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Abstract

A method commonly used for packet flow control over connections with long round-trip delays is “sliding windows”. In gen-
eral, for a given loss rate, a larger window size achieves a higher average throughput, but also a higher rate of spurious packet
transmissions, rejected by the receiver merely for arriving out-of-order. This paper analyzes the problem of optimal flow con-
trol quantitatively, for a connection that has a cost per unit time and a cost for every transmitted packet (these costs can have
generic interpretations, not necessarily in terms of money). The optimal strategy is defined as one that minimizes the expected
cost/throughput ratio, and is allowed to transmit several copies of a packet within a window. We derive some bounds on the perfor-
mance of the optimal strategy; in particular, we show that the optimal cost/throughput ratio increases merely logarithmically with
the time price. We present a method for computing the optimal strategy; additionally, we demonstrate that a simple and efficient
‘greedy’ algorithm is sufficient to find a near-optimal solution.
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I. I NTRODUCTION

A common method for the flow control of packets over a network connection, used both in the data-link and the
transport layers, issliding windows [1]. In this mechanism, the receiver regularly informs the sender of the index of the
next-expected packet, thereby acknowledging all the packets up to that index. The sender may transmit up to a certain
number of packets, called thewindow size, beyond the last acknowledged packet; if a packet is not acknowledged
within a certain ‘timeout’ period (ideally aimed to be the connection round-trip time, or slightly higher), the window
is retransmitted from that packet on. In its basic form, this scheme implies that packets must arrive to the destination
in order. While the receiver may temporarily keep out-of-order packets in a buffer, this, in itself, does not change the
connection’s behavior unless the protocol is extended to allow selective, rather than cumulative, acknowledgments [2],
[3]. Such extensions are not universally implemented, and even when they are, the size of the buffer to hold such out-
of-order packets is, typically, not very large. Therefore, on a coarser level, the packet stream still has to arrive in order,
allowing exceptions only to a limited extent.

As a consequence, a lost packet may trigger a retransmission of up to an entire window, which obviously causes
a reduction in throughput due to the time wasted in waiting for the acknowledgment. This loss is more severe in
connections where the round-trip time (more precisely, the timeout) is long compared to the transmission time of a
packet; such networks are said to have a largebandwidth-delay product. A good example is a geostationary satellite
link, with a round-trip propagation delay of roughly 0.25 seconds, used within a high-speed connection in which a
packet transmission takes a fraction of a millisecond (a packet of 1000 bits over, say, a 10Mb/s connection takes merely
0.1ms to transmit); in this scenario, the delay-bandwidth product is measured in thousands. Assuming that packet
losses are independent (e.g. caused by white noise or a randomized discarding policy along the connection’s path, such
as RED [4] or a variant thereof), and the transmission time of the window is shorter than the round-trip delay, the
throughput can be improved considerably by retransmitting some or all of the packets several times within the window
itself (rather than just after a timeout, as in ‘classic’ sliding window schemes), as this increases the initial probability of
successful arrival at the destination. For the rest of the paper, we extend the definition of the window size to include all
such transmissions, counting each one separately whether it is a new packet or a copy of a previous one. We define a
sliding-window strategy to be a rule that specifies how many copies of each packet, relative to the start of the window,
are transmitted and in what order; in particular, a sliding-window strategy specifies the window size. We mention at this
point that alternative methods, such asforward error correction (FEC), may be used within this framework instead of
simple retransmissions; we comment more on this later.

In general, it is apparent that, for a given packet loss rate, transmitting more packets in the window – be it new packets
or more copies of the same ones – increases the average throughput (at any rate, so long as the total transmission time of
the packets in a window does not exceed the round-trip time), as it increases the expected number of packets transmitted
successfully by the sender each time before it stops to wait for acknowledgments. However, using a larger window
size also increases the average number of packets that are not lost but are discarded by the receiver (for arriving out
of order or for being copies of packets already received), which needlessly contributes to the network load. Thus,
selection of a window size constitutes a tradeoff between these conflicting goals. In order to perform a quantitative
analysis of the optimal retransmission strategy, we associate with the connection a ‘cost’ per unit time and a ‘cost’ per
packet transmission, and define the optimal strategy as one that achieves the lowest average cost/throughput ratio over
time. We point out that these costs can have various practical interpretations, and it should not be taken literally that
the connection indeed charges money for them [5]. For example, the time cost may be associated with the disutility
incurred by the application due to increased delay, and the transmission cost may be related to the energy consumption
of a mobile device. Similarly, a ‘social’ (e.g. TCP-friendly) sender that refrains from retransmitting to avoid loading the
network for others behaves as if it had a high per-transmission cost.

In ‘classic’ sliding windows, where the sender is limited to transmitting each packet within the window once, com-
putation of the optimal strategy reduces to an optimization of a single parameter (the window size), and can be solved
trivially. When each packet is allowed to be (re-)transmitted several times within a window, the problem becomes much
more interesting. Finding the optimal strategy can then be viewed as being composed of two subproblems: an ‘outer’
problem of finding the optimal window size� , depending on the time and packet transmission costs; and an ‘inner’
problem of optimal distribution of a given total ‘budget’ of� transmissions among the packets in a window, which,
for a given� , no longer depends on the costs. A salient feature of the resulting solution is that not all packets are
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transmitted the same number of times: earlier packets in every window get more copies transmitted than later ones, in
accordance with their ‘importance’ (e.g., the loss of the first packet in a window results in the loss of the entire window
even if later packets arrive correctly, while the reverse is not true).

In this paper, we provide a detailed analysis of optimal strategies based on sliding windows with several transmissions
per packet. The analysis follows the decomposition pointed above to an ‘outer’ and ‘inner’ subproblem, and tackles
them separately for the most part. It turns out that the inner problem, of deciding which packet copies to transmit for a
given window size, involves nontrivial combinatorial optimization, and a significant portion of the paper is devoted to the
study of its properties. We show that, for a window size of� , the expected number of successful (and in-order) packets

attained by the optimal solution is�
�

�
����

�
; we also describe how to compute a more precise tight bound. Additionally,

we study several efficient approximation algorithms and compare their performance, finding, in particular, that a simple
‘greedy’ approach attains nearly-optimal solutions, especially for large� . We then extend this approach for the outer
problem, of finding the optimal window size, as well, thus establishing an integrated solution algorithm for the overall
strategy optimization problem. Finally, we show that the cost/throughput ratio increases merely logarithmically in the
time price; this is a significant improvement of the linear increase rate achievable by ‘classic’ sliding windows (that do
not transmit several copies per packet within a window).

Our current study analyzes optimal strategies limited to simple packet retransmissions only. A potentially better
scheme for increasing the success probability of a group of packets is that offorward error correction (FEC) coding;
generally, a��� �� FEC code encodes a group of� packets into� � � ‘copies’, among which any� successfully received
allow reconstructing the original ones. We wish to emphasize that the ideas presented in this paper are not inconsistent
with FEC coding, but rather complement it. If the network can only employ a fixed encoding (i.e. with fixed� and
�), our analysis can be readily applied by treating each encoded block as a “super-packet” with the appropriate loss
probability. Performance (i.e. cost/throughput) can be improved even further by employing a flexiblecoding strategy,
which may use different codes for different packets. While the optimality analysis for this case is more complex and
beyond the scope of this paper, it is based on essentially the same methodology as the one introduced here, except that
the number of retransmissions is replaced by the notion ofcoding redundancy. In particular, it is to be expected that the
optimal strategy would use a higher redundancy coding for the first packets in every window than for later ones.

The special concerns raised by connections with large delay-bandwidth products in general, and satellite links in
particular, have attracted considerable research in recent years, e.g., [6], [7], [8], [9], [10]. Most of these studies are in
the context of the widely-used TCP protocol and study how to improve its performance, either by tuning already-existing
features [7], [8], or by introducing new ones, such as explicit congestion notifications [10]. Considerable attention has
also been devoted to FEC coding that is able to adapt to higher-layer protocol requirements, and to TCP in particular
(e.g. [11], [12], [13]). None of these works, however, suggested improvements to the sliding-window mechanism itself.
In fact, to the best of our knowledge, the idea of basing the number of retransmissions (or the FEC coding redundancy)
on theposition of the packet within a window, which is central to this paper, has not been suggested before. We
emphasize that this idea is generic, and can be incorporated in any sliding-window protocol.

