CCIT Report # 384 May 2002

Optimal Sliding-Window Strategies in Networks
with Long Round-Trip Delays

Lavy Libman and Ariel Orda
Department of Electrical Engineering
Technion — Israel Institute of Technology

Haifa, Israel 32000

Abstract

A method commonly used for packet flow control over connections with long round-trip delays is “sliding windows”. In gen-
eral, for a given loss rate, a larger window size achieves a higher average throughput, but also a higher rate of spurious pacl
transmissions, rejected by the receiver merely for arriving out-of-order. This paper analyzes the problem of optimal flow con
trol quantitatively, for a connection that has a cost per unit time and a cost for every transmitted packet (these costs can ha
generic interpretations, not necessarily in terms of money). The optimal strategy is defined as one that minimizes the expect
cost/throughput ratio, and is allowed to transmit several copies of a packet within a window. We derive some bounds on the perfo
mance of the optimal strategy; in particular, we show that the optimal cost/throughput ratio increases merely logarithmically witt
the time price. We present a method for computing the optimal strategy; additionally, we demonstrate that a simple and efficiel
‘greedy’ algorithm is sufficient to find a near-optimal solution.

This research was supported by the Israeli Ministry of Science.

lesley
CCIT Report # 384 May 2002

. INTRODUCTION

A common method for the flow control of packets over a network connection, used both in the data-link and tr
transport layers, isliding windows [1]. In this mechanism, the receiver regularly informs the sender of the index of the
next-expected packet, thereby acknowledging all the packets up to that index. The sender may transmit up to a cel
number of packets, called theindow size, beyond the last acknowledged packet; if a packet is not acknowledged
within a certain ‘timeout’ period (ideally aimed to be the connection round-trip time, or slightly higher), the window
is retransmitted from that packet on. In its basic form, this scheme implies that packets must arrive to the destinat
in order. While the receiver may temporarily keep out-of-order packets in a buffer, this, in itself, does not change tl
connection’s behavior unless the protocol is extended to allow selective, rather than cumulative, acknowledgments
[3]. Such extensions are not universally implemented, and even when they are, the size of the buffer to hold such ¢
of-order packets is, typically, not very large. Therefore, on a coarser level, the packet stream still has to arrive in orc
allowing exceptions only to a limited extent.

As a consequence, a lost packet may trigger a retransmission of up to an entire window, which obviously caus
a reduction in throughput due to the time wasted in waiting for the acknowledgment. This loss is more severe
connections where the round-trip time (more precisely, the timeout) is long compared to the transmission time o
packet; such networks are said to have a ldoigmwidth-delay product. A good example is a geostationary satellite
link, with a round-trip propagation delay of roughly 0.25 seconds, used within a high-speed connection in which
packet transmission takes a fraction of a millisecond (a packet of 1000 bits over, say, a 10Mb/s connection takes me
0.1ms to transmit); in this scenario, the delay-bandwidth product is measured in thousands. Assuming that pac
losses are independent (e.g. caused by white noise or a randomized discarding policy along the connection’s path,
as RED [4] or a variant thereof), and the transmission time of the window is shorter than the round-trip delay, tt
throughput can be improved considerably by retransmitting some or all of the packets several times within the windt
itself (rather than just after a timeout, as in ‘classic’ sliding window schemes), as this increases the initial probability
successful arrival at the destination. For the rest of the paper, we extend the definition of the window size to include
such transmissions, counting each one separately whether it is a new packet or a copy of a previous one. We defi
dliding-window strategy to be a rule that specifies how many copies of each packet, relative to the start of the window
are transmitted and in what order; in particular, a sliding-window strategy specifies the window size. We mention at tt
point that alternative methods, suchfaswvard error correction (FEC), may be used within this framework instead of
simple retransmissions; we comment more on this later.

In general, it is apparent that, for a given packet loss rate, transmitting more packets in the window — be it new pack
or more copies of the same ones — increases the average throughput (at any rate, so long as the total transmission ti
the packets in a window does not exceed the round-trip time), as it increases the expected number of packets transir
successfully by the sender each time before it stops to wait for acknowledgments. However, using a larger wind
size also increases the average number of packets that are not lost but are discarded by the receiver (for arriving
of order or for being copies of packets already received), which needlessly contributes to the network load. Thi
selection of a window size constitutes a tradeoff between these conflicting goals. In order to perform a quantitati
analysis of the optimal retransmission strategy, we associate with the connection a ‘cost’ per unit time and a ‘cost’ |
packet transmission, and define the optimal strategy as one that achieves the lowest average cost/throughput ratio
time. We point out that these costs can have various practical interpretations, and it should not be taken literally t
the connection indeed charges money for them [5]. For example, the time cost may be associated with the disuti
incurred by the application due to increased delay, and the transmission cost may be related to the energy consumj
of a mobile device. Similarly, a ‘social’ (e.g. TCP-friendly) sender that refrains from retransmitting to avoid loading the
network for others behaves as if it had a high per-transmission cost.

In ‘classic’ sliding windows, where the sender is limited to transmitting each packet within the window once, com
putation of the optimal strategy reduces to an optimization of a single parameter (the window size), and can be sol
trivially. When each packet is allowed to be (re-)transmitted several times within a window, the problem becomes mu
more interesting. Finding the optimal strategy can then be viewed as being composed of two subproblems: an ‘ou
problem of finding the optimal window siz¥, depending on the time and packet transmission costs; and an ‘inner’
problem of optimal distribution of a given total ‘budget’ 8f transmissions among the packets in a window, which,
for a given N, no longer depends on the costs. A salient feature of the resulting solution is that not all packets a

transmitted the same number of times: earlier packets in every window get more copies transmitted than later ones
accordance with their ‘importance’ (e.g., the loss of the first packet in a window results in the loss of the entire windo
even if later packets arrive correctly, while the reverse is not true).

In this paper, we provide a detailed analysis of optimal strategies based on sliding windows with several transmissic
per packet. The analysis follows the decomposition pointed above to an ‘outer’ and ‘inner’ subproblem, and tackl
them separately for the most part. It turns out that the inner problem, of deciding which packet copies to transmit fo
given window size, involves nontrivial combinatorial optimization, and a significant portion of the paper is devoted to th
study of its properties. We show that, for a window sizé\gfthe expected number of successful (and in-order) packets

attained by the optimal solution @(%) ; we also describe how to compute a more precise tight bound. Additionally,

we study several efficient approximation algorithms and compare their performance, finding, in particular, that a simj
‘greedy’ approach attains nearly-optimal solutions, especially for [Afg&Ve then extend this approach for the outer
problem, of finding the optimal window size, as well, thus establishing an integrated solution algorithm for the overa
strategy optimization problem. Finally, we show that the cost/throughput ratio increases merely logarithmically in tf
time price; this is a significant improvement of the linear increase rate achievable by ‘classic’ sliding windows (that c
not transmit several copies per packet within a window).

Our current study analyzes optimal strategies limited to simple packet retransmissions only. A potentially bett
scheme for increasing the success probability of a group of packets is tteatvafd error correction (FEC) coding;
generally, gn, k) FEC code encodes a groupkopackets inta: > k ‘copies’, among which ank successfully received
allow reconstructing the original ones. We wish to emphasize that the ideas presented in this paper are not inconsis
with FEC coding, but rather complement it. If the network can only employ a fixed encoding (i.e. withnfizad
k), our analysis can be readily applied by treating each encoded block as a “super-packet” with the appropriate |
probability. Performance (i.e. cost/throughput) can be improved even further by employing a ftexiloig strategy,
which may use different codes for different packets. While the optimality analysis for this case is more complex ar
beyond the scope of this paper, it is based on essentially the same methodology as the one introduced here, excep
the number of retransmissions is replaced by the notiaodihg redundancy. In particular, it is to be expected that the
optimal strategy would use a higher redundancy coding for the first packets in every window than for later ones.

The special concerns raised by connections with large delay-bandwidth products in general, and satellite links
particular, have attracted considerable research in recent years, e.g., [6], [7], [8], [9], [10]. Most of these studies are
the context of the widely-used TCP protocol and study how to improve its performance, either by tuning already-existil
features [7], [8], or by introducing new ones, such as explicit congestion notifications [10]. Considerable attention h
also been devoted to FEC coding that is able to adapt to higher-layer protocol requirements, and to TCP in partict
(e.g.[11],[12], [13]). None of these works, however, suggested improvements to the sliding-window mechanism itse
In fact, to the best of our knowledge, the idea of basing the number of retransmissions (or the FEC coding redundan
on theposition of the packet within a window, which is central to this paper, has not been suggested before. W
emphasize that this idea is generic, and can be incorporated in any sliding-window protocol.

