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Abstract

We consider the problem of scheduling a queueing system in which many statistically identical
servers cater to several classes of impatient customers. Service times and impatience clocks are
exponential while arrival processes are renewal. Our cost is an expected cumulative discounted
function, linear or non-linear, of appropriately normalized performance measures. As a special
case, the cost per unit time can be a function of the number of customers waiting to be served
in each class; the number actually being served, the abandonment rate, the delay experienced
by customers, the number of idling servers, as well as certain combinations thereof. We study
the system in an asymptotic heavy-traffic regime where the number of servers n and the offered
load R are simultaneously scaled up and carefully balanced: n &~ R + VR, for some scalar 3.
This yields an operation that enjoys the benefits of both heavy traffic (high server utilization)
and light traffic (high service levels.)

We first consider a formal weak limit, through which our queueing scheduling problem gives
rise to a diffusion control problem. We show that the latter has an optimal Markov control policy,
and that the corresponding Hamilton-Jacobi-Bellman (HJB) equation has a unique classical
solution. The Markov control policy and the HJB equation are then used to define scheduling
control policies which we prove are asymptotically optimal for our original queueing system.
The analysis yields both qualitative and quantitative insights, in particular on staffing levels,
the roles of non-preemption and work-conservation, and the tradeoff between service quality
and servers’ efficiency.
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Figure 1: A many-server multi-class queueing system
1 Introduction

We analyze a queueing system that consists of several customer classes and a large pool of indepen-
dent statistically identical servers (see Figure 1). Customer arrivals for each class follow a renewal
process. Each server can serve customers of all classes, and service durations are exponentially
distributed with class-dependent means. In addition, some customers abandon the system while
waiting to be served, and abandonments arise according to exponential clocks with class-dependent
rates. This work addresses the stochastic control problem of system scheduling: how to optimally
match customers and servers. The cost criterion we consider is an expected cumulative discounted
function of the (appropriately normalized) number of customers waiting to be served and the num-
ber actually being served, for each class. Special cases for the cost per unit time are the number
of customers in the system (or a convex increasing functions of it), the number of abandonments
per unit time, the delay experienced by the customers, the number of idling servers and certain
combinations of these costs. Since our scheduling problem is too complex for direct analysis, we
resort to heavy traffic asymptotics. The goal is to identify the asymptotics with a diffusion control
problem, then rigorously justify this identification and finally gain insight from it.

1.1 Motivation: the QED-regime

The asymptotic heavy traffic regime that we consider is the one analyzed by Jagerman [24], Halfin
and Whitt [17] and Fleming, Stolyar and Simon [12]. Here, the number of servers and the arrival
rates are large and carefully balanced so that the traffic intensity is moderately close to unity.
Economies of scale then enable an operation that is both efficiency-driven (high servers’ utilization)
and quality-driven (high service levels), hence the terminology QED: both Quality- and Efficiency-
driven.

An important motivating application for our model is the modern telephone call center, where a
large heterogeneous customer population seeks service from many flexible servers. In this context,



the QED-regime was identified in practice first by Sze [36], and more recently and systematically
in Garnett, Reiman and Mandelbaum [15].

The QED-regime captures the operational environment of well-run moderate-to-large call cen-
ters, where servers’ utilization are high yet a significant fraction of the customers is served imme-
diately upon calling. The last two statements are in fact equivalent for single-class many-server
systems [17, 15]. They are further equivalent to ‘square-root safety staffing’, which also applies
to the model under study here: if R denotes the offered load and n the number of servers then
n ~ R+ BVR, for some constant 3. (See Gans, Koole and Mandelbaum [13] for more elaboration,
motivation and references.)

For a single class queue (GI/M/n) in the QED-regime, one subtracts from the number of
customers in the system the number of servers and then divides by the square root of the latter. The
resulting stochastic process, when positive, models the (scaled) queue-length, and when negative
models the (scaled) number of idle servers. Halfin and Whitt [17] proved that this process converges
in distribution, as the number of servers (n) grows without bound, to a diffusion process with a fixed
diffusion coefficient and a piecewise linear state-dependent drift, under appropriate assumptions on
system parameters. The result was extended in [15] to accommodate abandonmnent from the
queue (but arrivals were assumed Poisson). Further extensions were carried out by Puhalskii
and Reiman [34] to cover a multiclass queue, phase-type service time distributions and priority
scheduling policies, giving rise in the limit to a multidimensional diffusion process.

1.2 Diffusion control problems and queueing systems

There has been ample research on diffusion control problems in the context of queueing systems,
specifically on asymptotic optimality when approaching a diffusive limit. We refer the reader to
[38] for a summary and further references. Most of this research, however, has been within the
‘conventional’ heavy traffic regime which, in the terminology introduced above, corresponds to
an efficiency-driven regime of operation: servers’ utilization approaches 100%, with essentially all
customers being delayed in queue for service. To wit, our model in 'conventional’ heavy traffic was
analyzed in Van Mieghem [37], who considered a single server (or equivalently, a fized number of
servers) with traffic intensity converging to unity. (One could, alternatively, increase the number

of servers to infinity, which entails an acceleration of the convergence to unity; see the last section
of [30].)

Following the lead of Harrison [18], there has been a stream of research that produced ‘good’
scheduling policies for queueing systems. These have been based on exact analytic solutions to
corresponding diffusion control problems, formally obtained as ‘conventional’ heavy traffic limits.
However, rigorous proofs of asymptotic optimality are scarce: [3], [26], [27], [29], [30], [31], [32] and
[37] are all that we are aware of.

Recently, Armony and Maglaras [1], Harrison and Zeevi [21] and the present authors [2] have
considered stochastic control problems in the QED regime. The first [1] models and analyzes
rational customers in equilibrium, and the last [2] served as a pilot for the present paper. The
analysis in [21] is that of the diffusion control problem associated with our queueing system with



linear costs. Specifically, Harrison and Zeevi show in [21] that this control problem has an optimal
Markov control policy (cf. [11]) which is characterized in terms of its underlying HIB equation.
Then, they use the diffusion control problem to propose a scheduling control policy for the original
queueing system, conjecturing that it is asymptotically optimal in the QED regime. In the current
paper we use that same approach, with yet a significant broadening of modelling scope: we identify
a sequence of HJB-based scheduling policies (for a general and natural cost structure) and we
prove their asymptotic optimality (within a broad family of non-anticipating preemptive or non-
preemptive policies).

1.3 Main results and scope

Our main results are as follows. First, we formally take a heavy traffic limit in the QED regime
(section 2.3). Then we show that the diffusion control problem associated with this limit has
an optimal Markov control policy, and that its HJB equation has a unique classical solution (see
Theorem 2). This extends the results of [21] to cover a large class of cost functions. As is often
the case in stochastic control of diffusions, proving existence of optimal Markov control policies is
coupled with establishing the existence and uniqueness of solutions for the underlying HJB equation.
The literature on viscosity solutions of second order elliptic equations on unbounded domains (such
as [23]) does not seem to cover existence or uniqueness for the HJB equation under study (nor does
the literature on optimal control of diffusion [6], [11]), mostly because our costs are not assumed
bounded. It is well known that an estimate on the growth rate of the diffusion is needed in such
problems (see e.g., Theorem IV.5.1 of [11]). This key element in the proof (Proposition 3(ii)) is, in
a sense, a stability-type estimate, whose proof requires exploiting details of the structure specific
to the problem.

Having solved the diffusion control problem, we use it to propose a scheme for determining
scheduling control policies of two types: preemptive and non-preemptive, both based on the HJB
equation (see section 2.5). After defining a notion of scheduling control policies that do not antici-
pate the future, we prove that among them, our proposed policies are asymptotically optimal in the
QED heavy traffic limit (Theorems 1 and 3). The asymptotic optimality is in the sense that, under
the proposed policies, the cost converges to the optimal cost of the diffusion control problem, and
that the latter is a lower bound for the limit inferior of costs under any other sequence of policies.
In proving this result, a key role is played by a condition (44) that emerges from the HJB equation,
which is proved sufficient for asymptotic optimality of a sequence of SCPs (cf. Theorem 3).

Our approach for deriving the diffusion control problem follows Bell and Williams [3] in that the
system equations and the cost are represented in terms of the system’s primitives. The controlled
diffusion then arises as a formal weak limit. In obtaining the asymptotic results, this direct relation
between the queueing system control problem and the diffusion control problem is convenient.

The policies that we establish as asymptotically optimal are feedback controls. By this we mean
that the action at each time depends only on the ‘state’ of the system, namely on the number of
customers waiting to be served and the number of customers being served, for each class. The
family of policies among which they are proved asymptotically optimal contains all policies that
observe all system information up to decision time. In fact, the family we consider is slightly



broader in that the policies are allowed to exploit some information on the future, namely the time
of the next arrival for each class. We comment below that this is a natural class to consider in the
presence of renewal arrivals (cf. Section 2.2).

Under a preemptive scheduling control, service to customers can be interrupted at any time and
resumed at a later time. Consequently, the class-fractions of the customers waiting to be served
provide natural candidates for control. The diffusion control problem is formulated with such a
preemptive model in mind, and the control process corresponds to these fractions (as suggested in
[21]). But when restricting to scheduling control policies that are non-preemptive, it is more natural
to consider as a control the processes that count the number of customers routed to the server
pool, for each class. The diffusion control problem that arises from such a model resides in a higher
dimension. However, here we demonstrate that the non-preemptive scheduling control problem is
asymptotically governed by the simpler, original diffusion control problem and its HJB equation:
to this end, the preemptive HJB equation is used to construct a non-preemptive scheduling control
policy that is asymptotically optimal (in fact, within the class of preemptive policies).

Work-conserving policies are typically not optimal among nonpreemptive scheduling control
policies. This can be seen in a simple example, where there are two customer classes, and the cost
takes the form E [ e >oiz1,2Ci®i(t)dt: @;(¢) is the number of class-i customers waiting to be
served at time £. Consider the event that when the first class-1 customer arrives, there is exactly
one free server, and no class-2 waiting customers. If the customer is routed to the free server, then
there is a positive probability that the class-2 customer that arrives next will be delayed by at least
one unit of time. If the ratio cg/c; is large enough, it is clear that the cost paid for delaying this
individual class-2 customer can be larger than the cost of delaying all class-1 customers that ever
arrive (due to the discount in the cost). As a result, a good policy will leave a free server to idle
until a class-2 customer arrives, or until additional servers become idle.

On the other hand, when allowing preemptive policies, for most costs of interest it is intuitively
clear that work conservation is optimal. We refer to such costs as work encouraging (see Sub-
section 5.1). While there is no attempt here at a rigorous analysis of work encouragement (this
seems to require a different modeling framework), our results do reduce the problem of asymptotic
optimality (under preemption or nonpreemption) to verifying that work conservation is optimal
among preemptive policies (Corollary 1). For example, when optimality of work conserving pre-
emptive policies holds for the prelimit problems, our results, which establish asymptotic optimality
of a nonpreemptive policy that is work conserving, imply that the phenomenon described in the
previous paragraph is negligible on the diffusive scale.

We comment that to prove asymptotic optimality it is not necessary to establish weak con-
vergence of the controlled processes to a controlled difusion, but only convergence of the costs.
However, under appropriate regularity conditions of the coefficients (such as Lipschitz continuity
of the function used to define the optimal Markov control policy; see Theorem 2) convergence of
the controlled processes follows from our analysis.

Diffusion control problems that arise in ‘conventional’ heavy traffic often have a particularly
simple solution, in the form of a static priority policy. Moreover, these policies typically exhibit
pathwise minimality of the associated workload processes. Such a simplification is a consequence
of a massive state-space collapse [35], [19], namely that these multidimensional diffusion control



problems reduce to one-dimensional problems: in conventional heavy traffic, the many servers work
in concert as though they constitute a single ‘super-server’. While such collapse prevails in the
special case studied in [2], simulations and intuition indicate that, in general for the QED regime,
an analogous phenomenon is unlikely to occur. Significantly though, our analysis does yield some
state-space collapse: it is manifested through the asymptotic optimality of non-preempting work-
conserving feedback controls, within the far broader class that allows non-preemption, idleness in
the presence of waiting customers and the use of all past information.