The rest of the paper is structured as follows. Section II describes the assumptions made for the optimal strategy anal-
ysis and formally states the underlying optimization problem and its decomposition to the two sub-problems. Section III
proves some basic properties of the solution and derives some bounds and asymptotic properties of the optimal strategy
and the cost/throughput ratio it achieves. The next two sections establish efficient approaches for an approximate solu-
tion of the ‘inner’ combinatorial optimization problem: section IV presents several ‘greedy’ algorithms, compares their
performance, and demonstrates that they generally achieve quite satisfactory approximations, while section V presents
an alternative approach of using an analytical solution of an auxiliary problem in continuous variables, more easily
amenable to analysis. Section VI shows how these results are incorporated in a search algorithm for the overall optimal
strategy and provides a conclusive example of the presented techniques. Finally, section VII concludes with a discussion
of our methodology and its possible extensions, and outlines directions for further research.

II. M ODEL AND PROBLEM FORMULATION

A. The model

As explained in the Introduction, we are interested in network connections, either at the data-link or the transport
layer, in which the receiver can only accept packets arriving in order (with only a small buffer space, if at all, to handle
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a limited number of out-of-order packets), and the round-trip delay is considerably longer than the packet transmission
time. In such connections, transmitting several packet copies in advance (even for packets that have not failed yet),
and especially of the first packets in every window, achieves a significant improvement over the classic sliding window
scheme, namely, of transmitting each packet once and retransmitting only after a timeout (or a negative acknowledg-
ment).

For the model that lies in the basis of our analysis, we shall bring the above two characteristics to an extreme. That
is, we assume that the receiver is unable to accept out-of-order packets at all, and we take the packet transmission time
to be zero, which means that the size of the window that may be transmitted within a round-trip delay is unlimited.
Furthermore, we assume that there are no other factors that may limit the window size; e.g., the receiving application
processes the arriving packets instantly, if necessary, hence no buffer space is consumed by packets arriving in order.
These assumptions allow us to simplify the analysis, capturing the essential properties of the resulting strategies without
having to deal, from the outset, with details of secondary importance. We shall see later that, though the model requires
certain extensions if the above assumptions are alleviated, the optimal strategy solution methodology remains based
on the same principles as developed for this, ‘idealized’ case; a more detailed discussion in this regard appears in the
Conclusion.

We denote the loss rate in the network by�, and assume the loss probability of a packet to be independent of other
packets (and of its own earlier retransmissions). Thus, the losses may be caused by white noise, or, for instance,
a randomizing queue management policy employed on the connection’s path (such as RED, which discards packets
randomly during times of mild congestion). Our analysis is less applicable if there is a significant correlation between
the losses of neighboring packets (e.g. at times of severe congestion), since retransmitting several copies of a packet does
not reduce its loss probability significantly then. Furthermore, we assume the loss rate of acknowledgments (generated
by the receiver in response to successfully received packets) to be negligible compared to that of the data packets. This
is justified by the fact that acknowledgments are, typically, much shorter than data packets, and therefore suffer less
from noise and their paths are often less congested. In addition, acknowledgments are capable of mutual substitution,
since they only need to carry the index of the next expected packet; hence, a lost acknowledgment has no significance
if another one, later in the window, is received successfully. Consequently, we assume that, for each transmitted packet,
the sender knows whether it was successfully received or lost after a round-trip time, which we denote by� .

Our analysis is aimed to find the optimal strategy, defined as one that minimizes the cost/throughput ratio over time.
We assume that the cost is composed of a ‘price’ of� per unit of time and	 per transmitted packet. As explained
in the Introduction, these prices quantify the tradeoff between waiting too long and loading the network too much;
properly selected, they can embed the delay or congestion cost (disutility) of the application or the network itself, and
need not necessarily be taken literally. Incidentally, we chose to base our analysis on this cost structure, which is
linear in the time and number of transmitted packets, reckoning that it is appropriate for a variety of scenarios and cost
interpretations [5]; however, any other (nonlinear) cost structure may be used instead, as long as the cost of transmitting
a window of packets depends only on its size, and not on the identity of the packets within or the number of packets
actually succeeded/lost. This may affect only the analytical results, regarding the asymptotic dependence of the optimal
window size on the costs, whereas the algorithm we present for computing the optimal strategy itself, and the line of
reasoning that leads to it, remain intact (after substituting the appropriate cost formula).

By showing how to compute the optimal strategy from the connection parameters (�,� ,�,	), we implicitly assume
that they are known to the entity performing the computation – presumably, the sender machine itself. Therefore, these
parameters must either remain constant or change in a quasi-static manner, so that a new optimal strategy is computed
after detecting a change (e.g. in the round-trip time). Our model is inadequate if any of the parameters, e.g. the round-
trip time, changes quickly and unpredictably; in that case, it should be modeled by a random variable (e.g., as in [5])
rather than a constant value. We point out that this occurence is not typical of the kind of network connections that are
the subject of this study: e.g., for satellite links, the propagation delay is the dominant part of the round-trip delay and
is constant, up to small fluctuations that can normally be neglected.

In light of the above assumptions, it is apparent that, in the optimal strategy, packets are only sent at times that are
multiples of� . There can never be any purpose to send a packet at a time other than a multiple of� , since no extra
information is present, and by ‘lumping’ all such transmissions to the nearest earlier multiple of� (maintaining the
order between transmissions), nothing is lost and time is only gained. Furthermore, after having sent a sequence of
packets at time�� , it is known by time��� ��� which packets have been received and which ones lost/discarded, so
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the strategy simply restarts (‘slides’) at the packet subsequent to the last arriving in order. Consequently, the description
of a strategy consists simply of a single vector, specifying how many transmissions are to be made of every packet,
relative to the next-expected index at every multiple of� . The purpose of the subsequent analysis will be to find the
optimal such vector.

B. Problem formulation

Consider a vector���� 
 
 
 � ��� 
 
 
 �, where�� are whole and non-negative, and define a random variable�, which is
the number of in-order successful packets at the receiver if the sender transmits�� repetitions of packet�, followed by
�� repetitions of packet�, etc.� The distribution of� is

���
� �

��
���

��� ���� � ����� 
 (1)

We seek the vector�� � ���� 
 
 
 � ��� 
 
 
 � that minimizes

� � � � 	 ���
��� ��

� ���
�
� � � � 	 ���

��� ����
��� 
 � ���
�


 (2)

The above expression describes the cost/throughput ratio attained by the strategy�� over time. The numerator is the
fixed cost of a period of� , during which one window is transmitted, and the denumerator is the expected number of
packets successfully communicated in that period.

Let us look more closely at expression (2). For any� , consider all vectors such that
��

��� �� � � , i.e. suggesting
the same total number of transmissions. These vectors attain the same numerator value in (2); therefore, the comparison
among them is based merely on the denominator value, and the best vector is the one that maximizes it. Consequently,
let us define

����� � 	
�
���������

��	�
�

� ����

��
�

��
���


 � ���
�
�	

 � 	
�

���������
��	�
�

� ����

��
�

��
���


 �
��

���

��� ���� � �����

�	

 � (3)

and rewrite expression (2) accordingly as
� � � � 	 ��
�����


 (4)

Then, the problem of finding the strategy vector that minimizes (4) can be divided into the following (sub-)problems:
Inner problem: Computing the function����� for a given value of� .
Outer problem: Searching for�� that minimizes expression (4).

In the rest of the paper, we treat the two problems separately for the most part. It should be noted that, by this
separation, the (infinite-dimensional) problem of finding the optimal strategy vector for a combination of parameters
(�,	,� ,�) is divided into simpler problems, namely, computing a function����� that depends only on�, while the
dependence on the other parameters is captured in a merely one-dimensional minimization problem. Furthermore, we
emphasize that the vector that actually attains the maximum in (3) is required only for the final stage, after�� has been
found; during the search of� , it suffices to be able to compute (or even approximate)�����, without the need to find
the maximizing vector explicitly.