The rest of the paper is structured as follows. Section Il describes the assumptions made for the optimal strategy a
ysis and formally states the underlying optimization problem and its decomposition to the two sub-problems. Section
proves some basic properties of the solution and derives some bounds and asymptotic properties of the optimal stra
and the cost/throughput ratio it achieves. The next two sections establish efficient approaches for an approximate s
tion of the ‘inner’ combinatorial optimization problem: section IV presents several ‘greedy’ algorithms, compares the
performance, and demonstrates that they generally achieve quite satisfactory approximations, while section V pres
an alternative approach of using an analytical solution of an auxiliary problem in continuous variables, more eas
amenable to analysis. Section VI shows how these results are incorporated in a search algorithm for the overall opti
strategy and provides a conclusive example of the presented techniques. Finally, section VII concludes with a discus:
of our methodology and its possible extensions, and outlines directions for further research.

II. MODEL AND PROBLEM FORMULATION
A. The model

As explained in the Introduction, we are interested in network connections, either at the data-link or the transp:
layer, in which the receiver can only accept packets arriving in order (with only a small buffer space, if at all, to hand

a limited number of out-of-order packets), and the round-trip delay is considerably longer than the packet transmiss
time. In such connections, transmitting several packet copies in advance (even for packets that have not failed y
and especially of the first packets in every window, achieves a significant improvement over the classic sliding windc
scheme, namely, of transmitting each packet once and retransmitting only after a timeout (or a negative acknowle
ment).

For the model that lies in the basis of our analysis, we shall bring the above two characteristics to an extreme. T
is, we assume that the receiver is unable to accept out-of-order packets at all, and we take the packet transmission
to be zero, which means that the size of the window that may be transmitted within a round-trip delay is unlimite
Furthermore, we assume that there are no other factors that may limit the window size; e.g., the receiving applicat
processes the arriving packets instantly, if necessary, hence no buffer space is consumed by packets arriving in o
These assumptions allow us to simplify the analysis, capturing the essential properties of the resulting strategies witt
having to deal, from the outset, with details of secondary importance. We shall see later that, though the model requ
certain extensions if the above assumptions are alleviated, the optimal strategy solution methodology remains bz
on the same principles as developed for this, ‘idealized’ case; a more detailed discussion in this regard appears in
Conclusion.

We denote the loss rate in the network byand assume the loss probability of a packet to be independent of other
packets (and of its own earlier retransmissions). Thus, the losses may be caused by white noise, or, for instar
a randomizing queue management policy employed on the connection’s path (such as RED, which discards pac
randomly during times of mild congestion). Our analysis is less applicable if there is a significant correlation betwe
the losses of neighboring packets (e.g. at times of severe congestion), since retransmitting several copies of a packet
not reduce its loss probability significantly then. Furthermore, we assume the loss rate of acknowledgments (gener:
by the receiver in response to successfully received packets) to be negligible compared to that of the data packets.
is justified by the fact that acknowledgments are, typically, much shorter than data packets, and therefore suffer |
from noise and their paths are often less congested. In addition, acknowledgments are capable of mutual substitut
since they only need to carry the index of the next expected packet; hence, a lost acknowledgment has no significe
if another one, later in the window, is received successfully. Consequently, we assume that, for each transmitted pac
the sender knows whether it was successfully received or lost after a round-trip time, which we defiote by

Our analysis is aimed to find the optimal strategy, defined as one that minimizes the cost/throughput ratio over tin
We assume that the cost is composed of a ‘prices @er unit of time and per transmitted packet. As explained
in the Introduction, these prices quantify the tradeoff between waiting too long and loading the network too muc
properly selected, they can embed the delay or congestion cost (disutility) of the application or the network itself, a
need not necessarily be taken literally. Incidentally, we chose to base our analysis on this cost structure, whict
linear in the time and number of transmitted packets, reckoning that it is appropriate for a variety of scenarios and c
interpretations [5]; however, any other (nonlinear) cost structure may be used instead, as long as the cost of transmi
a window of packets depends only on its size, and not on the identity of the packets within or the number of pack
actually succeeded/lost. This may affect only the analytical results, regarding the asymptotic dependence of the opti
window size on the costs, whereas the algorithm we present for computing the optimal strategy itself, and the line
reasoning that leads to it, remain intact (after substituting the appropriate cost formula).

By showing how to compute the optimal strategy from the connection paramét@ts b)), we implicitly assume
that they are known to the entity performing the computation — presumably, the sender machine itself. Therefore, th
parameters must either remain constant or change in a quasi-static manner, so that a new optimal strategy is comf
after detecting a change (e.g. in the round-trip time). Our model is inadequate if any of the parameters, e.g. the rou
trip time, changes quickly and unpredictably; in that case, it should be modeled by a random variable (e.g., as in |
rather than a constant value. We point out that this occurence is not typical of the kind of network connections that :
the subject of this study: e.g., for satellite links, the propagation delay is the dominant part of the round-trip delay a
is constant, up to small fluctuations that can normally be neglected.

In light of the above assumptions, it is apparent that, in the optimal strategy, packets are only sent at times that
multiples of . There can never be any purpose to send a packet at a time other than a mulfiplsirafe no extra
information is present, and by ‘lumping’ all such transmissions to the nearest earlier multiplénaodintaining the
order between transmissions), nothing is lost and time is only gained. Furthermore, after having sent a sequenc
packets at timeT', it is known by time(n + 1)T which packets have been received and which ones lost/discarded, sa

the strategy simply restarts (‘slides’) at the packet subsequent to the last arriving in order. Consequently, the descrip
of a strategy consists simply of a single vector, specifying how many transmissions are to be made of every pacl
relative to the next-expected index at every multiplefofThe purpose of the subsequent analysis will be to find the
optimal such vector.

B. Problem formulation

Consider a vectofny,...,n;, ...), wheren; are whole and non-negative, and define a random varigblehich is
the number of in-order successful packets at the receiver if the sender transrjistitions of packet, followed by
ny repetitions of packe?, etc! The distribution ofS is

j
Ps(j) = [T (1 = 2™y - L+,)
=1

We seek the vectat = (ny,...,n,,...) that minimizes

a-T+b->2 n; a-TH+b->72 n
B[S] >e1d - Ps(y)

The above expression describes the cost/throughput ratio attained by the sirategiytime. The numerator is the
fixed cost of a period of’, during which one window is transmitted, and the denumerator is the expected number o
packets successfully communicated in that period.

Let us look more closely at expression (2). For a@iyconsider all vectors such tha}°, n; = N, i.e. suggesting
the same total number of transmissions. These vectors attain the same numerator value in (2); therefore, the compa
among them is based merely on the denominator value, and the best vector is the one that maximizes it. Conseque
let us define

)

[es) o) j
By (N) & max 9> 5-PsG)p= max 4> g-[Ja-17)-Lvp, 3)
st.3;ni=N | j=1 s>, mi=N | j=1 i=l
and rewrite expression (2) accordingly as
a-T+b-N @
Er(N)

Then, the problem of finding the strategy vector that minimizes (4) can be divided into the following (sub-)problems:
Inner problem: Computing the functiorky, (N) for a given value ofV.
Outer problem: Searching forV* that minimizes expression (4).

In the rest of the paper, we treat the two problems separately for the most part. It should be noted that, by tl
separation, the (infinite-dimensional) problem of finding the optimal strategy vector for a combination of paramete
(a,b,T,L) is divided into simpler problems, namely, computing a funcfigii/V) that depends only o#, while the
dependence on the other parameters is captured in a merely one-dimensional minimization problem. Furthermore
emphasize that the vector that actually attains the maximum in (3) is required only for the final stag¥, ladtebeen
found; during the search d¥, it suffices to be able to compute (or even approxim&té)V), without the need to find
the maximizing vector explicitly.

To conclude this section, we digress to consider the case of ‘classic’ sliding windows, where each packet is only s
once in a window; this corresponds to a strategy vectos of --- = nxy = 1, which brings about a cost/throughput

ratio of
a-T+b- N a-T+b- N L a-T+b-N

SN =LY L+ N-A-L)Y YN (a-L)y T1-Li-—a-pV

(®)

fit is obvious that this is the best order in which to transmit packets; not transmitting them in-order can only decrease the expected number
in-order arrivals.