1.4 Organization and notation

In Section 2 we describe the model, introduce a notion of scheduling control policies that do
not anticipate the future, and specify the heavy traffic assumptions and scaling. In addition we
introduce two scheduling control policies for which asymptotic optimality is shown (in Section 4),
one preemptive and one non-preemptive. We also state our main result, Theorem 1, and describe
several costs of interest that it covers. Section 3 treats the diffusion control problem, proving
existence and uniqueness for the underlying HJB equation, and existence of optimal Markov control
policies. The asymptotic optimality results are proved in Section 4. In Section 5 we discuss the
implications of our main result to sequences of policies that are not necessarily work conserving,
and chart worthy directions for further research. Finally, some auxiliary results are proved in the
appendix.

For z € R¥, welet ||z|| = 3, |2i|. Associated with the parameters k and n of the queueing system
are the sets K = {1,... ,k} and N = {1,... ,n}. We write N = {1,2,...}, Zk = {0,1,2,...}*,
RE = [0,00)%, and S* = {z € RE : Zle z; = 1}. We denote by B(m,r) an open Euclidean ball
of radius r about m. B(A) denotes Borel o-field of subsets of A. C"™¢(D) denotes the class of
functions on D C R¥ for which all derivatives up to order m are Holder continuous uniformly on
compact subsets of D. Cpol(]Rk) denotes the class of continuous functions f on RF, satisfying a
polynomial growth condition: there are constants ¢ and r such that |f(z)| < c(1 + ||lz|"), = € RF.
We let C’g;’f = Cpot N C™*. For E a metric space, we denote by ID(E) the space of all cadlag
functions (i.e., right continuous and having left limits) from R, to E. We endow ID(E) with the
usual Skorohod topology. All processes we consider are assumed to have sample paths in D(E) (for
appropriate E, mostly E = R¥). If X", n € N and X are processes with sample paths in D(E),
we write X” = X to denote weak convergence of the measures induced by X" (on ID(E)) to the
measure induced by X. For any cadlag path X, let X; = limsy X, for £ > 0, Xo- = Xp, and
AX; = X; — X;—. If X is a process (or a function on Ry ), || X||} = supgcs<||X(s)|, and if X
takes real values, | X |} = supg<<;| X (s)|. X(t) and X; are used interchangeably. Vectors in R¥ are
considered as column vectors. We write I = (1,...,1)’ € R¥. For two coloumn vectors v,u, v - u
denotes their scalar product. Finally, ¢ denotes a positive constant whose value is not important,
and may change from line to line.



2 The controlled system in the QED-regime and its diffusion ap-
proximation

We consider a queueing system which consists of & customer classes and n multi-skilled servers (see
Figure 1). Service to any customer can be provided by any of the servers indifferently. The service
time distribution depends on the customer class, but not on the individual server (or customer).
We say that a customer is in queue ¢ at time ¢ if the customer is of class ¢, and at time ¢ it is in
the system and is not being served (although it possibly received partial service prior to time t).
Customers enter the system at one of the queues, and leave the system in one of two ways: either
when their service is completed, or while they are waiting at their queue and decide to abandon
the system without being served.

2.1 The stochastic model

Let a complete probability space, (€2, F, P) be given, on which all the stochastic processes below are
defined. Expectation with respect to P is denoted by E. The parameter n, denoting the number
of servers, which is particularly significant in our analysis, will appear (as a superscript) in the
notation of all basic stochastic processes associated with the queueing system.

For i € K, the number of class-i customers in the queue at time ¢ > 0 is denoted by ®7(¢), and
o"(t) = (®T(t),... ,®L(t))". The number of class-i customers being served at time ¢ is denoted by
U2 (t), and U"(t) = (PT(t),...,V}(t))". Clearly,

" (t), U (t) e RE Y WP(t) <m, t>0. (1)

Another constraint is that these processes take integer values. The initial conditions of the system
are assumed to be deterministic and are denoted by ®"(0) = ®%" = (<I>(1)’1, e ,@2’1)’, and ¥"(0) =
won = ()", L TP

Let A?, 1 € K, be independent renewal processes defined as follows. For ¢ € K, let there be

a sequence {U;(j),7 € N} of strictly positive i.i.d. random variables with mean EU;(1) = 1 and
squared coefficient of variation Var(U;(1))/(EU;(1))? = Cl?f,i € [0,00). Let

Ui'(5) = w i), (2)
where A} > 0. With the convention 2(1) = 0, define

A7 (t) =sup{m >0: i Ut(j) <t}, t>0. (3)
j=1

The value A7 (t) denotes the number of arrivals of class-i customers up to time ¢. Note that the first
class-i customer arrives at U/'(1), and the time between the (m — 1)st and mth arrival of class-i
customers is U*(m).



The service time of a class-i customer is assumed to be exponentially distributed with parameter
py , regardless of the service provider. This is captured in the following description. For ¢ € K, let
S? be a Poisson process of rate u' € (0,00), and assume that the processes S are independent of
each other and of the processes A?, i € K. Let T;*(t) denote the time up to ¢ that a server has
devoted to class-i customers, summed over all servers. Clearly,

t

T (t) = / Ui (s)ds, i€ K,t>0.
0

Then S7 (T (t)) = S’f(f(f U?(s)ds) denotes the number of service completions of class-i jobs, by all

servers, up to time ¢. Our assumptions on 7" will insure that, for each ¢, T™(¢) is independent of

any increment of the form S™(T"(t) + s) — S™(T"(t)), s > 0 (cf. Definition 2).

For ¢ € K, individuals abandon queue 7 at rate 6] € [0,00). Let R} be Poisson processes of
rate ¢, independent of each other and of the processes A7, S7, j € K. Note that the time up to

70
t that a class-i customer spends in the queue, summed over all customers is equal to f[f Q7 (s)ds.
Then R} ( f[f 7 (s)ds) denotes the number of abandonment from queue i. Under an appropriate
assumption on [; ®"(s)ds, similar to that on 7™, (cf. Definition 2) this describes abandonment of
class-i customers according to independent rate-0;' Poisson clocks, each run as long as the customer
is in the queue.

We would like to have equations that hold for both non-preemptive and preemptive-resume
‘policies’. Consider the scheduling processes B['(t), i € K, described as follows. B}'(0) = 0; B}
increases by one each time a class-i job is assigned to a server (to start or resume service), and
decreases by one each time such a job is moved back to the queue (in a preemptive-resume policy).
Note that in a non-preemptive policy, B*(t) is the number of type-i customers that have been
routed to the server pool at any time up to ¢. In fact, we do not assume that these processes only
jump by +1; their increments can take arbitrary values in Z. Following are the system equations.

010 = 0" + a1t — 7o) — & [ ras).

() = U + BI(t) — 8P < /0 t \yy(s)ds> .

These equations hold regardless of assumptions on the policy as to whether it is preemptive or not,
and work-conserving or not (these terms are, in fact, made precise later in this section).

Assume that there is a full P-measure set under which all A% (¢) < oo for £ > 0, A7 increases to
infinity, AA?(¢) € {0,1} for all ¢, and where similar statements hold for S}* and R}'. Then, without
loss, we omit from subsequent discussions all realizations (sample-paths) of these processes that do
not adhere to these conditions.

Let
X" (t) = ®"(t) + 0" (¢)

and denote X% = ®0" + ¥0" Then X (¢) is equal to the number of class-i customers in the



system at time ¢. The constraints (1) can be written in terms of X" and U” as

X"(t)-u"() e Ry, () eRE, D WP <n, t>0, (5)
i
while the system equations (4) imply that

xpw = x0+ apo - vy ([ o - wienas) —st ([ wes). o

2.2 Scheduling Control Policies (SCPs)

We consider two types of control problems. In the first, (6) will serve as a description of the
system. The scheduling control policy will be identified with a process U™, and it will be assumed
that it is such that the constraints (5) are satisfied. Apart from a nonanticipating assumption on
U™ (Definition 2 below), there will be no further restrictions. This will be a convenient setting
for the family of preemptive resume policies, as defined momentarily below. In the second type of
scheduling control problems, we will be interested in non preemptive scheduling policies, in which
case it will be natural to consider (4) as a stochastic model for our system. Here, the scheduling
control policy will be identified with the process B™, which will be assumed nondecreasing at each
component. Moreover, there will be a notion of non anticipating-ness, and it will be assumed that
the resulting processes, ®" and ¥" of (4), satisfy (1).

A scheduling control policy is one for which there exists a solution satisfying the appropriate
constraints (either (1) or (5)). More precisely,

Definition 1 i. Consider the model (6). We say that " is a preemptive resume scheduling control
policy (P-SCP) if it is a cadlag stochastic process, taking values in RF, for which there exists a
process X" satisfying the system equations (6), and such that the constraints (5) are satisfied by
U™ gnd X™. X" is then referred to as a controlled process.

ii. Consider the model (4). We say that B™ is a non preemptive scheduling control policy (N-SCP)
if it is a cadlag stochastic process, taking values in R¥, with non-decreasing components, for which
there exists a process (9", V™) satisfying the system equations (4), and such that the constraints (1)
are satisfied by ®", W". We then refer to (®", ¥™) and to its components as controlled processes.

We collectively refer to P-SCPs and N-SCPs as scheduling control policies (SCPs). The type of
problems associated with (6), (5) and Definition 1(i) will be referred to as preemptive resume
scheduling control problems, while those associated with (4), (1) and Definition 1(ii) will be called
non preemptive scheduling control problems. Note that the process @™ does not explicitely appear
in the first type of problems, and X" does not appear in the second type. We re-introduce these
processes by letting X" = U” + ®" define @™ in the first case and X" in the second case.

Note that in both types of problems, and for each scheduling control policy, if there exists a
corresponding controlled process then it is automatically unique. This is because, in both cases, any
controlled process can be defined by induction on the jump times of the processes A, S and R. The

10



only remaining issue is finiteness of the integrals appearing in (4) and (6). This, however, follows
from the fact that in both cases U” are bounded by n, while X (t) — 0% (¢) = ®2(t) < X074 A% ().

We need a notion of SCPs that do not anticipate the future. It is possible to use the same set
of notation for both types of problems. To this end, denote

(1) = / Ur(s)ds, Tr(t) = / B2 (s)ds, (7)

and for 2 € K, let
7—.

() =inf{u >t: A} (u) — A7 (u—) > 0}

stand for the time of the first arrival to queue % no earlier than ¢. Set
P = o{Al(s), ST(TI(s)), RI(T7(s)), B2 (5), Wi (s), X['(s) i € K, 5 < t}, (8)
and
G = o{ A7 (7" (t) + u) — A7 (7 (1)),
SPTF(E) + u) = SPTF (), R (17 (0) +w) — RE(TF (1) i € Ku 201 (9)

While F}* represents the information available at time ¢, G constitutes future information. Since
for each i, A7} is a renewal process, its increments of the form that appears in the definition of G
are independent of o{ A7 (s) : s < t}. However, the time 7)* of the next arrival may be anticipated,
to some degree, from the information on the arrivals up to time ¢. Therefore, with 7(¢) replaced
by ¢ in its definition, G;' would not be a good candidate to represent innovative information. Note
that an analogous treatment of S and R" is not necessary, since these are Poisson processes which
are memoryless. The following definition refers to both types of problems.

Definition 2 We say that a scheduling control policy is admissible if

i. for each t, F}' is independent of G;

ii. for each i and t, the process ST(T]'(t) +-) — SP(T]*(t)) is equal in law to S}'(-), and the process
R?(Yo‘l”(t) +)— Rf(ﬁ”(t)) is equal in law to R} (-).

Remark: It is clear that every scheme for determining an SCP that only observes the processes
AL ST o T R} o T, @7, U7, X* up to time ¢ results in an admissible SCP. In fact, the definition
even allows for some future information to be observed at each ¢, namely the random variables
"(t), i € K. Note also that such a scheme could “use” any extra stochasticity that arises from an

T
(3
independent source. L]

Remark: The family of all admissible SCPs can be identified with that of all admissible P-SCPs.
Indeed, given an admissible N-SCP B"™, let (®™,¥™) be the corresponding controlled processes.
Then automatically, ¥" is an admissible P-SCP. On the other hand, the family of admissible
N-SCPs constitutes a proper subset of all admissible SCPs. ]

11



2.3 QED Scaling

We consider a sequence of queueing systems as above, where now the number of servers n € N is
used as an index to the sequence. It is implicitly assumed that there is an SCP associated with
each queueing system. It is assumed (without loss) that there is one probability space, (2, F, P),
on which the processes associated with the nth system are defined, for all n € N. The heavy traffic
assumptions are as follows (cf. [17], [15], [34], [21]).

