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Abstract

In this work, an analysis method is developed for the robust and efficient estimation of 3-D

seismic local structural entropy, which is a measure of local discontinuity. This method avoids the

computation of large covariance matrices and eigenvalues, associated with the eigenstructure-based

and semblance-based coherency estimates. We introduce a number of local discontinuity measures,

based on the relations between subvolumes (quadrants) of the analysis cube. The scale of the analysis

is determined by the type of geological feature that is of interest to the interpreter. By combining

local structural entropy volumes using various scales, we obtain a higher lateral resolution and better

discrimination between incoherent and coherent seismic events. Furthermore, the method developed is

computationally much more efficient than the eigenstructure-based coherency method. Its robustness

is demonstrated by synthetic and real data examples.
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Introduction

One of the most challenging tasks facing the seismic interpreter is locating subtle geological features,

such as faults, within a potentially enormous data volume. These geological features are significant

since they are often associated with the formation of subsurface traps in which petroleum might

accumulate. A major step forward in the interpretation of 3-D seismic data was the introduction

of the coherency cube by Bahorich and Farmer (1995). This fundamental tool, which replaces

the original seismic volume by a volume of coherency estimates, ideally gives an interpreter a

much clearer visual indication of the continuity between neighboring windowed seismic traces.

Unfortunately, their coherency measure is based on a classical normalized cross correlation of only

three traces. This approach is computationally very efficient, but lacks robustness when dealing

with noisy data (Marfurt et al. 1998).

Marfurt et al. (1998) proposed a multitrace semblance measure, which estimates coherency over

an arbitrary number of traces. This measure provides a greater stability in the presence of noise,

and improved vertical resolution compared to the cross correlation algorithm. However, increasing

the number of traces used for the coherency analysis, decreases lateral resolution, and increases the

computational cost.

Gersztenkorn and Marfurt (1999) introduced a coherence estimate based on an eigenstructure

approach. Accordingly, an analysis cube enclosing a relatively small subvolume of traces is used for

constructing a covariance matrix. The (i, j)th component of the covariance matrix represents the

cross covariance of the ith and jth traces within the analysis cube. A coherence measure is then

estimated by the ratio of the dominant eigenvalue and the trace of that covariance matrix. It was

shown that the eigenstructure-based coherence estimate provides a more robust measure of coher-

ence, when compared to the cross correlation and semblance based computations (Gersztenkorn and

Marfurt 1999; Marfurt et al. 1999). Yet, its main drawback is the expensive calculations required
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for the building of large covariance matrices and the computation of their dominant eigenvalues.

In this paper, we propose an analysis method for the estimation of seismic local structural

entropy which is both robust to noise and computationally efficient. Similarly to the eigenstructure-

based coherence algorithm, an analysis cube is selected by the interpreter, according to the type

of geological feature that is of interest. Structural features, such as faults, having a longer vertical

duration are analyzed with larger analysis cubes. Stratigraphic features, such as channels, charac-

terized by shorter vertical duration are analyzed with smaller analysis cubes. However, the present

method avoids the computation of large covariance matrices and their dominant eigenvalues. We

define a small (4 by 4) correlation matrix, formed from the cross correlations of four subvolumes

(quadrants) of the analysis cube. Then, the normalized trace of this matrix is used as a local

structural entropy estimate. A number of alternative local discontinuity functionals are also

introduced, derived from similar relations between the quadrants of the analysis cube. Synthetic

and real data examples demonstrate the robustness of the proposed method. Furthermore, by

combining local structural entropy volumes using various sizes of analysis cubes, higher resolutions

are obtained. Specifically, the detection of features is restricted to larger-scale discontinuities, while

suppressing small-scale discontinuities, which are generally not of interest to an interpreter.

Based on this work we have derived efficient methods for background rejection and detection

and classification of anomalies in images and multi-dimensional data. Some methods have been

successfully tested in a variety of applications including medical diagnostics, underwater mine

detection and adaptive noise removal. These ideas and examples will be detailed in subsequent

publications.

