off between noise reduction and signal distor-
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tion, and

GH1
(k, `)

4
=

ξ(k, `)

1 + ξ(k, `)
exp

(

1

2

∫ ∞

υ(k,`)

e−t

t
dt

)

(45)

is the spectral gain function of the Log-Spectral Amplitude (LSA) estimator when signal is surely

present2 [21]. The MCRA approach for noise spectrum estimation [23] is to recursively average past

spectral power values of the noisy measurement, using a smoothing parameter that is controlled by

the minima values of a smoothed periodogram. The recursive averaging is given by

λ̂d(k, ` + 1) = α̃d(k, `)λ̂d(k, `) + β · [1 − α̃d(k, `)]|Y (k, `)|2 (46)

where α̃d(k, `) is a time-varying frequency-dependent smoothing parameter, and β is a factor that

compensates the bias when signal is absent. The smoothing parameter is determined by the signal

presence probability, p(k, `), and a constant αd (0 < αd < 1) that represents its minimal value:

α̃d(k, `)
4
= αd + (1 − αd) p(k, `) . (47)

When signal is present, α̃d is close to one, thus preventing the noise estimate from increasing

as a result of signal components. As the probability of signal presence decreases, the smoothing

parameter gets smaller, facilitating a faster update of the noise estimate.

The estimate of the clean signal STFT is finally given by

X̂(k, `) = G(k, `)Y (k, `) , (48)

where

G(k, `) = {GH1
(k, `)}p(k,`) · G

1−p(k,`)
min (49)

is the OM-LSA gain function and Gmin denotes a lower bound constraint for the gain when signal is

absent. The implementation of the multi-channel post-filtering algorithm is summarized in Fig. 6.

Typical values of the respective parameters, for a sampling rate of 8 kHz, are given in Table I.

V. Experimental Results

To validate the usefulness of the proposed post-filtering approach under non-stationary noise

conditions, we compare its performance to a single-channel post-filtering in various car environ-

ments. Specifically, multi-channel speech signals are degraded by interfering speakers and various

2The advantage of ξ̂(k, `) over the “decision-directed” estimator of Ephraim and Malah [20], particularly for weak
signal components and low input SNR, is discussed in [22].
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car noise types. Then, beamforming is applied to the noisy signals, followed by either single-channel

or multi-channel post-filtering. The performance evaluation includes objective quality measures, as

well as a subjective study of speech spectrograms and informal listening tests.

A linear array, consisting of four microphones with 5 cm spacing, is mounted in a car on the

visor. Clean speech signals are recorded at a sampling rate of 8 kHz in the absence of background

noise (standing car, silent environment). An interfering speaker and car noise signals are recorded

while the car speed is about 60 km/h, and windows are either closed, or the window next to the

driver is slightly open (about 5 cm). The input microphone signals are generated by mixing the

speech and noise signals at various SNR levels in the range [−5, 10] dB.

An adaptive beamformer (specifically, the TF-GSC, proposed by Gannot at al. [24]) is applied to

the noisy multi-channel signals. The beamformer output is enhanced using the OM-LSA estimator

[22], and is referred to as the single-channel post-filtering output. Alternatively, the beamformer

output, enhanced using the procedure described in the previous section, is referred to as the multi-

channel post-filtering output. Three different objective quality measures are used in our evaluation.

The first is segmental SNR defined by [30]

SegSNR =
1

L

L−1
∑

`=0

10 · log

∑N−1
n=0 x2(n + `N/2)

∑N−1
n=0 [x(n + `N/2) − x̂(n + `N/2)]2

[dB] (50)

where L represents the number of frames in the signal, and N = 256 is the number of samples

per frame (corresponding to 32 ms frames, and 50% overlap). The segmental SNR at each frame

is limited to perceptually meaningful range between 35 dB and −10 dB [31], [32]. This measure

takes into account both residual noise and speech distortion. The second quality measure is noise

reduction (NR), which is defined by

NR =
1

|L′|

∑

`∈L′

10 · log

∑N−1
n=0 z2

1(n + `N/2)
∑N−1

n=0 x̂2(n + `N/2)
[dB] (51)

where L′ represents the set of frames that contain only noise, and |L′| its cardinality. The NR

measure compares the noise level in the enhanced signal to the noise level recorded by the first
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microphone. The third quality measure is log-spectral distance (LSD), which is defined by

LSD =
1

L

L−1
∑

`=0







1

N/2 + 1

N/2
∑

k=0

[

10 · logAX(k, `) − 10 · logAX̂(k, `)
]2







1

2

[dB] (52)

where AX(k, `)
4
= max

{

|X(k, `)|2 , δ
}

is the spectral power, clipped such that the log-spectrum

dynamic range is confined to about 50 dB (that is, δ = 10−50/10 · max
k,`

{

|X(k, `)|2
}

).