Assumption 1 i. Parameters. There are constants A, p; € (0,00), 6; € [0,00), Aj, 1 ER, i € K,

such that i
Z Ai/pi =1
i=1

n_IA? — )\i, ,u? — i, 9;’ — 01

nP N =) = A Pl — ) =

#. Initial conditions. There are constants ¢; € [0,00), 1; € R, i € K, such that ), 1; <0, and,
with p; = \i/ i,

QP =0T PR 5 gy, )T =0TV — pin) = .

)

O

Remark: : The above scaling is in concert with that in [24], [17], [12] and [15]. For a verification,
let p" denote the traffic intensity of our nth system. Then p™ = R"™/n, where its offered load R" is
given by

k
R =N /ul.
=1

From Assumption 1 it now follows, via simple algebra, that

k
V(L =p") =Y (pifii = i)/ i
i=1
Denoting this last limit by (3, we deduce that
n~ R" + fVR".

QED scaling thus leads to square-root safety staffing [7], which characterizes the regimes in [24, 17,
12, 15]. (B > 0 was required in the original Halfin-Whitt regime of [17], to guarantee stability when
there is no abandonment. Our analysis, however, covers all values of 3 since it does not require
stability of the queueing system. Indeed, the discounted long-run average costs are always finite in
view of our polynomial growth constraints on the cost functions. ) L]
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The rescaled processes are defined as follows.

Qi (1) =n'0P(t), W) =nTlUN(H), X)) =07 () + U (H) = n X (2).
7 (t) = n'PBP (1) = n~2RL(1),
WP () = n' (TP (1) — pi) = n”P(T7(E) = pin),
XP(t) = @7 () + WP () = n'P(X]() — pi) = 0™ P (X] () — pim).

The primitive processes are rescaled as

AR =0 PAR0) = AT, 8P =0T (ST (nt) —npft), R =0T (R] (nd) —nb]'t).

Finally,
B (t) = n~Y2(BP(t) — nAit).

With this notation, the system equations (4) can be written as follows:

(1) = OM" 4 AP(E) + 02 (0 IN — Nt — BP(t) — RY(f) BF(s)ds) — O [i B (s)ds,
o) = WP BR(E) — SP([ U (s)ds) — pf [1 0P (s)ds — pin' /2 (ul — i)t
(10)

We have from (10)

t t
XP(t) = XD+ W (E) + 00 — p? / WP (s)ds — O / 1(s)ds (11)
0 0
where we denote
t t
rWP(t) = An(t) — 87( / 2 (s)ds) — Rn( / &7 (s)ds), (12)
0 0

T = (AZ‘CIZJ,i + >\z')1/2a
and
o =nt2(n A = ) — Pl — ).

We now present a formal derivation of the limiting dynamics, as described by a system of controlled
SDEs. The actual relation to the sequence of queueing systems (as a limit) will be justified once
our results of Section 4 are established. We first enforce the convergence

/() =0, V()= pi

We write 4, S, ®, ¥, X, B for the formal weak limits of A", §", " I" X" B" (without worrying
at this point about whether weak limits exist). For ¢ € K, the processes A; and S; are BMs with
zero drift and variances AiC?]’i, and p; respectively. We thus obtain

Di(t) = ¢+ Ai(t) + Nt — Bi(t) — 0; [) Di(s)ds,
(13)
Wi(t) = i+ Bilt) = pi/Si(t) — i [y Uils)ds — pit.
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The corresponding constraints are as follows:
Di(t) >0, Y Wi(t) <0.
i

Writing W = (Wy,... , W), W; = r;l(AZ- — p;/25’i), the process W is a standard k-dimensional

Brownian motion. The process X = ® + U then satisfies

t t
Xz(t) =x; + ’I“iWZ'(t) + 4;t — Ql/ (Xl(s) - \I/i(s))ds - Ni/ \I/Z'(S)ds, (14)
0 0
as well as the constraints

Xi(t) = Ti(t) >0, Y (k) <0, (15)

where
b= Xi — pifii, i = ¢i + Pi.

2.4 Costs

For a given SCP, let " and U™ denote the rescaled processes as before. We consider an expected
cumulative discounted cost of the form

(i) = B / e E(M (1), 57 (1) )dt,
0
with a corresponding value X
C" =inf C"(V"),

where the infimum extends over all admissible P-SCPs, equivalently, all P-SCPs and N-SCPs (cf.
the Remark in the end of Section 2.2).

Assumption 2 The function (¢,1) — L($, 1) is continuous.

A policy is work-conserving if there can be no idling servers when there are customers in the
queue. For the following definition, recall that 1 - ®” equals the number of customers in all queues,
and that 1 - X™ equals the number of customers in the system.

Definition 3 We say that an SCP is work-conserving if

(1-X"(t)—n)t =1-0"(t), t>0. (16)

Note that equivalently,
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In stating our main result we assume that our SCPs are all work conserving. As discussed below
in Section 2.6, for a sequence of SCPs (either N-SCPs or P-SCPs) that are not necessarily work
conserving, the main result still holds, given that work conservation is optimal among P-SCPs.

In the development below, we consider only SCPs that are work conserving. Under this as-
sumption it is more convenient to work with the function L : R¥ x S¥ — R, defined as

L(z,u) = L((1L - z) u, z — (1 - z)"u). (18)

Under work conservation, (1 - X™ —n)* is equal to the number of customers waiting in all queues
(by definition), namely 1 - ®". If 4" € S* denotes the proportion of customers of the different
classes that are waiting in the queues, then

P" = (1 - X" —n)tu", U = X" — (1 - X" —n)tu™ (19)

Hence (18) is merely a change of variables from (&",¥") to (X", u"). Further assumptions on L

(thus on L) are as follows.

Assumption 3 i. L(z,u) >0, (z,u) € RF x Sk.

ii. The mapping (x,u) — L(z,u) is continuous.

iii. There is o € (0,1) such that for any compact A C RF,
1L, 0) — L(y,w)] < clla — ]l

holds for u € S¥ and z,y € A, where ¢ depends only on A.

iv. There are constants ¢ > 0 and my, > 0 such that L(u,z) < c¢(1 + ||z||™), u € S¥, z € RF.

We apply an analogous change of variables to the drift appearing in (14). For X € R* and
u € S*, write

b(X,u) =L+ (u—0)(1 - X) u— pX, (20)

where £ = (4;)ick, p = diag(u;;i € K), and 0 = diag(#;;i € K). We let also r = diag(r;i € K).
An alternative representation for X™ under work conservation (17) is

t
X = X0 WP+ / b (XD, ul)ds, (21)
0
where b" is defined as
(X, u) ="+ (u" — 0" (1 - X)Pu— p" X, (22)

where (" = (07,...,0}), p™* = diag(p;i € K) and 0" = diag(6}';¢ € K). In the next section we
formulate a stochastic control problem for the minimization of

C = E/Oo e T L(X (), u(t))dt,
0
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where X is a controlled diffusion given by
dX (t) = rdW (t) + b(X (t),u(t))dt, X(0) =z, (23)

over an appropriate class of control processes u, taking values in S*. It is shown (cf. Theorem 3)
that there exists a measurable function h : R¥ — S* such that upon setting u; = h(Xy), t > 0, the
infimum in the problem above is achieved. We now formulate three SCPs that are based on this
function h.

2.5 SCPs emerging from the diffusion control problem, and statement of main
result

A P-SCP. We describe a scheme for determining a P-SCP. In this scheme, for each ¢, ¥"(¢) is
determined as a function of X" (¢) only. Given X" (), the diffusion control problem suggests setting

e"(t) = (1L- X" () — n) *h(X"(1)), (24)

where as before

~

Xn(1) = n (X" (1)  p).

There are two points, however, that one must pay attention to. First, the components of
®" must be integer-valued, in order to represent queue-lengths; and second, the components of
U™ = X™ — @™ must be nonnegative, so that one serves only those customers present in the system.

For the first point, we need any measurable map © : {y € ]R’j_ 1l-yeZ}— Z’j_ that preserves
sums of components and introduces an error uniformly bounded by a constant. For concreteness,
take the following map. For y € ]R’i, write y; = |y;i| + d;, and set z = O(y) defined as z; = |y;],
1=1,...,k—1, and z :yk—i—Z;:ll(%. Clearly,and 1 -z =1 -y, and z € Zﬁ whenever 1 -y € Z.
Moreover, |y — z|| < 2k:

10(y) —yll <2k, yeR:. (25)

For the second point, note that (24) might set U™ = X™ — ®" is such a way that ¥" is not in
R% . For example, if X™ = (n + 1)e; and h(X™) = es, then ®} = 1, which means that ¥% = —1.
Such a problem does not occur if

X)) > (- X™(t)—n)t, VieK. (26)

When the problem does happen, the policy may be defined quite arbitrarily, subject only to
being work conserving. For concreteness, when (26) is not met, we set ®” in accordance with a
priority policy, where class 4 receives priority 7 (the higher 4, the higher the priority). When (26)
is met, we set

(1) = O[(1 - X™(t) — n) Th(X"(1))]:
Finally, set U™(¢) = X" (t) — ®"(¢), or equivalently, " (t) = X"(t) — d"(¢t).
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We remark that the results of Section 4 will establish that (26) typically holds. This is basically
due to the fact that the RHS, which represents the total queue length, behaves at most as O(nl/ 3,
while the LHS, representing the number of customers at each class, is O(n).

We next describe two alternative rules for determining sequences of N-SCPs.

N-SCP (i). To describe an N-SCP for each n, one needs to determine the process B"(t). We describe
a work conserving SCP. A customer that arrives when there is a free server is instantaneously routed
to a server. When a server becomes free, and there is at least one customer in the queue, we use
the following scheme to determine which class to route to the server. This is in fact all that is to
be determined. We look again at

M" () = (L X" () —n) " h(X"(1)),

and consider the set K of i € K for which ®?(¢t) > M"(t) V 1. Note that if there is at least
one 1 € K with ®7 > 1, then K 0 is not empty. Indeed, suppose that K° is empty, and let
K'={ie K:®"(t) > 1}. Then fori e K', ®?'(t) < M*(t). Hence by (16),

L-M'=1-9"=) &'<Y M!<1-M"
ieEK’ 1€K'

a contradiction. We now choose the largest 7 in K°. Then a customer of class i is routed to the
free server. This procedure is performed instantaneously.

In heuristic terms, the scheme described above attempts to drive the system towards nearly
achieving an equality of the form (24). This is done by sending to service customers of classes ¢
for which ®} > M/, thus obtaining approximate equality between the quantities ®" and M". A
justification of this heuristic is a part of the proof.

N-SCP (ii). The N-SCP is defined precisely as the N-SCP (i), except that for each n the function
h is replaced by a function h,,, which may vary with n.

By defining the inter-arrival times U(4) via U;(j) (cf. (2)) we have assumed that they have
finite variance. Here we strengthen this assumption.

Assumption 4 Let my, be as in Assumption 3. Then there is a constant my > 2, my > my, such

that E(U;(1))™V < oo.

Although in preemptive-resume scheduling control problems U™ serves as the control, and in non-
preemptive scheduling control problems W” is a part of the controlled process, it does represent the
same quantity in the queueing system. Similarly, ®" represents the same quantity in the queueing
system in both problems. We sometimes refer to these processes as ‘the processes ®", U™ corre-
sponding to an SCP’, without specifying whether they are controls or controlled processes. Our
main result is as follows.

Theorem 1 Let Assumptions 1, 2, 3 and 4 hold. Let X0n e p =127k pe g sequence converging to
x € RF. Let a sequence of work conserving admissible SCPs be given, and consider the corresponding
processes W™ ®™. Let ®" U™ denote the corresponding rescaled processes.
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1. Let U™* ®™* be a sequence as determined by the proposed P-SCP above, and let dm* gnd W
be the corresponding rescaled processes. Then

oo o

lim E [ e ML(@P*, U )dt <liminfE [ e ' L(®F, U1)dt. (27)

Moreover, the left hand side is finite.

ii. Assume that the restriction of h to X := {y € RY : 1 -y > 0} is locally Holder. Let U™* ®™* be
a sequence as determined by the proposed N-SCP (i) and ®™* W™* be the corresponding rescaled
processes. Then (27) holds.

iii. Assume that the mapping u — L(x,u) is convex for each x € RE. Then there exists a sequence
of functions h,, with the following property. Let U™* ®™"* be a sequence as determined by the
proposed N-SCP (ii), using the functions hy, and o I™* e the corresponding rescaled processes.
Then (27) holds.