Maximizing this (e.g. by differentiating with respect A9) yields an optimal window size of

ar log (4L log 7 +1)

1 T 1-L g () log 747

N =y —l—i—%log(l—L)—plog =D ~ 1 . (6)
og -1 e (foraT>b) log -7

whereplog () (the product-log function) denotes the inverse functiorf ¢f) = ¢ - ¢, such that = — plog (—y) (for
0<y< %) is the largest positive solution to the equatipe= - ¢~*; in the final approximation we used the property
that— plog (—e ®) =~ z + log for z > 1.} Thus, as the time costincreases with respect to the other parameters, the
optimal window size increases logarithmicallydnSince the denominator of (5) tends to a finite valu&vas> oo, the
cost/throughput ratio, overall, increases linearly. itWe shall see later that the ability to use retransmissions within the
window enables the cost/throughput to grow much more slowly, namely, logarithmicaily in

IIl. BASIC PROPERTIES AND BOUNDS

In this section, we show several basic structural properties of the solutions to the optimization problems, and der
some important bounds, in particular on the solution’s asymptotic behavior.

A. Properties of theinner problem

We begin by introducing a variable change that will make the subsequent analysis more convenientyp Befine
1 — L™ (i.e. p; is the individual probability of packetto arrive successfully, regardless of other packets). Then, the
maximized expression of (3) takes the simpler form of

00 J

00 J
i @ —rry-Lrie =35 [pir (L= pjga) = 1pr (1= p2)+2-p1p2 (1 — p3)+3-prpops (1 — pa)+- -+ =
j=1 =1 j=1 =1

oo]

o J
prt+ppe+pipaps+--=> [[pe=> [[(-1"). @)

j=1i=1 j=li=1

We henceforth refer to the rightmost side of (7) asdt@e of the vectorii, and denote it by(77). Also, we refer to
the vectorpy’' = (p1,...,pi,...) as completely equivalent to the vectoland interchange them freely for convenience;
in particular, with a slight abuse of notation, we refegi@) = Z;‘;l [1Z_, pi as the score of the vectpr

The next two lemmas describe basic structural properties of the solution.

Lemmal. E;(N) decreasesin L and increasesin N.

Proof. Consider the maximizing vector for a certain valud.adnd N. Now, suppose thal is decreased; then the score
of that vector increases. If it is no longer the maximizer for the new valug, ¢fien, obviously, the maximum value
can only be even higher. Therefore, the value of (3) increases.

Alternatively, suppose thaY is increased, and add the entire amount of the increase to the first element (arbitrarily)
Again, this results in an increase of the score; if the resulting vector is not the maximizer for the new valugef
value of (3) can only increase further. O

Lemma 2. For agiven N, the e ements of the vector that achieves the maximum in (3) maintain a non-increasing order,

Proof. Suppose, by contradiction, that there exists a pair of indicesi, with n;, < n;,. Consider the score of the
vector resulting by swapping;, , n;,, as given by expression (7). All the sum elements (products) fari (which
depend on neithet;, norn;,), as well as forj > iy (which contain both(1 — L"1) and (1 — L™2) in the product),
remain unchanged. The elements#oK j < iy, which contain only(1 — L") but not(1 — L™2) in the product, are
strictly increased by the swap, thereby increasing the value of the entire sum. Consequently, the original vector car
be a maximizer. O

Corollary 1. Inthe maximizing vector, all the elements after the first zero element are also zero.

#The product-log function is also known elsewhere as Lambert’s W-function [14], or, more precisely, as one of its real-valued branches.

Corollary 2. For agiven N, the number of nonzero elements in the maximizing vector is bounded by N.

Lemma 2 and its corollaries state a fundamental property, which we later use extensively, both in the proof of bour
on the maximum score that can be attained by a vector of a given\Vsied in the search for the maximizing vector.

In particular, as we shall see in section 1V, this property significantly reduces the number of ‘eligible’ vectors that nee
to be searched, and allows efficient search algorithms to be used for the problem solution.

The next lemma states a basic inequality that relates between the first element of a vector and its score. The follow
theorem then applies it inductively to derive an important bound on the number of transmissions required to attair
given score.

Lemma 3. If 77 isthe maximizing vector in (3),thenp, =1 — L™ > df()ll.
Proof. From Lemma 2, it follows that

o]
j=1

i 0o J %) .
HPZ<ZHPI Z = h
1

1—)
j=1i=1 j=1 p1

and the lemma immediately follows by extracting O
Theorem 1. For any vector i, N = Y2, n; > log; 1 {[$(77) + 1]!} .1

Proof. Obviously, since the factorial and the logarithm are monotonously increasing operations, it suffices to prove t
theorem just for the vectat that attains the maximum score for a givi¥n Such a vector is known to satisfy lemmas 2
and 3.

Consider the equivalent vectpr= (p, ... ,pM,O 0,...), whereM denotes the index of the last non-zero element.
Define the foIIowmg sequence of subvectqf§) £ (Pm>Pm+1s -+, 00, 0,0,...), and of their corresponding scores,
Om = () E] w11y pi, foralll < m < M. Thus,¢, is the score of the original vector, whi{g, simply
equaISpM

Applying Lemma 3 on each of these subvectors in turn, we have dm_or] — P <

1
| GmF1 = fm+l
I =) =TI G+ 1)
However, it can be seen (directly from the definition) that= p,, (1 + ¢n41), and, thereforeg,, 11 > ¢ — 1,
forall 1 < m < M. By successive application of this inequality, we ggt> ¢1 — (m — 1) for all m. Therefore, we

have so far
M
[H (1 - pm)

m=1

. Consequently,

M
> [] m+1) > [maxfpr — (m—1)+1,1].
m=1 m=1

On the other hand, consider the factofial + 1)!. Denote| ¢, | to be the integer part @f; (and, thereby(¢1 — | ¢1])
to be its fractional part). Successively applying the factorial property eft - (¢ — 1)! for any¢ > 1, we have

(pr+D)!=(p1+1) - p1- (1 —1)...- (1~ [])! = max [¢p1 — (m — 1) + 1,1] - (¢1 — |1])! <

=

m=1

Hmaxqﬁl —-1)+1,1].

Note that we implicitly used the obvious fact that< M, and also that! < 1 forany0 <t < 1.
Combining all the above inequalities, we finally obtain

-1

M
[H L=pm)| > (dr+1),
m=1
tRecall that the factorial, for anyt > 0, is defined byt! = f0°° zte~%dz; this definition conincides with the more commtn=1-2-...-¢

for integert. A well-known property of the factorial i = ¢ - (¢t — 1)! for anyt > 1.

from which, by taking the logarithm of both sides and noting g, (1 — pn) = logy 1, (L") = —nm, we get
er\r/{zl N > logyr [(¢1 + 1)1 [

Finally, the following fundamental theorem presents the asymptotic relation between the window size and the ma
mum score that can be obtained by a vector of that size.

Theorem 2. Ef(N) = © (ﬁ)ﬁr

Proof. We apply the well-known Stirling’s factorial approximation formulbaz /27t (g)lt for larget, to the inequality
established in Theorem 1, and obtain

Er(N)+1
N 2 logyy [BL(V) + 11~ BN oy (X0) togy s 2RTELO 1 1)

thus,N = Q (EL(N) -logy /1, EL(N)>. This implies directly thaEr(N) = O (ﬁ)
To show that;, (V) = Q (ﬁ) as well, it suffices to find a strategy vector, not necessary the optimal one, that
attains a score df (ﬁ) Accordingly, consider the vectdn, ...,n,0,...), such thaty, = --- = ny =

log;/;, N andM = ﬁ (i.e. a strategy that transmﬁt—bsgljjﬁ packets an equal number of times). Its score is

N N

M j logl/LN : N] logl/LN 1 j
| — L) = @—L%w): —) =

> 1l0-mm= > (1)

j=1:=1 7=1 7j=1

N
1 1\ g, LN 1 T
N{l——=)|1-(1-= >N (1l——=|)(1—¢ "®/r

which completes the proof, sinee» ~ 1—% for largez. Incidentally, note that the fact that eitHeg; ,;, N orﬁ

may not be integers, which was ignored above, is only a minor technical difficulty; to overcome it, simply round eithe
or both of them up to the nearest integer, if necessary. This can only increase the vector’s score even further, while
sum of the vector’s elements is raiseleg)g)yll/LLN + 1 at most, which is negligible compared A and does not change

the asymptotic relation. O

1
T

Itis insightful to compare the result of Theorem 2 with the total number of packets that reach the receiver successft
(not necessarily in order), which is, obviously, - (1 — L), i.e.,©(N). Hence, it can be thought that discarding out-
of-order packets impacts the performance by a logarithmic factor. Note, incidentally, that this theorem can also be u
inversely; that is, in order to have an expected numbermdickets arriving successfully and in-order to the destination,
the total number of packet copies transmitted by the source mutpelog ¢).