Fig. 7 shows experimental results of the average segmental SNR, obtained for various noise

types and at various noise levels. The segmental SNR is evaluated at the first microphone, the

beamformer output, and the post-filtering outputs. A theoretical limit post-filtering, achievable

by calculating the noise spectrum from the noise itself, is also considered. Results of the NR and

LSD measures are presented in Figs. 8 and 9, respectively. It can be readily seen that beamforming

alone does not provide sufficient noise reduction in a car environment, owing to its limited ability

to reduce diffuse noise [24]. Furthermore, multi-channel post-filtering is consistently better than

single-channel post-filtering under all noise conditions. The improvement in performance of the

former over the latter is expectedly high in non-stationary noise environments (specifically, open

windows or interfering speaker), but is insignificant otherwise, since multi-channel post-filtering

reduces to single-channel in pseudo-stationary noise environments.

A subjective comparison between multi-channel and single-channel post-filtering was conducted

using speech spectrograms and validated by informal listening tests. Typical examples of speech

spectrograms are presented in Fig. 10 for the case of non-stationary noise (interfering speaker,

open window) at SNR = −0.9 dB. The beamformer output (Fig. 10(c)) is clearly characterized

by a high level of noise. Its enhancement using single-channel post-filtering well suppresses the

pseudo-stationary noise, but adversely retains the transient noise components. By contrast, the en-

hancement using multi-channel post-filtering results in superior noise attenuation, while preserving

the desired source components.

Fig. 11 shows traces of the improvement in segmental SNR and LSD measures, gained by the

multi-channel post-filtering and theoretical limit, in comparison with a single-channel post-filtering.

The traces are averaged out over a period of about 400 ms (25 frames of 32 ms each, with 50% over-
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lap). The noise PSD at the beamformer output varies substantially due to the residual interfering

components of speech, wind blows, and passing cars. The improvement in performance over the

single-channel post-filtering is obtained when the noise spectrum fluctuates. In some instances the

increase in segmental SNR surpasses as much as 8 dB, and the decrease in LSD is greater than 6 dB.

Clearly, a single-channel post-filter is inefficient at attenuating highly non-stationary noise compo-

nents, since it lacks the ability to differentiate such components from the speech components. On

the other hand, the proposed multi-channel post-filtering approach achieves a significantly reduced

level of background noise, whether stationary or not, without further distorting speech components.

This is verified by subjective informal listening tests.

VI. Conclusion

We have described a multi-channel post-filtering approach for arbitrary beamformers, that is

particularly advantageous in non-stationary noise environments. The beamformer is realistically

assumed to have a steering error, a blocking matrix that is unable to block all of the desired signal

components, and a noise canceller that is adapted to the pseudo-stationary noise, but not modified

during transient interferences. Accordingly, the reference noise signals may include some desired

signal components. Furthermore, transient noise components that leak through the sidelobes of the

fixed beamformer may proceed to the beamformer primary output. A mild assumption is made with

regard to the beamformer, that a desired signal component is stronger at the beamformer output

than at any reference noise signal, and a noise component is strongest at one of the reference signals.

Consequently, transients are detected at the beamformer output and either suppressed or preserved

based on the transient beam-to-reference ratio.

We derived an estimator for the signal presence probability, that controls the rate of recursive

averaging for obtaining a noise spectrum estimate. It also modifies the spectral gain function for ob-

taining an estimate of the clean signal spectral amplitude. The proposed method was tested in var-

ious non-stationary car noise environments, and its performance was compared to a single-channel

post-filtering approach. We showed that multi-channel post-filtering is better than single-channel

post-filtering particularly under highly non-stationary noise conditions (such as noise resulting from

wind blows, passing cars, interfering speakers, etc.). While transient noise components are indistin-
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guishable from desired source components if using a state-of-the-art single-channel post-filtering,

the enhancement of the beamformer output by multi-channel post-filtering produces a significantly

reduced level of residual transient noise without further distorting the desired signal components.