To conclude this section, we digress to consider the case of ‘classic’ sliding windows, where each packet is only sent
once in a window; this corresponds to a strategy vector of�� � � � � � �� � �, which brings about a cost/throughput
ratio of

� � � � 	 ������
��� 
 � ��� ��� � ��� � ��� ��� �

� � � � 	 ����
��� ��� ���

�
�

�� � �
� � � � 	 ��
�� ��� ��� 
 (5)

�It is obvious that this is the best order in which to transmit packets; not transmitting them in-order can only decrease the expected number of
in-order arrivals.
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Maximizing this (e.g. by differentiating with respect to� ) yields an optimal window size of

�� �
�

�
� �
���

�
�� � ��

	
�
���� ��� ��
�

�
���� ��

��
�

�


�
�

�
��
����

�
�
�

�
� �
�

�
��� � �

�
�
� �

���
� (6)

where��
� ��� (the product-log function) denotes the inverse function of� ��� � � � �	, such that� � ���
� ���� (for
� � � � �

� ) is the largest positive solution to the equation� � � � ��	; in the final approximation we used the property
that���
� ������ � �� �
� � for �� �.� Thus, as the time cost� increases with respect to the other parameters, the
optimal window size increases logarithmically in�. Since the denominator of (5) tends to a finite value as� ��, the
cost/throughput ratio, overall, increases linearly in�. We shall see later that the ability to use retransmissions within the
window enables the cost/throughput to grow much more slowly, namely, logarithmically in�.

III. B ASIC PROPERTIES AND BOUNDS

In this section, we show several basic structural properties of the solutions to the optimization problems, and derive
some important bounds, in particular on the solution’s asymptotic behavior.

A. Properties of the inner problem

We begin by introducing a variable change that will make the subsequent analysis more convenient. Define�� �
� � ��� (i.e. �� is the individual probability of packet� to arrive successfully, regardless of other packets). Then, the
maximized expression of (3) takes the simpler form of

��
���


 �
��

���

��� ���������� �

��
���


 �
��

���

������ ����� � ���� ��� ���������� ��� �	���������	 ��� �
��� � � �

�� � ���� � �����	 � � � � �
��
���

��
���

�� �
��
���

��
���

��� ���� 
 (7)

We henceforth refer to the rightmost side of (7) as thescore of the vector��, and denote it by�����. Also, we refer to
the vector�� � ���� 
 
 
 � ��� 
 
 
 � as completely equivalent to the vector�� and interchange them freely for convenience;
in particular, with a slight abuse of notation, we refer to����� �

��
���

��
��� �� as the score of the vector��.

The next two lemmas describe basic structural properties of the solution.

Lemma 1. ����� decreases in � and increases in � .

Proof. Consider the maximizing vector for a certain value of� and� . Now, suppose that� is decreased; then the score
of that vector increases. If it is no longer the maximizer for the new value of�, then, obviously, the maximum value
can only be even higher. Therefore, the value of (3) increases.

Alternatively, suppose that� is increased, and add the entire amount of the increase to the first element (arbitrarily).
Again, this results in an increase of the score; if the resulting vector is not the maximizer for the new value of� , the
value of (3) can only increase further.

Lemma 2. For a given � , the elements of the vector that achieves the maximum in (3) maintain a non-increasing order,
i.e. �� 	 �� 	 � � � 	 �� 	 
 
 
 .
Proof. Suppose, by contradiction, that there exists a pair of indices�� � �� with ��� � ��� . Consider the score of the
vector resulting by swapping��� � ��� , as given by expression (7). All the sum elements (products) for
 � �� (which
depend on neither��� nor ���), as well as for
 	 �� (which contain both��� ���� � and��� ���� � in the product),
remain unchanged. The elements for�� � 
 � ��, which contain only��� ���� � but not��� ���� � in the product, are
strictly increased by the swap, thereby increasing the value of the entire sum. Consequently, the original vector cannot
be a maximizer.

Corollary 1. In the maximizing vector, all the elements after the first zero element are also zero.

�The product-log function is also known elsewhere as Lambert’s W-function [14], or, more precisely, as one of its real-valued branches.
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Corollary 2. For a given � , the number of nonzero elements in the maximizing vector is bounded by � .

Lemma 2 and its corollaries state a fundamental property, which we later use extensively, both in the proof of bounds
on the maximum score that can be attained by a vector of a given size� and in the search for the maximizing vector.
In particular, as we shall see in section IV, this property significantly reduces the number of ‘eligible’ vectors that need
to be searched, and allows efficient search algorithms to be used for the problem solution.

The next lemma states a basic inequality that relates between the first element of a vector and its score. The following
theorem then applies it inductively to derive an important bound on the number of transmissions required to attain a
given score.

Lemma 3. If �� is the maximizing vector in (3), then �� � �� ��� 	 �����
������� .

Proof. From Lemma 2, it follows that

����� �

��
���

��
���

�� �
��
���

��
���

�� �

��
���

����
� �

��

�� �� �

and the lemma immediately follows by extracting��.

Theorem 1. For any vector ��, � �
��

��� �� 	 �
���� 
������ � ���� 
�

Proof. Obviously, since the factorial and the logarithm are monotonously increasing operations, it suffices to prove the
theorem just for the vector�� that attains the maximum score for a given� . Such a vector is known to satisfy lemmas 2
and 3.

Consider the equivalent vector�� � ���� 
 
 
 � �� � �� �� 
 
 
 �, where� denotes the index of the last non-zero element.
Define the following sequence of subvectors,����� � ���� ����� 
 
 
 � �� � �� �� 
 
 
 �, and of their corresponding scores,
�� � �

�
�����

�
�
��

���

��
��� ��, for all � � � � � . Thus,�� is the score of the original vector, while�� simply

equals�� .
Applying Lemma 3 on each of these subvectors in turn, we have�� 	 ��

���� , or � � �� � �
���� . Consequently,���

��� ��� ���
���

	��
��� ��� � �� 


However, it can be seen (directly from the definition) that�� � �� �� � �����, and, therefore,���� 	 �� � �,
for all � � � � � . By successive application of this inequality, we get�� 	 �� � ��� �� for all �. Therefore, we
have so far �

��
���

��� ���
���

	
��

���

��� � �� 	
��

���

	
� ��� � ��� �� � �� �� 


On the other hand, consider the factorial��� � ���. Denote���
 to be the integer part of�� (and, thereby,��� � ���
�
to be its fractional part). Successively applying the factorial property of�� � � � ��� ��� for any� 	 �, we have

��� � ��� � ��� � �� � �� � ��� � �� � 
 
 
 � ��� � ���
�� �
��

���

	
� ��� � ��� �� � �� �� � ��� � ���
�� �

��
���

	
� ��� � ��� �� � �� �� 


Note that we implicitly used the obvious fact that�� �� , and also that�� � � for any� � � � �.
Combining all the above inequalities, we finally obtain�

��
���

��� ���
���

	 ��� � ����

�Recall that the factorial��, for any� � �, is defined by�� �
��
�

�������; this definition conincides with the more common�� � � � � � � � � � �
for integer�. A well-known property of the factorial is�� � � � ��� ��� for any� � �.
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from which, by taking the logarithm of both sides and noting that�
������ � ��� � �
���� ����� � ���, we get��
��� �� 	 �
���� ���� � ����.

Finally, the following fundamental theorem presents the asymptotic relation between the window size and the maxi-
mum score that can be obtained by a vector of that size.

Theorem 2. ����� � �
�

�
�����	�

�
.�

Proof. We apply the well-known Stirling’s factorial approximation formula,�� ����� � 	��	 for large�, to the inequality
established in Theorem 1, and obtain

� 	 �
���� ������ � ��� � ����� � �
����
�
����� � �

�

�
� �
����

�
�������� � ���

thus,� � �
�
����� � �
���� �����

�
. This implies directly that����� � �

�
�

�����	�

�
.