B. Properties of the outer problem

This subsection is concerned with the dependence of the optimal window size on the cost factors. Lemma 4 ste
the intuitive fact that the optimal window size increases in the time cost and decreases in the packet transmission ¢
and that it depends only on the ratio between the two. Theorem 3 states the central result of this section, namely,
with the optimal window size, the cost/throughput ratio increases merely logarithmically in the time nostinearly
as was the case with ‘classic’ sliding windows in the end of section Il.

Lemma 4. The optimal N* is monotonously increasing in %

< Cog(x)
O(f(x)),

tRecall that, for positive functiong(z), g(z), the notationf (z) = O(g(z)) means that there exists a finite constarsiuch thatf ()
for all (sufficiently large)r; a sufficient condition for this itim, .. L2 < oo. In addition, f(x) = Q(g()) is equivalent tgy(z) =

andf(x) = ©(g(x)) means that botlf(z) = O(g(z)) and f(z) = Q(g(z)).

9

Proof. Consider two sets of parameters by, 71 andas, bo, T such that% > “i—QTZ and suppose tha¥;, N are
their corresponding solutions (to the outer problem). This implies, in particular, that

a1T1 + blNQ* > a1T1 + ble

Er (N5) — Ep(Ny)
aoTy + bQNQ* < aoly + ngf
Er(N3) — EL(Ny) ~’

or

b1 bl
aT: asT:
(%24 g) B) < (%222 4+ 7) B)

Subtracting the second inequality from the first and dividing by a common fac(%— “i?), which is positive
by assumption, we obtaiR;, (Ny) > Er (N5). In light of the monotonicity ofEz(N) (Lemma 1), this implies

N; > Nj. O

Theorem 3. Asa — oo (for fixed values of T', b, L), the cost/performance ratio attained by the optimal strategy (as
given by expression (4)) increases logarithmically in a.

Proof. Consider the expressidnz) £ % as a function of a (continuous) variahte By differentiation with

respect tar, it is easily found that its minimum is attainedzit= 2= - [— plog (—e - -2)] .T Using again the property

that — plog (—e %) =~ y + logy for very largey, we obtainz* = ©(a - loga), and the minimum value oi(z) is
therefore®©(log a). This proves the theorem, since, in light of Theorem 2, the cost/throughput ratio (expression (4)) i
itself ©(h(N)), and its minimum value can, therefore, deviate from thdt(d¥) by a constant factor at most. I
Incidentally, it should be noted that no similar result existséfer oo with the other parameters constant. Indeed,
as% — 0, the optimal strategy tends {a,0,0,...) (simple stop-and-wait), and the value of expression (4) simply

increases linearly ih. This is true, of course, for the ‘classic’ case as well.

IV. APPROXIMATION ALGORITHMS FOR THE INNER PROBLEM

In this and the next section, we consider approaches for approximation of the fuRcti¥n (i.e. the solution of
the inner problem). This section focuses on direct-search algorithms; the next section presents an alternative appr
of solving a similar auxiliary problem in continuous variables, that is more easily amenable to analysis.

To begin, we note that the most straightforward approach, arguably, is exhaustive search among all the nonnege
integer vectors with elements in non-increasing order (in light of Lemma 2), that sumMp Egure 1 shows how
the number of such vectors increaseshin Thus, forN = 10 there are only2 vectors to check, and this number
increases t@04 226 for N = 50 and190 569 292 for N = 100. It can be concluded that this approach is quite viable
for small values ofV, especially considering that the computation of the optimal sliding-window strategy is only neede
occasionally (when the parameters of the problem, e.g. the round-trip delay, are changed), and can be performed off

For larger values o, exhaustive search may not be practical, and we seek an alternative that produces a reasona
approximate solution at a low computational cost. Figures 2, 3, and 4 show three possible algorithms. All the
algorithms are ‘greedy’ in the sense that they proceed in iterations, seeking the best possible improvement in e
iteration until unable to find any further improvement. Algorithm ‘Greedy-R’ begins with the védton, 0, ...) and,
at every iteration, seeks the best score that can be obtained by a right-move — namely, by decrementing an eler
by 1 and incrementing another element further to the right, provided that the resulting vector remains non-increasit
Algorithm ‘Greedy-L’ operates the other way around; it begins with the ve¢tor.., 1) and repeatedly seeks to

N
improve the score by left-moves. Finally, algorithm ‘Greedy-A’ makes additions instead of moves; that is, it begins wit
a vector of all-zeros, and at each iteration finds the element whose increment brings about the highest score, kee
the vector non-increasing. Obviously, Greedy-A always makes exatitgrations.

10

10"

102 i

10

107 - q

10" 7

10° - 1

10 - q

10° - 1

10 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

N

Fig. 1. The number of nonnegative integer vectors summing up, tvith elements in non-increasing order, as a functioiVof
Note the vertical scale is logarithmic.

Initialization: Set7i = (N, 0,0,...)
Repeat:
For everyi, j such that < j, n; > n;y1, andnj_; > nj:
Temporarily sety; < n; —1,n;j < n; +1
Compute the score of
Restoren;, n;
For thei, 7 pair that got the best score:
If the score is better than that of the current vector:
Setn; < n; — 1,n; + n; + 1, go back toRepeat
Else terminate.

Fig. 2. Algorithm Greedy-R.

Initialization: Setni = (1,...,1,0,...)

N
Repeat:
For everyi, j such that > j, n; > n;11, and eitherj = 1 orn;_; > n;:
Temporarily set; < n; — 1,n; +n;j +1
Compute the score af
Restoren;, n;
For thei, j pair that got the best score:
If the score is better than that of the current vector:
Setn; < n; — 1, n; < n; + 1, go back toRepeat
Else terminate.

Fig. 3. Algorithm Greedy-L.

11

Initialization: Setri = (0,0,...)
Do N times:
For every; such that eithej = 1 orn;_; > n;:
Temporarily setr; < n; + 1
Compute the score af
Restoren;
For thej that got the best score:
Setnj < n; +1

Fig. 4. Algorithm Greedy-A.

It should be understood that the three algorithms are not equivalent in terms of complexity. The algorithms Greedy
and Greedy-L can, in the worst case, reqt@réN 2) iterations, and each iteration may potentially reqmr(eN 2) score
evaluations. Algorithm Greedy-A, on the other hand, requires dhligerations, and each iteration requires no more
than N score evaluation's.We shall see that the lower complexity of Greedy-A comes at the expense of achieving
lower score more frequently.

Example: The following table summarizes the optimal vectors and their scores fer15 and selected values &f

L Optimal vector Score
0.1 (2,2,2,2,1,1,1,1,1,1,1,0,0) | 8.41131
03| (3,2,2,2,2,2,1,1,0,0,0,0) | 5.39436
0.5 (4,3,3,2,2,1,0,...,0) 3.61954
0.7 (6,5,3,1,0,...,0) 2.24336
0.9 (11,4,0,...,0) 0.92217

It can be seen that, in accordance with intuition, the lower the loss probability, the better it is to send at least o
copy of more packets; conversely, when the loss probability is high, the highest expected number of successful in-ot
arrivals is attained by sending just the first few packets many times. In fact, it is obvious that, fiy, éing optimal
vector tends td1, ..., 1) for L — 0 and to(N,0,...,0) for L — 1.

N——

The values in tr]:]e above table were found by exhaustive search. The greedy algorithms did not converge to th
vectors in all cases. Specifically, fér = 0.3, the Greedy-A algorithm found the vect(®, 3,2,2,2,2,1,0,...,0),
with a somewhat lower score 6f38234. For L. = 0.5, only the Greedy-L algorithm converged to the optimal solution,
while the other two found the vectdt, 4, 3, 3,1,0,...,0), with a score 08.59482. In general, it is possible that none
of the three algorithms converges to the optimal vector. The smaildst which an example of this possibility was
found isN = 90, at L = 0.505; there, the value oE;(N) (found by exhaustive search) i4.3278, while Greedy-L
attains only14.2939, and Greedy-R and Greedy-A achieve an even lower scoré.2$35. O

We point out that the good performance of all the algorithms for ‘extreme’ valués(dbse to0 or to 1), and less-
than-optimal results fof, around0.5, as exhibited in the above example, are to be expected. In fact, it can be provec
that when the maximizing vector is indeéd . . ., 1) or (IV, 0, ..., 0), all the greedy algorithms converge to the correct

vector. (We do not go into the formal detailg of the proof.) On the other hand, fer0.5, the optimum is much less
proclaimed (i.e., there is a large number of vectors with scores that are very close to the optimum), which causes
occasional convergence of the greedy algorithms to nearby vectors.

