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Abstract

A major challenge for organizations and application service providers (ASP) is to provide high quality services over

the network to geographically dispersed consumers at a reasonable cost. As the performance of the Global Internet and

Corporate Intranets is unpredictable, such providers employ content delivery networks (CDN) and overlay networks

to bring content and applications closer to their service consumers. The overlay network is composed of a set of

distributed servers which serve local consumers and are updated and synchronized with the most recent information.

The architecture of overlay networks should encourage high-performance, high-scalability and reduced costs. This

becomes more crucial as despite technological advances, communication, storage costs as well as service latencies

grow with the exploding amounts of data exchanged and with the size and span of the overlay network. Examples for

objects which incur high traffic, storage and update costs are interactive media objects as well as large design materials

and software repositories. For that end, multicast methodologies can be used to deliver content from regional servers to

end users, as well as for the timely and economical synchronization of content among the distributed servers. Another

important architectural problem is the efficient allocation of objects to servers to minimize storage, delivery and update

costs while maintaining the expected quality of service.

In this work, we suggest an IP multicast based architecture and address the optimal allocation and replication

of objects that are both consumed and updated. Our model network includes consumers which are served using IP

multicast or IP unicast transmissions and media sources (that may be also consumers) which update the objects within

the servers using multicast communication. General costs are associated with distribution (download) and update traffic

as well as the storage of objects in the servers. Optimal object allocation algorithms for tree networks are presented

with complexities of O(N) and O(N2) in case of multicast and unicast distribution respectively.

To our knowledge, the model of multicast distribution combined with multicast updates has not been analytically

dealt before, despite its popularity in the industry.

I. INTRODUCTION

Recent years have witnessed tremendous activity and development in the area of content and services distribu-

tion. Geographically dispersed consumers and organizations demand higher throughput and lower response time for

accessing distributed content, outsourced applications and managed services. In order to enable high quality and re-

liable end-user services despite unpredictable Internet and Intranet conditions, organization and applications service

providers (ASPs) employ content delivery networks (CDN) and overlay networks. These networks bring content and

applications closer to their consumers, overcoming slow backbone paths, network congestions and physical latencies.

Multiple vendors such as Cisco[1], Akamai[2] and Digital Fountain[3] offer CDN services and overlay technologies.

Recently, more collaborative models such as distributed storage and peer-to-peer computational models require both

consumption and modification of the content by multiple, geographically distributed users[5][6].

Naturally, organizations and ASPs try to optimize the overall cost of the overlay network mainly in terms of storage

and communication costs. Efficient allocation of information objects to the overlay network servers reduces the opera-

tional cost and improves the overall performance. This becomes more crucial as the scale of services extend to a large

number of users over international operation where communication and storage costs as well as network latencies are

high. The optimization problem becomes more difficult as the service becomes dynamic and needs to be changed,

updated and synchronized frequently.

Our model network includes consumers, which are served from servers using IP unicast or IP multicast communica-

tion. The network also includes media sources (that may also be consumers) that update and modify the objects within

gitta
CCIT Report #377       May 2002



2

the servers. The update traffic between a media source and the relevant servers is most efficiently conducted using IP

multicast communication (IP multicast communication within the overlay network is used by vendors such as Digital

Fountain[3]). Using IP multicast can reduce significantly the overall update transport and the update latency. General

costs are associated with distribution and update traffic as well as the storage of objects in the servers.

The popularity of IP multicast for distribution of the content is especially increasing for real-time and multime-

dia applications that consume high bandwidth and are delivered to a large number of consumers. There are several

companies that offer multicast based servers as well as multicast based content delivery services[1][3][4]. A possible

application of the new multicast distribution and multicast update model is in a collaborative environment where one

or more media sources (which may also be consumers) constantly update the media servers in the overlay network,

and the media servers distribute the media to all the consumers in the network using multicast.

Specifically, our initial overlay network model is a tree graph that has a server located at each of its vertices. The

use of a tree graph does capture the IP multicast environment where a tree is pre-computed by the network itself (PIM-

SM[7]). The vertices also include communication gateways to other vertices and optional entries to local consumers

and media sources. Each server may be assigned an arbitrary storage costs and each edge may be assigned with an

arbitrary communication cost (for distribution and update). The distribution demand of the consumers and the update

requirements of the media sources are known a-priory (static).

We present two optimal object allocation algorithms for tree networks with computational complexities of O(N)
and O(N2) in case of multicast and unicast distribution respectively. In both cases updates are conducted via multicast.

The algorithms fit the native model of IP multicast and are easily mapped to distributed implementation.

The object allocation problem, also referred as the file allocation problem (FAP) in storage systems or data manage-

ment in distributed databases has been studied extensively in the literature. While the multicast distribution model of

this paper is new and was never considered before, the combination of multicast update (write) and unicast distribution

(read) was considered in the past. Dowdy and Foster[8] survey a number of models for the FAP. In the static FAP they

present models in which the update traffic is point-to-point traffic (unicast). Wolfson and Milo[9] present a model of

replicated data placement in distributed databases using multicast for writes and unicast for reads. Their model does

not include the storage costs and has a unit traffic cost for both reads and writes. They prove that the object allocation

problem is NP-Complete for general graphs. They provide an algorithm with O(N) computational complexity for tree

networks.

More recent works by Kalpakis et al.[10] and Krick et al.[11] present a model of a network with unicast reads,

multicast write and storage costs. [10] presents a problem with additional constrains for a tree network and the al-

gorithm they present for the similar case is less efficient than our algorithms (to be later described). [11] deal with

more general networks and provides an optimal algorithm for the tree network which is also less efficient than our

algorithm. These works don’t solve the multicast reads multicast write problem. Moreover, the multicast protocol

presented in [10] and [11] assumes that the media source sends a unicast message to the closest server (which stores

an object) and the server itself forwards a multicast message over the minimum spanning tree to the other servers (i.e.