Item (i) of Theorem 1 establishes asymptotic optimality of the proposed sequence of preemptive
SCPs, within all work-conserving SCPs. Item (ii) establishes asymptotic optimality of the proposed
sequence of non-preemptive SCPs, within all work-conserving SCPs, under the assumption that
the function h is locally Holder. In Proposition 1 below, we show that under some strict convexity
assumptions on L, h is locally Hélder, and thus item (ii) applies. However, for linear costs, as
L(®,¥)=c- (ce R a constant), the resulting h is discontinuous, and this part of the theorem
does not apply (h(x) is the minimizer u of the function v — ¢(x,v) (cf. (40)) over v € S¥, and
(z,-) turns out to be affine in this case, resulting with A taking values on the vertices, thus,
typically, discontiuous. See [21]). Assuming only convexity of L(z,-), for each z, (which certainly
holds for linear costs), item (iii) establishes asymptotic optimality of the proposed non-preemptive
SCPs, where h is replaced by a sequence of functions h,, that are locally Holder. Indeed, in Section
2.6 we discuss additional costs of interest, where u — L(z,u) is convex for each x, implying that
(i) and (iii) hold.

Remark: The theorem is established by comparing both sides of (27) to the optimal cost in the
corresponding diffusion control problem, denoted in Section 3 by V' (z). It is established below that,
in fact, the left hand side of (27) is equal to V' (z). O

2.6 Costs of interest

The following result provides an example for a family of costs for which the assumptions on A made
in Theorem 1(ii) hold. It is proved in the appendix.

Proposition 1 Let Assumption 3 hold, and assume that L is of the form L(®,¥) = Y ick 9i(Pi),
where, for each i € K, g; : [0,00) — R is in C?([0,00)), and there is a constant co > 0 such that
gl > ¢y. Then the restriction of h to X is locally Hélder.

Note that one can take in the above result g;(z) = ¢;zPi, ¢; > 0, p; > 2.
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In the sequel we give examples of costs of interest, and specify the assumptions under which our
main results apply. In all the cases below, L and L satisfy Assumptions 2 and 3. Hence our results
show asymptotic optimality of the proposed policies among work-conserving admissible policies.

Queue lengths. Let

L(,¥) = (@),
where / is nondecreasing as a function of <i>i, for each 7. It is assumed that £ > 0 is continuous and
satisfies a polynomial growth bound. Then

Abandonment. We need the following result, the proof of which is given in the appendix.

Lemma 1 Under the assumptions of Theorem 1, ER?(CZO“[L(t)) = HlEon“[L(t)

The number of abandonments from queue 7 up to time ¢, renormalized by /n, is given by
R} (t) :=n~'PR(T](1)).

Consider the cost -
" =3 G / AR (1),

(the dependence of C™ on the SCP is not indicated in this notation). Integrating by parts, using
e "ER!t) — 0 as ¢t — 0, and Lemma 1,

oo
0" =Y e /0 RN (1)t
o0 t
= Z’yciHiE/ 6_7'5/ O (s)dsdt
- 0 0

iy / Y b1 (1)t
0 i

This is a special case of the queue length cost considered in the previous paragraph.

Delay. For each of the customers [ ever present in the system, let cl(/) denote the class to which [
belongs, and let v(I) denote the set of times at which customer [ is in the queue. We are interested

in the cost
c" =n"'?E Z Cel(l) / e dt,
] v(l)

where ¢; > 0, ¢+ € K are constants. Since clearly, é?(t) =n"'2% Licy(1), where the sum extends
over all class-¢ customers [,

cn—F / TS e (1) de.
0

1€EK
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This again can be treated within the framework of queue length costs.

Idling servers. The number of servers that idle at time ¢ is given by n — 1 - U(¢). With an
appropriate renormalization and discounting, this becomes

c" = —E/ e ML - BT (t)dt.
0

The corresponding costs are L(®,¥) = —1 - ¥ and L(X,u) = (1 - X)".

Number of customers in the system. The cost associated with the weighted renormalized number

of customers in the system is
oo
c" = E/ e Z CiXi(t)dt.
0 N
(3

3 Stochastic control formulation and the HJB equation

3.1 Admissible systems and controlled processes

Definition 4 i. A complete filtered probability space is a complete probability space (2, F, P),
equipped with a right continuous filtration (Fy)icr, of sub-o-fields of F', such that Fy contains all
P-null sets of F.

ii. A stochastic process X on (2, F,P) is adapted to a filtration (F;), if for each t > 0, X; is
Fi-measurable.

wi. We call
™= (QaFa(Ft)aPauaW)

an admissible system if

1. (, F,(Fy), P) is a complete filtered probability space,

2. u is an S*-valued, F-measurable, (Fy)-adapted process with cadlag paths, and W is a standard
k-dimensional (Fy)-Brownian motion.

The process u s said to be a control associated with .
iv. We say that X is a controlled process associated with initial data © € R¥ and an admissible
system ™ = (Q, F, (F}), P,u, W), if

1. X is a continuous process on (Q, F, P), F-measurable, (F})-adapted,

2. f[f |b(X (s),u(s))|ds < oo for every t >0, P-a.s., (recall that b is defined in (20)),

3.
X(t)=xz+rW(t)+ /t b(X(s),u(s))ds, 0<t< oo,
0
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holds P-a.s.

Remark: Note that the admissible system is not associated with the initial data x. However,
note that {X(0) = z} € Fj, and therefore u “observes” the initial data. Hence there is no loss in
considering 7 not depending on z. In fact, by letting © be independent of x, we gain the possibility
to consider on the same probability space controlled processes associated with different initial data.

O

We denote by II the class of all admissible systems. The dependence of X on x and 7 should
be denoted e.g., as X*™(-). However, with an abuse of notation, we denote the dependence on x
(as well as on 7) by writing P = PJ for the probability measure appearing in m, and E7T for the
corresponding expectation.

What allows us to use a strong formulation of an admissible system, in the sense that the
solution X is not a part of the admissible system, is that there is a unique controlled process
associated with any admissible system and initial data. This is shown in the following.

Proposition 2 Let initial data € R* and an admissible system © € 11 be given. Then there exists
a controlled process X associated with x and w. Moreover, if X and X are controlled processes

associated with x and m, then X (t) = X(t), t > 0, P-a.s.

Proof: This result follows from Protter [33]. Indeed, on (Q, F, (F}), P), let D¥ denote the space of
RF-valued processes with cadlag paths that are (F)-adapted. Note that the function y — b(y,u)
is Lipschitz continuous uniformly in (y,u). Let ¢ denote the Lipschitz constant. Consider the map
F mapping D¥ to D* defined by F(z); = b(z;,u;). Then clearly one has for z, z € D¥,

[1F(2)e — F(2)e]l < ¢ sup flzs — 2|, t>0.
s€[0,¢]

Thus the hypotheses of [33], Theorem V.3.7 (p. 197) are satisfied, and the result follows. ]

A key estimate for the results of this section is part (ii) of the following.
Proposition 3 For any admissible system ©, any x, T € R, and corresponding controlled processes
X (associated with x and 7) and X (associated with x and ), the following holds.
i
Xy — Xy < |z —z|(1+e%), t>0,

P-a.s., where the constant ¢ does not depend on m,x,T and t;

1. For m € N,
EZIX (@)™ < em(1+ [lzf™)(1 +£™), ¢ =0,

where the constants cq,co,... do not depend on w,x and t.
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Proof: i. Note that | X () — X (t)| < |z — 7| +cf(;5 | X (s) — X (s)|ds, where c is the Lipschitz constant
for z — b(x,u). The result follows from Gronwall’s lemma.

ii. Write ¥(t) = X — (1 - X)"u and U;(t) = U(¢) - e;. Note that U;(t) < X;(t), and
DT =0AD Xi(t). (28)

Then ;
Xz(t) =x; + TiWi(t) + / [—eiXi(S) — (,ui — 92')\112'(8) + gi]ds, 1€ K,t>0.
0

Let K; be the set of i € K where pu; > 60;, and K9 = K \ K;. Define for each i, T; as the unique

solution (cf. Theorems 5.2.5, 5.2.9 of [25]) to the equation
t
Ti(t) = @i + riWilt) + / [—piTi(s) + Li]ds.
0

Then for ¢ € K1, .
Xi(t) = Ti(t) > —pu /0 (Xi(s) — Yi(s))ds

holds for all ¢ a.s. Similarly, the reverse inequality holds when 7 € K5. By a comparison result
(such as Theorem 1.7 in [5]), applied to the differentiable functions X; — Y;, we have

Xi(t) > Yi(t), i€ Ky; Xi(t) <Yi(t), i€ Ky; t>0,a.s. (29)

If z is a vector satisfying the bounds z; > q; for all ¢, and ), z; < A, then its norm can be bounded
as follows

l2ll < ll2 = all + llall = ) |2i = @il + llall = Y (2 — a;) + llall < A=) a; + la]l < A+ [a].

(30)

We have in (29) inequalities analogous to z; > a;, when we consider z; = ¢; X;, where ¢; > 0,1 € Kj,
and ¢; <0, i € Ky. Below, we obtain an inequality analogous to ), z; < A, by finding an upper
bound on the quantity ), ¢;X;. To this end, note first that by (28) and (29),

DTty (Xi—W) = —(0AY Xi)+) X
K K> K K>
= 1{2K X;>0} Z X - 1{2K X;<0} Z Xi
K> Ky
< >l (31)

K

Next, let ¢ > 0 be so small that 1+¢(1 —0;/u;) > 0 for all i € Ko. Then also [14c¢(1—0;/u;)](X; —
U;) > 0, and as a result,
0; .
C[——(\I/i — Xz) + \I/Z] < (Xz — \I/Z) +cX;, 1€ Ko. (32)

Hi
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Hence, denoting & = _x. p; twp — DKy cu; tay, W(t) = Yok, TiWi(t) — Xk, criWi(t), and l =
>k, li — Xk, cti, we have by (29), (31) and (32)

> T Xi(t) =D ey X(t) =
Ky

K>

~ t
B W0+ [ S0 = Xi(e) — ilo)lds

K

+/0 ZC[_M,-_lHi(‘Ifi(S) — X;(s)) + U;(s)]ds

<&+ W(t) + 0t + /0 > Wi(s) + > (Xi(s) — Wils)) + cXi(s) | ds
| K1 K>

~ ~ t [
§i+W(t)+£t+/0 S ITi(s) + D el Tils)] | ds.
K K>

Denoting Z; = ¢; X;, where ¢; = ,ui_l, 1€ Ky, and ¢; = —c,ui_l, i € Ky, we have from (29), (30) and
the above, that, for some positive constants C7, Co,

_ ~ t
CUX DI < I1ZE)] < &+ W () + it + Cy /0 S Ti(s)lds + 3.
K K

It is easy to show that E|Y;(t)|? < C(1 + |z;|?), for some constant C, and since T; are Gaussian,
E|Ti(#)|™ < ém(l + |zi|™) for m =1,2,.... It easily follows that
E[X@)™ < em(1+ [lz[™) (1 + 7).
O

Remark: We record a consequence of the proof to be used in Section 4. Recall equation (21) which
holds under the work conservation condition (17). Arguing analogously to the proof of Proposition
3, under (17) one obtains

t
IX™ @) < e[l X" + Wl +t+/0 1T (s)llds + [T (@)1, (33)

where ¢ does not depend on n or ¢, and where Y™ is the unique solution to

)

t
Ti(t) = XZQ’” + i Wi(t) +/ (—pi X3 (s) + £3)ds. (34)
0
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3.2 Cost and value

For z € R¥ and 7 € II, let X be the associated controlled process, and consider the cost function
Clz,7) = ET /0 T e LIX (1), u(t))dt.
The value function V' for the control problem is defined as
V(z) = ;relﬁ C(z, ).
We assume in this section that L(x,u) satisfies Assumption 3.

To state the next result, we need to formulate a control problem on a bounded domain. In the
sequel, D will denote a bounded open connected subset of R¥ with smooth (say, C*°) boundary.
Let g : Ry x 0D — Ry be a continuous function. For x € D and 7 € II, we define

Cpylz,m) = E;r[/ ertL(Xt,ut)dt +g(7, X;)],
0

where X is the corresponding controlled process, and
T =inf{t: X; ¢ D}.