Appendix

I. Statistics of SY (k, `)

Successive spectral power values of the beamformer output |Y (k, `)|2 are generally correlated,

and there is no closed form solution for the probability density function of SY (k, `). However,

Eq. (15) can be written as

SY (k, `) = (1 − αs)
w
∑

i=−w

∞
∑

j=0

bi α
j
s |Y (k − i, ` − j)|2 . (53)

Approximating SY (k, `) as the sum of µ squared mutually independent normal variables [33], [23],

its distribution function is given by

FSY (k,`)(x) ≈ Fχ2;µ

(

µ x

φY Y (k, `)

)

(54)

where Fχ2;µ(x) denotes the standard chi-square distribution function, with µ degrees of freedom.

Specifically, FSY (k,`)(x) = Γ
(

µ
2 , µ x

2 φY Y (k,`)

)

u(x)/Γ
(µ

2

)

, where Γ(·) is the gamma function, and

Γ (a, x)
4
=
∫∞
0 e−tta−1 dt is the incomplete gamma function. The equivalent degrees of freedom, µ,

is determined by the smoothing parameter αs, the window function b, and the spectral analysis

parameters of the STFT (size and shape of the analysis window, and frame-update step). The

value of µ can be estimated by generating a stationary white Gaussian noise d(t), transforming

it to the time-frequency domain, and substituting the sample mean and variance (over the entire

time-frequency plane) into the expression µ̂ ≈ 2 E2 {SD(k, `)} /var {SD(k, `)}.
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Table Captions

Table I: Values of Parameters Used in the Implementation of the Proposed Multi-Channel Post-

Filtering, For a Sampling Rate of 8 kHz.

Figure Captions

Fig. 1: Block diagram of the Griffiths-Jim adaptive beamformer.

Fig. 2: Receiver operating characteristic curve for detection of transients at the beamformer out-

put (µ = 32.2).

Fig. 3: Receiver operating characteristic curve for detection of transients at the reference noise

signals, using M = 4 sensors (µ = 32.2).

Fig. 4: Block diagram for detection of desired source components at the beamformer output.

Fig. 5: Block diagram of the multi-channel post-filtering.

Fig. 6: The multi-channel post-filtering algorithm.

Fig. 7: Average segmental SNR at (4) microphone #1, (◦) beamformer output, (×) single-channel

post-filtering output, (solid line) multi-channel post-filtering output, and (∗) theoretical

limit post-filtering output, for various car noise conditions: (a) Closed windows; (b) Open
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window; (c) Interfering speaker.

Fig. 8: Average noise reduction at (◦) beamformer output, (×) single-channel post-filtering out-

put, (solid line) multi-channel post-filtering output, and (∗) theoretical limit post-filtering

output, for various car noise conditions: (a) Closed windows; (b) Open window; (c) Inter-

fering speaker.

Fig. 9: Average log-spectral distance at (4) microphone #1, (◦) beamformer output, (×) single-

channel post-filtering output, (solid line) multi-channel post-filtering output, and (∗) the-

oretical limit post-filtering output, for various car noise conditions: (a) Closed windows;

(b) Open window; (c) Interfering speaker.

Fig. 10: Speech spectrograms. (a) Original clean speech signal at microphone #1: “Five six seven

eight nine.”; (b) Noisy signal at microphone #1 (car noise, open window, interfering

speaker. SNR = −0.9 dB, SegSNR = −6.2 dB, LSD = 15.4 dB); (c) Beamformer output

(SegSNR = −5.3 dB, NR = 5.2 dB, LSD = 12.2 dB); (d) Single-channel post-filtering

output (SegSNR = −3.8 dB, NR = 12.1 dB, LSD = 7.4 dB); (e) Multi-channel post-

filtering output (SegSNR = −1.3 dB, NR = 23.2 dB, LSD = 4.6 dB); (f) Theoretical limit

(SegSNR = −0.4 dB, NR = 24.0 dB, LSD = 4.0 dB).

Fig. 11: Trace of the improvement over a single-channel post-filtering gained by the proposed multi-

channel post-filtering (solid) and theoretical limit (dashed): (a) Increase in segmental SNR;

(b) Decrease in Log-Spectral Distance.