- multicast is used only between the servers). This scheme does not employ properly the IP native multicast protocol

where a single source can update directly all the servers via an IP native multicast tree. Therefore, our model uses an

IP native multicast protocol in which the media source sends the message to all the servers using an IP multicast tree

(i.e. - each media source manages an IP multicast tree for updates). The IP multicast that we present is common in

the industry, for example in peer-to-peer multicast, in which each source sends data to its peers using multicast. The

computational complexity for the similar (but not identical) object allocation problem on a tree network is O(N5) in

[10] and O(N · diam(T ) · log(deg(T ))) in [11] (Worst case is O(N2 · log(N))).
When omitting the update process from the related unicast distribution model, we end up with the classical ”un-

capacited plant location problem”[12] model with facilities replacing servers and roads replacing communication

lines. The problem has been proved to be NP-complete for general graphs[12]. It was solved for trees in polynomial

time[13][14]. The ”uncapacited plant location problem” was mapped to content delivery networks[15]. Additional

works that address the read only model address the server location problem given a fixed number of servers[16][17]

and objects[18].

The two algorithms we present in this article share several mutual properties. They are based on dynamic program-

ming and on the critical observation that when potential costs are computed at a server not all the possible states (object

locations) of all the (down stream) servers should be taken into account, but it is enough to know if there is (or is not)
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a server that needs to be updated inside/outside a subtree. So only up to three different potential costs are computed

for each servers pair in the unicast distribution case and up to four potential costs in the multicast distribution case.

An additional important observation is the fact that the total update traffic generated by all the media sources, can

be characterized and merged for each edge prior to running the algorithm with computational complexity of O(N)
(see sub-section II-E). The resulted algorithms are performed in two phases. First a potential cost calculation phase

advances from the leaves of the tree up the root. After the termination of the first phase, a second backtrack phase

for the actual allocation starts at the root and ends at the leaves of the distribution subtree. During the calculation

phase, each vertex in the tree calculates multiple alternate costs based on its children’s set of costs and its storage and

communication costs. The optimal allocation is not known at vertices before the cost calculation phase ends at the

root.

This computation structure also enables an easy conversion of the placement procedure into a distributed algorithm.

The first phase starts at the leaves of the tree and advances up the tree where each vertex sends its potential cost vector

(a constant number of potential costs) to its parent. The second phase starts at the root where each vertex selects the

optimal local placement decision and forwards it to its children.

It is also possible to use the algorithms in a quasi static environment, in which the distribution demand and the update

requirements are slowly changing and periodically calculated. The algorithm is then performed in order to adopt the

changes of demand and replace the copies of the objects.

II. THE MODEL

A. Objects

For each object o of the objects set O, we determine the set of servers which store the object. The algorithm handles

each object separately, so the costs described below are defined (and can be different) for each object o.

B. The tree network

Let T = (V, E) be a tree graph that represents a communication network, where V = {1, . . . , N} is the set of

vertices and E is the set of edges. The tree is rooted at any arbitrary vertex r (r=1). Each vertex in the tree represents a

network switch and a potential storage place for object copies. Each vertex in the tree is also an entry point of content

consumers and/or media sources to the network. Distribution demands of a consumer are provided by the network

from the server at the closest vertex i which stores an object. An object update may be provided by any media source

and is sent to all the vertices that store the object using multicast.

Denote the subtree of T rooted at vertex i as Ti.

Denote the set of edges in Ti as Ei (including edge i)
Denote the set of vertices in Ti as Vi (Vr≡V ) and the set of children of vertex i in T as Chi (For a leaf i Chi=∅).

Denote edge i (i6=r) the edge that connects vertex i to its parent in T .

Figure 1. displays a typical tree with various costs related to its vertices and edges. These costs appear in the various

formulas for storage, distribution and update traffic.
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Fig. 1. An example of a tree network and various costs.
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C. Storage cost

Let the storage cost of the object at vertex i to be Sci. Denote Φ is the set of vertices that store the object.

The total storage cost of the object in the network is
∑

i∈Φ Sci.

D. Distribution traffic cost

Denote the distribution cost per traffic unit at edge i as Ucdi (The root edge r (r=1) does not exist, therefore

Ucdr≡0). The distribution cost per traffic unit along a path between vertices j and k is Ddj,k =
∑

i∈Pj,k
Ucdi, where

Pj,k is the set of edges that connect vertex j to vertex k (Pj,k = Pk,j).

In the unicast case, the total distribution traffic generated by all the consumers at vertex i is Tdi.

The total distribution traffic cost in the network is
∑

i∈V Tdi · minj∈Φ Ddi,j .

In the multicast case, the total distribution traffic provided to vertex i is Td (the same for all vertices - since in

multicast the server determines the transmission rate, not each customer as in the unicast case). Denote Dmti the set

of edges in the distribution multicast tree rooted at vertex i (if i does not store an object Dmti≡∅).

The total distribution traffic cost in the network is
∑

i∈Φ Td · (
∑

e∈Dmti Ucde).

E. Multicast update traffic cost

Denote the update cost per traffic unit at edge i as Ucui (The root edge r does not exist, Ucur≡0).

The total update traffic generated by the media source at vertex i is Tui.

Denote Umti,Φ as the set of edges of the multicast update tree from vertex i to Φ.

The total update traffic cost in the network is
∑

i∈V Tui ·
(

∑

e∈Umti,Φ
Ucue

)

.