We also let
Vpg(z) = in£I Cpg(z,m).
TE

Proposition 4 Let Assumption 3 hold. Then
i. There is a constant c such that V(z) < c(1 + ||z||™F), z € RF;
ii. V is continuous on RF;

iii. Let D C R* be a smooth domain. Let g(t,z) = e "'V (z) fort >0 and x € dD. ThenV =Vp,
in D.

Proof: i. This is immediate from the polynomial growth condition on L and Proposition 3(ii).

ii. Fix an arbitrary open ball of radius 1, v = B(y,1). Let € v be given, and for ¢ > 0 let

w = (Q, F,(F}), P,u, W) be such that
Cz,m) <V(z)+e
Let X be the controlled process associated with = and 7. Let X be the controlled process on the
same probability space, associated with 7 and some z € v. Denote m = my (as in Assumption
3). Let A(T) = B(y,T?™*"3). Let ¢1(T) be the Holder constant for L on A(T). Then for any
T € [1,00) and t € [0,T], Proposition 3(i,ii) and the Cauchy-Shwartz inequality imply
E|L(Xp,w) — L(Xpw)| < a(T)E[ly, g,eamllXe — Xil]

+CELgither x, or Ziga) (1 + X" + 1X([™)]
e (T)(1+ ez — 7|
+clp(T) + ( )21+ [l|™ + 2™ (1 +T™),

IN
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where

p(T) = §‘<1¥P(Xs ¢ A(T)), p(T)= leIT’P(XS ¢ A(T)).

The moment bounds on || X;|| imply that
p(T) +5(T) < ex(v)T "2,

where c3(v) depends on v, but not on =, 7 € v. Hence, writing c3(v) = sup, ¢, co() 2 (14 ||| ™ +
1Z]]™) < o0,

C(z,m)—C(z,m) = E/OOO e V(L(Xy, ug) — L(Xy, up))dt
T
< {a@@@+eT) |z — 72+ ccs()T™™ 1 +T™)} E/O e dt

o0
e / e (1 + Bl X |™ + E|| X,|™)dt
T
< (D) — 22+ os(v)a(T),

where ¢4(T') depends only on T', ¢5(v) depends only on v, and «(T) — 0 as T' — oo. Let T be so
large that c5(v)a(T) < e. Next choose § > 0 so small that {0 < ||z — z|| < § and =,z € v} implies
ca(T)||z — %||? < e. Then for such z,Z one has V(z) < C(z,7) < C(z,7) + 2¢ < V(z) + 3¢. Note
that the choice of § does not depend on z,z (in particular, it does not depend on «!). Therefore,
the inequality V(z) < V' (z) + 3¢ holds for all z,Z € v for which ||z — Z|| < 0. This shows that V is
continuous.

iii. This is a standard result (the principle of optimality), which, in the current context can be
proved similarly to the resutls of [6], Section IIL.1. U

3.3 The HJB equation and optimality

The HJB equation associated with the stochastic control problem is (cf. [11])
Lf+H(z,Df)—~f=0, (35)
where £ = (1/2) Y, r20%/02?, and

H(z,p) = uiélgk[b(ac, u) - p+ L(z,u)].

The equation is considered on R¥ with the growth condition
3C,m, |f(@)] < CA+|lz|™), zeR". (36)

We say that f is a solution to (35) if it is of class C?, and the equation is satisfied everywhere
in R¥. We remark that for 2 with 1 -z < 0, b(x,u) is independent of u (see (20)) and so is

L(z,u) = L((1 -z)"u, z — (1 - z)Tu) (see (18)). Hence

inSk[b(:Jc,u) -p+ L(z,u)] = b(z,v) - p+ L(z,v), vesSk 1.z<o. (37)
ue
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Definition 5 Let © € RF be given. We say that a measurable function h : RE — S* is o Markov
control policy if there is an admissible system m and a controlled process X corresponding to x
and 7, such that us = h(Xs), s > 0, P-a.s. We say that an admissible system m is optimal for
x, if V(z) = C(x,m). We say that a Markov control policy is optimal for x if the corresponding
admissible system is.

Theorem 2 Let Assumption 3 hold. Then there exists a classical solution f € Cgfl(Rk) to (35)

(36), and this solution is unique in C?

pOI(R"“). Moreover, the value V is equal to f. Furthermore,

there exists a Markov control policy which is optimal for all z € RF.

Proof: We first consider the equation (35) on a smooth open bounded connected domain D,
satisfying an exterior sphere condition, with boundary conditions

flx)=V(z), ze€dD. (38)

The key is a result from [16] regarding existence of classical solutions in bounded domains, with
merely continuous boundary conditions. To use this result, we verify the following two conditions.

(i) |H(z,p)| < c(1+||p||) for z € D, where ¢ does not depend on z or p.
(ii) H(z,p) € C¢(D x R¥), some ¢ € (0, 1).

Item (i) is immediate from the local boundedness of b(z,u) and L(z,u). Next we show that item
(ii) holds. For § > 0 let v be such that H(y,q) > b(y,v) - ¢ + L(y,v) — d. Write

) -
H(z,p) — H(y,q) < b(x,v) - p+ L(z,v) — b(y,v) - ¢ — L(y,v) + 6.
)

Using the Holder property of L in 2 uniformly for (z,v) € D x S¥, and the Lipschitz property of b
in z, uniformly in (z,v),

H(z,p) — H(y,q) < cllp—qll +cllpllllz — yll + cllz — y|® + 0.

Since 0 > 0 is arbitrary, it can be dropped. This shows that H is Holder continuous with exponent
o, uniformly over compact subsets of D x R¥. Hence (ii) holds.

Defining for (z,z,p) € D x R x R¥, A(z, z,p) = (1/2)r%p, B(z,z,p) = H(x,p) — vz, one can
write equation (35) in divergence form as

divA(z,u, Du) + B(z,u, Du) = 0.

The hypotheses of Theorem 15.19 of [16] regarding the coefficients A and B hold in view of (i) and
(ii). Indeed, B is Holder continuous of exponent g, uniformly on compact subsets of D x R x RF.
Moreover, with 7 = 0, v(z) = (1/2) min; 72, u(z) = ¢(1 + ||z||), @« = 2, by = 0 and a; = 0, one
checks that the conditions (15.59), (15.64), (15.66) and (10.23) of [16] are satisfied. Theorem 15.19
of [16] therefore applies. [We comment that there is a typo in the statement of the conditions of
the theorem in [16]: the reference should be to condition (15.59) instead of (15.60).] It states that
there exists a solution to (35) in C*2(D) N C(D), satisfying the continuous boundary condition
(38). We denote this solution by f.
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Let z € D. Let m be any admissible system and let X be the controlled process associated with
x and 7. Let 7 denote the first time X hits dD. Using Ito’s formula for the C1?(R, x D) function
e~ f(x), in conjunction with the inequality

Lf(y)+b(y,u) - Df(y) + L(y,u) —vf(y) >0, ye D,ueSsk

satisfied by f, one obtains
AT AT
f(z) < / ¢ P L(Xs,u5)ds + e f(Xinr) — / e *Df (X;) - rdW. (39)
0 0

Taking expectation and then sending ¢ — 0o, using the monotone convergence theorem as well as
the bounded convergence theorem, we have with g(¢,z) = eV (z),

f(2) < EX[ /0 e~ L(Xy uy)ds + e V(X)) = Cpgla, ).

Taking infimum over « € II, we have
f(z) <Vpgylz) =V(z), x€D,
where the last equality follows from Proposition 4(iii).

In order to obtain the equality f =V on D, we next show there exist optimal Markov control
policies for the control problem on D. Let

o(z,u) = b(z,u) - Df(z) + L(z,u), =z € D,ucSk (40)
Note that ¢ is continuous on D x S¥. For each z, consider the set U, # () of v € S¥ for which

u) = inf o(z,v).
pla.w) = inf o(a,v)

We show that there exists a measurable selection of U, namely there is a measurable function h
from (D, B(D)) to (S¥, B(S*)) with h(z) € U, x € D.

Let z, € D and assume lim,, ,, = x € D. Let u,, be any sequence such that u, € U;,. We claim
that any accumulation point of u,, is in U,. For, if this is not true, then by continuity of ¢, there is
a converging subsequence u,, converging to @ and there is a 4 such that 0 := ¢(x,a) — ¢(z,4) > 0.
Hence for all m large, o(zm,um) > ©(z,4) + /2 > p(zm, @) + §/4, contradicting u, € Us,,.

As a consequence, the assumptions of Corollary 10.3 in the appendix of [10] are satisfied, and
it follows that there exists a measurable selection h : D — SF of (U,,z € D).

We extend h to R¥ in a measurable way so that it takes values in S¥ (but otherwise arbitrary).
Clearly, 2 — b(z, h(x)) is measurable. Consider the autonomous SDE

~

X(t) =z +rW(t) + / b, ds, (41)
0

where b(y) agrees with b(y,h(y)) on D, and is set to zero off D. Then b is measurable and
bounded on R*. By Proposition 5.3.6 of [25], there exists a weak solution to this equation. That is,
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there exists a complete filtered probability space on which X is adapted and W is a k-dimensional
Brownian motion, such that (41) holds for ¢ > 0, a.s. On this probability space, consider the process
us = h(Xs). Denote by 7 the admissible system thus constructed. Then for s < 7, us € Ux,, and

b(Xs,us) - Df(Xs) + L(Xs,us) = H(Xs, Df(Xs)).
Hence
Lf(X)+b(Xs,us)  Df(Xs) + L(Xs,us) —vf(Xs) =0, s<T.

A use of Ito’s formula and the convergence theorems just as before now shows that
T
f(z) = E;,r[/ e L(Xs,us)ds +e "V (X;)] = Cpylz,m), x€D,
0

with g as above. This, together with the principle of optimality shows that f > Vp , =V on D.
Summarizing, f =V on D.

In particular, V € C?¢(D) and is a classical solution to the HJB equation. D can now be taken
arbitrarily large, and this shows that V € C%¢(RF), and that it satisfies the HJB equation on R,
In view of Proposition 4(i), it also satisfies the polynomial growth condition. As a result, there
exists a classical solution to (35) in C?¢(R*), again denoted by f, satisfying (36), and moreover,
V=Ff.

It remains to show uniqueness within CSOI(R’“) and existence of optimal Markov control policies

for the problem on R¥. Let f € C’g
obtain

(R¥) be any solution to (35). Then analogously to (39) we

ol

t t
fla) < [ e LK udds + e F(X) - [ e DI - raw

Taking expectation, sending ¢ — oo, using the polynomial growth of f and the moment bounds on
| X¢||, one has that f(z) < C(z,n), where 7 € II is arbitrary. Consequently, f <V on R?.

The proof of existence of optimal Markov policies as well as the inequality V < f on RF is
completely analogous to that on D, where one replaces D by R and uses again the polynomial
growth condition of f. The weak existence of solutions to (41) follows on noting that b satisfies a
linear growth condition of the form ||b(y)|| < z(1 + |jy||), ¥ € R¥, and using again Proposition 5.3.6
of [25]. Hence V' = f on R*¥. We conclude that f is the unique solution in Cgol(Rk), that V = f,

and that there exists a Markov control policy, optimal for all z € R, L]

4 Asymptotic optimality

In this section we prove asymptotic optimality of the proposed SCPs. Since Theorem 1 assumes
work conservation of the sequence of SCPs, all SCPs are assumed to be work conserving in this
section. Recall from Section 2 that the processes @™ and W™ represent the number of customers
waiting in each queue, and, respectively, the number of servers working on jobs of each class. In the
case of a P-SCP (cf. Definition 1), the policy is associated with the process ¥", and ®" = X™ — U™,
where X" is determined via the system equations (6). In the case of of an N-SCP, the policy B"
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determines the processes ®" and U” via (4). In both cases, we let u™ be an SF-valued process,
determined as

/(M- X" —n)*t 1-X"—n>0,
u = (42)
i 1-X"—n<0,

where ug is some fixed, arbitrary element of S¥. As in the paragraph preceding Assumption 3, u"
represents the fraction of customers of each class that are waiting in the queues (whenever there
are such customers). As a result, (19) holds, and in particular, one can determine ®”, U™ from
", X7 as 7 — (1 X7)ruP and 7 — X7 — on.