24

TABLE I

Values of Parameters Used in the Implementation of the Proposed Multi-Channel

Post-Filtering, For a Sampling Rate of 8 kHz

Λ0 = 1.67 Λ1 = 1.81 Ω0 = 1 γ0 = 4.6
α = 0.92 αs = 0.9 αd = 0.85 β = 1.47

b = [ 0.25 0.5 0.25 ] µ = 32.2 Gmin = −20 dB
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Fig. 1. Block diagram of the Griffiths-Jim adaptive beamformer.
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Fig. 2. Receiver operating characteristic curve for detection of transients at the beamformer output (µ =
32.2).
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Fig. 3. Receiver operating characteristic curve for detection of transients at the reference noise signals, using
M = 4 sensors (µ = 32.2).
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Fig. 4. Block diagram for detection of desired source components at the beamformer output.
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Initialize variables at the first frame for all frequency bins k:

SY (k, 0) = MY (k, 0) = λ̂d(k, 0) = |Y (k, 0)|2; GH1
(k, 0) = γ(k, 0) = 1.

For all time frames `

For all frequency bins k

Compute the recursively averaged spectrum of the beamformer output SY (k, `) using Eq. (15),
and update the MCRA estimate of the background pseudo-stationary noise MY (k, `) using [23].

Compute the local non-stationarities of the beamformer output and reference signals, Λ(Y ) and
Λ(U), using Eqs. (16) and (24), and compute the transient beam-to-reference ratio, Ω(Y,U),
using Eq. (30).

Using the block diagram in Fig. 4, determine which case applies to each frequency bin; Set
the a priori signal absence probability q̂(k, `) to 1 in Case 1, and to 0 in Case 2, and compute
its value according to Eq. (40) in Case 3.

Compute the a priori SNR ξ̂(k, `) using Eq. (44), the conditional gain GH1
(k, `) using Eq. (45),

and the signal presence probability p(k, `) using Eq. (43).

Compute the time-varying smoothing parameter α̃d(k, `) using Eq. (47), and update the noise

spectrum estimate λ̂d(k, ` + 1) using Eq. (46).

Compute the OM-LSA estimate of the clean signal, X̂(k, `), using Eqs. (48) and (49).

Fig. 6. The multi-channel post-filtering algorithm.
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Fig. 7. Average segmental SNR at (4) microphone #1, (◦) beamformer output, (×) single-channel post-
filtering output, (solid line) multi-channel post-filtering output, and (∗) theoretical limit post-filtering
output, for various car noise conditions: (a) Closed windows; (b) Open window; (c) Interfering speaker.
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Fig. 8. Average noise reduction at (◦) beamformer output, (×) single-channel post-filtering output,
(solid line) multi-channel post-filtering output, and (∗) theoretical limit post-filtering output, for various
car noise conditions: (a) Closed windows; (b) Open window; (c) Interfering speaker.
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Fig. 9. Average log-spectral distance at (4) microphone #1, (◦) beamformer output, (×) single-channel
post-filtering output, (solid line) multi-channel post-filtering output, and (∗) theoretical limit post-filtering
output, for various car noise conditions: (a) Closed windows; (b) Open window; (c) Interfering speaker.
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Fig. 10. Speech spectrograms. (a) Original clean speech signal at microphone #1: “Five six seven eight
nine.”; (b) Noisy signal at microphone #1 (car noise, open window, interfering speaker. SNR = −0.9
dB, SegSNR = −6.2 dB, LSD = 15.4 dB); (c) Beamformer output (SegSNR = −5.3 dB, NR = 5.2 dB,
LSD = 12.2 dB); (d) Single-channel post-filtering output (SegSNR = −3.8 dB, NR = 12.1 dB, LSD
= 7.4 dB); (e) Multi-channel post-filtering output (SegSNR = −1.3 dB, NR = 23.2 dB, LSD = 4.6 dB);
(f) Theoretical limit (SegSNR = −0.4 dB, NR = 24.0 dB, LSD = 4.0 dB).
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Fig. 11. Trace of the improvement over a single-channel post-filtering gained by the proposed multi-
channel post-filtering (solid) and theoretical limit (dashed): (a) Increase in segmental SNR; (b) Decrease
in Log-Spectral Distance.