3



Local Seismic Discontinuity Measures

The Local Structural Entropy

The Local Structural Entropy (LSE) is a measure of discontinuity, on a scale from zero to one. It

indicates the degree of discontinuity within a given subvolume of the seismic data. By translating

the 3-D seismic volume into a LSE volume, interpreters can often reveal subtle geological features,

such as faults and channels, which are not readily apparent in the seismic data.

As a preprocessing stage for the computation of the LSE, each trace is modified by subtracting

its mean value:

d̂xyt = dxyt − Et {dxyt} = dxyt − 1

Nt

Nt
∑

k=1

dxyk , (1)

where dxyt and d̂xyt are respectively the original and modified t-th sample of the trace at position

(x, y), and Nt is the total number of samples in each trace.

Subsequently, a relatively small 3-D analysis cube is selected by the interpreter. The analysis

cube moves throughout the 3-D modified seismic volume and outputs for each point a measure of

LSE. The size and shape of the analysis cube defines the geometrical distribution of traces and

samples to be used for the LSE computation. For the following discussion we assume that the

analysis cube is a 3-D box enclosing 2L1 in-line traces, 2L2 cross-line traces and N samples. The

analysis cube is split into four L1 by L2 by N quadrants, which are rearranged in a consistent

fashion into column vectors {ai | i = 1, . . . , 4}. The correlation matrix of the analysis cube is

formed from the correlations between the quadrants:
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1
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This matrix contains on its diagonal the auto-correlations of individual quadrants, and on off-

diagonals the cross-correlations between distinct quadrants ai and aj . It should be noted that the

correlation matrix S is symmetric, and that its six unique off-diagonal components correspond to

two in-line, two cross-line, and two spatially-diagonal cross-correlations.

The LSE measure is associated with a distinguished point within the analysis cube, generically

represented here by (x, y, t). It is defined as the normalized trace of the corresponding correlation

matrix:

ε(x, y, t) =
tr S

‖S‖ − 1 =

4
∑

i=1

a
T
i ai

√

4
∑

i,j=1

(

aT
i aj

)2

− 1

=

4
∑

i=1

a
T
i ai

√

√

√

√

4
∑

i=1

[

(

aT
i ai

)2
+ 2

4
∑

j=i+1

(

aT
i aj

)2

]

− 1 (3)

where ‖·‖ is the Hilbert-Schmidt norm (known also as the Frobenius or Euclidian norm) (Golub

and Van Loan, 1996). If all the quadrants are perfectly correlated (minimum discontinuity), the

elements of the correlation matrix are identical, so tr S = ‖S‖ and ε = 0. If there is no correlation at

all among the quadrants (maximum discontinuity), tr S ≤ 2 ‖S‖ and ε ≤ 1. The structural entropy,

in this respect, is a cost function that measures the amount of disorder (uncertainty) within an

analysis cube. Notice that the LSE measure is assigned to a point which is not the center of the

analysis cube. However, it is possible to space out the (L1 by L2 by N) quadrants one trace apart

on each side. In that case, the analysis cube encloses an odd number of traces on each side (2L1 +1

in-line traces and 2L2 + 1 cross-line traces), making it possible to associate the LSE measure with

its center.
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Normalized trace of the covariance matrix

Instead of subtracting the mean value from each trace and working with the correlation matrices,

one can define discontinuity measures based on covariance matrices. In this case, the analysis cube

moves throughout the 3-D original seismic volume. For each analysis cube, the covariances of

the corresponding quadrants are computed and arranged into a matrix Σ, whose normalized trace

defines a discontinuity measure:

ε1(x, y, t) =
tr Σ

‖Σ‖ − 1 =

4
∑

i=1

σ2
ii

√

√

√

√

4
∑

i=1

[

σ2
ii + 2

4
∑

j=i+1

σ2
ij

]

− 1 (4)

where σ2
ij are the elements of the covariance matrix. This measure can also be written as

ε1(x, y, t) =

4
∑

i=1

λi

√

4
∑

i=1

λ2
i

− 1 (5)

where {λi | i = 1, . . . , 4} are the eigenvalues of Σ
1.