To show that����� � �
�

�
�����	�

�
as well, it suffices to find a strategy vector, not necessary the optimal one, that

attains a score of�
�

�
�����	�

�
. Accordingly, consider the vector���� 
 
 
 � �� � �� 
 
 
 �, such that�� � � � � � �� �

�
����� and� � �
�����	� (i.e. a strategy that transmits �

�����	 � packets an equal number of times). Its score is

��
���

��
���

��� ���� �



�����	 
�
���

�
�� ������	�

��
�



�����	 
�
���

�
�� �

�

��
�

�

�
�� �

�

��
��
�
�� �

�

� 

�����	 


�
	 �

�
�� �

�

��
�� ��

�
�����	 


�
�

which completes the proof, since��
�
� � �� �

� for large�. Incidentally, note that the fact that either�
����� or �
�����	�

may not be integers, which was ignored above, is only a minor technical difficulty; to overcome it, simply round either
or both of them up to the nearest integer, if necessary. This can only increase the vector’s score even further, while the
sum of the vector’s elements is raised by������	 � � � at most, which is negligible compared to� and does not change

the asymptotic relation.

It is insightful to compare the result of Theorem 2 with the total number of packets that reach the receiver successfully
(not necessarily in order), which is, obviously,� � �� � ��, i.e.,����. Hence, it can be thought that discarding out-
of-order packets impacts the performance by a logarithmic factor. Note, incidentally, that this theorem can also be used
inversely; that is, in order to have an expected number of� packets arriving successfully and in-order to the destination,
the total number of packet copies transmitted by the source must be��� � �
���.

B. Properties of the outer problem

This subsection is concerned with the dependence of the optimal window size on the cost factors. Lemma 4 states
the intuitive fact that the optimal window size increases in the time cost and decreases in the packet transmission cost,
and that it depends only on the ratio between the two. Theorem 3 states the central result of this section, namely, that
with the optimal window size, the cost/throughput ratio increases merely logarithmically in the time cost�, not linearly
as was the case with ‘classic’ sliding windows in the end of section II.

Lemma 4. The optimal �� is monotonously increasing in 
�
� .

�Recall that, for positive functions����� ����, the notation���� � �������means that there exists a finite constant	 such that���� � 	�����

for all (sufficiently large)�; a sufficient condition for this is��	���
����

����

�. In addition,���� � 
������ is equivalent to���� � �������,

and���� � ������� means that both���� � ������� and���� � 
������.
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Proof. Consider two sets of parameters��� 	�� �� and��� 	�� �� such that
�����
	 
���

��
, and suppose that��

� , ��
� are

their corresponding solutions (to the outer problem). This implies, in particular, that

���� � 	��
�
�

�� ���
� �

	 ���� � 	��
�
�

�� ���
� �

�

���� � 	��
�
�

�� ���
� �

� ���� � 	��
�
�

�� ���
� �

�

or �
����

	�
���

�

�
� �� ���

� � 	
�
����

	�
���

�

�
� �� ���

� � ��
����

	�
���

�

�
� �� ���

� � �
�
����

	�
���

�

�
� �� ���

� � 


Subtracting the second inequality from the first and dividing by a common factor of
�

���
��

� 
���
��

�
, which is positive

by assumption, we obtain�� ���
� � 	 �� ��

�
� �. In light of the monotonicity of����� (Lemma 1), this implies

��
� 	 ��

� .

Theorem 3. As � � � (for fixed values of � , 	, �), the cost/performance ratio attained by the optimal strategy (as
given by expression (4)) increases logarithmically in �.

Proof. Consider the expression���� � 
������
�� �����	 � , as a function of a (continuous) variable�. By differentiation with

respect to�, it is easily found that its minimum is attained at�� � 
�
� � ����
� ��� � �


�

��

� Using again the property

that���
� ������ � � � �
� � for very large�, we obtain�� � ��� � �
� ��, and the minimum value of���� is
therefore���
� ��. This proves the theorem, since, in light of Theorem 2, the cost/throughput ratio (expression (4)) is
itself�������, and its minimum value can, therefore, deviate from that of���� by a constant factor at most.

Incidentally, it should be noted that no similar result exists for	 � � with the other parameters constant. Indeed,
as 
�

� � �, the optimal strategy tends to��� �� �� 
 
 
 � (simple stop-and-wait), and the value of expression (4) simply
increases linearly in	. This is true, of course, for the ‘classic’ case as well.

IV. A PPROXIMATION ALGORITHMS FOR THE INNER PROBLEM

In this and the next section, we consider approaches for approximation of the function����� (i.e. the solution of
the inner problem). This section focuses on direct-search algorithms; the next section presents an alternative approach
of solving a similar auxiliary problem in continuous variables, that is more easily amenable to analysis.

To begin, we note that the most straightforward approach, arguably, is exhaustive search among all the nonnegative
integer vectors with elements in non-increasing order (in light of Lemma 2), that sum up to� . Figure 1 shows how
the number of such vectors increases in� . Thus, for� � �� there are only�� vectors to check, and this number
increases to��� ��� for � � �� and��� ��� ��� for � � ���. It can be concluded that this approach is quite viable
for small values of� , especially considering that the computation of the optimal sliding-window strategy is only needed
occasionally (when the parameters of the problem, e.g. the round-trip delay, are changed), and can be performed offline.

For larger values of� , exhaustive search may not be practical, and we seek an alternative that produces a reasonably
approximate solution at a low computational cost. Figures 2, 3, and 4 show three possible algorithms. All these
algorithms are ‘greedy’ in the sense that they proceed in iterations, seeking the best possible improvement in each
iteration until unable to find any further improvement. Algorithm ‘Greedy-R’ begins with the vector��� �� �� 
 
 
 � and,
at every iteration, seeks the best score that can be obtained by a right-move — namely, by decrementing an element
by � and incrementing another element further to the right, provided that the resulting vector remains non-increasing.
Algorithm ‘Greedy-L’ operates the other way around; it begins with the vector��� 
 
 
 � �� �� �

�

� and repeatedly seeks to

improve the score by left-moves. Finally, algorithm ‘Greedy-A’ makes additions instead of moves; that is, it begins with
a vector of all-zeros, and at each iteration finds the element whose increment brings about the highest score, keeping
the vector non-increasing. Obviously, Greedy-A always makes exactly� iterations.
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Fig. 1. The number of nonnegative integer vectors summing up to� , with elements in non-increasing order, as a function of� .
Note the vertical scale is logarithmic.

Initialization: Set�� � ��� �� �� 
 
 
 �
Repeat:

For every�� 
 such that� � 
, �� � ����, and���� � ��:
Temporarily set�� � �� � �, �� � �� � �
Compute the score of��
Restore��, ��

For the�� 
 pair that got the best score:
If the score is better than that of the current vector:

Set�� � �� � �, �� � �� � �, go back toRepeat
Else terminate.

Fig. 2. Algorithm Greedy-R.

Initialization: Set�� � ��� 
 
 
 � �� �� �
�

� �� 
 
 
 �

Repeat:
For every�� 
 such that� � 
, �� � ����, and either
 � � or ���� � ��:

Temporarily set�� � �� � �, �� � �� � �
Compute the score of��
Restore��, ��

For the�� 
 pair that got the best score:
If the score is better than that of the current vector:

Set�� � �� � �, �� � �� � �, go back toRepeat
Else terminate.

Fig. 3. Algorithm Greedy-L.
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Initialization: Set�� � ��� �� 
 
 
 �
Do � times:

For every
 such that either
 � � or ���� � ��:
Temporarily set�� � �� � �
Compute the score of��
Restore��

For the
 that got the best score:
Set�� � �� � �

Fig. 4. Algorithm Greedy-A.

It should be understood that the three algorithms are not equivalent in terms of complexity. The algorithms Greedy-R
and Greedy-L can, in the worst case, require�

�
��
�

iterations, and each iteration may potentially require�
�
��
�

score
evaluations. Algorithm Greedy-A, on the other hand, requires only� iterations, and each iteration requires no more
than� score evaluations.� We shall see that the lower complexity of Greedy-A comes at the expense of achieving a
lower score more frequently.