Since there may be more than one media sources, there may be multiple multicast update trees. For each edge i we

define Tuout
i and Tuin

i . Tuout
i is the total update traffic that is outgoing via vertex i out of Ti, in case there is at least

one copy located outside that subtree. Tuin
i is the total update traffic that is incoming via vertex i into Ti, in case there

is at least one copy located in that subtree.

Tuout
i ←

∑

j∈Vi

Tuj

Tuin
i ←

∑

j /∈Vi

Tuj = Tuout
r − Tuout

i

F. Formulas notations

The following chart describes the most important notations described above that are used in the formulas and algo-

rithms.

Notation Explanation

Ti Subtree of T rooted at vertex i.

Ei, Vi The set of Edges/Vertices in Ti.

Chi The Children of vertex i in T .

Φ The set of vertices which Store an object

Sci Storage Cost of vertex i.

Ucdi Unit Cost of Distribution for edge i.

Tdi Distribution Traffic at vertex i.

Dmti Edges of Distribution Mcast Tree from i

Ucui Unit Cost of Update for edge i.

Tui Update Traffic at vertex i.

Umti,Φ Edges of Update Mcast Tree from i to Φ
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III. THE OPTIMAL ALGORITHM FOR MULTICAST DISTRIBUTION

The optimization problem is to minimize the total cost (storage and traffic):

∑

i∈Φ

Sci +
∑

i∈V

Tui ·

(

∑

e∈Umti,Φ

Ucue

)

+
∑

i∈Φ

Td ·

(

∑

e∈Dmti

Ucde

)

(1)

The algorithm calculates the optimal object allocation cost as well as the set of servers that will store the object.

Before we turn to the algorithm we first prove a basic property of the optimal object allocation solution.

Lemma 1: In the optimal allocation, each vertex i can only belong to one multicast distribution tree.

Proof: Suppose a vertex i belongs to more than one multicast distribution trees, then by disconnecting it from

the other trees and keeping it connected to only one multicast distribution tree we reduce the distribution traffic in

contradiction to the optimality of the cost. Moreover, the optimal solution connects consumers only to the closest

multicast distribution tree.

The above property leads us to the conclusion, that the optimal allocation is composed of a subgraph of T which is a

forest of multicast distribution subtrees. Each subtree is rooted at a vertex where a copy is located (The subtree rooted

at vertex i may not be Ti) and its leaves are vertices with distribution demands but no copy of the object stored. An

edge in T can be part of at most one multicast distribution tree. Figure 2. demonstrates the structure of a forest with

the different possible cases of the vertices and edges in T .
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Fig. 2. Example of the multicast distribution forest.

Our algorithm is a recursive algorithm that at each step solves a new problem which is a subset of the problem for the

subtree Ti rooted at vertex i and the edge i. The new problem also takes into account the possible existence of stored

copies outside Ti (results in outgoing update traffic and/or incoming distribution traffic). The new problem doesn’t

take into account the fact that consumers outside Ti may be served through edge i.
The original optimization problem is solved by combining the solutions of the subsets of the problem. The algorithm

starts at the leaves and ends at the root of T . The motivation to consider at each vertex only one upward edge (i.e.

- the edge that connects the vertex to its parent in T ) is that higher level edges of the hierarchy may be shared by

several lower level edges. This principle is valid for both multicast distribution trees and multicast update trees. Since

there may be multiple multicast update trees (one for each media source), each edge may have update traffic in both

directions.

A. The cost calculation phase

For each vertex i the algorithm calculates for Ti four alternate costs (we refer to traffic from i towards its parent as

outgoing, and from its parent as incoming), for the following possible scenarios:

Cdoi for the case when there is no copy located in Ti (i6=r) and the optimal cost is of incoming distribution and

outgoing update traffic only.

Cdoi - Cost of Distribution Only traffic in Ti.
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Cuoi for the case when there is at least one copy of the object located in Ti and no copy is located outside Ti (and

therefore only incoming update traffic flows in edge i).
Cuoi - Cost of Update Only traffic in Ti.

Cuo+
i for the case when there is at least one copy of the object located in Ti and all the internal consumers demand

is supplied from copies in Ti, but additional copies are located outside Ti (and therefore both incoming and

outgoing update traffic and maybe outgoing distribution traffic flows in edge i).
Cuo+

i - Cost of Update Only traffic Plus in Ti.

Cdui for the case when there is at least one copy of the object located in Ti but not all the internal consumers

demand is supplied from copies in Ti (and therefore both incoming distribution and incoming and outgoing

update traffic flows in edge i).
Cdui - Cost of both Distribution and Update traffic in Ti.

For calculating the minimal cost, the algorithm calculates the alternate costs as follows:

Cdoi ←

{

Td · Ucdi + Tuout
i · Ucui + sum3, if i 6= r

∞, if i = r

Cuoi ←

{

Tuin
i · Ucui + min{min1,min2,min3} , if i 6= r

min{min1,min2, min3}, if i = r

Cuo+
i ←

{
(

Tuin
i + Tuout

i

)

· Ucui + min{min1,min2} , if i 6= r

∞, if i = r

Cdui ←

{

Td · Ucdi + Tuin
i · Ucui + Tuout

i · Ucui + sum1 , if i 6= r&Chi 6= ∅
∞, if i = r‖Chi = ∅

where

sum1 =
∑

c∈Chi

min
{

Cdoc, Cuo+
c , Cduc

}

sum2 =
∑

k∈Chi,k 6=c

min
{

Cdok, Cuo+
k , Cduk

}

sum3 =
∑

c∈Chi

Cdoc

min1 = Sci + sum1

min2 = min
c∈Chi

{

Td · Ucdc + Cuo+
c + sum2

}

min3 = min
c∈Chi







Td · Ucdc + Cuoc +
∑

k∈Chi,k 6=c

Cdok







note: sum1, sum2, sum3 equal 0 and min2,min3 equal ∞ if vertex i is a leaf (Chi=∅).

