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Abstract

A scalable approach to end-to-end QoS provisioning requires to
handle traffic aggregates. This translates into a looser characterization
of traffic profiles. Scalability of QoS provisioning is further enhanced
by the elasticity of typical (QoS demanding) applications, which trans-
lates into looser QoS requirements. Accordingly, this study considers
QoS provision schemes for connections with stochastic traffic profiles
and stochastic QoS requirements. We concentrate on the class of Rate-
Controlled Earliest Deadline First (RC-EDF) scheduling disciplines,
which have several well known advantages, in particular simplicity of
implementation and flexibility. Assuming the Exponentially Bounded
Burstiness (EBB) traffic model, we establish results that extend the
deterministic study of RC-EDF, both for a single server in isolation
and for networks of servers. For a single traffic shaper followed by an
EDF scheduler, we establish stochastic bounds on the distribution of

the delay for each session. In the general (multi-hop) setting, we first
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establish stochastic bounds on the distribution of the end-to-end de-
lay for traffic shaper elements in series; then, we establish stochastic
bounds for RC-EDF networks. Consequently, we formulate call ad-
mission control and routing schemes that identify feasible paths under
various network optimization criteria. Here, we consider two settings:
a deterministic setting, of Burstiness Constrained traffic (BC), and a

stochastic setting of Exponentially Bounded Burstiness.

1 Introduction

Emerging Broadband high speed networks are expected to provide real time
and multimedia applications with various Quality of Service (QoS) guar-
antees. However, providing such guarantees on a per-flow basis is typically
unscalable. Thus, a scalable approach to end-to-end QoS provisioning, which
would handle traffic aggregates, is called for. Such aggregates translate into
a looser characterization of traffic profiles. Scalability of QoS provisioning is
further enhanced by the elasticity of typical (QoS demanding) applications,
which translates into looser (stochastic rather than deterministic) QoS re-
quirements.

One of the major problems in the provision of QoS guarantees is iden-
tifying a feasible path that can meet the QoS requirements. Schedulability
conditions, as well as worst case bounds on the delay, constitute valuable
tools for quantifying the ability of a path to meet the QoS requirements.

The ability to support QoS requirements depends on the scheduling poli-
cies employed in the nodes. In this paper, we consider the Rate-Controlled
Earliest-Deadline-First (RC-EDF) scheduling discipline [1]. In the rate-
controlled class of service disciplines, the traffic of each connection is re-
shaped at every node to ensure that the traffic offered to the scheduler con-
forms to specific characteristics. In particular, it is typically used to enforce,
at an internal network node, the same traffic parameters as at the network

access point. Reshaping makes the traffic at each node more predictable



and, therefore, simplifies the task of guaranteeing performance to individual
connections. When used with a particular scheduling policy, it allows the
specification of worst case delay bounds at each node. End-to-end bounds
can then be computed as the sum of worst-case delay bounds at each node
along the path. Some important advantages of a rate-controlled service disci-
pline, especially when compared with Generalized Processor Sharing (GPS)
[2], are simplicity of implementation and flexibility. Thus, a rate-controlled
service discipline is often a better solution in terms of scalability.

The EDF scheduling policy associates a per-hop deadline with each
packet and schedules packets in the order of their assigned deadlines. Ex-
act schedulability conditions, which detect violations of delay guarantees in
an EDF network switch, have been established in [3] under a deterministic
setting. In [4], EDF has been proven to be an optimal scheduling disci-
pline; that is, if a set of tasks is schedulable under any scheduling discipline,
then this set is also schedulable under EDF. Also, RC-EDF was proven to
outperform GPS in providing end-to-end delay guarantees in a network [5].

Under a deterministic setting, the input traffic bursts are assumed to
be of bounded length. This is not the case in many commonly used input
processes, in particular traffic aggregates. Hence, a setting that considers
the stochastic nature of the traffic is desired. Under a stochastic setting, only
stochastic QoS is guaranteed, i.e., it is guaranteed that the end-to-end delay
experienced by a high percentage of the packets does not significantly exceed
the required delay. Such guarantees are appropriate for many applications,
in particular multimedia applications, which can tolerate a certain amount of
loss due to either late arrival or buffer overflow. Furthermore, schemes that
guarantee no loss have a low connection-carrying capacity for bursty traffic.
In other words, with stochastic guarantees, better network utilization can
be achieved. Consequently, several studies have investigated the provision
of stochastic QoS guarantees for stochastic traffic profiles, e.g., [6, 7, 8];

however, these studies were carried only in the context of the GPS scheduling



discipline.