Nevertheless, we found the algorithms’ results to be always very close to each other. We have run them for all vall
of N < 300 andL betweer).001 and0.999 in increments 0f).001; we also ran the exhaustive search on all values of
N <100 (for values ofN higher than that, the search turned out to be too time-consuming). Figure 5 shows the lowe:

fRecall the definition of the product-log function at the end of section II.

This complexity estimation counts each score evaluation as a single operation. In fact, since there is a great deal of repetition in the sc
computations, a lot of elementary operations (multiplications and summations) can be saved by using auxiliary storage for temporary resu
however, even with the best optimization, the computational cost of Greedy-R and Greedy-L is still higher by at least amdttiandhat of
Greedy-A.

12

score ratio between the worst and the best algorithm, taken over all valliesi®fa function ofV. It turns out that the
worst score ratio is attained &t = 5, . = 0.5: there, Greedy-A converges to a scorel ¢f3125, while all the other
algorithms reach.59375, for a worst-to-best ratio of approximately96; from there, it tends to get closer 1o In fact,
for N > 43, the worst-to-best score ratio never drops belo®9, for any value ofL.

1

0.995 - 7

0.99 | 7

0.985 - q

0.98 - 4

worst ratio

0.975- q

097 q

0.965 - q

0.96 1 1 1 1 1
0 50 100 150 200 250 300

N

Fig. 5. The lowest ratio between any two algorithms (oveLgllas a function ofV. The lowest point of the graph is approximately
0.9608 for N = 5 (reached fo, = 0.5). The graph stays abo@e99 for all N > 43.

It is worthwhile mentioning that, in all the points of Figure 5, the worst algorithm was Greedy-A. This is not to say
that it always achieves the worst score; in fact, it frequently reached the best score, with one of the other algorith
lagging behind (though there was not a single instance in which the Greedy-A algorithm veagtadest among all
three). However, in such cases the ratio between that other algorithm’s score and Greedy-A's score was never as o
the inverse ratio for some different value bffor which the case was reversed and Greedy-A had the worst score.

If one is willing to accept the conjecture that the graph of Figure 5 continues similarlyvfor 300, then the
conclusion emerging from the results of this section is that the Greedy-A algorithm, which is computationally th
cheapest (fastest) one, can be used to approximate the optimal retransmission strategy with only a small deviation f
optimality, probably acceptable for most purposes.

V. APPROXIMATION THROUGH CONTINUOUS RELAXATION

In this section, we analyze the properties of the same optimization problem as the one that defines the funct
E;(N), except that the requirement for the strategy vector elements to be integers is omitted. This way, we have
relaxed optimization problem in a continuous space, which can be analyzed more easily by ‘traditional’ methods frc
optimization theory. Unlike the direct-search methods of the previous section, which resulted in vectors with low
scores tharE;,(N), our present technique obtains a value that is higher TidV). This can be regarded as an
improvement to the upper bound derived earlier (in Theorem 1); we shall show in the end of this section that this bou
is tight, in a certain sense, and therefore can be used as an alternative approximation méghad)feespecially for
large V.

To distinguish the relaxed problem from the original one, we change the notation and refer to the strategy vector
(x1,x9,...), and to the function in the denominator of (4)®&gs):

o J
EFSEE S 38 | (BTSNt @
st ;>0 v;=s | J=1 =1

In other words®,(s) is defined exactly likd;, (N) except that the maximum is taken over vectors whose elements are
not restricted to be integers. Note that, in particulars) is well-defined for non-integer values of

13

We shall again make the convenient variable changg &f 1 — L, after which the score expression is simply
P [1_, pi (see equation (7)), while the constraintszptecome

z; >0 = 0<p;i <1)

Yo=Y log (1-p)=s = [[O-p)=1" (10)

To summarize, we seek the solution of the following optimization problem, in terms of the yeetdp , po, .. .):

maximize E | | pi = p1 +p1p2 +pipeps + ...
j=1:=1
0

subjectto 0<p; <1, [[(1—p)=L"
i1

It is to be noted at once that this problem essentially depends on just one pardinghenigh the translation back to
the original variablesy; = log; (1 — p;), involves the specific value df).

We proceed to derive the solution to this problem and study its properties. We begin by noting that the solution vect
i.e. one that attains the global maximum must, in particular, be also a local maximum. Consequently, as both the tat
expression and the constraint are differentiable, we can employ the technique of defining the Lagrangian

J

o0
£=> TIr:i+x H 1—p;)—L*
j=1li=1

and requiring that the solution satisfy the corresponding Kuhn-Tucker conditions [15], which require that

)

8—£:0 if 0 <pp <1, (12)
Ipm
ﬁgo if pp, = 0. (12)
Ipm

(In fact, there is also a condition to be fulfilledzf, = 1; however, it is immediately seen that the constraint< 1
cannot be active, i.e. no element of the solution vector can be equiakioce this would immediately contradict the
equality constraint (10).)

Let us develop equation (11) into an explicit form:

ZHPZ_AH 1_p2 Zsz —O,
Jj=m i=1 j=m i=1
1#m z;ém 1#Em
consequently
00 J
(1—pm) Y_ J] pi=X-L* £ X (constant for alkn such tha,, > 0), (13)
j=m =1
i#m
or, in an alternative form that will prove to be more convenient,
1—p o J
= > " JI»i = X (constant for alim such thap,, > 0). (13)
Pm =
J=m 1=
Similarly, from inequality (12) we get
0 j
> T »i < X' (for all m such thap,, = 0). (14)

j=m i=1

i£Em

14

Using (13)—(14), we are now in a position to prove a few structural properties of the solution vector. The next fe
lemmas show that it has a finite length and its elements are monotonously decreasing; note that these propertie:
similar to those of the solution vector of the original (non-relaxed) problem, as stated by Lemma 2.

Lemmab. If py, = 0 for someindex M, then p,,, = 0 for any m > M.

Proof. Immediate from (13): given thai,, = 0 for someM < m, the left-hand size of (13) equalsthus the equality
cannot be satisfied; consequently, it is impossible to pgave 0. O

Lemma 6. The positive elements of the solution vector maintain a strictly decreasing order.

Proof. Choose a pair of indicesy , mo, such thatn; < mgy andp,,, > 0,p,, > 0. Condition (13’) requires that

1—pm 7 _ 1—pm] H H yi J H

e 3 iy v = =522 3052, iy pi- Since, obviouslyy=2 | TTi_ pi > 3232, [Ty pi, it follows

thatl;’ﬂ < 1;’&. By a straightforward simplification, this impligs,, > py,. O
my m2

Lemma 7. There exists a finite M such that p,, = 0 for any m > M.

Proof. Suppose, by contradiction, that sukhdoes not exist; in light of Lemma (5), it follows that the solution vector
consists of an infinite sequence of positive elements. Choose an Mdswuch thatm, < %; such M must exist,
otherwise it would be impossible to satisfy constraint (10) (the product on its left-hand side would convéxg@é/eo
now show that the assumptigr;; > 0 leads to a contradiction.

If par+1 > 0, then condition (13’) requires

J

l—pM-H %) J l—pM) l—pM M) J
E— Z sz' = Z sz' = Hpi + Z sz')
PM i Py \io

PM+1 L —1 G=M41i=1

or, dividing both sides by the common factorﬁfilpi,

1—puil ! - l-—pum - ! _ - ! (I —pm) pu1
——= > 1l »= 1+ Y I w) = X [pi=—22000

PM+1 i by j=M+1i=M+1 j=M41i=M+1 PM = PM+1

However, as a result of Lemma 6, the following inequality holds:

00 i 00 i 00 P
= M1
> I i< Yo I pan= Y. o) M= 1o =
j=M41i=M+1 j=M+1i=M+1 j=M+1 PM+1

Substituting this inequality into the previous equation, we therefore get

(1—pM)pM+1< Pym+1

< = (1—pm)A—pms1) <pm—pmy1 = L+pupvs < 2pur,
PM — PM+1 1 —prms1

which contradicte;; < % Thus, condition (13’) cannot be satisfied; therefgrg, 1 = 0. O

Lemma 8. If a vector (p1,p2,...,pr,0,0,...), wherep,, > 0 for all 1 < m < M, satisfies condition (13), then it
satisfies condition (14) if and only if pys < %

Proof. Forpjs, 90 and beyond, the left-hand side of (14) equi(as it includes a factor gf;,; = 0), and the condition
is satisfied trivially. Fomp,,1, upon substituting the value of evaluated ap,, at the right-hand side, condition (14)
becomes

oo J o j M M-1
o Il - [<= [lpi<-pm)] ps;
J=M41 i=1 =M i=1 i—1 i—1
£ M1 iEM

and after dividing both sides by the common factof[c?i;lpi, itreducestoy <1 —py <= pu < % O

15

It follows from the above lemmas that the solution to the maximization problem is of the form
(p1,p2,---y0M,0,0,...), wherep,, > 0forall1 < m < M, andpy < % We shall henceforth us&/ solely
to denote the index of the last nonzero element of the solution vector.