The optimal total cost is Cuor.

B. Backtracking for content allocation

While calculating each alternate cost for each vertex i, the algorithm remembers for each alternate cost if a copy

needs to be stored at i and/or the states of each child c which has at least one copy stored in its subtree. This is

important for the backtracking phase, and allows accurate placement of the copies while backtracking.

The backtracking phase is recursive, starts at the root and ends at the leaves of T (can stop earlier if no child has a

copy in Vc). For each vertex the algorithm determines if a copy should be stored and if it is necessary to keep advancing

towards the leaves of T . The algorithm uses the backtrack information that was saved along with the alternate optimal

cost.

Appendix I-A presents the pseudo code of the algorithm. Backtrack details are shown there. An example of running

the algorithm is shown in appendix II.
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C. Proof of Optimality

The proof is based on induction. Lemma 2 is the induction base.

Lemma 2: For all scenarios, the algorithm optimally allocates the object in Ti, when i is a leaf of T
Proof: According to the definition of the new optimization problem, either one of the following possible scenarios

holds.

1) Vertex i is served from a vertex outside Ti (through edge i), and no copy is stored in Ti. The optimal cost is

constructed only from outgoing update and incoming distribution traffic will traverse through edge i. (Cdoi).

2) Vertex i is served from a vertex outside Ti (through edge i), and at least one copy is stored in Ti. This is

impossible for a leaf vertex, since if a copy is stored in Ti it must be stored in i, and vertex i will then be served

from the copy stored in i - contradiction. (Cdui = ∞).

3) Vertex i is served from within Ti and no copy of the object is allocated outside Ti. Vertex i is the only vertex in

Ti and therefore there must be a copy allocated in vertex i. Since there are no copies allocated outside Ti there

will be no outgoing update traffic through edge i. The optimal cost is constructed from the storage cost and the

cost of only the incoming update traffic that will traverse through edge i. (Cuoi).

4) Vertex i is served from within Ti and at least one copy of the object is allocated outside Ti. Vertex i is the only

vertex in Ti and therefore there must be a copy allocated in vertex i. Since there is a copy allocated in Ti and at

least one copy allocated outside Ti there will be both incoming and outgoing update traffic through edge i. The

optimal cost is constructed from the storage cost and the cost of both incoming and outgoing update traffic that

will traverse through edge i. (Cuo+
i ).

Lemma 3 constructs the induction step for the recursive proof of optimality.

Lemma 3: Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertex c
which is a child of i (Tc, c∈Chi) for all the scenarios, then the algorithm optimally allocates the object in Ti for all the

scenarios.

Proof: According to the definition of the new optimization problem, either one of the following possible scenarios

holds.

1) Vertex i is served from a vertex outside Ti (through edge i), and no copy is stored in Ti. This implies that no

copy is allocated in Tc, c∈Chi. According to the induction, the problem was solved for Tc, c∈Chi, and the

additional cost is the incoming distribution traffic through edge i and the outgoing update traffic added at vertex

i and going through edge i (Cdoi).

2) Vertex i is served from a vertex outside Ti (through edge i), and at least one copy is stored in Ti. This implies

that at least one copy is allocated in one or more subtrees Tc, c∈Chi. No copy is allocated for vertex i, since it’s

served from outside Ti. If there are vertices c∈Chi which are served through edge c, then according to Lemma

1 these vertices must be served through edge i. Since vertex i is served through edge i there must be at least one

copy stored outside Ti, and since at least one copy is allocated within Ti, then there must be additional incoming

distribution traffic and both incoming and outgoing update traffic going through edge i. The optimal cost is

constructed from the additional traffic through edge i, and the sum of optimal costs calculated for each Tc (The

minimum of the following legal scenarios for each c∈Chi: Cdoc, Cduc or Cuo+
c ). (Cdui).

3) Vertex i is served from within Ti and no copy of the object is allocated outside Ti. Since there are no copies

allocated outside Ti there will be no outgoing update traffic through edge i. Since i is served from within Ti

there must be at least one copy allocated within Ti and there will be incoming update traffic. There are three

possibilities for object allocation in this scenario:

a) Vertex i stores a copy of the object (and served from that copy). The vertices in the subtrees Tc, c∈Chi

may be served either from vertex i or from internal copies. (The minimum of the following legal scenarios

for each c∈Chi: Cdoc, Cduc or Cuo+
c ). (min1).

b) Vertex i is served from Tc, c∈Chi which stores a copy of the object, but other vertices in the subtrees Tk,

k∈Chi,k 6=c may be served either through vertex i (through edge c which supplies outgoing distribution

traffic from Tc) or from internal copies. (The minimum of the following legal scenarios for each k∈Chi:

Cdok, Cduk or Cuo+
k ). (min2).

c) Vertex i is served from Tc, c∈Chi which stores a copy of the object, and no other vertices in the subtrees

Tk, k∈Chi,k 6=c may store a copy of the object. All these subtrees must be served through vertex i (through
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edge c which supplies outgoing distribution traffic from Tc). (min3).

The optimal cost is constructed from the incoming update traffic that will traverse through edge i and from the

minimum between min1,min2,min3. (Cuoi).

4) Vertex i is served from within Ti and at least one copy of the object is allocated outside Ti. Since there is a copy

allocated in Ti and at least one copy allocated outside Ti there will be both incoming and outgoing update traffic

through edge i. There are two possibilities for object allocation in this scenario:

a) Vertex i stores a copy of the object (and served from that object). The vertices in the subtrees Tc, c∈Chi

may be served either from vertex i or from internal copies. (The minimum of the following legal scenarios

for each c∈Chi: Cdoc, Cduc or Cuo+
c ). (min1).

b) Vertex i is served from Tc, c∈Chi which stores a copy of the object, but other vertices in the subtrees Tk,

k∈Chi,k 6=c may be served either through vertex i (through edge c which supplies outgoing distribution

traffic from Tc) or from internal copies. (The minimum of the following legal scenarios for each k∈Chi:

Cdok, Cduk or Cuo+
k ). (min2).