Example: The following table summarizes the optimal vectors and their scores for� � �� and selected values of�.

� Optimal vector Score
0.1 ��� �� �� �� �� �� �� �� �� �� �� �� �� 8.41131
0.3 ��� �� �� �� �� �� �� �� �� �� �� �� 5.39436
0.5 ��� �� �� �� �� �� �� 
 
 
 � �� 3.61954
0.7 ��� �� �� �� �� 
 
 
 � �� 2.24336
0.9 ���� �� �� 
 
 
 � �� 0.92217

It can be seen that, in accordance with intuition, the lower the loss probability, the better it is to send at least one
copy of more packets; conversely, when the loss probability is high, the highest expected number of successful in-order
arrivals is attained by sending just the first few packets many times. In fact, it is obvious that, for any� , the optimal
vector tends to��� 
 
 
 � �� �� �

�

� for �� � and to��� �� 
 
 
 � �� for �� �.

The values in the above table were found by exhaustive search. The greedy algorithms did not converge to these
vectors in all cases. Specifically, for� � �
�, the Greedy-A algorithm found the vector��� �� �� �� �� �� �� �� 
 
 
 � ��,
with a somewhat lower score of�
�����. For� � �
�, only the Greedy-L algorithm converged to the optimal solution,
while the other two found the vector��� �� �� �� �� �� 
 
 
 � ��, with a score of�
�����. In general, it is possible that none
of the three algorithms converges to the optimal vector. The smallest� for which an example of this possibility was
found is� � ��, at� � �
���; there, the value of����� (found by exhaustive search) is��
����, while Greedy-L
attains only��
����, and Greedy-R and Greedy-A achieve an even lower score of��
����.

We point out that the good performance of all the algorithms for ‘extreme’ values of� (close to� or to �), and less-
than-optimal results for� around�
�, as exhibited in the above example, are to be expected. In fact, it can be proved
that when the maximizing vector is indeed��� 
 
 
 � �� �� �

�

� or ��� �� 
 
 
 � ��, all the greedy algorithms converge to the correct

vector. (We do not go into the formal details of the proof.) On the other hand, for� � �
�, the optimum is much less
proclaimed (i.e., there is a large number of vectors with scores that are very close to the optimum), which causes the
occasional convergence of the greedy algorithms to nearby vectors.

Nevertheless, we found the algorithms’ results to be always very close to each other. We have run them for all values
of � � ��� and� between�
��� and�
��� in increments of�
���; we also ran the exhaustive search on all values of
� � ��� (for values of� higher than that, the search turned out to be too time-consuming). Figure 5 shows the lowest

�Recall the definition of the product-log function at the end of section II.
�This complexity estimation counts each score evaluation as a single operation. In fact, since there is a great deal of repetition in the score

computations, a lot of elementary operations (multiplications and summations) can be saved by using auxiliary storage for temporary results;
however, even with the best optimization, the computational cost of Greedy-R and Greedy-L is still higher by at least an order of� than that of
Greedy-A.



12

score ratio between the worst and the best algorithm, taken over all values of�, as a function of� . It turns out that the
worst score ratio is attained at� � �, � � �
�: there, Greedy-A converges to a score of�
�����, while all the other
algorithms reach�
�����, for a worst-to-best ratio of approximately�
��; from there, it tends to get closer to�. In fact,
for � 	 ��, the worst-to-best score ratio never drops below�
��, for any value of�.
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Fig. 5. The lowest ratio between any two algorithms (over all�), as a function of� . The lowest point of the graph is approximately
������ for � � � (reached for� � ���). The graph stays above���� for all � � ��.

It is worthwhile mentioning that, in all the points of Figure 5, the worst algorithm was Greedy-A. This is not to say
that it always achieves the worst score; in fact, it frequently reached the best score, with one of the other algorithms
lagging behind (though there was not a single instance in which the Greedy-A algorithm was thesingle best among all
three). However, in such cases the ratio between that other algorithm’s score and Greedy-A’s score was never as low as
the inverse ratio for some different value of�, for which the case was reversed and Greedy-A had the worst score.

If one is willing to accept the conjecture that the graph of Figure 5 continues similarly for� � ���, then the
conclusion emerging from the results of this section is that the Greedy-A algorithm, which is computationally the
cheapest (fastest) one, can be used to approximate the optimal retransmission strategy with only a small deviation from
optimality, probably acceptable for most purposes.

V. A PPROXIMATION THROUGH CONTINUOUS RELAXATION

In this section, we analyze the properties of the same optimization problem as the one that defines the function
�����, except that the requirement for the strategy vector elements to be integers is omitted. This way, we have a
relaxed optimization problem in a continuous space, which can be analyzed more easily by ‘traditional’ methods from
optimization theory. Unlike the direct-search methods of the previous section, which resulted in vectors with lower
scores than�����, our present technique obtains a value that is higher than�����. This can be regarded as an
improvement to the upper bound derived earlier (in Theorem 1); we shall show in the end of this section that this bound
is tight, in a certain sense, and therefore can be used as an alternative approximation method for�����, especially for
large� .

To distinguish the relaxed problem from the original one, we change the notation and refer to the strategy vector as
���� ��� 
 
 
 �, and to the function in the denominator of (4) as�����:

����� � 	
�
���������

��	� �����
�

� ����

��
�

��
���


 �
��

���

��� ���� � �����

�	

 
 (8)

In other words,����� is defined exactly like����� except that the maximum is taken over vectors whose elements are
not restricted to be integers. Note that, in particular,����� is well-defined for non-integer values of�.



13

We shall again make the convenient variable change of�� � � � ��� , after which the score expression is simply��
���

��
��� �� (see equation (7)), while the constraints on�� become

�� 	 � �� � � �� � �� (9)�
�

�� �
�
�

�
�� ��� ��� � � ��
�
�

��� ��� � ��
 (10)

To summarize, we seek the solution of the following optimization problem, in terms of the vector�� � ���� ��� 
 
 
 �:

maximize
��
���

��
���

�� � �� � ���� � �����	 � 
 
 


subject to � � �� � ��
��
���

��� ��� � ��


It is to be noted at once that this problem essentially depends on just one parameter,�� (though the translation back to
the original variables,�� � �
�� ��� ���, involves the specific value of�).

We proceed to derive the solution to this problem and study its properties. We begin by noting that the solution vector,
i.e. one that attains the global maximum must, in particular, be also a local maximum. Consequently, as both the target
expression and the constraint are differentiable, we can employ the technique of defining the Lagrangian

� �
��
���

��
���

�� � �

� ��
���

��� ���� ��
�
�

and requiring that the solution satisfy the corresponding Kuhn-Tucker conditions [15], which require that

��
���

� � if � � �� � �� (11)

��
���

� � if �� � �
 (12)

(In fact, there is also a condition to be fulfilled if�� � �; however, it is immediately seen that the constraint�� � �
cannot be active, i.e. no element of the solution vector can be equal to�, since this would immediately contradict the
equality constraint (10).)

Let us develop equation (11) into an explicit form:

��
���

�

��
���

��
���
����

�� � �
��
���
����

��� ��� �
��

���

��
���
����

�� � � � ��
�� �� � ��

consequently

��� ���
��

���

��
���
����

�� � � � �� � �	 (constant for all� such that�� � �)� (13)

or, in an alternative form that will prove to be more convenient,

�� ��
��

��
���

��
���

�� � �
	 (constant for all� such that�� � �)
 (13’)

Similarly, from inequality (12) we get

��
���

��
���
����

�� � �	 (for all m such that�� � �)
 (14)
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Using (13)–(14), we are now in a position to prove a few structural properties of the solution vector. The next few
lemmas show that it has a finite length and its elements are monotonously decreasing; note that these properties are
similar to those of the solution vector of the original (non-relaxed) problem, as stated by Lemma 2.

Lemma 5. If �� � � for some index � , then �� � � for any � � � .

Proof. Immediate from (13): given that�� � � for some� � �, the left-hand size of (13) equals�, thus the equality
cannot be satisfied; consequently, it is impossible to have�� � �.