Let
K = b(X}',up) - Df(X]) + L(X},uf) — H(X]', Df(X}") > 0. (43)

A condition that plays a central role in the convergence proof is

/ e P Klds = 0. (44)
0

Theorem 3 i. Let Assumptions 1, 2 8 and 4 hold. Let X0n e n 127k pe q sequence converging
to x € RF. Let a sequence of work conserving admissible SCPs be given (namely (17) holds), let

X" be the corresponding renormalized controlled processes starting from X0 and let u™ be given
by (42). Then

oo

liminf F e L(XP, ul)dt > V(z).

n—o0 0

ii. Assume, in addition, that (44) is satisfied. Then

oo
limsup £ e L(X], ul)dt < V().

n—00 0

In what follows we prove Theorem 3. We treat both parts (i) and (ii) simultaneously. Whenever
there is a reference to part (ii), we indicate explicitly that (44) holds. Recall the two representations
for X", namely (11) and (21). Denote

t t
ve = [eeads 2= [ et ng s, (45)

Let (F}*) be the filtration (8). Note that, by definition, the processes X" &" U™ are adapted to
F™. Hence by (42) and (45), so are the processes u", Y™ and Z".

Lemma 2 Under Assumption 4,
E(|AM[5)™ <e(1+1™7?), neNteRy,

where ¢ does not depend on n or t.
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Proof: This is a consequence of Theorem 4 of [26], which, under the assumption E(U;(1))™ < oo,
my > 2 states that

E sup|n~ Y2 (A% (ns) — nXis)|™ < e(1 +t™0/2), (46)
s<t

where .
Ai(t) =sup{m > 0: > Ti(j) <t}, t>0,
j=1
and c does not depend on n or ¢. Indeed, by (2) and (3), A7 (t) = A;(A't). Let C = sup,,[A?/(n\;)]
and note that C' < oo by Assumption 1. Then

A7 [; = supn= 2 A (AP s) — Als]
s<t
< sup n 2| 4;i(nXis) — nX;s|.
s<Ct

The lemma follows from (46). O

Lemma 3 Under the assumptions of Theorem 3(i), the processes X" satisfy E|| X™(t)||™ < ¢(1+
lz||™) (1 + ¢™), where m and ¢ do not depend on n, x or t.

Proof: Since we are assuming work conservation, (33) applies. Solving for T" of (34), we obtain

TRt = X e+ W (1) / WP (s)e ™ (=) ds,
where . X
W (t) = rW](t) + £'t.
Hence
R R R t R t s
1P < 1+ £ + [ X0 + W) + / IWrilds + / / Vg |d6ds). (47)
0 0 0
By (12), using U?(s) < 1 and ®7(s) < £"(s) = maxi[n_lX?’n +n~tA(s)],
W@ < 1A (0)]) + supll$" ()]l + sup [Rs)]l- (48)
s<t s<en(t)

Denote p = my. Apply Burkholder’s inequality (cf. [33] p. 175) to the martingale S denoting by
[M] the quadratic variation processes accociated with M, and recalling that if a process M taking
real values has sample paths of bounded variation then [M](t) = Mg + 3 s<t(AM; )2. Denoting
by xi'(t) a Poisson random variable with parameter nu!'t and using the convergence p' — p;, we
obtain

Esup|S7(s)P < cB([SP)(1))"*
s<t

— e PRE(G (1)
< cpn_p/Q(nu?t)p/Z
< ct?l?,
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where ¢ does not depend on n or ¢. Similarly, £ sups§t|]:2?(s)|p < c¢tP/?. Therefore by the indepen-
dence of A” and R"™ and Assumption 4,

E sup |R}(s)|P = E{E[ sup |R}(s)P[¢"(1)]}
s<E™(t) s<E"(t)

cB(E" ()"

<
< (1 +19),

where ¢ does not depend on n or ¢. Lemma 2 and an application of Minkowski’s inequality to (48)
show that there is m not depending on n or ¢ such that

E|W™ 0|7 < e(1+™), ¢>0. (49)

The lemma now follows from (47). O

Lemma 4 Let the assumptions of Theorem 3(i) hold.

0. (A", S’",R”) = (A,S,R), where A, S and R are independent Brownian motions with zero drift
and variance matrices diag(AiC%yi)ieK, diag(u;)ick, and, respectively, diag(0;)ick -

. One has

(T, ") = (p,0) in (D(R"))? (50)
(the process that is constantly (p,0)).
iii. The sequence (X", Y™, Z", W™) is tight (in (D(RF))*).

Proof:

i. By the assumption on the finite second moment and i.i.d. structure of the inter-arrival times,
and by Assumption 1, the results of [22] imply (i).

ii. Since work conservation (17) is assumed, we can use (33). Note that X" —p = n~Y/2X™. By part
(i), n=Y2W™ = 0. Also, n='/2X%" — 0. Hence by Gronwall’s lemma, n~"/2 sup,,||T"(s)|| = 0 in
distribution for any ¢, and therefore n=Y/2Y" = 0. As a result, n~1/2X™ = (), which implies that
X" = p. Usingl-p=1and 1-®" = (1- X" —1)*, we have that 1 -®" = 0. Now ®? = 0 follows
since @7 > 0. Using X" = ®" 4+ U", we have that ®" = p.

iii. By (i), A" = A. By (i) and (ii) and a time change lemma (cf. [4]), it directly follows
that S*(f; UT(s)ds) = Si(pi-). A use of (i), (ii), and a time change lemma also shows that
R2([; ®2(s)ds) = 0. Hence by (12),

Wi =r rW =W, (51)

where W is a standard k-dimensional Brownian motion.
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Since W" are relatively compact, they are tight. Hence by [4], Theorem 16.8, for each t,
limy, o0 limsup,, _, . P(||W"||; > m) = 0. By (21) and the Lipschitz property of the functions
x +— b"(z,u), uniformly in z, u and n,

X" (@] < X

|+ W@ + ¢ / (1 + [ X7(s)]))ds.

By Gronwall’s inequality, using the boundedness of X 0 n €N, we have

1X™le < ce (1 + W) (52)
This shows that for each ¢,
lim limsup P(||X"||; > m) = 0. (53)
m—=00 p—o00

Fix T. It follows from (21) that for any s,t € [0,7] with s < ¢,
t
[ X7 (#) = X" (s) || < W7 (8) = W™ ()l + 0/ (1 +[[X"(s)[)ds
< NWP(H) = Wh(s)]l + et = ) (L + | X" |17). (54)

Recall the modulus of continuity defined for z € D(R¥) restricted to [0, 7] (cf. [4], p. 171) as

!/ s . .
wip(z,0) = inf 1%1?5(1; w(z, [ti—1,ti)),
where the infimum is taken over all decompositions [t;—1,%;), 1 <i < v, of [0,T) such that ¢;—¢;_1 >
§ for 1 <i <w. Here, for S C [0,T),

w(z, §) = sup [|z(s) — z()]].
s,tes

By tightness of ", Theorem 16.8 of [4] implies that for each ¢ and &,
im lim sup P(w}(W",8) > ) = 0.

1
0—=0 pn—oo
Using (54), a similar statement follows for X™, namely that for each ¢t < T and e,

lim lim sup P(w}(X",8) > ¢) = 0. (55)

0—=0 p—oo

By (54) and (55), and since T is arbirtary, the tightness of X™ follows from Theorem 16.8 of [4].

Noting that |[Y™(¢)|| < ct(1+ || X™|¢), and || Z™(t)|| < ct(1+ || X™||*) (m of the L), and that for
s, 8 ST, [V (t) =Y (s)[| < clt = s[(1 + [|X[|7) and [[2™(#) — 2™ (s)|| < [t — s[(1 + [|X?[|77), the
tightness of Y and of Z" follows from (53) using again Theorem 16.8 of [4]. U

We use the following (very special case of a) result of Kurtz and Protter [28]. Let (F}) be a
filtration. A cadlag, (F})-adapted process V is a semimartingale if V' = M + N where M is an
(F})-local martingale, and the paths of N are of bounded variation over finite time intervals. An
RF-valued process is an (F;)-semimartingale if each component is a semimartingale. Write [Udv
for [fU(s—)-dV(s). A cadlag process V has bounded jumps if there is a constant ¢ such that
|V(s) = V(s—)|| <¢, s € (0,00), a.s. Denote by [M] the quadratic variation process associated
with M, and by T;(N) the total variation of N over [0, ¢].
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Lemma 5 For each n, let (U™, V™) be an (FJ*)-adapted process with sample paths in D((R¥)?) and
let V™ be an (F}")-semimartingale with bounded jumps. Let V" = M™ 4+ N™ be a decomposition of
V™ into an (F}]')-local martingale and a process with finite variation. Suppose

for each t >0, sup E[[M"]; +T;(N")] < co. (56)
n

If (U™, V™) = (U,V) in the Skorohod topology on D((R¥)?), then V is a semimartingale with
respect to a filtration to which U and V are adapted, and (U™, V", [U™dV™) = (U,V, [UdV) in
the Skorohod topology on D((RF)3).

Proof: Follows from Theorem 2.2 [28] on taking for a > 0, 7% = a + 1, noting that V,? =V}, if §
is a fixed large constant. ]

Lemma 6 Let the assumptions of Theorem 3(i) hold. Denote by (X,Y,Z, W) a limit point of
(X", Y™ Z" W™) along a subsequence. Let (F}) denote the filtration generated by (X,Y,W). Then
W is an (Fy)-standard BM, X, Y and Z have continuous sample paths, and Y has sample paths of
bounded variation over finite time intervals. Moreover, [e 7 Df(X™)-dY = [e *Df(X;)-dY;
along the subsequence, where f is the solution to (35).

Proof: The processes Y and Z have continuous sample paths since Y™ and Z™ do (see Theorem
3.10.2(a) of [10]). Since X" = X" 4+ rW™ + Y™, and W™ converges in distribution to a BM (cf.
(51)), X =z +rW +Y has continuous sample paths. To see that Y has sample paths of bounded
variation, write Y = Y™ — Y™~ where Y, () = f[f(l'/in(s))+ds, Y (1) = fg(Yin(s))_ds. By
definition (45) of Y and (22) of b",

YT VY™ () < c/t(l + | X2 ds, (57)
0

where ¢ does not depend on ¢,n. Since clearly wj(Y™", ) V w, (Y™ ,6) < wj(Y™,4), it follows
that (Y™+,Y™7) is tight. Let (Y+,Y ™) denote any subsequential limit point in (D(R¥))2. Then
Y™ and Y~ have continuous sample paths and therefore Y = Y — Y. Since Y and Y~ have
non-decreasing sample paths, Y has sample paths of bounded variation over [0, ] for any ¢.

Next we apply Lemma 5 with U™ = e~ "D f(X"(t)), V" = Y", and (F}*) = (F) of (8). By
Definition 2 and the definition of Y™, clearly X™ and Y™ are adapted to (F}"). We decompose Y =
M"™ + N™ as M™ =0, N* =Y". By (57), and Lemma 3, (56) holds. By the continuous mapping
theorem, (e~ "D f(X"(t)),Y™(t)) converges to (e"*Df(X(t)),Y (t)) in the Skorohod topology on
(D(R¥))2. By continuity of the sample paths of Y™, it follows that the convergence in fact holds
in the Skorohod topology on D((R¥)2) (see Proposition 6.3.2 of [10]). As a result of Lemma 5,
[e "D(X™(1) - dY™(t) = [e DX (1)) - dY(t).