The optimal cost is constructed from the incoming and outgoing update traffic that will traverse through edge i
and from the minimum between min1,min2. (Cuo+

i ).

Theorem 1: When the algorithm ends, Cuor holds the optimal allocation cost and the allocation of copies is optimal.

Proof: The proof is conducted by the induction where Lemma 2 is the base and Lemma 3 is the step. In addition,

the costs Cdor, Cdur and Cuo+
r are illegal since there can’t be copies allocated outside Tr ≡ T .

D. Complexity

For each vertex in the tree i∈V the algorithm calculates up to 4 alternate costs. Each cost calculation requires

O(|Chi|). Therefore the total complexity for vertex i is O(4 · |Chi|). The total complexity for the entire tree is:
∑

i∈V 4 · |Chi|. |V |=N and the total number of children in the tree is N−1 (only the root r is not a child). Therefore:

∑

i∈V

4 · |Chi| = 4 ·
∑

i∈V

|Chi| = 4 · (N − 1) < 4N

The algorithm computational complexity is O(N).

IV. THE OPTIMAL ALGORITHM FOR UNICAST DISTRIBUTION

The optimization problem is to minimize the total cost (storage and traffic):

∑

i∈Φ

Sci +
∑

i∈V

Tui · (
∑

j∈Umti,Φ

Ucuj) +
∑

i∈V

Tdi · min
j∈Φ

Ddi,j (2)

The algorithm calculates the optimal object allocation cost as well as the set of servers that will store the object.

Before we turn to the algorithm we first prove basic properties of the optimal object allocation solution.

Lemma 4: In the optimal allocation, each vertex i may only belong to one distribution unicast tree.

Proof: Suppose a vertex i belongs to more than one distribution unicast trees, then by disconnecting it from

the other trees and keeping it connected to only one distribution unicast tree we reduce the distribution traffic in

contradiction to the optimality of the cost. Moreover, vertex i can only be served from a single server.

Lemma 5: In the optimal allocation, if vertex c is served through vertex i then c is served from the same server as i
does.

Proof: A direct result of Lemma 4. If c is served from a different server, then i belongs to two distribution unicast

trees - a contradiction.

The above properties lead us to the conclusion, that the optimal allocation is composed of a subgraph of T which

is a forest of distribution subtrees. Each subtree is rooted at a vertex (The distribution subtree rooted at vertex i may

not be Ti) where a copy of the object is located and its leaves are vertices with distribution demands but no copy of

the object is stored. An edge in T can be part of at most one distribution tree. Moreover, in the optimal solution if a

consumer at vertex c is served through vertex i which is an ancestor of c in T , it will be served from the same server as

i. Figure 3. demonstrates the structure of a forest with different possible cases of the vertices and edges in T .
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Fig. 3. Example of the unicast distribution forest

As suggested in [14] and [15], the optimization problem can be solved by defining a new set of optimization problems

and combining their solutions to solve the original optimization problem. A subset of the problem at a given vertex i
is a tree Ti,j that combines Ti and the string that connects vertex i to j (Pj,i), in case j /∈ Vi. The optimal solution

of the subset of the problem assumes that vertex j stores a copy of the object in the optimal solution of the original

optimization problem. In case j /∈ Vi, the storage cost of the copy at vertex j is not included in the optimal cost of the

tree Ti,j , but the distribution traffic cost along Pj,i is included.

For the multicast update traffic there will be an additional one or more multicast trees for updating the servers which

store copies of the object.

Unlike previous works, for each vertex pair i, j the algorithm calculates for Ti,j three alternate costs (we refer to

traffic from i towards its parent as outgoing, and from its parent as incoming):

C− for the case when there is no copy located in Ti (i6=r) and the alternate cost is of distribution traffic only.

C+ for the case when at least one copy is located inside and no copies are located outside Ti.

C++ for the case when copies are located both inside and outside Ti.

For calculating the minimal cost, the algorithm calculates the alternate costs as follows:

C−
i,j ←

{

∞, if j ∈ Vi

Tdi · Ddi,j + Tuout
i · Ucui + sum1 , if j /∈ Vi

C+
i,j ←











Tdi · Ddi,j + Tuin
i · Ucui + min {sum2, sum3} , if j ∈ Vk, k ∈ Chi

Tuin
i · Ucui + Sci + sum4, if j = i

∞, if j /∈ Vi

C++
i,j ←















Tdi · Ddi,j + Tuin
i · Ucui + Tuout

i · Ucui + sum3 , if j ∈ Vk, k ∈ Chi

Tuin
i · Ucui + Tuout

i · Ucui + Sci + sum4 , if j = i

min

{

min
l∈Vi

C++
i,l

(∗), Tdi · Ddi,j + Tuin
i · Ucui + Tuout

i · Ucui + sum4

}

, if j /∈ Vi

(∗) The minimum value can be calculated once during the calculation of each C++

i,j , j∈Vi, given that these values are calculated prior to

calculating any C++

i,j , j /∈Vi

where

sum1 =
∑

k∈Chi

C−
k,j

sum2 = C+
k,j +

∑

l∈Chi,l 6=k

C−
l,j
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sum3 = C++
k,j +

∑

l∈Chi,l 6=k

min
{

C−
l,j , C

++
l,j

}

sum4 =
∑

k∈Chi

min
{

C−
k,j , C

++
k,j

}

note: sum1, sum2, sum3 and sum4 equal 0 if vertex i is a leaf (Chi=∅).