It is easy to verify that ε1 is also bounded between zero and one. If all the quadrants

are perfectly correlated (minimum discontinuity), the components of the covariance matrix are

identical. Accordingly, the rank of Σ is equal to one (Σ has a single nonzero eigenvalue λ1) and

ε1 = 0. If there is no correlation at all among the quadrants (maximum discontinuity), then the

maximum value of ε1 occurs when all the eigenvalues of Σ are equal and, hence, ε1 ≤ 1.

1In fact, the normalized trace of the correlation matrix S (Eq. (3)) can also be written in terms of the eigenvalues

of S, since the trace of a matrix is equal to the sum of its eigenvalues, and the Hilbert-Schmidt norm of a matrix A

is equal to the trace of A
T
A.
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Generalized trace of the covariance matrix

The relation between ε1 and the eigenvalues of the covariance matrix was obtained using the fact

that the trace of the covariance matrix is equal to the sum of its eigenvalues, and the Hilbert-

Schmidt norm of the covariance matrix is equal to the sum of the eigenvalues squared (Golub and

Van Loan, 1996). Generally, we can define a discontinuity measure that is proportional to the ratio

between ℓ1 and ℓp (p > 1) norms of the vector of eigenvalues by

ε1,p(x, y, t) = α

[
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where the constant α = (4
1−

1

p − 1)−1 is a normalization factor, restricting the maximum value of

ε1,p to one. In the special case where p = 2, ε1,2 ≡ ε1, since ‖Σ‖ = ‖λ‖
2
.

Normalized scatter of the correlation matrix

If one is working with matrices of correlation coefficients, the energy of the off-diagonal components,

suitably normalized, may be used for defining a measure of discontinuity. Specifically,

ε2(x, y, t) = 1 −

√

‖R‖2 − 4

12
= 1 −

√

√

√

√

√

4
∑

i,j=1

ρ2
ij − 4

12
(7)

where R is the matrix of correlation coefficients, whose elements are related to those of the

covariance matrix by

ρij =
σij√
σiiσjj

, i, j = 1, . . . , 4. (8)

Again, the range of the discontinuity measure is between zero and one. If all the quadrants are

perfectly correlated (minimum discontinuity), the components of R are all ones, so ‖R‖2 = 16
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and ε2 = 0. If there is no correlation at all among the quadrants (maximum discontinuity), the

off-diagonal components of R are all zero and ε2 = 1.

Normalized scatter of the covariance matrix

A similar discontinuity measure, defined using the covariance matrix, is given by

ε3(x, y, t) = 1 −

√
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4
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. (9)

In this case, the discontinuity is determined by the relative energy of the off-diagonal components

(normalized scatter) of the covariance matrix. As before, we have 0 ≤ ε3 ≤ 1 and higher ε3 values

imply greater discontinuity.

Ratio between the second and first eigenvalues

As mentioned above, the eigenvalues of the covariance matrix are closely related to the degree of

discontinuity within a prescribed analysis cube. Small amounts of discontinuity yield one large

nonzero eigenvalue λ1, with the other eigenvalues being negligible. Higher degrees of discontinuity

are observed when λ2, λ3 and λ4 become more significant. In particular, the ratio between the

second and first eigenvalues can be used as a discontinuity measure:

ε4(x, y, t) =
λ2

λ1

. (10)

In general, the ratio of an eigenvalue to the summation of all eigenvalues expresses the percentage of

the mean-square error introduced by eliminating the corresponding eigenvector (Rao 1968). In our

case, when the quadrants of a given analysis cube are perfectly correlated, they can be represented
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by a single eigenvector. Hence, the ratio between the second and first eigenvalues indicates a degree

of inconsistency with a model of perfectly correlated quadrants (0 ≤ ε4 ≤ 1 with higher ε4 values

implying greater discontinuity).