Due to the well known practical advantages of the RC-EDF service disci-
pline, in this study we investigate its stochastic behavior using Exponentially
Bounded Burstiness (EBB) processes [9] as source session traffic models.
First, we study the single node case. We derive schedulability conditions
for the EDF scheduling discipline as well as stochastic bounds on the de-
lay experienced by a packet entering an EDF scheduling element. Further-
more, we introduce the concept of EBB traffic shapers, and derive stochastic
bounds on the delay experienced by any packet entering such a traffic shaper.
Next, we study the multiple node (i.e., multi-hop path) case, and derive a
stochastic bound on the end-to-end delay. This bound, for a network of
EDF schedulers, packetized EBB traffic and stochastic QoS guarantees, is
the main contribution of this study.

Some previous studies also considered QoS provisioning under a stochas-
tic setting [10, 11, 12]. Our stochastic model and framework is different. In
our case, the stochasticity of the end-to-end guarantees is (solely) due to
the stochastic nature of the session input traffic, whereas in [10, 11, 12],
the exploitation of statistical multiplexing results in a provision of (only)
stochastic guarantees even for deterministically bounded input traffic.

Finally, with the stochastic end-to-end bounds at hand, we study the
related call admission control and routing problems. Such problems, for
EDF schedulers in a deterministic setting, have been studied in [13, 14]
and several routing schemes have been proposed. However, the focus in
those studies was on identifying feasible, but not necessarily (networkwide)
efficient paths. Considering our framework of stochastic traffic profiles and
stochastic QoS guarantees, we propose routing and call admission schemes,
which aim at balancing loads and maximizing the ability to accommodate
future calls.

The rest of the paper is structured as follows. In Section 2, we formulate

the model. Next, in Section 3, we study the provisioning of QoS with EDF



scheduling and stochastic guarantees: first, we consider a service element
in isolation; then, we study the multiple node case and derive a stochastic
bound on the end-to-end delay. In section 4 we discuss and present call
admission and routing schemes; here, we consider both the deterministic
and stochastic settings. In Section 5, we conclude the paper and discuss

possible future work.

2 Model Formulation

We consider a store-and-forward network comprising of packet switches in
which a packet scheduler is available at each output link. Packetized traffic
from a particular connection entering the switch passes through a traffic
shaper before being delivered to the scheduler. The traffic shaper regulates
traffic, so that the output of the shaper satisfies certain pre-specified traffic
characteristics. We focus on the Earliest Deadline First (EDF) scheduling
discipline. The EDF scheduler associates a deadline d/ with each packet of
a session j. The packets are served in the order of their assigned deadlines.
Let L7 be the maximal packet size of a session j and Lyax be the maximal
packet size in the network.

The network is represented by a directed Graph G (V, E), in which nodes
represent switches and arcs represent links. V is the set of nodes and E is
the set of links interconnecting them, and let |V| = N and |E| = M. Each
link [ € F is characterized by a service rate r;. We denote the number of
sessions entering link [ by N;. We assume that link propagation delays are
negligible.

Following [15, 16, 17], we assume a source ( “explicit”) QoS routing frame-
work, in which link state information is exchanged and maintained up-to-
date among network nodes for path computation. Routing decisions are
based on the image of the network at the source node.

A session j is routed through a path p’. Let n (pj ) be the total number
of hops along p’. We denote by H the maximal possible number of hops



along a path.

We consider stochastic traffic profiles, and adopt the traffic model intro-
duced in [9], of Exponentially Bounded Burstiness (EBB) processes, defined
as follows.

A stochastic process A (t) is Exponentially Bounded (EB) with parame-
ters (A, «) if, for any ¢ and any o > 0, the following bound applies:

Pr{A(t) >0} <A e 0. (1)

Let A (t) be the instantaneous traffic rate. A (t) has Ezponentially Bounded
Burstiness (EBB) with parameters (p, A, «), if for any s,7 and any o > 0,
the following upper bound, on the tail distribution of the traffic arriving

during the time interval [s, 7], holds:
Pr{Afs,7] > p(r —s) + 0} <A77, @)

where A[s,7] = [T A(t)dt.
We assume a, discrete time domain, in which the amount of information
transmitted on a link with capacity r = 1 during one time slot is regarded

fa
as a unit of data. In this context, we have A[s, 7] = > A(n).
n=s+1

3 QoS Provisioning with Stochastic Guarantees

In order to handle stochastic traffic profiles, we need to formulate a stochas-
tic version of the class of rate-controlled service disciplines introduced in
[1]. We begin with a brief overview of the main results obtained there and
in some subsequent studies, for the basic, deterministic setting. In [1], it
is assumed that connections whose traffic satisfies certain (deterministic)
burstiness constraints enter the network at various nodes. At each node
along the path of a connection, traffic is reshaped to confirm to its origi-
nal envelop before it enters the scheduler. Based on the traffic envelope of
the connection, upper bounds on the scheduling delays at each node can be

guaranteed. It is also shown in [1] that, for the traffic shapers considered



there, reshaping the traffic to its original envelope does not introduce ex-
tra delays. Therefore, an upper bound on the end-to-end packet delay is
simply the sum of the scheduling and propagation delays. A more general
rate-controlled service discipline of arbitrary reshaping at each node was
considered in [5]. There, it was shown that any end-to-end delay bounds
that can be guaranteed by the GPS discipline, can also be achieved by a
rate-controlled service discipline with ”proper” reshaping.

