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Abstract

In this paper, an efficient method is proposed for detecting and extracting fault surfaces in 3-D

seismic volumes. The seismic data is transformed into a volume of Local Fault Extraction (LFE)

estimates, representing the likelihood that a given point lies on a fault surface. The fault surfaces are

partitioned into relatively small linear portions, which are identified by analyzing tilted and rotated

subvolumes throughout the region of interest. Directional filtering and thresholding further enhance

the seismic discontinuities attributable to fault surfaces. The LFE method demonstrates a more

reliable and convenient interpretation tool for fault surfaces, compared to the state-of-the-art coherence

analysis. In particular subtle faults having minimal offsets can be detected in noisy complex geological

structures.
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Introduction

Fault surfaces are common subterranean structures, associated with displacements or offsets of

seismic layers. Their consistent and reliable detection in 3-D seismic data provides an interpreter

with very powerful means to quickly visualize and map complex geological structures.

A common tool facilitating structural and stratigraphic interpretation is the coherency cube,

originated by Bahorich and Farmer (1995, 1996). It is calculated from the seismic data using a co-

herency measure that quantifies the seismic discontinuity at each point. Discontinuities attributable

to fault surfaces include dip, azimuth, and offset changes of seismic reflectors, and waveform and

amplitude variations caused by defocusing. Such discontinuities appear on coherence slices as

incoherent linear or curved features (e.g., Marfurt et al. 1999; Gersztenkorn et al. 1999; Neff et al.

2000; Lees 1999).

The most acceptable coherence measures are based on cross correlation (Bahorich and Farmer

1995), semblance (Marfurt et al. 1998), or eigenstructure (Gersztenkorn and Marfurt 1996a, 1996b;

Kirlin 1992) techniques. These methods typically suffer from either a lack of robustness, especially

when dealing with noisy data, or high computational complexity (Marfurt et al. 1999; Gersztenkorn

and Marfurt 1999). Recently, we have introduced a multiscale analysis method for the estimation of

seismic coherency, which is both robust to noise and computationally efficient (Cohen and Coifman

2001). It involves a coherency measure, namely the Local Structural Entropy (LSE), which evaluates

the dissimilarity of subvolumes enclosing a given analysis point. Dealing with subvolumes, rather

than individual traces, leads to robustness, while avoiding the expensive computations of semblance

and eigenstructure-based large covariance matrices and eigenvalues.

A major drawback of coherency-based fault analysis is that seismic discontinuities may also

result from geological features, which are unrelated to faults. Furthermore, creating a consistent

geological interpretation from large 3-D seismic data volumes often requires manual intervention,
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which is time-consuming, tedious and imprecise.

In this paper, we propose a robust and computationally efficient method for the extraction of

fault surfaces in 3-D seismic volumes. The seismic data is transformed into a volume of Local Fault

Extraction (LFE) estimates, which provides the interpreter with a much clearer visual indication

of the fault surfaces. The LFE estimate at a given analysis point is obtained by the following

procedure. First, a 3-D analysis cube, tilted and rotated about the analysis point, is selected by

the interpreter. The analysis cube moves throughout the seismic volume and outputs for each point

a measure of Normalized Differential Entropy (NDE). The NDE value represents the likelihood of a

fault surface, having similar dip and azimuth as of the analysis cube, to intersect with the analysis

point. Subsequently, the local average of the NDE is removed, and portions of fault surfaces,

approximately aligned with the analysis cube, are extracted by directional filtering. The filtered

NDE coefficients are thresholded, and filtered back to produce directional LFE volumes. Finally,

the LFE attribute is given by the maximal directional LFE, over the presumably tested set of dips

and azimuths. This practically gathers the significant portions of the fault surfaces into smooth

larger surfaces. A comparison of the LFE volume with the state of the art coherence volumes shows

that the LFE method provides a more reliable and convenient tool for detecting and extracting

fault surfaces, in particular subtle faults in complex geological structures.

The Local Fault Extraction

In this section we describe the basic components forming the proposed fault extraction algorithm.
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Normalized Differential Entropy

We begin by subtracting the mean value from each trace of the seismic data . Specifically, the data

is modified by

d̂xyt = dxyt − Et {dxyt} = dxyt −
1

Nt

Nt
∑

k=1

dxyk , (1)

where dxyt and d̂xyt are respectively the original and modified t-th sample of the trace at position

(x, y), and Nt is the total number of samples in each trace. Then, a relatively small 3-D analysis

cube is selected by the interpreter. The analysis cube moves throughout the 3-D modified seismic

volume and outputs for each point a measure of NDE.