Lemma 6. The positive elements of the solution vector maintain a strictly decreasing order.

Proof. Choose a pair of indices�����, such that�� � �� and��� � �� ��� � �. Condition (13’) requires that
�����
���

��
����

��
��� �� �

�����
���

��
����

��
��� ��
 Since, obviously,

��
����

��
��� �� �

��
����

��
��� ��� it follows

that
�����
���

�
�����
���

. By a straightforward simplification, this implies��� � ��� .

Lemma 7. There exists a finite � such that �� � � for any � � � .

Proof. Suppose, by contradiction, that such� does not exist; in light of Lemma (5), it follows that the solution vector
consists of an infinite sequence of positive elements. Choose an index� such that�� � �

� ; such� must exist,
otherwise it would be impossible to satisfy constraint (10) (the product on its left-hand side would converge to�). We
now show that the assumption���� � � leads to a contradiction.

If ���� � �, then condition (13’) requires

�� ����

����

��
�����

��
���

�� �
�� ��
��

��
���

��
���

�� �
�� ��
��

�
���

���

�� �

��
�����

��
���

��

�
 �

or, dividing both sides by the common factor of
��

��� ��,

�� ����

����

��
�����

��
�����

�� �
�� ��
��

�
�� � ��

�����

��
�����

��

�
 ��

��
�����

��
�����

�� �
��� �� � ����

�� � ����



However, as a result of Lemma 6, the following inequality holds:

��
�����

��
�����

�� �
��

�����

��
�����

���� �

��
�����

������
��� �

����

�� ����



Substituting this inequality into the previous equation, we therefore get

��� �� � ����

�� � ����
� ����

�� ����
�� ��� ��� ��� ����� � �� � ���� �� � � ������ � ��� �

which contradicts�� � �
� . Thus, condition (13’) cannot be satisfied; therefore,���� � �.

Lemma 8. If a vector ���� ��� 
 
 
 � �� � �� �� 
 
 
 �, where �� � � for all � � � � � , satisfies condition (13), then it
satisfies condition (14) if and only if �� � �

� .

Proof. For���� and beyond, the left-hand side of (14) equals� (as it includes a factor of���� � �), and the condition
is satisfied trivially. For����, upon substituting the value of�	 evaluated at�� at the right-hand side, condition (14)
becomes

��
�����

��
���

������

�� � ��� �� �
��

���

��
���
����

�� ��
��
���

�� � ��� ���
����
���

���

and after dividing both sides by the common factor of
����

��� ��, it reduces to�� � �� �� �� �� � �
� .
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It follows from the above lemmas that the solution to the maximization problem is of the form
���� ��� 
 
 
 � �� � �� �� 
 
 
 �, where�� � � for all � � � � � , and�� � �

� . We shall henceforth use� solely
to denote the index of the last nonzero element of the solution vector.

Suppose that a vector���� ��� 
 
 
 � �� � �� �� 
 
 
 � is known to satisfy conditions (9) and (13)–(14), and that only the
value of the last element�� is known. Then the other elements can be uniquely determined by a procedure of backward
iteration. Specifically, once the values of����� 
 
 
 � �� are known,�� can be computed using condition (13), as
follows:

��� ���
��

���

��
���
����

�� � ��� �����
��

�����

��
���

������

�� ��

��� ���
�
�� � ��

�����

��
�����

��

�
 � ��� �����

��

����

��
�����

��
�����

�� ��

�� �

����

�
�� � ��

�����

��
�����

��

�
 

���� �

��
�����

��
�����

��

�

� �

��
�����

��
�����

��

� �

��
�����

��
�����

��


 (15)

Having shown that� and� � �� � �
� uniquely determine a vector that satisfies conditions (13)–(14), we argue it

to be more convenient to define a function�� � �� ��� �
� , such that, for any� � �, ����� is the vector obtained through

formula (15) for� � ���� and�� � �
� ��� �� ����. This way, any vector that satisfies conditions (13)–(14) (and is

therefore an “eligible candidate” to be a solution to the optimization problem for some value of��) corresponds to a
positive real number, and the space of all such vectors is in one-to-one correspondence with the positive real axis. We
also define�� � �

� ��� � to be the�-th component of��.

Lemma 9. The function �� is continuous.

Proof. The continuity of�� at non-integer points (continuity in�� only, with � unchanged) is obvious from for-
mula (15), which shows��, for any� � � � � � �, to be continuous in����� 
 
 
 � �� , and therefore (applying
backward induction from� �� � � to� � �) to be continuous in�� .

To show the continuity of�� at � � � for an integer�, one must prove��		
�� ����� � ��		
�� �����
 Consider
first the component�� . For � � ��, ����� is simply the last nonzero element of�����; that is,� � � and
����� �

�
� ��� ����. Therefore,

��	
	
��

����� � ��	
	
��

�

�
��� ���� � �

�



For � � ��, ����� is the penultimate nonzero element; that is,� � � � �, �� � �
� �����, and����� can be

computed from (15):

��	
	
��

����� � ��	
	
��

� �
����

�����

��
�����

��

� �

����
�����

��
�����

��

� ��	
	
��

� � �
� �����
� � �

�
�

�



Hence, the component����� is continuous at� � �. From here, the continuity of components������ 
 
 
 ��������
follows from their being continuous in�� , according to formula (15) (again, by applying backward induction from
� � � � � to� � �).

�The operator��� denotes the integer obtained by rounding up of�, i.e. the smallest integer that is not less than�.
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Figure 6 shows a plot of the function�����. The plot is divided into three separate ranges to emphasize the ‘waviness’
of the function. Note that, by construction,����� � ������ � �� for any integer� and any� � �; hence, appropriately
shifted, the plot is valid for any component�����.
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Fig. 6. Plot of the function����	.

Figure 7 shows a plot of����� �
��

��� ��� ������, i.e. the value of�� for which the vector����� would satisfy
constraint (10). For convenience, the y-axis is logarithmic.
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Finally, Figure 8 shows a plot of the score attained by�����.
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Conceptually, the solution of the optimization problem for a given value of�� is obtained by locating the set of points

� ��� ��� ������ � �

�� (e.g., from Figure 7), and selecting the point that attains the maximal value of
�

�

��
��� �����

(e.g., from Figure 8). Note that the set contains more than one point for�� � �
��� � ���
	 (the function of Figure 7
ceases to be strictly decreasing after� � ��). An algorithm to compute the solution could begin by evaluating�����
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at integer points, exploiting the function’s continuity to find an initial search range, and then perform a detailed search,
e.g., by evaluation of����� on a sufficiently dense grid of points (depending on the required precision) and subsequent
interpolation. The implementation details of such an algorithm are tedious yet entirely straightforward, and we do not
consider them here any further.

Our experience from running this computation for various problem instances suggests that different values of� that
correspond to the same�� tend to attain very close values of� as well, hence simply finding any such� is nearly
optimal. In graphical terms, this means that the plots in figures 7 and 8 are very nearly “mirror images” of each other
(and become ever more so as� gets larger). To illustrate this, Figure 9 shows a parametric plot of���� versus�����, for
� that varies continuously in the same range as above. It can be seen that the plot ‘almost’ defines a function; it takes
a great deal of “zooming in” to notice that the plot actually zig-zags back and forth. Obviously, Figure 9 contains the
‘true’ ����� as well; that is,����� is described by the topmost point of the plot for any value of��. Strictly speaking,
therefore, the function����� is not continuous; however, its ‘jumps’ are markedly minuscule.
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Fig. 9. Parametric plot of���	 vs����	, and comparison to the bound implied by Theorem 1.

Incidentally, it can be observed that the proof of Theorem 1 is easily extended to the continuous version of the
problem; it then states that�� � �

�
��
����� . This bound is plotted by the dotted line in Figure 9. Thus, it can be seen
that the auxiliary function�����, while not difficult to compute, provides a much tighter bound.

To complete this section, the next lemma provides the asymptotic connection between����� and the auxiliary
function�����. It states that, in a certain sense, the function����� provides a close approximation to����� for large
values of� .