Suppose that a vectdp;, ps, ... ,par, 0,0, ...) is known to satisfy conditions (9) and (13)—(14), and that only the
value of the last elemenmt, is known. Then the other elements can be uniquely determined by a procedure of backwar
iteration. Specifically, once the values @f.1,...,py are known,p,, can be computed using condition (13), as
follows:

o j) J
1_pm ZHP’L_ 1_pm+1) Z H pi =
i T
M J
(1—pm) [1+ Z H pi| = (1= pmpr) 2" > I =
j=m+1i=m+1 m+1 j=m+1i=m+1
Pm+1 | 1+ Z H i 1+ Z H i
j=m+1i=m+1 j= m+1z m+1
- . (15)
Pm+1 + Z H i 2+ Z H i
j=m+1i=m+1 Jj=m-+2 i=m+2

Having shown thaflf and0 < pys < % uniquely determine a vector that satisfies conditions (13)—(14), we argue it
to be more convenient to define a functign Rt — R, such that, for any > 0, 5(#) is the vector obtained through
formula (15) forM = [t]T andpy, = % (t+ 1 — [t]). This way, any vector that satisfies conditions (13)—(14) (and is
therefore an “eligible candidate” to be a solution to the optimization problem for some valEigpafrresponds to a
positive real number, and the space of all such vectors is in one-to-one correspondence with the positive real axis.
also definep, : Rt — R to be thei-th component of.

Lemma 9. The function $'is continuous.

Proof. The continuity ofp” at non-integer points (continuity im; only, with A unchanged) is obvious from for-
mula (15), which showsg,,, for anyl < m < M — 1, to be continuous ip,,1,...,py, and therefore (applying
backward induction frormm = M — 1 to m = 1) to be continuous im,.

To show the continuity of att = K for an integerK, one must provéim,_, i p(t) = lim,_, g+ p(t). Consider
first the componenpy. Fort — K, py(t) is simply the last nonzero element pft); that is, M = K and
px(t) = 1 (t+1— K). Therefore,

1 1
1 = lim - (t+1-K)=-.
Jim pre(t) = lim o) =3

Fort — K*, pg(t) is the penultimate nonzero element; thathg,= K + 1, pyy = 3 (t — K), andpg(t) can be
computed from (15):

K+1 J
=Y I |
) j=K+1i=K+1 . 1+5(t-K) 1
lim pg(t) = lim : = lim —2~— 72—~
toK+ t—K+ K+1 J toK+ 2+0 2

2+Z Hpi

J=K+2i=K+2

Hence, the componenty (¢) is continuous at = K. From here, the continuity of componemgt), ..., px_;(t)
follows from their being continuous ip, according to formula (15) (again, by applying backward induction from
m=K—1tom =1). O

fThe operatoft] denotes the integer obtained by rounding up, df. the smallest integer that is not less than

16

Figure 6 shows a plot of the functign (¢). The plot is divided into three separate ranges to emphasize the ‘waviness’
of the function. Note that, by constructiop,(t) = p, (¢ + k) for any integerk and anyt > 0; hence, appropriately
shifted, the plot is valid for any componept, ().

0.997

0.9975

0.996

0.995| 09971

0994

0.9965
0993

0992

0.996
0901

0.9955

Fig. 6. Plot of the functiom, ().

Figure 7 shows a plot of*(¢) £ T[22, (1 — p;(t)), i.e. the value ofZ* for which the vectorp(t) would satisfy
constraint (10). For convenience, the y-axis is logarithmic.

Fig. 7. Plot of the functior.®(t) £ [, (1 — p;(t)).

Finally, Figure 8 shows a plot of the score attainedpifs).

L L L L L 14 L L L L L L L L L L L L L L L L L L
0 2 a 6 8 10 12 14 16 18 20 20 22 24 26 28 30 32 34 36 38 40 a0 a2 a4 a6 a8 50 52 54 56 58 60

Fig. 8. Plotofg(t) = Y20, TTL_, pi(1).

Conceptually, the solution of the optimization problem for a given valué &f obtained by locating the set of points
{tII; (1 — p;(t)) = L* } (e.g., from Figure 7), and selecting the point that attains the maximal vajue PF_, pi(t)
(e.g., from Figure 8). Note that the set contains more than one poid fgr 1.586 - 10~*® (the function of Figure 7
ceases to be strictly decreasing after 27). An algorithm to compute the solution could begin by evaluatfi{g)

17

at integer points, exploiting the function’s continuity to find an initial search range, and then perform a detailed searc
e.g., by evaluation of*(¢) on a sufficiently dense grid of points (depending on the required precision) and subsequer
interpolation. The implementation details of such an algorithm are tedious yet entirely straightforward, and we do r
consider them here any further.

Our experience from running this computation for various problem instances suggests that different vathas of
correspond to the sam&’ tend to attain very close values gfas well, hence simply finding any suchs nearly
optimal. In graphical terms, this means that the plots in figures 7 and 8 are very nearly “mirror images” of each oth
(and become ever more sotagets larger). To illustrate this, Figure 9 shows a parametric ple{OfversusE (t), for
t that varies continuously in the same range as above. It can be seen that the plot ‘almost’ defines a function; it ta
a great deal of “zooming in” to notice that the plot actually zig-zags back and forth. Obviously, Figure 9 contains tf
‘true’ ® (L®) as well; that is® (L*) is described by the topmost point of the plot for any valué’ofStrictly speaking,
therefore, the functio® (L*) is not continuous; however, its ‘jumps’ are markedly minuscule.

80

70 |

60 g

a0t
30+
20

10

0 I I I I I I
10710 107120 10710 107 107 107 107 10°

Fig. 9. Parametric plot af(¢) vs L*(t), and comparison to the bound implied by Theorem 1.

Incidentally, it can be observed that the proof of Theorem 1 is easily extended to the continuous version of tl
problem; it then states thdf < m This bound is plotted by the dotted line in Figure 9. Thus, it can be seen
that the auxiliary functionp (Z*), while not difficult to compute, provides a much tighter bound.

To complete this section, the next lemma provides the asymptotic connection bdineén and the auxiliary
function @y, (s). It states that, in a certain sense, the functipis) provides a close approximation & (V) for large
values ofN.

Lemma 10. For any given value of L*, limy 00 E, , ;yi/8 (N) = @ (L?).

(L*)

Proof. Define the following auxiliary function, fod < A < 1 and0 < p < 1: Yi(p) = 1 — Allega(l=P)] ‘where| - |
denotes the integer-part operator. An alternative definition is{ft{a is the highest number that is no higher than
and can be expressed s A", for some integen. It is obvious that ad — 1, the set of points expressablelas A"

for some integer becomes dense in the segméntl], i.e., any0 < p < 1 can be approximated with an arbitrarily
small difference by such a point, far sufficiently close td. Thereforelimy_,; Y3 (p) = p forany0 < p < 1.

Now, denote the maximizing vector ob (L) by p* = (pi,...,P3,0,0,...), and define the vector
piv £ (Yay (1), Yay (95,),0,0,...), where Ay £ (L*)/N. Define also the corresponding vec-
tor njiy = (llogs, (1 —p7)],..., logs, (1 —p3,)],0,0,...), and denoteN’ = > njy. Obviously, N' <
Sy logy, (1—p) =logy, T2, (1 —pf) =logy, L* = N.