The optimal total cost is minj∈V C+
r,j .

A. Backtracking for content allocation

While calculating each alternate cost for each pair i, j, the algorithm remembers for each alternate cost if a copy

needs to be stored at i and/or the states of each child k which has at least one copy stored in its subtree (donates C++

or C+). This is important for the backtracking phase, and allows accurate placement of the copies while backtracking.

The backtracking phase is recursive, starts at the root and ends at the leaves of T (can stop earlier of no child has a

copy in Vc). For each vertex the algorithm determines if a copy should be stored and if it is necessary to keep advancing

towards the leaves of T . The algorithm uses the backtrack information that was saved along with the alternate optimal

cost.

Appendix I-B presents the pseudo code of the algorithm. Backtrack details are also shown there.

B. Proof of Optimality

The proof is based on induction. Lemma 6 is the induction base.

Lemma 6: For all scenarios, and for all vertices j∈V the algorithm optimally allocates the object in Ti,j , when i is

a leaf of T
Proof: According to the definition of the new optimization problem, either one of the following possible scenarios

holds.

1) j=i (no string is connected), the algorithm allocates the object at vertex i. This is the only possibility, which is

optimal (C−
i,i can’t exist, set to ∞). The optimal cost is constructed from the storage cost and the cost of update

traffic (incoming only for C+
i,i, both incoming and outgoing for C++

i,i ).

2) j 6=i (j /∈Vi). A string Pj,i is connected to Ti. According to the definition of the problem, there’s a copy of the

object located at vertex j - therefore C+
i,j is illegal (set to ∞) and there must be outgoing update traffic through

edge i. If the distribution cost from j to i is less than the storage cost + incoming update cost, the optimal

decision is to be served from j (Represented by C−
i,j . In this case the algorithm also sets C++

i,j to C−
i,j + the

incoming update cost, which insures that if a copy of the object is not stored at Ti, C−
i,j≤C++

i,j ), otherwise the

decision is to store a copy at vertex i (Represented by C++
i,j which is set to C++

i,i , in this case C++
i,j ≤C−

i,j).

Lemma 7 constructs the induction step for the recursive proof of optimality.

Lemma 7: Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertex c
which is a child of i (Tc, c∈Chi) for all scenarios and for all vertices j∈V , then the algorithm optimally allocates the

object in Ti for all the scenarios and for all vertices j∈V .

Proof: According to the definition of the new optimization problem, either one of the following possible scenarios

holds.

1) j=i (no string is connected), the algorithm allocates the object at vertex i. There is a copy located at Ti therefore

C−
i,i can’t exist (set to ∞), and there must be incoming update traffic through edge i. The vertices in each subtree

Tk, k∈Chi may be served either from vertex i or from copies located internally in the subtree. (The minimum

of the following legal scenarios for each k∈Chi: C−
k,i, C++

k,i ⇒ sum4). The optimal cost is constructed from

the storage cost at i, the optimal costs calculated in the children (sum4) and the cost of update traffic (incoming

only for C+
i,i, both incoming and outgoing for C++

i,i ).

2) j∈Vk, k∈Chi (no string is connected), the algorithm allocates the object at vertex j. There is a copy located at

Ti therefore C−
i,j can’t exist (set to ∞), and there must be incoming update traffic through edge i.

For the scenario where no copy of the object is allocated outside Ti (C+
i,j), two possibilities hold:
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a) There are copies allocated only within Tk (at least at vertex j). In this case there are no copies allocated in

Tl, l∈Chi, l 6=k. (sum2)

b) There are copies allocated within Tk (at least at vertex j) and also within at least another Tl, l∈Chi, l 6=k.

(sum3)

For the scenario where at least one copy of the object is allocated outside Ti (C++
i,j ), only one possibility holds:

There are copies allocated within Tk (at least at vertex j) and maybe within at least another Tl, l∈Chi, l 6=k.

(sum3). The optimal cost is constructed from the distribution cost from j to i, the optimal costs calculated in

the children (sum2 or sum3) and the cost of update traffic (incoming only for C+
i,j , both incoming and outgoing

for C++
i,j ).

3) j /∈Vi. A string Pj,i is connected to Ti. According to the definition of the problem, there’s a copy located at vertex

j - therefore C+
i,j is illegal (set to ∞) and there must be outgoing update traffic through edge i. There are three

possibilities for object allocation in this scenario:

a) Vertex i is served from j, and no copy of the object is located within Ti. According to Lemma 5 all vertices

in Ti are served from j. The optimal cost is the distribution cost from j to i plus the optimal C− costs

calculated for the children of i (sum1) plus the outgoing update traffic (Represented by C−
i,j).

b) Vertex i (and according to Lemma 5 all vertices in Ti) is served from within Ti. In this case the optimal

allocation is represented by the minimal cost minl∈Vi
C++

i,l (C++ since there is a copy located outside Ti).

(One possibility for C++
i,j ).

c) Vertex i is served from Vertex j, and at least one copy of the object is located within Ti. The vertices in

each subtree Tk, k∈Chi may be served either from vertex j or from copies located internally in the subtree.

(The minimum of the following legal scenarios for each k∈Chi: C−
k,j , C++

k,j ⇒ sum4). The optimal cost is

constructed from the distribution cost from i to j, the optimal costs calculated in the children (sum4) and

the cost of outgoing update traffic (Other possibility for C++
i,j ).

Theorem 2: When the algorithm ends, minj∈V C+
r,j holds the optimal allocation cost and the allocation of copies is

optimal

Proof: The proof is conducted by the induction where Lemma 6 is the base and Lemma 7 is the step. For each

j∈V , C+
r,j represents an optimal allocation of the objects where r is served from j. The minimal C+

r,j is the optimal cost

of the original optimization problem. In addition, the costs C++
r,j , C−

r,j are illegal since there can’t be copies allocated

outside Tr ≡ T .