Lemma 10. For any given value of ��, ��	�
� ��
���

��� � � ����.

Proof. Define the following auxiliary function, for� � � � � and� � � � �: !���� � � � �����	������, where��

denotes the integer-part operator. An alternative definition is that!���� is the highest number that is no higher than�
and can be expressed as����, for some integer�. It is obvious that as�� �, the set of points expressable as����
for some integer� becomes dense in the segment��� ��, i.e., any� � � � � can be approximated with an arbitrarily
small difference by such a point, for� sufficiently close to�. Therefore,��	�
� !���� � � for any� � � � �.

Now, denote the maximizing vector of����� by ��� � ����� 
 
 
 � ��� � �� �� 
 
 
 �, and define the vector

��
� � �!�
 ����� � 
 
 
 � !�
 ���� � � �� �� 
 
 
 �� where �� � ������� . Define also the corresponding vec-

tor ��
� � ���
��
 ��� ����
� 
 
 
 � ��
��
 ��� ��� �
� �� �� 
 
 
 �� and denote� 	 �
�

��
� . Obviously, � 	 ���
��� �
��
 ��� ��� � � �
��


��
��� ��� ��� � � �
��
 �� � �


Now, consider the score of��
� . It cannot be higher than��
 ��
	�, since ��
� is just one of the ‘eligible’ vectors over

which��
 ��
	� is maximized. In light of Lemma 1, it is therefore not higher than��
 ��� as well. Thus,��
 ���

is ‘sandwiched’ between the scores of��
� and ��� (the latter, by definition, being simply�����). However, since
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Initialization: Set�� � ���� � �
Bound estimation:

While"�# ����� � "�# ����
�� � ���,�� � ���

Search:
While�� �� �� :

Set�� � �� � $ ��� ����,�� � �� � $ ��� ���� (rounded to integers)
If "�# ���� � "�# ����:

Set�� � ��

Else:
Set�� � ��

Fig. 10. Fibonacci search algorithm for the optimal� �; �����	 denotes the target expression������������ , i.e. the cost/throughput

ratio, and� �
�
���
� � ���
�.

�� � � as� ��, we have��	�
� ��
� � ���; in light of the continuity of the score expression, this finally implies
��	�
� ��
 ��� � ���

��.

VI. A PPROACHES FOR FINDING THE OPTIMAL WINDOW SIZE

The previous two sections provided a detailed discussion on efficient methods for approximate computation of the
function�����, which we termed the ‘inner problem’. To complete the picture, we now recall that this computation is
only a part of the bigger task of finding the strategy with the minimal cost/throughput ratio; accordingly, we now turn
to discuss the outer part of the problem, namely, finding the optimal value of� (the window size).

The most straightforward approach to finding the optimal� , arguably, is that of a direct search, using any of the meth-
ods outlined in the previous two sections as a ‘subroutine’ for computing�����. A popular search method is that of the
Fibonacci or golden-section search [15]. This method begins with a search interval���� �� � and then reduces this inter-
val by a factor of$ in every iteration, by proceeding to either���� �� � $��� ����� or ��� � $��� ����� �� �,
according to which of the two intermediate points attains a smaller value of the target expression. The value of$ is
usually taken to be

�
���
� � �
���, due to the property that$� � � � $, which causes one of the intermediate points

in each iteration to coincide always with one of the intermediate points in the previous iteration, thereby halving the
number of computations of the target expression.

An algorithm for minimizing the cost/throughput ratio that is based on the Fibonacci search method is presented in
Figure 10.� It begins by estimating an upper bound for the search by doubling the initial�� as long as it reduces the
target expression, and follows with a Fibonacci search within that bound. It is easy to see that, if the eventual result
is ��, the computational complexity of this algorithm is��
���� times the complexity of a single computation of
the target expression, which depends on the method chosen to evaluate�����. Possible minor modifications to the
algorithm, such as increasing the initial bound by a factor other than�, or starting the search in��� �� � rather than
���� �� �, do not change this complexity significantly.

The drawback of the direct search method is that the computations of����� for different values of� are made
independently, and neglect their internal redundancy. For example, suppose that the evaluation of����� is performed
with the Greedy-A algorithm. For any� , this algorithm starts with a zero vector and performs a series of increments that
are, by themselves, independent of� (that is,� only sets the total number of increments). In other words, evaluation of
����� by the Greedy-A algorithm for any� produces, as a free by-product, the corresponding values of����

	� for all
� 	 � � . Thus, by the time the Fibonacci algorithm completed the initialization of the upper bound, the cost/throughput
ratios are, in fact, readily available for all� up to that bound, and the ensuing search is superfluous.

An alternative method, which exploits the redundancy mentioned above, is shown in Figure 11, and we call it ‘Greedy-
N’. It works identically to Greedy-A, except that the number of steps is not set in advance; rather, it proceeds to ever-
increasing� , computing the cost/throughput ratio on the fly, and stops as soon as the ratio ceases to decrease (i.e.
improve).

�Figure 10 omits some details about the way the interval is rounded to integers, which pose no major interest.
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Initialization: Set�� � ��� �� 
 
 
 �
Loop:

For every
 such that either
 � � or ���� � ��:
Temporarily set�� � �� � �
Compute the score of��
Restore��

For the
 that got the best score:
Set�� � �� � �

Compute the cost/throughput ratio for��
If ratio improved from last iteration, go back to‘Loop’;

else terminate.

Fig. 11. Algorithm Greedy-N.

Both methods described above would converge to the optimal solution (up to the approximation involved in the evalu-
ation of�����) if the target expression, i.e. the cost/throughput ratio, had a single local minimum in� . Unfortunately,
this is not the actual case. Figure 12 shows a typical plot of the target ratio as a function of� . It can be seen that
the function decreases steeply and monotonously at first but quickly becomes quite ‘flat’, eventually increasing rather
slowly amid a somewhat noise-resembling behavior.� This shape is indeed expected in light of the ratio expression

being�
�


������
�� �����	�

�
(recall Theorem 2): for small� , where the numerator is dominantly� � � , the ratio decreases at

a rate of �
�� �����	 � , and for larger� , where the numerator is dominantly	 �� , the ratio increases at a rate of�
����� ,

i.e., much more slowly. The ‘noise’ (i.e. non-monotonocity), which is especially apparent around the minimum point,
is due to combinatorial effects which we do not go into further; however, it may cause a potentially large number of
‘false’ local minima, whereas the Greedy-N algorithm naively stops after finding the first one.
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Fig. 12. The cost/throughput ratio
�
�������
�����

�
as a function of� , for 	 � 
�, � � 
, 
 � 
, � � ���. The second graph is simply

a ‘zoom-in’ of the first, for�� � � � ��.

To overcome this problem, the termination condition of Greedy-N can be enhanced so as to stop not at the first
local minimum, but only after it is apparent that no further improvement is possible, that is, after the ratio function has
reached the steadily increasing region. It turns out, however, that translating this into an exact termination condition is
not trivial. We have tested the algorithm with a variety of termination criteria, for all� between�
��� and�
��� in

�The plot in Figure 12 was obtained with the exact values of�	���, i.e. those found by an exhaustive search; however, the plot shape is
essentially similar if any of the approximate evaluation methods is used instead.
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Initialization: Set�� � ��� �� 
 
 
 �,� � �,%��� "�#��
Loop:

� � � � �
For every
 such that either
 � � or ���� � ��:

Temporarily set�� � �� � �
Compute the score of��
Restore��

For the
 that got the best score:
Set�� � �� � �

Set"�#� the cost/throughput ratio for��
If "�# � %��� "�#

Set%��� "�#� "�#,�� � �

If � � ���, terminate; else go back toLoop.