Normalized dominant eigenvalue

Another version of such a discontinuity measure could use the mean-square error introduced by

eliminating all eigenvectors but the first. In this case, the discontinuity measure is proportional to

the ratio between the summation of all eigenvalues besides λ1 and the summation of all eigenvalues:

ε5(x, y, t) =
4

3

4
∑

i=2

λi

tr Σ
=

4

3

(

1 − λ1

tr Σ

)

(11)

where we have again normalized to keep the measure between 0 and 1.

It is worth mentioning that the above definitions are just examples of discontinuity measures,

derived using the relations among quadrants of the analysis cubes. Other definitions can be

obtained either by combining the above measures or using higher-order statistics, as will be shown

in subsequent publications. The data examples that were tested showed slightly better results using

ε4. However, the computational efficiency in estimating ε (Eq. (3)) made it the best candidate for

quantifying seismic discontinuities.

Examples

In this section we use synthetic, as well as real, data examples to demonstrate the usefulness of the

proposed discontinuity measures.
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Synthetic data

A synthetic data was constructed, simulating a 3-D migrated seismic volume with two apparent

faults. The data consist of 128 in-line traces and 128 cross-line traces, each containing 128 samples.

A vertical cross-section through the synthetic seismic data is shown in Fig. 1a. A horizontal slice is

shown in Fig. 2a. The corresponding slices through the LSE volumes, obtained with three different

sizes of analysis cubes, are displayed in Figs. 1b-d and 2b-d. We used analysis cubes of sizes [2 2 7],

[4 4 15] and [6 6 31], where three numbers between the square brackets designate, respectively, the

number of in-line traces, cross-line traces and number of time samples. The LSE values are mapped

to shades of gray, where darker shades indicate greater discontinuity. Clearly, a smaller analysis

cube yields a sharper image of the seismic discontinuity. Furthermore, regions of large structural

dips give artifacts, when the analysis cube is too large.

To evaluate the performance of the LSE measure under noise conditions, we created a noisy

version of the synthetic data, by adding a white Gaussian noise to the data values and a uniform

noise to the phase of the seismic layers with a signal-to-noise ratio (SNR) of 5.6 dB. Specifically,

the noisy data is given by

d̃xyt = Axyt sin (ϕxyt + uxyt) + nxyt (12)

where dxyt = Axyt sin (ϕxyt) designates the clean simulated data, uxyt is white uniform noise, and

nxyt is white Gaussian noise. The SNR is defined as the ratio between the variance of the original

data and the mean square error, expressed in decibels as

SNR = 10 log10

V ar (dxyt)

E

[

(

dxyt − d̃xyt

)2
] . (13)

A vertical cross-section and horizontal slice through the noisy synthetic data are shown in Figs. 3a

and 4a. The corresponding cross-sections and slices through the LSE volumes are presented in

Figs. 3b-d and 4b-d. Compared to the original LSE volumes (Figs. 1 and 2), the LSE measure
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evaluated for the noisy data is characterized by a higher SNR when a larger analysis cube is used.

In this example, the SNR increases from -5.8 dB to 9.7 dB, by expanding the analysis cube from [2

2 7] to [6 6 31]. However, the sensitivity to noise decreases at the price of generally reduced lateral

resolution.