C. Complexity

For each vertex in the tree i∈V the algorithm calculates up to 3·N alternate costs. Each cost calculation requires

O(|Chi|). Therefore the total complexity for vertex i is O((3 · N) · (|Chi|)). The total complexity for the entire tree

is:
∑

i∈V (3 · N) · |Chi|. |V |=N and the total number of children in the tree is N−1 (only the root r is not a child).

Therefore:
∑

i∈V

(3 · N) · |Chi| = 3 · N ·
∑

i∈V

|Chi| = 3 · N · (N − 1) < 3 · N2

The algorithm computational complexity is O(N2).

V. CONCLUSION AND FUTURE WORK

In this work, we addressed overlay networks with update from multiple media sources and content distribution to

users that employ native IP multicast based update for unicast or multicast content distribution.

We developed optimal content allocation algorithms for tree networks the with computational complexity of O(N)
and O(N2) for multicast and unicast distribution respectively. We showed that adding update traffic to the origi-

nal unicast distribution problem require new algorithmic observations and techniques but has a minor effect on the

computational complexity.

The presented algorithms can easily be transformed into distributed algorithms. The transformation is out of the

scope of this paper but one can think of the way to turn the cost calculations described in Appendix I into calculations

performed in each node, and the data produced by the calculations as the data that has to be passed from children to

their parents and vice versa.
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Our current work focus on the generalization of the problem to general graphs. Most of the related problems in

general graphs are NP-hard. An interesting scenario is when all vertices of the general graph are part of the distribution

forest (i.e. - consumers are connected to every vertex), it is easy to show that the distribution forest (that connects the

servers to the consumers) is a subgraph of the minimal spanning tree, while each multicast update tree is a Steiner tree

(which is NP-complete on general graphs). Using known approximations for the construction of the Steiner tree we

can limit the total update cost (as well as the total cost) to a ratio of 2 from the optimal.

An additional work may be in the direction of adjusting the above static algorithm into a dynamic environment

where the demands and various costs may change over time. Since the algorithm is most efficient, an easy adjustment

may be to calculate the costs periodically and run the algorithm from scratch. Please note that an incremental change

in the costs may not incur an incremental change in the result of the algorithm, there may be a need to restart all the

calculations due to one cost change.

APPENDIX I

PSEUDO CODE OF THE ALGORITHMS

In this section we assume that the vertices are ordered by breadth first ordering. Vertex 1 is the root and n must be a

leaf.

We also assume the ∞ is the maximal number that exists in the computer.

Variables starting with BT are used for the backtrack process, and store a vertex number or the cost/vertex data.

A. Centralized multicast distribution algorithm

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info

for later.

Cost calculation phase

for i = n, n − 1, n − 2, ..., 2, 1 do

if Chi = ∅ then /* a leaf */

Cdoi ← Td · Ucdi + Tuout
i · Ucui

Cuoi ← Tuin
i · Ucui + Sci ; BT -Cuoi ← (i, ”local”)

Cuo+
i ←

(

Tuin
i + Tuout

i

)

· Ucui + Sci ; BT -Cuo+
i ← (i, ”local”)

Cdui ← ∞ ; BT -Cdui ← ∅
else

/* calculate sum1, sum3 (sum1 derives sum2!) */

sum1 ← 0 ; BT -sum1 ← ∅
sum3 ← 0
foreach c in Chi do

sum3 ← sum3 + Cdoc

Cminc ← Cdoc ; Cmintype ← ”local”
if (Cdoc <= Cuo+

c &Cdoc <= Cduc) then

sum1 ← sum1 + Cdoc

else if (Cduc <= Cuo+
c ) then

sum1 ← sum1 + Cduc ; BT -sum1 ← BT -sum1 ∪ (c, ”du”)
Cminc ← Cduc ; Cmintype ← ”du”

else

sum1 ← sum1 + Cuo+
c ; BT -sum1 ← BT -sum1 ∪ (c, ”uo+”)

Cminc ← Cuo+
c ; Cmintype ← ”uo+”

end if

end do

/* calculate min1, min2, min3 */

min1 ← Sci + sum1 ; BT -min1 ← BT -sum1 ∪ (i, ”local”)
min2 ← ∞ ; BT -min2 ← ∅
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min3 ← ∞ ; BT -min3 ← ∅
foreach c in Chi do

tmp ← Td · Ucdc + Cuo+
c + sum1 − Cminc

if (tmp < min2) then

min2 ← tmp ; BT -min2 ← (c, ”uo+”) ∪
(

BT -sum1 \ (c, Cmintype)
)

end if

tmp ← Td · Ucdc + Cuoc + sum3 − Cdoc

if (tmp < min3) then

min3 ← tmp ; BT -min3 ← (c, ”uo”)
end if

end do

/* calculate optimal Cuoi cost and BT data */

if min1 <= min2&min1 <= min3 then

Cuoi ← Tuin
i · Ucui + min1 ; BT -Cuoi ← BT -min1

else if min2 <= min3 then

Cuoi ← Tuin
i · Ucui + min2 ; BT -Cuoi ← BT -min2

else

Cuoi ← Tuin
i · Ucui + min3 ; BT -Cuoi ← BT -min3

end if

if i 6= 1 then /* not root */

Cdoi ← Td · Ucdi + Tuout
i · Ucui + sum3

if min1 <= min2 then

Cuo+
i ←

(

Tuin
i + Tuout

i

)

· Ucui + min1 ; BT -Cuo+
i ← BT -min1

else

Cuo+
i ←

(

Tuin
i + Tuout

i

)

· Ucui + min2 ; BT -Cuo+
i ← BT -min2

end if

Cdui ← Td · Ucdi +
(

Tuin
i + Tuout

i

)

· Ucui + sum1 ; BT -Cdui ← BT -sum1

end if

end if

end do

The optimal cost is Cuo1.