The analysis cube is defined by the length of major axis L1, length of minor axis 2L2 + 1, time

duration N samples, azimuth ϕ, and dip γ (Fig. 1). It comprises two identical subvolumes, which

are tilted and rotated about the analysis point λ = (x, y, t). The samples within the two subvolumes

are rearranged in a consistent manner into two column vectors v1,λ(γ, ϕ) and v2,λ(γ, ϕ). The NDE

at the analysis point λ is defined by the normalized difference of this two vectors:

Nλ(γ, ϕ) =
‖v1,λ(γ, ϕ) − v2,λ(γ, ϕ)‖p

‖v1,λ(γ, ϕ)‖p + ‖v2,λ(γ, ϕ)‖p

, (2)

where ‖·‖p is the ℓp norm. The NDE is a gradient based formula and is a normalized version of the

Prewitt edge detection filter (Jain, 1989), (Lipkin and Rosenfeld,1970). In order words the NDE

computations are an extension of edge detection to surface detection in three dimensions. If the

two subvolumes are perfectly correlated without a disruption or offset of seismic layers, presumably

there is not fault surface enclosed between them, so v1,λ(γ, ϕ) = v2,λ(γ, ϕ) and Nλ(γ, ϕ) = 0.

Otherwise, the likelihood for the presence of a fault surface, aligned in the gap between the two

subvolumes, is proportional to the offset of v1,λ(γ, ϕ) and v2,λ(γ, ϕ). In this case, 0 < Nλ(γ, ϕ) ≤ 1,

where the maximum value of Nλ(γ, ϕ) is obtained for maximally offset correlated subvolumes, i.e.,

4



v1,λ(γ, ϕ) = −v2,λ(γ, ϕ).

Contrast Enhancement

The second step of the algorithm is contrast enhancement. Fault surfaces having dips and azimuths

about the same dip and azimuth of the analysis cube are distinguished by higher NDE values,

compared to the local average NDE value. Accordingly, we apply a contrast enhancement filtering

to the NDE values, and set to zero negative values. This facilitates the analysis of regions that

contain dipping layers or are highly discontinuous.

The contrast enhancement filtering can be efficiently implemented using a discrete “Mexican

Hat” function:

f(n) = C(1 − n2) exp(−n2/2) (3)

where n = kτ (k ∈ ZZ), C is a normalization constant such that
∑

∞

k=−∞
|f(kτ)| = 2. We use a

finite length filter (−4.5 ≤ n ≤ 4.5), containing odd number of uniformly spaced coefficients (we

obtained good results for 31 coefficients, but generally it depends on the size of the analysis cube

and the ”thickness” of the fault surfaces). The filtered NDE is given by:

N̄λ(γ, ϕ) = gλ(γ, ϕ) ∗ Nλ(γ, ϕ) =
∑

λ′

gλ−λ′(γ, ϕ)Nλ′(γ, ϕ) , (4)

where gλ(γ, ϕ) is a rotated version of f , such that its main axis is perpendicular to the slabs of the

analysis cube. The contrast enhanced NDE is given by

N̂λ(γ, ϕ) = max
{

N̄λ(γ, ϕ), 0
}

. (5)
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Directional LFE

The third step of the algorithm is directional filtering. In this step, we extract the portions of fault

surfaces that are approximately aligned with the analysis cube.

The directional filter, denoted by hλ(γ + α, ϕ), is a 3-D ellipsoid, tilted by γ + α with respect

to the time axis, rotated by ϕ with respect to the in-line axis, and normalized by
∑

λ hλ(γ, ϕ) =

1. Its dimensions, selected by the interpreter, control the minimal dimensions of the detected

subsurfaces. The maximum value of α is determined by the dip increment ∆γ (|α| < ∆γ/2). In

our implementation, we used a 3-D pencil-like shaped Hanning window, whose dimensions are 61

samples at its major axis and 3 samples at its minor axes. The dip increment is ∆γ = 5o, and the

relative tilt of the directional filter α is restricted to {−2o, 0, 2o}. Clearly, we could use a smaller

dip increment and discard the relative tilt. However, the above formulation is computationally

more efficient.