Now, consider the score ¢fy. It cannot be higher thali, , (N'), sincenjy is just one of the ‘eligible’ vectors over
which E, , (N') is maximized. In light of Lemma 1, it is therefore not higher than, (V) as well. ThusE, , (V)
is ‘sandwiched’ between the scores g andp* (the latter, by definition, being simplg (L*)). However, since

18

Initialization: SetN;, = 1; Ng =4
Bound estimation:
NL — 2NL,NH — 2NH
Search:
While Ny, 75 Ny
SetN; < Ng —r(Ng — Np), Ny + N +r(Ng — Np) (rounded to integers
If CTR(Ny) > CTR (N>):
SetNy, <+ N;
Else:
SetNy + Ny

~—~—

Fig. 10. Fibonacci search algorithm for the optimat; CT R(N) denotes the target expressi%, i.e. the cost/throughput
ratio, andr = @ ~ 0.618.

ANy — 1asN — oo, we havelimy o p[y = p*; in light of the continuity of the score expression, this finally implies
limpy o0 Ery (N) = ®(LF). O

VI. APPROACHES FOR FINDING THE OPTIMAL WINDOW SIZE

The previous two sections provided a detailed discussion on efficient methods for approximate computation of t
functionE; (N), which we termed the ‘inner problem’. To complete the picture, we now recall that this computation is
only a part of the bigger task of finding the strategy with the minimal cost/throughput ratio; accordingly, we now tur
to discuss the outer part of the problem, namely, finding the optimal valde(tfie window size).

The most straightforward approach to finding the optifiahrguably, is that of a direct search, using any of the meth-
ods outlined in the previous two sections as a ‘subroutine’ for complify). A popular search method is that of the
Fibonacci or golden-section search [15]. This method begins with a search inférval;] and then reduces this inter-
val by a factor ofr in every iteration, by proceeding to eithe¥;,, Nz, + r(Ng — N)] or [Ng — r(Ng — N1.), Ng],
according to which of the two intermediate points attains a smaller value of the target expression. The vabkie of
usually taken to bé@ ~ 0.618, due to the property thaf = 1 — r, which causes one of the intermediate points
in each iteration to coincide always with one of the intermediate points in the previous iteration, thereby halving tt
number of computations of the target expression.

An algorithm for minimizing the cost/throughput ratio that is based on the Fibonacci search method is presented
Figure 10! It begins by estimating an upper bound for the search by doubling the iNias long as it reduces the
target expression, and follows with a Fibonacci search within that bound. It is easy to see that, if the eventual res
is N*, the computational complexity of this algorithm (&g N*) times the complexity of a single computation of
the target expression, which depends on the method chosen to eval(ate Possible minor modifications to the
algorithm, such as increasing the initial bound by a factor other #ham starting the search ifi, Ny] rather than
[N1, Ng], do not change this complexity significantly.

The drawback of the direct search method is that the computatioRs(f) for different values ofN are made
independently, and neglect their internal redundancy. For example, suppose that the evalda(idh &f performed
with the Greedy-A algorithm. For any, this algorithm starts with a zero vector and performs a series of increments that
are, by themselves, independent\df{that is, N only sets the total number of increments). In other words, evaluation of
Er (V) by the Greedy-A algorithm for anyy produces, as a free by-product, the corresponding valugg o) for all
N' < N. Thus, by the time the Fibonacci algorithm completed the initialization of the upper bound, the cost/throughpt
ratios are, in fact, readily available for &l up to that bound, and the ensuing search is superfluous.

An alternative method, which exploits the redundancy mentioned above, is shown in Figure 11, and we call it ‘Greed
N'. It works identically to Greedy-A, except that the number of steps is not set in advance; rather, it proceeds to evi
increasingN, computing the cost/throughput ratio on the fly, and stops as soon as the ratio ceases to decrease
improve).

TFigure 10 omits some details about the way the interval is rounded to integers, which pose no major interest.

19

Initialization: Setri = (0,0,...)
Loop:
For every;j such that eithej = 1 orn;_; > n;:
Temporarily setr; < n; + 1
Compute the score of
Restoren;;
For thej that got the best score:
Setnj <+ n; +1
Compute the cost/throughput ratio for
If ratio improved from last iteration, go back thoop’;
else terminate.

Fig. 11. Algorithm Greedy-N.

Both methods described above would converge to the optimal solution (up to the approximation involved in the eva
ation of E; (IV)) if the target expression, i.e. the cost/throughput ratio, had a single local minimi¥mUmfortunately,
this is not the actual case. Figure 12 shows a typical plot of the target ratio as a funcfidnlboftan be seen that
the function decreases steeply and monotonously at first but quickly becomes quite ‘flat’, eventually increasing ratl
slowly amid a somewnhat noise-resembling behavidihis shape is indeed expected in light of the ratio expression

being® (w<tbN_) (recall Theorem 2): for smalV, where the numerator is dominantly 7', the ratio decreases at
N/log, ;1 N

arate ofN/TII/LN, and for largetV, where the numerator is dominantly N, the ratio increases at a ratelof; ;;, IV,
i.e., much more slowly. The ‘noise’ (i.e. non-monotonocity), which is especially apparent around the minimum poin
is due to combinatorial effects which we do not go into further; however, it may cause a potentially large number

‘false’ local minima, whereas the Greedy-N algorithm naively stops after finding the first one.

167 4.44
14+ g 4.42+ A
1 i 4.4t . 4
438} U B
10f* i .
436} 4
x o i o
5® B
434 ot 4
6 7 . .
432 . . B
L PRI R R .
43+ Lt 1
2 1 428) o 1
0 L L L L L L Il Il Il 426 L L L L L
0 10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80
N N

EL(N)
a ‘zoom-in’ of the first, forr0 < N < 80.

Fig. 12. The cost/throughput rati()‘M) as a function ofV, fora = 10,7 = 1, b = 1, L = 0.3. The second graph is simply

To overcome this problem, the termination condition of Greedy-N can be enhanced so as to stop not at the fi
local minimum, but only after it is apparent that no further improvement is possible, that is, after the ratio function he
reached the steadily increasing region. It turns out, however, that translating this into an exact termination conditior
not trivial. We have tested the algorithm with a variety of termination criteria, fof. dletween0.001 and0.999 in

iThe plot in Figure 12 was obtained with the exact valueEpfN), i.e. those found by an exhaustive search; however, the plot shape is
essentially similar if any of the approximate evaluation methods is used instead.

20

Initialization: Setii = (0,0,...), N «+ 0, Best_.CTR + oo
Loop:
N+ N+1
For every; such that eithej = 1 orn;_; > n;:
Temporarily sety; < n; + 1
Compute the score af
Restoren;
For thej that got the best score:
Setnj —mn;+1
SetCTR <+ the cost/throughput ratio fai
If CTR < Best_.CTR
SetBest CTR + CTR, N* + N
If N =2N*, terminate; else go back taop.

Fig. 13. Algorithm Greedy-N with an enhanced termination condition.

increments 0f).001, withb = 1,7 = 1, anda € {1,2,...,10,20,...,100,200,...,1000} (recall that, for a given

L, the optimalN* depends only orf“rbl). We point out that this range covers all the practically interesting cases: for
% < 1, the optimal window size rarely gets abovewhile for% = 1000 the typical window sizes already reach
several thousands, and any higher values are not likely to be implemented in practice in a way that keeps the winc
transmission time a negligible part of the round-trip delay. It turns out that termination criteria based on fixed humbe
(such as “stop if there has been no improvement for 10 iterations”) are bound to fail for large enough vaweisilef
those based on the target value itself (like “stop when the current target value has risen to 5% above the optimur

far”) may lead to exponential complexity, due to the logarithmic increase rate of the target expression faf.large

The termination conditions that were found to work best were those that exploited the fact that the ‘noise’ tends
exhibit a certain periodicity, with a period that is much smaller t&ntself. For example, in Figure 12, the local
minima pointsN = {29, 31, 34, 37,40, 44,48, ... } form a nearly arithmetic sequence, with a difference much smaller
than N* = 34; a similar phenomenon was found to occur in all the above-mentioned runs (in a few cases, two separ:
regions of local minima sequences with different periods were found, yet both still had periods much smaller th:
the correspondingv*). A simple termination condition that is based on the above observatidh=s 2V, i.e., the
search stops after the number of iterations completed is twice the number in which the optimum was found. Figure
describes the algorithm with this condition employed; this algorithm did not fail to find the global minimum even ir
a single instance. Admittedly, this condition is quite conservative; however, considering that the computation of tl
optimal strategy is performed off-line and infrequently, and that the best strategy found so far can begin to be employ
even before the search is completed, perfecting the termination condition to reduce the computation time by a cons
factor at most does not seem to be of major importance.

Finally, Figure 14 plots the optimal cost/throughput ratio as a function,dbr a few select values of the loss
probability; note that the horizontal axis is logarithmic. These plots clearly demonstrate the property predicted |
Theorem 3, namely, that the optimal ratio value increases logarithmicadly in

We close this section with a conclusive example that demonstrates the performance of the Greedy-N algorithm,
well as other techniques presented earlier.