Backtrack phase

The backtrack copies allocation phase is recursive and can easily be described using a recursive function.

The recursion starts by calling allocate(1, ”uo”).
proc allocate (i, type) {

if type = ”uo” then

foreach (c, ctype) in BT -Cuoi do ; call allocate(c, ctype) ; end do

else if type = ”uo+” then

foreach (c, ctype) in BT -Cuo+
i do ; call allocate(c, ctype) ; end do

else if type = ”du” then

foreach (c, ctype) in BT -Cdui do ; call allocate(c, ctype) ; end do

else if type = ”local” then

allocate a copy at i
end if

return

}
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B. Centralized unicast distribution algorithm

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info

for later.

Cost calculation phase

for i = n, n − 1, n − 2, ..., 2, 1 do

/* calculate costs for i, i */

sum4 ← 0 ; BT -sum4 ← ∅
foreach k in Chi do

if C−
k,i <= C++

k,i then

sum4 ← sum4 + C−
k,i

else

sum4 ← sum4 + C++
k,i ; BT -sum4 ← BT -sum4 ∪ (k, i, ”++”)

end if

end do

C−
i,i ← ∞

C+
i,i ← Tuin

i · Ucui + Sci + sum4 ; BT -C+
i,i ← BT -sum4 ∪ (i, i, ”local”)

C++
i,i ← C+

i,i + Tuout
i · Ucui ; BT -C++

i,i ← BT -sum4 ∪ (i, i, ”local”)
jmin ← i
/* calculate costs for i, j where j ∈ Vi */

foreach k in Chi do

foreach j in Vk do

sum2 ← C+
k,j ; BT -sum2 ← (k, j, ”+”)

sum3 ← C++
k,j ; BT -sum3 ← (k, j, ”++”)

foreach l in Chi \ k do

sum2 ← sum2 + C−
l,j

if C−
l,j <= C++

l,j then

sum3 ← C−
l,j

else

sum3 ← C++
l,j ; BT -sum3 ← BT -sum2 ∪ (l, j, ”++”)

end if

end do

C−
i,j ← ∞

C+
i,j ← Tdi · Ddi,j + Tuin

i · Ucui

C++
i,j ← C+

i,j + Tuout
i · Ucui + sum3 ; BT -C++

i,j ← BT -sum3
if sum2 <= sum3 then

C+
i,j ← C+

i,j + sum2 ; BT -C+
i,j ← BT -sum2

else

C+
i,j ← C+

i,j + sum3 ; BT -C+
i,j ← BT -sum3

end if

/* update minl∈Vi
C++

i,l */

if C++
i,j < C++

i,jmin
then

C++
i,min ← C++

i,j

end if

end do

end do

/* calculate costs for i, j where j /∈ Vi */

foreach j in V \ Vi do

sum1 ← 0
foreach k in Chi do
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sum1 ← C−
k,j

end do

C−
i,j ← Tdi · Ddi,j + Tuout

i · Ucui + sum1

C+
i,j ← ∞

sum4 ← 0 ; BT -sum4 ← ∅
foreach k in Chi do

if C−
k,j <= C++

k,j then

sum4 ← sum4 + C−
k,i

else

sum4 ← sum4 + C++
k,i ; BT -sum4 ← BT -sum4 ∪ (k, j, ”++”)

end if

end do

C++
i,j ← Tdi · Ddi,j + Tuin

i · Ucui + Tuout
i · Ucui + sum4 ; BT -C++

i,j ← BT -sum4

if C++
i,jmin

< C++
i,j then

C++
i,j ← C++

i,jmin
; BT -C++

i,j ← BT -C++
i,jmin

end if

end do

end do

/* find the optimal cost */

jmin ← 1
for j = n, n − 1, n − 2, ..., 2 do

if C+
1,j < C+

1,jmin
then

jmin ← j
end if

end do

The optimal cost is C+
1,jmin

.

Backtrack phase

The backtrack copies allocation phase is recursive and can easily be described using a recursive function.

The recursion starts by calling allocate(1, jmin, ”+”).
proc allocate (i, j, type) {

if type = ”+” then

foreach (k, l, ntype) in BT -C+
i,j do

call allocate(k, l, ntype)
end do

else if type = ”++” then

foreach (k, l, ntype) in BT -C++
i,j do ; call allocate(k, l, ntype) ; end do

else if type = ”local” then

allocate a copy at i
end if

return

}

APPENDIX II

RUN EXAMPLE OF THE MULTICAST DISTRIBUTION ALGORITHM

An example of executing the algorithm on the following tree network: Figure 4. describes a tree network and the

costs associated with its vertices and edges.
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Fig. 4. A tree network for the run example

A. Phase one

Calculating the optimal cost for each subtree and each scenario:

i 7 6 5 4 3 2 1

Cdoi 2 2 10 8 10 28 ∞

Cuoi 20 37 49 11 35 85 59

BT -Cuoi 7 6 5 4 3 4, uo 1, loc

Cuo+
i 20 37 49 11 35 85 ∞

BT -Cuo+
i 7 6 5 4 3 4, uo+ -

Cdui ∞ ∞ ∞ ∞ 26 84 ∞

BT -Cdui - - - - - - -

B. Phase two

The optimal cost is 59, and since the backtrack information of Cuo1 (BT -Cuor) is only 1, local the copy is stored

at vertex 1 and no more backtracks are needed.
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