Directional filtering of the contrast enhanced NDE yields

Cλ(γ + α, ϕ) =
∑

λ′

hλ−λ′(γ + α, ϕ)N̂λ′(γ, ϕ) . (6)

These coefficients are thresholded by δ (0 < δ < 1),

C̃λ′(γ + α, ϕ) =

{

Cλ′(γ + α, ϕ), if Cλ′(γ + α, ϕ) ≥ δ
0, otherwise,

(7)

and then filtered back to produce the directional LFE, given by

Lλ(γ, ϕ) =
∑

λ′,α

C̃λ′(γ + α, ϕ)hλ−λ′(γ + α, ϕ) . (8)

The directional LFE volumes contain significant portions of fault surfaces, characterized by roughly

the same dip and azimuth orientations as those of the analysis cube.
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Constructing the Fault Surfaces

The final step of the algorithm is keeping at each point the maximum directional LFE value, over

the tested set of dips and azimuths. Specifically, the LFE attribute at the analysis point λ is given

by

Lλ = max
γ,ϕ

{Lλ(γ, ϕ)} . (9)

The LFE volume thus gathers and connects the significant portions of faults into smooth large fault

surfaces.

Results

In this section we use a real data example to demonstrate the applicability of the LFE algorithm,

and to illustrate its execution. The data example (courtesy of GeoEnergy) is from the Gulf of

Mexico. The data is decimated in both time and space. The time interval is 8ms, in-line trace

spacing is 25m, and cross-line trace spacing is 50m. A small subvolume with an in-line distance of

5.025 km and a cross-line distance of 10.05 km (201 x 201 traces) is used for demonstration. Each

trace is 3.208 s in duration (401 samples).

Fig. 2 shows a vertical cross-section through the seismic data at y = 6 km. The corresponding

cross-sections through the NDE volumes, obtained with an analysis cube of [7 7 21] samples and

various dips and azimuths, are displayed in Fig. 3. Clearly, the dip and azimuth of the analysis

cube determine the portions of fault surfaces to be detected. In particular, surfaces having dips

and azimuths about the same dip and azimuth of the analysis cube are distinguished by higher

NDE values, compared to the locally averaged NDE. The second step of the algorithm is contrast

enhancement. This step removes the 3-D local average of the NDE, thus compensating for regions

that are highly discontinuous, but often do not contain fault surfaces. The results of the second
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step are displayed in Fig. 4. The third step of the algorithm is directional filtering. Here, we detect

the portions of fault surfaces that are approximately aligned with the analysis cube. The minimal

dimensions of the detected subsurfaces are controlled by the dimensions of the directional filter.

For the present example, we used a 3-D pencil-like shaped Hanning filter, whose dimensions are

61 samples at its major axis and 3 samples at its minor axes. The dip increment is ∆γ = 5o,

the azimuth increment is ∆ϕ = 45o, and the relative tilt of the directional filter α is restricted to

{−2o, 0, 2o}. The filtered NDE coefficients are thresholded by δ = 0.12, and filtered back to produce

the directional LFE volumes. The results of the third step of the algorithm are displayed in Fig. 5.

The final step is keeping at each point the maximum value. This yields the LFE volume (Fig. 6),

containing all the fault surfaces in conformity with the presumed model (i.e., the dimensions of the

analysis cube, set of dips and azimuths, directional filter, threshold, etc.).

For comparison with the state of the art coherence attributes, we plot in Fig. 7 the vertical cross-

sections at y = 6 km through the LSE (Cohen and Coifman 2001) and the eigenstructure-based

coherence volumes (Gersztenkorn and Marfurt 1999), using an analysis cube of [6 6 21] samples.

Values are mapped to shades of gray, where darker shades indicate greater discontinuity. These

methods produce similar images. However, the LSE-based algorithm is computationally much

more efficient than the eigenstructure-based algorithm (Cohen and Coifman 2001). A comparison

of Figs. 6 and 7 shows that the LFE method provides a more reliable and convenient tool for the

extraction of subtle fault surfaces. This is further shown in Fig. 8, which compares the horizontal

slices at t = 480ms through the LFE, the LSE, and the eigenstructure-based coherence volumes.
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Figure Captions

Fig. 1: (a) A vertical cross-section and (b) horizontal slice illustrating the geometrical distribution

of traces and samples used in the analysis cube. The analysis cube, consisting of two

subvolumes, is centered about an analysis point λ = (x, y, t), and defined by length of

major axis L1, length of minor axis 2L2 + 1, time duration N samples, azimuth ϕ, and

dip γ.