Real data

The real data example (courtesy of GeoEnergy) is from the Gulf of Mexico. The data is decimated

in both time and space. The time interval is 8ms, in-line trace spacing is 25m, and cross-line

trace spacing is 50m. A small subvolume with an in-line distance of 5.025 km and a cross-line

distance of 10.05 km (201 x 201 traces) is used for demonstration. Each trace is 1.808 s in duration

(226 samples). Figs. 5a and 6a show, respectively, a horizontal slice at t = 480ms and a vertical

cross-section at x = 2.5 km through the seismic data. The corresponding cross-sections and slices

through the LSE volumes, obtained with three different sizes of analysis cubes, are displayed in

Figs. 5b-d and 6b-d. The size of the analysis cube is determined by the type of geological feature

that is of interest to the interpreter. Structural features such as faults, having a longer vertical

duration, are analyzed with a larger cube (lower resolution). Stratigraphic features such as channels,

characterized by shorter vertical duration, are better resolved with smaller cubes (higher lateral

resolution).

In addition to the LSE measure, we proposed six other local discontinuity measures, namely the

normalized trace of the covariance matrix (ε1), the generalized trace of the covariance matrix (ε1,p),

the normalized scatter of the correlation matrix (ε2), the normalized scatter of the covariance matrix

(ε3), the ratio between the second and first eigenvalues (ε4), and the normalized dominant eigenvalue

(ε5). These measures are closely related to the LSE measure, but entail a higher computational

complexity. In Fig. 7 we compare these six alternative measures for the horizontal slice at t =

480ms, using an analysis cube of size [6 6 31]. The results are practically similar, but it was found
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that ε4 generally produces enhanced images with improved contrast between faults and background

(cf. Fig. 7e). This may be attributed to the fact that principal eigenvalues are closely related to

the local seismic structure, while smaller eigenvalues contribute noise to the measure.

Multiscale LSE Volumes

LSE volumes generated by smaller sizes of analysis cubes entail a lower computational complexity

and provide a sharper image of seismic discontinuities. However, the sensitivity to noise and

smaller-scale discontinuities, which are generally not of interest to an interpreter, increases as the

size of the analysis cube is getting smaller. Hence, by combining LSE volumes using various sizes of

analysis cubes, higher lateral resolutions can be obtained while restricting the detection of features

to larger-scale discontinuities, such as fault surfaces.

Figs. 8 and 9 illustrate combinations of LSE volumes, using analysis cubes of [2 2 7], [4 4 15] and

[6 6 31] samples. Specifically, the multiscale LSE volumes are obtained by arithmetic mean of the

LSE values (Figs. 8a and 9a), geometric mean (Figs. 8b and 9b), maximum LSE where its value is

larger than a certain threshold (highly discontinuous regions) and minimum LSE elsewhere (Figs. 8c

and 9c). The multiscale LSE volumes emphasize points, which are likely to be corresponding to

fault surfaces. Such points are characterized by a high degree of discontinuity in all relevant scales.

Relation to Other Work

The local discontinuity measures proposed in this paper are closely related to the eigenstructure-

based coherence computations (Gersztenkorn 1999). Gersztenkorn and Marfurt (1999) have shown

that an eigendecomposition of the data covariance matrix (Gersztenkorn and Marfurt 1996a, 1996b;

Kirlin 1992) provides a more robust measure of coherence, compared to cross correlation (Bahorich
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and Farmer 1995, 1996) and semblance (Marfurt et al. 1998; Neidell and Taner, 1971) based

computations. The eigenstructure-based coherence algorithm constructs for each point a J by J

covariance matrix, where its (i, j)th component is a cross-covariance of the ith and jth traces within

the analysis cube. Then, a coherence estimate is given by the ratio between the dominant eigenvalue

and the trace of the covariance matrix. Fig. 10 shows horizontal slices at t = 480ms and vertical

cross-sections at x = 2.5 km through the eigenstructure-based coherence volumes, obtained with

analysis cubes of sizes [4 4 15] and [6 6 31] samples. For a comparison between the eigenstructure-

based coherence algorithm and our LSE algorithm, let [2L1 2L2 N ] denote the size of the analysis

cube (i.e., the analysis cube contains 2L1 in-line and 2L2 cross-line traces, each of N samples).