Fig. 13. Algorithm Greedy-N with an enhanced termination condition.

increments of�
���, with 	 � �, � � �, and� � 
�� �� 
 
 
 � ��� ��� 
 
 
 � ���� ���� 
 
 
 � ����� (recall that, for a given
�, the optimal�� depends only on
�� ). We point out that this range covers all the practically interesting cases: for

�
� � �, the optimal window size rarely gets above�, while for 
�� � ���� the typical window sizes already reach

several thousands, and any higher values are not likely to be implemented in practice in a way that keeps the window
transmission time a negligible part of the round-trip delay. It turns out that termination criteria based on fixed numbers
(such as “stop if there has been no improvement for 10 iterations”) are bound to fail for large enough values of�, while
those based on the target value itself (like “stop when the current target value has risen to 5% above the optimum so
far”) may lead to exponential complexity, due to the logarithmic increase rate of the target expression for large� .

The termination conditions that were found to work best were those that exploited the fact that the ‘noise’ tends to
exhibit a certain periodicity, with a period that is much smaller than�� itself. For example, in Figure 12, the local
minima points� � 
��� ��� ��� ��� ��� ��� ��� 
 
 
 � form a nearly arithmetic sequence, with a difference much smaller
than�� � ��; a similar phenomenon was found to occur in all the above-mentioned runs (in a few cases, two separate
regions of local minima sequences with different periods were found, yet both still had periods much smaller than
the corresponding��). A simple termination condition that is based on the above observation is� � ���, i.e., the
search stops after the number of iterations completed is twice the number in which the optimum was found. Figure 13
describes the algorithm with this condition employed; this algorithm did not fail to find the global minimum even in
a single instance. Admittedly, this condition is quite conservative; however, considering that the computation of the
optimal strategy is performed off-line and infrequently, and that the best strategy found so far can begin to be employed
even before the search is completed, perfecting the termination condition to reduce the computation time by a constant
factor at most does not seem to be of major importance.

Finally, Figure 14 plots the optimal cost/throughput ratio as a function of�, for a few select values of the loss
probability; note that the horizontal axis is logarithmic. These plots clearly demonstrate the property predicted by
Theorem 3, namely, that the optimal ratio value increases logarithmically in�.

We close this section with a conclusive example that demonstrates the performance of the Greedy-N algorithm, as
well as other techniques presented earlier.

Example: For the parameter values depicted in figure 12 (namely,� � �
�, � � �, 	 � �, � � ��), algorithm
Greedy-N finds an optimal strategy of��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 
 
 
 � at�� � ��. It has a score of��
���,
which leads to a cost/throughput ratio (i.e. average cost per successfully communicated packet) of�
����. Incidentally,
the greedy search happens to find the optimal strategy in this case; no further improvement can be gained by exhaustive
search.

For comparison, the optimal window size with ‘classic’ sliding windows, found either by direct search or with the
help of formula (6), is� (i.e., the strategy is��� �� �� �� �� �� �� 
 
 
 � in our terms), with a corresponding cost/throughput
ratio value of�
����. Thus, using a strategy with advance retransmissions nearly halves the average cost per packet.

Let us now try� � ���, with the other parameters as before. This time, Greedy-N finds�� � ���, with
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Fig. 14. The optimal cost/throughput ratio as a function of	 for several loss probabilities.

the strategy��� 
 
 
 � �� �� �
��

� �� 
 
 
 � �� �� �
��

� �� 
 
 
 � �� �� �
�	

� �� 
 
 
 � �� �� �
�

� �� �� �� �� �� �� �� �� 
 
 
 �
 Its score is��
����, and the corresponding

cost/throughput ratio value is�
����. The ‘classic’ optimal window size here is��, reaching a cost/throughput value
of ��
���; thus, in this case, the advantage of using a strategy with retransmissions is much greater. In fact, it can be
seen that the cost/throughput increased only mildly from the previous case, despite the tenfold increase of the time cost,
due to using a significantly larger window; this resulted in a nearly-tenfold increase in the throughput as well, which,
therefore, nearly canceled the extra time cost.

It is interesting to note that, this time, the greedy search did not find the optimal strategy. While exhaus-
tive search for the inner problem is unfeasible for� � ���, it can be verified that both the Greedy-R and
Greedy-L algorithms attain higher scores; indeed, Greedy-R for� � �
� and � � ��� obtains the strategy
��� 
 
 
 � �� �� �

��

� �� 
 
 
 � �� �� �
��

� �� 
 
 
 � �� �� �
�


� �� 
 
 
 � �� �� �
�

� �� �� �� �� �� �� �� 
 
 
 �� with a slightly higher score of��
���. The continuous re-

laxation method in this case results in an upper bound of��
���� for the score; therefore, the strategy obtained by
greedy search, with a score of��
����, cannot be off by more than about� from the ‘truly’ optimal one.

VII. C ONCLUSION

We have investigated the properties of optimal sliding-window strategies in network connections where the packet
transmission time is negligible compared to the round-trip delay. We assumed a cost per unit of time and per packet
transmission associated with the connection, and defined the optimal strategy as one that minimizes the cost/throughput
ratio over time. We derived several important bounds on the performance of the optimal strategy: specifically, we

showed that, for a window size of� , the number of successful in-order packets is�
�

�
����

�
, and used this result

to further show that the cost/throughput ratio increases logarithmically in the per-time cost. We then studied several
practical solution algorithms. We found that, for a given window size, a strategy that is at most only a few percent
worse than the optimal can be computed by a very efficient ‘greedy’ algorithm, and extended this algorithm to find the
optimal window size as well, without any further loss in performance. It was demonstrated that such strategies attain a
significantly smaller cost/throughput than ‘classic’ sliding windows, where a packet is retransmitted only after a timeout
or negative acknowledgment; in general, the relative improvement is greater as the cost of waiting a round-trip time gets
higher compared to the marginal cost of transmitting a packet.

The analysis was based on the assumption that the receiver accepts packets only in-order, and that the sender strategy
is limited to simple retransmissions. However, the methodology can be extended to cover other cases as well. For
example, as mentioned in the Introduction, if the sender is capable of forward error-correction (FEC) coding, it may
employ a coding strategy that uses different codes for different packets. While the computation of the optimal strategy is
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somewhat more complex (it involves an extra parameter, namely the size of the coding block), it is based on essentially
the same ideas underlying in the basis of this paper’s results, except that the strategy score expression is based on the
coding redundancy rather than number of retransmissions. In particular, it is to be expected that the optimal strategy
uses a higher-redundancy coding for the first packets in every window than for later ones.

Similarly, the technique established in this paper can be extended to the case that the receiver has a buffer capable of
accepting a certain number of packets out of order, and reports the state of its buffer, e.g., by using negative acknowl-
edgments in addition to simply reporting the index of the next-expected packet (this is known as a receiver capable of
selective repeat). Instead of a single vector of non-negative numbers specifying the number of retransmissions for each
packet, the optimal strategy in this case is described by a set of such vectors, corresponding to the possible buffer states
and specifying the optimal sequence of packet retranmissions for each state. Still, the computation of these vectors
involves the optimization of essentially the same score expression. Furthermore, the strategy remains invariant to the
next-expected packet index and thus can be considered to be of the sliding-windows type.

The strategies discussed in this paper were assumed to wait for the acknowledgments of all packets from a window
before beginning the transmission of the next one. We explained, while presenting the general model, why the optimal
strategy must fall into this category if the packet transmission time is neglected. In reality, of course, a packet transmis-
sion takes a certain time�� � �. This can be simply catered to within our framework, merely by replacing the packet
transmission cost coefficient	 with 	� � � ��, i.e. including the extra per-packet cost due to the time it takes to transmit
it; the rest of the strategy computation can then remain unaltered. This produces a strategy that is adequate as long as
the round-trip delay is significantly longer than the packet transmission time. However, if a packet transmission lasts for
a significant fraction of the round-trip time, it may be worthwhile to begin the transmission of a window even before all
acknowledgments from the previous window have been gathered, i.e., with only a partial information on the successes
and losses in the previous window. Then, in general, a strategy is no longer described by a vector that is applied at
every multiple of the round-trip time, but, rather, by a rule that is applied after every packet transmission and specifies
which packet is most worthwhile to be transmitted next (or none at all), according to the information available from
acknowledgments up to that moment. The investigation of optimal strategies and their properties in this framework, as
well as further development of the other extensions outlined above, form a subject for future work.
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