Fig. 2: A vertical cross-section through the seismic data at y = 6 km.

Fig. 3: First step of the algorithm: Computing the Normalized Differential Entropy. Vertical

cross-sections at y = 6 km through NDE volumes, using an analysis cube of [7 7 21]

samples and the following dips and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o,

ϕ = 0o. (c) γ = 0o, ϕ = −45o. (d) γ = 0o, ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o,

ϕ = 20o.

Fig. 4: Second step of the algorithm: Contrast enhancement. Vertical cross-sections at y = 6 km

through contrast enhanced NDE volumes, using an analysis cube of [7 7 21] samples and

the following dips and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o, ϕ = 0o. (c) γ = 0o,

ϕ = −45o. (d) γ = 0o, ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o, ϕ = 20o.

Fig. 5: Third step of the algorithm: Directional filtering. Vertical cross-sections at y = 6 km

through directional LFE volumes, using an analysis cube of [7 7 21] samples and the

following dips and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o, ϕ = 0o. (c) γ = 0o,

ϕ = −45o. (d) γ = 0o, ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o, ϕ = 20o.

Fig. 6: Final step of the algorithm: Maximizing over a set of dips and azimuths. A vertical cross-

section at y = 6 km through the LFE volume, using an analysis cube of [7 7 21] samples,

dips γ = −20o,−15o, . . . , 20o, and azimuths ϕ = −45o, 0o, 45o, 90o.

Fig. 7: Vertical cross-sections at y = 6 km through (a) the Local Structural Entropy volume, and
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(b) the eigenstructure-based coherence volume, using an analysis cube of [6 6 21] samples.

Fig. 8: Horizontal slices at t = 480ms through (a) the seismic data, (b) the eigenstructure-based

coherence volume using an analysis cube of [6 6 21] samples, (c) the LSE volume using an

analysis cube of [6 6 21] samples, and (d) the LFE volume using an analysis cube of [7 7

21] samples.
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Figure 1: (a) A vertical cross-section and (b) horizontal slice illustrating the geometrical distribution
of traces and samples used in the analysis cube. The analysis cube, consisting of two subvolumes,
is centered about an analysis point λ = (x, y, t), and defined by length of major axis L1, length of
minor axis 2L2 + 1, time duration N samples, azimuth ϕ, and dip γ.
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Figure 2: A vertical cross-section through the seismic data at y = 6 km.
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Figure 3: First step of the algorithm: Computing the Normalized Differential Entropy. Vertical
cross-sections at y = 6 km through NDE volumes, using an analysis cube of [7 7 21] samples and
the following dips and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o, ϕ = 0o. (c) γ = 0o,
ϕ = −45o. (d) γ = 0o, ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o, ϕ = 20o.
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Figure 4: Second step of the algorithm: Contrast enhancement. Vertical cross-sections at y = 6 km
through contrast enhanced NDE volumes, using an analysis cube of [7 7 21] samples and the
following dips and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o, ϕ = 0o. (c) γ = 0o, ϕ = −45o.
(d) γ = 0o, ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o, ϕ = 20o.
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Figure 5: Third step of the algorithm: Directional filtering. Vertical cross-sections at y = 6 km
through directional LFE volumes, using an analysis cube of [7 7 21] samples and the following dips
and azimuths: (a) γ = −20o, ϕ = 0o. (b) γ = −5o, ϕ = 0o. (c) γ = 0o, ϕ = −45o. (d) γ = 0o,
ϕ = 0o. (e) γ = 5o, ϕ = 0o. (f) γ = 15o, ϕ = 20o.
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Figure 6: Final step of the algorithm: Maximizing over a set of dips and azimuths. A vertical
cross-section at y = 6 km through the LFE volume, using an analysis cube of [7 7 21] samples, dips
γ = −20o,−15o, . . . , 20o, and azimuths ϕ = −45o, 0o, 45o, 90o.
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Figure 7: Vertical cross-sections at y = 6 km through (a) the Local Structural Entropy volume,
and (b) the eigenstructure-based coherence volume, using an analysis cube of [6 6 21] samples.
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Figure 8: Horizontal slices at t = 480ms through (a) the seismic data, (b) the eigenstructure-based
coherence volume using an analysis cube of [6 6 21] samples, (c) the LSE volume using an analysis
cube of [6 6 21] samples, and (d) the LFE volume using an analysis cube of [7 7 21] samples.
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