It was shown in the proof of Lemma 4 (cf. (51)) that W™ converges to a standard BM. To see
that W is in fact an (F})-BM, note that by definition it is adapted to (F}). It remains to show that
for each ¢, Fy; is independent of o{W, — Wy :u > 0}. Fixt >0, u > 0and 0 < s < ¢ Write
o = (XM, Y, W) and o = (X,, Y, Ws). By (12), using the notation (7), and denoting

Sp =817\ TR(E) - SP T T+ ), R = RETMTR®) — B (07 T (E+w),
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we have

(WPt +u) = WP (D) = AP (t +u) = AP(t) — S — R

where R R ~ B
rif = AP (" (t) +u) — AP (7" (1)) — S — R},
and X R . .
6 = A7 (t +u) — AP (1) — A7 (7" (t) +u) + A7 (7] (1))

Let f: (R¥)> = R and g : R¥ — R be bounded continuous. By (8) and (9), 8" is measurable on
G and " is measurable on F}'. By the admissibility assumption and Definition 2,

Ef(a")g(8") = Ef(a")Eg(8"). (58)

Since 7,'(t) converges in distribution to zero, and fl? converges in distribution to a continuous
process, it follows by a random change of time lemma ([4] p. 151) that 6} converges in distribution
to zero. As a result, " converges in distribution to Wy, — W;. Using (58), the convergence
(X nyn, W”) = (X,Y, W), and the continuous mapping theorem, it follows that

Ef(a)g(Witu — W) = Ef () Eg(Wiu — Wh). (59)

By approximating indicator functions of closed sets of (R¥)? (and respectively, R¥) by continuous
functions f (respectively, g), it follows that (59) holds when f and g are replaced by such indicator
functions. u > 0 and s < t are arbitrary, hence an application of the Dynkin class theorem (such
as Theorem 1.4.2 of [9]) shows that F; is independent of o{Wj;, — Wy : v > 0}. Since also ¢ is
arbitrary, it follows that W is an (F})-BM. U

Proof of Theorem 3: We first prove Part (ii). Recall that 44 holds. Let (X,Y,Z, W) be a weak
limit point of (X”,Y”, AL W") and let (F}) be the filtration generated by (X,Y,W). By Lemma
6, X; =z +rW;+Y;, W is a standard (F;)-BM and the sample paths of Y have bounded variation
over finite time intervals. Just as before, an application of Ito’s formula and the fact that f satisfies
the HJB equation (35) give

e " f(Xy) = fla) + /t e "D f(Xy) - rdW; + /lt e "Df(X;) - dY;
0 0

_ /t e VH(X,,Df(X,))ds. (60)
0
By (43),
t t . t . .
/ e PK!ds = / e PDf(XY)-dY! +en(t) + 27 — / e PH(XI, Df(XY))ds, (61)
0 0 0

where

en(t) = /Ot e (X7, uy) — b (X7, ul)) - Df(XY)ds.
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By definition of the functions b and o™ and by Assumption 1,
B(X3,uf) = " (X7, u)ll < en(1 + 1IX3]),

where e, — 0. Therefore, Lemma 3 and the continuous mapping theorem imply that e, = 0. We
get from (44) and Lemma 6, using continuity of z — H(z, Df(x)),

/Ot eV Df(Xy) - dYs + Zy — /()te_7sH(Xs,Df(Xs))ds =0. (62)
Combining (60) and (62),
0<e "f(Xy) = f(z)+ /Ot e Df(X,) - rdW, — Zy.
Hence

Vt,  EZ < f(z). (63)

Fix an arbitrary § > 0. By Lemma 3 and Assumption 3 there is T such that

s17s

E / e VPL(X", uM)ds < 6 (64)
T

for all n. Since Z" = Z and Z has continuous sample paths, Z7. converges in distribution to Z7.
By Jensen’s inequality, Assumption 3 and Lemma 3,

T
E(Z%)lJrs/mL < CE/O e*'y(lJrs/mL)s(l + HX;"L“mLJrs)dS
<egc, (65)

where ¢ does not depend on n. Hence Z7, n € N are uniformly integrable, and one has EZ}. — EZr
as n — oo. By (63) and (64) we therefore have that

limsup E e VP L(X", uM)ds < f(z) + 6.

S S
n— oo 0
Since § > 0 is arbitrary, it can be dropped, and part (ii) of the theorem follows.

Next we prove Part (i) Arguing as in Part (ii), but using K}* > 0 instead of (44), we have that
(60) holds, and

t t
/ e DF(X,) - dY, + Z, —/ e H(X,, Df(X,))ds > 0.
0 0
Hence

e (X)) > flz) + /t e ¥Df(Xy) - rdWs — Z;. (66)
0
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By Proposition 4 and Lemma 3,
Ef(X{) < c(1+1M7),

for t > 0 and n € N. Since for each ¢, f(X) converges in distribution to f(X;), and f(X}) are
uniformly integrable (arguing as in (65), using the growth condition of Proposition 4(i)), one has
Ef(X:) <e¢(l+4t™L), where again ¢ does not depend of ¢. We therefore have from (66),

EZ; > f(z) — aft),

where a(t) — 0 as t — oo. Note that as in Part (ii), given 6 > 0, (64) holds for all T' large enough,
and that for each T, Z7., n € N are uniformly integrable. Hence

lim inf 2 L(X",uM)ds > EZp — 6 > f(z) — a(T) — 6.
n—oo 0
Part (i) of the theorem now follows on taking 7' — oo and § — 0. U

Proof of Theorem 1: We only need to show that the proposed SCPs satisfy the conditions of
Theorem 3(ii). The work conservation condition (17) holds for both of the proposed SCPs, by
definition. To conclude parts (i) and (ii), it remains to show that in both cases (44) holds. Part
(iii) is treated thereafter.

i. The P-SCP. Fix T. Let Q" denote the event that (26) is met for all ¢ € [0,T]. Recall that on
Q" the P-SCP sets R
®(t) = O[(1 - X"(t) —n) TA(X"(®))], t€0,T].

Let
Ut =(1-X"FTh(X"), V'=9o"-U" (67)
Recall that h satisfies
b(z,h(x)) - Df(z) + L(z, h(z)) = H(z,Df(x)), = cRF,

For ¢ such that 1 - X < 0, (37) and (43) imply that K}* = 0. Next consider ¢ such that 1 - X}* > 0.
We have
up = " ()(L- X7)™ = R(XP) + V(LX)

By assumption, L is uniformly continuous on compacts. For each &, let o (§) be such that o(8) | 0

as 6 | 0, and |L(¢,) — L(¢/,9")| < @(8) whenever |[]|, ¢/ Il Il¢'[ < &, and [l — ¢'|| v
| — || < 6. Then using (18), writing &' = 1 - X', the following holds on the event Q™" :=

Qv ez + N7 + 1 X" 7 < &)

K7 = |(0(XT, uf) — 0(XT, h(XT))) - DF(XT)
+ L&) Ty, X — () uf) — LUE) TR, XTI — (€1 TR(EXD)
< eVPIIDF X+ o (ellVR ). (68)
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By (25), [V*|| < 2kn~'/2. As a result, |K"|% < &, on Q™" for some en — 0. The events 2" have
probability tending to one as n — oo, as follows from the convergence X™ = p shown in Lemma 4.
The tightness of X™ (see Lemma 4), (17), and the fact that ®7 € R* imply that

lim liminf P(Q™") = 1. (69)

K—00 N—00
Therefore |K™|3. converges to zero in distribution. Since T' is arbitrary, K™ = 0, and (44) holds.

ii. The N-SCP (i). Fix T. Let U™ and V™ be defined as in (67). A review of the previous paragraph
shows that, replacing throughout Q™ by Q, (68) and (69) still hold. Fix gy > 0. We next estimate,
for any € > 0,

limsup P( sup ||[V"(t)| > 8ke).
n tE[Eo,T}

Fix i € K. If either V;*(t) < 0 or ®?(t) = 0 holds for all ¢ € [s,r), then within this time interval,
the SCP does not route any class-i customer to the service pool. Therefore by (4), for t € [s, ),

() = 7 (s) +n2AY (s, 8) —nZAY (s, 1), (70)

where we write

t s
AP(s,1) = AP(t) — AD(s),  AD(s,t) = RI( /0 &7 (2)dz) — RY( /0 &7 (2)dx).
Given ¢ > 0,

P(tei[gfﬂ VI(t) < —4e) < P((QXV9)°) + P(QMF) + P(Qir), (71)

where

Q=" N {3ep <s<r <T : V*(s) > —e, sup V*(t) < —¢, V*(r) < —4e},
tels,r)

Q" =" n{ sup V*(t) < —¢}.
te[0,e0]

Using the local Holder property of h on X, for any &, there are ¢, > 0 and p,, € (0, 1] such that on
Qn,n,
U (t) = Uj*(s)| < c,€||X”(t) - XH(S)HPN + (6/4)11-X"(s)<5/8 + (6/4)1]1-)2"(t)<5/8
< el X (E) = X" (5)|P + & /2.
Writing

t s t
w A (s, ) = B[ 87()a2) - B[ 81()de) 4026, [ 81 (e
0 0 s
and using ||<i>”||*T < kn Y2 on Q™" we have

n” 2IAY (5,8)] < 20 Ry + okt — 5).
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Hence on 7", for t € [s,7),
Vi (8) = V() + (87(1) — @1 (s)) — (UF (1) — UJ'(s))
> —e—e/2+n AL (s,1) — el X7 (8) = X () |P" = 2| R 2 pyose — crlt — 9).
On Q7" we also have V*(r) < —4e. Let 8 > 0 and write B = B + cr. Therefore
P(OY") < P(QYT) + P(5) + P(y), (72)

where
U ={F0<s<r<T o n 2A%s,r) < e + Bl —9))},
0

<s<r<T || X™(r) — X(s)||Px > e+ B(r —s))},

3 = 2R g, 12 > /2.

Using the monotonicity of the processes A} and the uniform convergence of n ~LA" on [0,7] to
A;(t) = Ait, as follows from the convergence A” = A (see Lemma 4(i)),

limsup P(Q77) < limsupP(30<s <r <T :r—s52> /B, n A" (s,r) < n~V2BT)
n

n

< lim sup P(sup||n~tA"(t) — \it|| > ¢)
n t<T
=0. (73)
Also,
PQ)<PA0OSs<r<T,r—s>p "2 o[ X"(r) — X"(s)|P* > B?)
+PE0<s<r<T,r—s<f 2 c||X"(r) — X"(s)||P~ > ¢)
< P X5 > BYCP) + Plw(X" o 1), B72) > (e/en)™ ).

By Lemma 6, the processes X" are tight and converge along subsequences to processes with con-
tinuous sample paths. Therefore

lim limsup P(Q2]%) = 0. (74)
B—oo ’

The convergence of R" to a Brownian motion (Lemma 4) implies

ligbn P(Q?,’g) =0. (75)
By a similar argument, on Q5"

Vi (0) + 072 A7 (e0) — e X" (e0) — X™(0) [P — /2 — 2|| R} ckeg < V(o) < —e.

kTn—1/2

Hence, for some constant ¢},

lim P(Q)") < lim P(n 'A% (eo) < cn V2 + 20 Y2 R™%,. 15) =0, (76)
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vyhere the last equality follows from the convergence in distribution of n_lA?(sg) to Ajep and of
R"™ to a Brownian motion. Combining (71), (72), (73), (74), (75) and (76) shows that

limsup P( inf V;"(t) < —4e) < limsup P((Q™")°).
n teleo,T n

Note that by (17), 1 - V™ =0. Hence [|[V"|| =2 (1 - V™). Since 7 € K is arbitrary, it follows that

limsup P( sup [|[V"(t)|| > 8ke) < limsup P((Q2™")).
n t€leo,T] n

Combining this with (68) (assuming without loss that for each s, a® is bounded), (69), and the
fact that £,69 > 0 and T are arbitrary, it follows that [je 7 K{ds = 0. Therefore (44) holds and

this concludes the proof that both SCPs satisfy the conditions of Theorem 3(i). Parts (i) and (ii)
of Theorem 1 follows.

iii. The N-SCP (ii). To prove this part, it suffices to show that for each o there is a locally Lipschitz
h' such that the N-SCP (i) applied to h' gives
o0

limsup F e VL(XP,ul)dt < V() + 6. (77)

n—+00 0

Recall from the proof of Theorem 2 that h : R¥ — S* is a function satisfying

iz, h(z)) = inf p(z,v) = ¢"(z),

where
o(w,u) = b(z,u) - Df(r) + L(z,u).
For each € > 0 let h° : R¥ — S* be a function defined as

ooy 2oy d(zy,e)h(y)
) = )

where both sums extend over y € eZ*F N B(z,ek'/?), and d(z,y,¢) denotes the Euclidean distance
from y to the boundary dB(z,ek'/?). It is easy to check that h® is locally Lipschitz. Write
d(z,y,e) = d(z,y,e)/ Zy, d(z,y',€). By assumption, u — L(z,u) is convex, and since u — b(z, u)
is affine, u — @(x,u) is convex. Using Jensen’s inequality, uniform continuity of (z,u) — @(z,u)
and of z — ¢*(z) on compacts, for each § > 0 there is € such that

plw, b (x)) = p(a, Y d(w,y,e)h(y))
y

IN

d(z,y,e)p(z, h(y))

d(z,y,)e(y, h(y)) + 5/2

<M==

d(z,y,)¢* (y) +6/2
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Everywhere in the above display, the sum extends over y € ¢Z* N B(z,ek'/?). A review of the
proof of Theorems 1 and 3 shows that upon applying N-SCP (i) with A°, (77) holds. By taking an
appropriate sequence h,, = h*", it is then clear that N-SCP (ii) applied to h,, admits the conclusion
of Theorem 3, and therefore (27). U

5 Further research

In the present paper, we set up a mathematical framework for the analysis of queueing systems as
in Figure 1. Within this framework, we established QED optimality of HJB-driven SCPs, covering
a broad spectrum of costs. Here we briefly survey some worthy directions for future research. In
the first subsection, we comment on relaxing the work-conservation constraint. Then, we conclude
with a list of additional topics.