The main differences between their algorithm and ours are as follows:

• Their algorithm computes cross-covariances of traces. Our method is based on cross-correlations

of subvolumes (quadrants of the analysis cube).

• The size of the eigenstructure-based covariance matrix is 4LlL2 x 4LlL2, while the size of the

LSE-based correlation matrix is only 4 x 4.

• Their algorithm requires computations of dominant eigenvalues of large covariance matrices.

Our algorithm avoids that.

• In terms of computational complexity, their algorithm requires 8(L1L2)
2N + 2L1L2(N + 2)

multiplications and 8(L1L2)
2(N − 1) + 10L1L2(N − 1) + 4L1L2 additions for the construction

of a covariance matrix. Our method uses only 10L1L2N multiplications and 10(L1L2N − 1)

additions for the construction of a 4 x 4 correlation matrix. For example, if the size of the analysis

cube is [6 6 21], then a computation of an eigenstructure-based covariance matrix needs 14, 022

multiplications and 14, 796 additions, whereas that of an LSE-based correlation matrix requires

only 1, 890 multiplications and 1, 880 additions. We note that their computational complexity

is even higher, compared to our algorithm, since their method needs also the first dominant
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eigenvalues of the respective covariance matrices. Furthermore, as the analysis cube moves

throughout the seismic data volume, the number of computations required for updating the

LSE-based correlation matrix is significantly lower than that associated with the eigenstructure-

based covariance matrix.

Conclusion

We have introduced an analysis method for the estimation of seismic local structural entropy, which

is both robust to noise and computationally efficient. This method avoids the computation of large

covariance matrices and eigenvalues, associated with the eigenstructure-based coherency estimates.

Efficient discontinuity measures were proposed based on the relations between quadrants of the

analysis cube. In particular, the Local Structural Entropy measure was found advantageous over

the alternative measures, in terms of computational cost. Whereas the discontinuity measure,

based on the ratio between the second and first eigenvalues, is advantageous in producing enhanced

images with improved contrast between faults and background. By combining LSE volumes using

various sizes of analysis cubes, we obtained a higher lateral resolution while suppressing smaller-

scale discontinuities, which are generally not of interest to an interpreter. The robustness of the

proposed method was demonstrated using synthetic and real data examples.
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Figure Captions

Fig. 1: Vertical cross-sections through (a) synthetic seismic data, and through the corresponding

LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].

Fig. 2: Horizontal slices through (a) synthetic seismic data, and through the corresponding LSE

volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].

Fig. 3: Vertical cross-sections through (a) noisy synthetic seismic data (SNR=5.6 dB), and through

the corresponding LSE volumes using analysis cubes of sizes (b) [2 2 7] (SNR=-5.8 dB),

(c) [4 4 15] (SNR=4.0 dB) and (d) [6 6 31] (SNR=9.7 dB).

Fig. 4: Horizontal slices through (a) noisy synthetic seismic data (SNR=5.6 dB), and through the

corresponding LSE volumes using analysis cubes of sizes (b) [2 2 7] (SNR=-5.8 dB), (c) [4

4 15] (SNR=4.0 dB) and (d) [6 6 31] (SNR=9.7 dB).

Fig. 5: Horizontal slices at t = 480ms through (a) seismic data, and through the corresponding

LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].

Fig. 6: Vertical cross-sections at x = 2.5 km through (a) seismic data, and through the corre-

sponding LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6

31].

Fig. 7: Horizontal slices at t = 480ms through entropy volumes produced using six alternative

entropy measures and an analysis cube of [6 6 31] samples: (a) Normalized trace of the

covariance matrix (ε1). (b) Generalized trace of the covariance matrix (ε1,8). (c) Nor-

malized scatter of the correlation matrix (ε2). (d) Normalized scatter of the covariance

matrix (ε3). (e) Ratio between the second and first eigenvalues (ε4). (f) Normalized

dominant eigenvalue (ε5).