Example: For the parameter values depicted in figure 12 (namkly: 0.3, T = 1, b = 1, a = 10), algorithm
Greedy-N finds an optimal strategy ¢, 3,3, 3,3,3,3,3,2,2,2,2,1,1,0,0,...) at N* = 34. It has a score 0f0.295,
which leads to a cost/throughput ratio (i.e. average cost per successfully communicated pacRéspoincidentally,
the greedy search happens to find the optimal strategy in this case; no further improvement can be gained by exhau
search.

For comparison, the optimal window size with ‘classic’ sliding windows, found either by direct search or with the
help of formula (6), is (i.e., the strategy i¢l,1,1,1,1,0,0,...) in our terms), with a corresponding cost/throughput
ratio value of7.7273. Thus, using a strategy with advance retransmissions nearly halves the average cost per packet

Let us now trye = 100, with the other parameters as before. This time, Greedy-N fids= 531, with

21

15

L=0.5

10r

Optimal CTR

1 10 100 1000

Fig. 14. The optimal cost/throughput ratio as a function &r several loss probabilities.

the strategy6,...,6,5,...,5,4,...,4,3,...,3,2,2,2,2,1,1,0,0,...). Its score i97.6449, and the corresponding
—_— —— —— —

cost/throughpu%Qratio va6I6ue &462232. The ‘gclassic’ optimal window size here 19), reaching a cost/throughput value

of 48.513; thus, in this case, the advantage of using a strategy with retransmissions is much greater. In fact, it can
seen that the cost/throughput increased only mildly from the previous case, despite the tenfold increase of the time ¢
due to using a significantly larger window; this resulted in a nearly-tenfold increase in the throughput as well, whic
therefore, nearly canceled the extra time cost.

It is interesting to note that, this time, the greedy search did not find the optimal strategy. While exhaus
tive search for the inner problem is unfeasible f9r = 531, it can be verified that both the Greedy-R and
Greedy-L algorithms attain higher scores; indeed, Greedy-RLfoe= 0.3 and N = 531 obtains the strategy
6,...,6,5,...,5,4,...,4,3,...,3,2,2,2,1,1,0,0, ...), with a slightly higher score d#7.651. The continuous re-

10 68 24 9
laxation method in this case results in an upper boun@l8a863 for the score; therefore, the strategy obtained by
greedy search, with a score @#.6449, cannot be off by more than abolit; from the ‘truly’ optimal one. O

VIlI. CONCLUSION

We have investigated the properties of optimal sliding-window strategies in network connections where the pacl
transmission time is negligible compared to the round-trip delay. We assumed a cost per unit of time and per pac
transmission associated with the connection, and defined the optimal strategy as one that minimizes the cost/throug
ratio over time. We derived several important bounds on the performance of the optimal strategy: specifically, v

showed that, for a window size d¥, the number of successful in-order packet@ié%), and used this result

to further show that the cost/throughput ratio increases logarithmically in the per-time cost. We then studied seve
practical solution algorithms. We found that, for a given window size, a strategy that is at most only a few percel
worse than the optimal can be computed by a very efficient ‘greedy’ algorithm, and extended this algorithm to find tl
optimal window size as well, without any further loss in performance. It was demonstrated that such strategies attai
significantly smaller cost/throughput than ‘classic’ sliding windows, where a packet is retransmitted only after a timeo
or negative acknowledgment; in general, the relative improvement is greater as the cost of waiting a round-trip time g
higher compared to the marginal cost of transmitting a packet.

The analysis was based on the assumption that the receiver accepts packets only in-order, and that the sender str
is limited to simple retransmissions. However, the methodology can be extended to cover other cases as well.
example, as mentioned in the Introduction, if the sender is capable of forward error-correction (FEC) coding, it m
employ a coding strategy that uses different codes for different packets. While the computation of the optimal strateg;

22

somewhat more complex (it involves an extra parameter, namely the size of the coding block), it is based on essenti
the same ideas underlying in the basis of this paper’s results, except that the strategy score expression is based @
coding redundancy rather than number of retransmissions. In particular, it is to be expected that the optimal strat
uses a higher-redundancy coding for the first packets in every window than for later ones.

Similarly, the technique established in this paper can be extended to the case that the receiver has a buffer capak
accepting a certain number of packets out of order, and reports the state of its buffer, e.g., by using negative acknc
edgments in addition to simply reporting the index of the next-expected packet (this is known as a receiver capable
selective repeat). Instead of a single vector of non-negative numbers specifying the number of retransmissions for ea
packet, the optimal strategy in this case is described by a set of such vectors, corresponding to the possible buffer s
and specifying the optimal sequence of packet retranmissions for each state. Still, the computation of these vec
involves the optimization of essentially the same score expression. Furthermore, the strategy remains invariant to
next-expected packet index and thus can be considered to be of the sliding-windows type.

The strategies discussed in this paper were assumed to wait for the acknowledgments of all packets from a winc
before beginning the transmission of the next one. We explained, while presenting the general model, why the optir
strategy must fall into this category if the packet transmission time is neglected. In reality, of course, a packet transn
sion takes a certain timg > 0. This can be simply catered to within our framework, merely by replacing the packet
transmission cost coefficiebtwith b + « - ¢, i.e. including the extra per-packet cost due to the time it takes to transmit
it; the rest of the strategy computation can then remain unaltered. This produces a strategy that is adequate as lor
the round-trip delay is significantly longer than the packet transmission time. However, if a packet transmission lasts
a significant fraction of the round-trip time, it may be worthwhile to begin the transmission of a window even before a
acknowledgments from the previous window have been gathered, i.e., with only a partial information on the succes
and losses in the previous window. Then, in general, a strategy is no longer described by a vector that is appliec
every multiple of the round-trip time, but, rather, by a rule that is applied after every packet transmission and specif
which packet is most worthwhile to be transmitted next (or none at all), according to the information available fror
acknowledgments up to that moment. The investigation of optimal strategies and their properties in this framework,
well as further development of the other extensions outlined above, form a subject for future work.

REFERENCES

[1] A.S. TanenbaumComputer Networks. Prentice-Hall, Upper Saddle River, NJ, 3rd edition, 1996.

[2] ISOI/IEC standard 13239:2000 (HDLC procedures), February 2002.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP selective acknowledgment options, October 1996. Internet RFC.

[4] S.Floyd and V. Jacobson. Random early detection gateways for congestion avoidet e/ ACM Transactions on Networking, 1(4):397—
413, August 1993.

[5] L. Libman and A. Orda. Optimal timeout and retransmission strategies for accessing network resoBEE#CM Transactions on
Networking. To appear (scheduled August 2002); may be obtained from http://tiger.technion.ac.il/"libman/papers/ToN02.ps.gz.

[6] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, an
J. Semke. RFC 2760: Ongoing TCP research related to satellites, February 2000. Internet RFC.

[71 M. Allman, C. Hayes, H. Kruse, and S. Ostermann. TCP performance over satellite linkBrodn5th International Conference on
Telecommunication Systems, pages 456-469, Nashville, TN, March 1997.

[8] C.Barakat, N. Chaher, W. Dabbous, and E. Altman. Improving TCP performance over geostationary satelliteMirdcs | BEE Globecom,
December 1999.

[9] E. Altman, K. Avrachenkov, and C. Barakat. TCP network calculus: The case of large delay-bandwidth prodiot. IREE Infocom,
New York, NY, June 2002.

[10] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for future high bandwidth-delay product environménts. ACM
S GCOMM, Pittsburgh, PA, August 2002.

[11] K. Park and W. Wang. AFEC: An adaptive forward error correction protocol for end-to-end transport of real-time traffimc.ith
International Conference on Computer Communications and Networks (ICCCN), pages 196—205, Lafayette, LA, October 1998.

[12] C. Barakat and E. Altman. Bandwidth tradeoff between TCP and link-level FE€rom |IEEE International Conference on Networking,
pages 97-107, Colmar, France, July 2001.

[13] B.Liu, D.L. Goeckel, and D. Towsley. TCP-cognizant adaptive forward error correction in wireless netwadpksc.IFEEE Infocom, New
York, NY, June 2002.

[14] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. On the Lambert W fun&tieemces in Computational Mathe-
matics, 5:329-359, 1996.

[15] D.G. LuenbergerLinear and Nonlinear Programming. Addison-Wesley, Reading, MA, 1984.