5.1 Work-encouraging SCPs

We have restricted our analysis to work-conserving SCPs. However, our results regarding asymp-
totic optimality among all admissible SCPs hold, in fact, under the additional condition that the
cost functions are work-encouraging (cf. Definition 6 below). Let

C" = inf C™(I")

be defined similar to C", but where the infimum extends over all work-conserving admissible P-
SCPs.

Definition 6 We say that the cost function L (or the corresponding cost function L) is work-
encouraging if, for each n, C}, = C".

Corollary 1 Let all assumptions of Theorem 1 apply, except the assumption that the SCPs are
work conserving. Then the conclusions of Theorem 1 prevail, given that the cost function L is
work-encouraging.

Although in many cases it is intuitively clear that work conservation is optimal (for P-SCPs, not
for N-SCPs), in the presence of abandonments, and in the generality of our setting, this turns out
to be nontrivial to prove. We intend to treat the issue in a future work. We end this section with a
few examples that are intended to exhibit some of the subtleties of this point, and to indicate how
it can be dealt with. The arguments should be considered as proof outlines only.

First, consider the expected discounted number of customers of a particular class, say class 1,
present in the system. If 8y < pq, then class-1 customers leave the system faster when they are
served than when they are in the queue. Hence a good policy will attempt to serve these customers
as much as possible, and will be work conserving. On the other hand, if 8; > pu;, then customers
leave the system by abandoning the queue faster than by being served, and as a result, a policy
which minimizes the cost will not schedule any services at all.
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More subtle are the costs associated with queue length and abandonment. We argue heuristicly
that if #; > p; then there are cost functions £, nondecreasing as a function of &; for each 4, for
which work conservation is actually not optimal. Suppose that 8; > p1, and the cost is 0 for d, < c,
and 1 for &; > ¢, where ¢ > 0. If P, < ¢, no cost is incurred, and customers leave faster if in the
queue than if in service. Thus an SCP that keeps customers in the queue would do better than a
work conserving SCP.

Consider the case where £ is linear in ®;, and ;, j1; are arbitrary. We argue that work conserving
policies are optimal. We use coupling. A sample path is considered under an SCP that is not always
work conserving. The coupling is used to show that if the SCP is changed to be work conserving the
cost will be no higher than for the original SCP. In view of the discussion on costs of abandonment,
one can use the relation between abandonment rate and expected queue length to obtain the result.
Consider a sample path under an SCP that leaves customers in the queue when there are idle servers.
Modify it by moving a customer into service. Keep that customer in service until the earliest of: 1)
it completes its service, ii) its ‘twin’ (i.e., the customer in the original system that is in the queue)
abandons, or iii) the original SCP needs to use the server. In cases i) and ii) the cost of the modified
SCP will be no larger. In case iii) it is the same as the original. In case where there is a class for
which the abandonment rate is zero, the relation between abandonment and queue lengths cannot
be used. However, this can be treated similarly to the following paragraph.

Consider next the case where ¢ is an increasing function of ®;, for all 4, with 6; < p; for all 4.
Here, when a customer is moved into service, its service time is coupled to the abandonment time
of its twin: Pick an exponential random variable with rate u;, and a Bernoulli random variable that
is 1 with probability €;/p;. The service time is the exponential random variable; If the Bernoulli
random variable is 1, then the abandonment occurs simultaneously, otherwise the original customer
does not abandon at that time and picks a new exponential random variable with rate ;. Again,
if the original SCP needs the server, the customer is moved out. It can be seen that the cost of the
modified SCP will be no larger than the original one.

5.2 Additional topics
The following is a list of research problems that are suggested by the present study.

e Nonlinear waiting costs: Nonlinear waiting costs are natural for quantifying human costs of
waiting [37, 39]. We believe that it is possible to reduce such costs to nonlinear costs of queue
lengths, and are planning to include this in future work.

e Alternative cost structures: Discounted costs are mathematically convenient. Long-run av-
erage costs provide an alternative which is no less, perhaps more, natural for call center
applications. Their analysis, however, would be mathematically more taxing.

e Performance analysis in the QED-regime: In the present study, we are not analyzing the
performance of our queueing system under the proposed SCPs. In particular, one would like
to confirm that the (discounted) probability of delay, for each class, is non-trivial, as expected
in the QED regime. Such analysis might require numerical supplements, as in [21]. This could
also shed further light on qualitative features of our asymptotically optimal SCPs.
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o More general models: The model in Figure 1 is a beginning. Ultimately, one would like

A

Al

to generalize it to the model surveyed in [38], which has heterogeneous pools of servers
with overlapping service skills. (See [14] for interesting simulations of such models.) In
conventional heavy traffic (efficiency driven), a simple generalized Cp control was proved
asymptotically optimal [30]. Here, only the problem of assigning servers, who become idle,
to customers is relevant, since customers essentially never encounter an idle server upon
arrival. This same simplifying feature applies for our model, under work-conservation. But
with heterogenous pools of servers, and with a non-trivial fraction of arrivals encountering
idle servers (as expected in the QED regime), both the assignment of servers to customers
and the routing of arriving customers to idle servers become significant. In a call center
context, the problem of online matching customers and servers is called skills-based-routing;
it is widely acknowledged as the most important and difficult operational problem next to
staffing, which we now turn to.

Staffing insights The staffing problem is to determine the least (optimal) number of servers n
that is required to conform to given performance standards. In the QED regime, n ~ R+3VR,
where R is the offered load and f is a scalar. The problem can thus be decomposed, as in
[7], into two steps: first, given a QED operation, determine the least (optimal) scalar f3;
then, establish that operating in the QED regime is indeed desirable (optimal). The staffing
problem becomes more interesting and far more difficult in a skills-based-routing environment.
([8] is the single paper on the subject that we are aware of.)

Appendix

Proof of Lemma 1

Let n € N and 7 € K be fixed, and consider for each s the o-fields

u)gs’Ri () :u € Ry, < s},

Gs =o{R}(B+7) - Ri(B): B> s,7 >0}

Fs = O'{ljo_lln(

We simplify notation by writing T}, = Zo“ln(u) and R(u) = R (u).

()

For each ¢ and s, one has {T} < s} € F, and therefore for each ¢, T} is a stopping time on the

filtration (Fs). We next show that M, := R(t) — 0;t is a martingale on the filtration (F5), hence the
lemma follows from the optional stopping theorem. Indeed, it is clear that M, is measurable on F,
for each s. Moreover, M, — M, is measurable on G, for each s and r > s. It remains to show that
F; is independent of G for each s. Fix s. Fix §,and u > 0,0 < a <s<s+ K&é=/f,v>0. Let

Hy = {Tins <s < T(m+1)6}'

Note that P(Uy,Hp,) = 1. Let

Hg,={T, >s; T <K on [0,7]}.
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Let also R ‘
Hy,.k ={T <K, on [md, (m + 1)d]}.

For measurable bounded f, g, (denote by ¢ a bound on fg),
Crg := E[f (11,<s, R())g(R(B + 7) — R(DB))]

[r/9]
=S By n  f (< R@)g(R(B +7) — R(A)] +er,
m=0

where |e;| < cP(H;(,T). Under the event H,, N I—ifm,K, Tns < 8 < Tig1ys < s+ Ko = . Denote
A, =0-— T(m+1)s, and note that 0 < A,, < K§ under the same event. Then

[r/0]
Crg =D Blly, ni, o /(17,25 R(@)g(R(Tns1)s + B +7) = R(Timi1ys + Am))} +en.

m=0
Let I;IK,(; denote the event that there are no jumps of the process R within [s, s+ K0 U[s +y,s +
v+ Kd).
[r/d]
Cro =Y B{ly, ni, ot s (1< R@)g(R(Tani1ys +7) = R(Tni1)s))} + €1 + e2

m=0
[r/d]

=> E{ly, i, o A1u<s B(@)g(B(Timi1)s +7) = B(Tini1)5))} + €1 + €2 + €3
m=0

where |ez|, |eg| < cP(I-iT;(,é). Recall that by Definition 2(i), F™(¢) and G"(¢) are independent. Since
under Hy,, @ < 5 < Tipny)s, it follows that 1Hmmf{m,Kf(1Tu§57R(O‘)) € F*((m + 1)6). Also,
R(Tinq1ys +v) — RB(T(m41)5) € G"((m + 1)0), and, using Definition 2(ii), it has the same law as
R(~). Hence

[r/d]
Cry = Bg(RON) Y. E{1y na  F(r<o R@) | + e+ e+ e
m=0

= Eg(R(%)) Y E{ly, f(lr,<s, R(@)} +e1 + ez + €3 + e
m=0

= Eg(R(7))E{f(lr,<s; R(@))} +e1 + ez + e3 + ey,
where |e4| < cP(f_If(,r). It follows from Lemma 2 that E||®"||* < co. Since T = ®”, one has that

lim liminf P(Hg,) = 1.

r—o00 K—o00o

Note also that P(ﬁ}}’(g) < ¢1 K¢ for some constant ¢;. Taking 6 — 0 and K — oo such that
K — 0, and then taking r — oo, we conclude that

E[f(1r,<s, R(e))g(R(s +7) — R(s

)
— Blf(Ir,<s R(0)Elg(R(~))
— Blf (L1, <5, R(a))Elg(R(s +7) — R(s))]

)]
]
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Since a, s and «y are arbitrary (subject to 0 < a < s < s + ), and so are f, g, it follows that F;
and G are independent for any s. The result follows. ]

A.2 Proof of Proposition 1

Throughout, fix a compact subset A of X, and let ¢ denote a positive constant that depends only
on A, and whose value may change from location to location. Recall from the proof of Theorem 2
that for each x € R¥, h(z) satisfies (z, h(z)) = inf, gk p(z,v), where

o(z,u) = b(z,u) - Df(x) + L(z,u).

In the special case we analyze here, L(z,u) = >, ¢;((1 - )" u;), hence (cf. (20))
p(z,u) = L+ (n—0)(L-2)"u— pz) - Df(x) + Zgi((]l - ) ")

=:a(z) + b(z) -u + Zgi(iui),
i
where £ = 1 -z > 0. For any = € X, the map u — ¢(z,u) is strictly convex, hence the infimum

over S* is uniquely attained.

Fixing z € A, and letting m; (u;) = bi(z)u; + gi(Tu;), o(z,u) is given as a(z) + Y, m;(u;). Use
Taylor’s formula for each m; based at u;:

p(z,v) = ¢(z,u) + Zmé(ui)(vz‘ —ui) + (1/2)my (&) (v; — u3)?.

We claim that >, ml(u;)(v; — u;) > 0 for v € S¥. For if this is false, let v € S¥ be such that
> mi(ui) (v —u;) = —¢ < 0. Then for v° := u+e(v—u), >, m;(u;)(v; —u;) = —ce. Moreover, by

(3 (3
assumption on the functions g;, there is a constant ¢ such that g/ (Zv;) < ¢, hence m} (v;) < Z?c,

v € SK. Therefore Y, m!(&)(vi — ;)% < ce?, implying that ¢(z,v°) < p(z,u) for ¢ > 0 small,
contradicting the definition of w.

Using the above, and that m!'(&;) = 2¢"(2&) > coz? > ¢ > 0 on A, we obtain

o(z,v) — p(z,u) > (1/2) Zm;'(fl)(vZ —u)?>¢lv—ul?, z€Au=~hn(z)ve Sk, (78)

Let 2,9 € A and let u = h(z) and v = h(y). Since f is of class C? (cf. Theorem 2),

IDf(x) = Df(y)ll < cllz —yll.

By the proof of Theorem 2,

|H(z,p) — H(y, q)| < c(llp — gl + [l — yl|°),
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for p,q in a compact set. It follows that

o(2,u) — @(y,v)| = [H(z, DV (x)) — H(y, DV (y))|
<cllz —yl°.

Since by Assumption 3(iii) on L, z — ¢(x,v) is Holder of exponent p,

p(e,v) = p(z,u) <cllz -yl

Combining the last display with (78), |Ju—v[|? = ||h(z) —h(y)||?> < c||z —y]|?, and the result follows.

(
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