Fig. 8: Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15] and [6 6 31] samples.

Horizontal slices at t = 480ms through: (a) Arithmetic mean of the LSE values. (b) Ge-
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ometric mean of the LSE values. (c) Maximum LSE in highly discontinuous regions and

minimum LSE elsewhere. (d) Maximum LSE in regions where both its value and its

spatial average are higher than a certain threshold, and zero elsewhere.

Fig. 9: Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15] and [6 6 31] samples.

Vertical cross-sections at x = 2.5 km through: (a) Arithmetic mean of the LSE values.

(b) Geometric mean of the LSE values. (c) Maximum LSE in highly discontinuous regions

and minimum LSE elsewhere. (d) Maximum LSE in regions where both its value and its

spatial average are higher than a certain threshold, and zero elsewhere.

Fig. 10: Eigenstructure-based coherence images: Horizontal slices at t = 480ms using analysis

cubes of (a) [4 4 15] samples, and (b) [6 6 31] samples. Vertical cross-sections at x = 2.5 km

using analysis cubes of (c) [4 4 15] samples, and (d) [6 6 31] samples.
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Figure 1: Vertical cross-sections through (a) synthetic seismic data, and through the corresponding
LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].
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Figure 2: Horizontal slices through (a) synthetic seismic data, and through the corresponding LSE
volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].
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Figure 3: Vertical cross-sections through (a) noisy synthetic seismic data (SNR=5.6 dB), and
through the corresponding LSE volumes using analysis cubes of sizes (b) [2 2 7] (SNR=-5.8 dB),
(c) [4 4 15] (SNR=4.0 dB) and (d) [6 6 31] (SNR=9.7 dB).
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Figure 4: Horizontal slices through (a) noisy synthetic seismic data (SNR=5.6 dB), and through
the corresponding LSE volumes using analysis cubes of sizes (b) [2 2 7] (SNR=-5.8 dB), (c) [4 4
15] (SNR=4.0 dB) and (d) [6 6 31] (SNR=9.7 dB).
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Figure 5: Horizontal slices at t = 480ms through (a) seismic data, and through the corresponding
LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6 31].
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Figure 6: Vertical cross-sections at x = 2.5 km through (a) seismic data, and through the
corresponding LSE volumes using analysis cubes of sizes (b) [2 2 7], (c) [4 4 15] and (d) [6 6
31].
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Figure 7: Horizontal slices at t = 480ms through entropy volumes produced using six alternative
entropy measures and an analysis cube of [6 6 31] samples: (a) Normalized trace of the covariance
matrix (ε1). (b) Generalized trace of the covariance matrix (ε1,8). (c) Normalized scatter of the
correlation matrix (ε2). (d) Normalized scatter of the covariance matrix (ε3). (e) Ratio between
the second and first eigenvalues (ε4). (f) Normalized dominant eigenvalue (ε5).
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Figure 8: Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15] and [6 6 31] samples.
Horizontal slices at t = 480ms through: (a) Arithmetic mean of the LSE values. (b) Geometric
mean of the LSE values. (c) Maximum LSE in highly discontinuous regions and minimum LSE
elsewhere.
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Figure 9: Combining LSE volumes using analysis cubes of [2 2 7], [4 4 15] and [6 6 31]
samples. Vertical cross-sections at x = 2.5 km through: (a) Arithmetic mean of the LSE values.
(b) Geometric mean of the LSE values. (c) Maximum LSE in highly discontinuous regions and
minimum LSE elsewhere.
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Figure 10: Eigenstructure-based coherence images: Horizontal slices at t = 480ms using analysis
cubes of (a) [4 4 15] samples, and (b) [6 6 31] samples. Vertical cross-sections at x = 2.5 km using
analysis cubes of (c) [4 4 15] samples, and (d) [6 6 31] samples.
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