In this study, we investigate the rate-controlled service discipline under
a stochastic setting; more precisely, we adopt the traffic model introduced
in [9], of Exponentially Bounded Burstiness (EBB) processes, to investigate
the rate-controlled service discipline under a stochastic setting. With that
at hand, we derive stochastic bound on the end-to-end delay in networks

that employ the RC-EDF service discipline.

3.1 The single node case

Here, we consider a service element in isolation, which consists of an EBB

traffic shaper followed by an EDF scheduler, as depicted in Fig. 1.

A

EDF Scheduler — >

> EBB Shaper

Figure 1: EDF scheduler

3.1.1 EDF Scheduler

Consider a set N of connections where each connection’s traffic rate
is {Aj (t)}j e Each connection j requires stochastic delay guarantees as
follows:

Pr{Di(t)>d +d} < f;(d).



We define the stochastic schedulability of a set of connections entering

an EDF server as follows.

Definition 1 Given are a scheduler and a set of N connections, where each
connection j € N is characterized by (Aj,Jj). The set of connections is
said to be EDF-schedulable if, for all t > 0, stochastic delay guarantees are
provided for each connection, i.e., Pr{D’ (t) > & +d} < f7(d) Vj € N.

Proposition 1 A set N of connections is EDF-schedulable if for all k € N
and for all t:

t
TZOPr %Aﬁ [t—%,t+J’f—Jj] +er3ngij >r<%+J’“+d) < f¥(d)

(3)

Proof: See Appendix A.

With this schedulability conditions at hand, we derive an upper-bound
on the delay tail distribution for each session’s traffic entering a single EDF
server. We show that the delay experienced by a packet entering the EDF
scheduler is exponentially bounded (i.e., EB).

Proposition 2 Suppose that {Aj }jeJ\f are |N| independent (,07, A, aj)—
EBB processes sharing an EDF server with delay assignment {Jj }je/\/" Then,
at any time t, for any d > d* and for all k € N,

Pr {Dk (t) > d} < Re—drd (4)
( > Af>e& (jeEijJLLmax) “ & ok
where = = 3 %,f‘: JeN ,and A =Te \i#k
JEN —d(r— )> pj)
1—e ieN



Proof: From the proof of Proposition 1 (expression (A.33)), we have

Pr {Dk (t) > d* + d}

gzt:Pr ZAJ' [t—%,t+J’“—Jj] + max Lj>r(%+J’“+d)

o JeN &l >7+dk
(5)
Let p1,p2,...,pn| be positive constants that sum to 1. Then,
S [t—%,tﬂi’“—dﬂ} ¥ Linax zr(%+ci’“+d)
JEN
C U {AJ' [t—%,t+cik —JJ} > pj (r (%+J’“+d> —Lmax>} (6)

JEN
Recall that the session’s traffic is EBB, i.e.,

Pr{Aj [t—?,t—l—czk—ci]}2/}7(?+Jk—czj>+0j} < A7 (1)

From (5), (6), (7) and the union bound, we get

t — . . — —.
Pr {Dk (t) > d* + d} < Z %Aje—aﬂ (s (r(7+d*+d) — Lmax ) —p (7 +d* ~d7 )
#=0je

Choosing p; such that

ol (pj (7’(%—)—([’“—1-(1) —Lmax> —pi(f'—i-(jk—czj)) =C,

for a (any) constant C'and ) p; =1, we get
JEN
—a <rd+ > P dI —Lmax+ <r— > pj> (%+dk)>
e JEN JEN

Pr{Dk(t)ZJk+d} <[ S Xt:

JEN =0

J
(]g\/’A —a (Td‘i‘.z PP —Lmax+ (7'_ > pj>dk>
€ .

JEN JEN

The proposition follows by taking d' = d* + d.



3.1.2 EBB Traffic Shaper

Ay ———| EBBShaper |——— > A,

Figure 2: EBB Traffic Shaper

The (p, A, a)-shaper has one input link and one output link with equal
rate, as depicted in Fig. 2. The shaper receives an arbitrary stream on
the input link and buffers data, if necessary, so that the output stream
transmitted in the output link has EBB with parameters (p, A, «).

Suppose the rate of the traffic input to the shaper is represented by Ajg.
Let s; be the time at which the ith packet starts to arrive on the input link,
and L; is the length in bits of the packet. Suppose that the packet exits on
the output link at time ¢; and let A; represent the rate of traffic exiting the
shaper. The shaper transmits packets on the output link in an FCFS order,
with the smallest possible delay, such that

Pr{W, (A1) (t) > o} < Ae™ (8)

for all packets.
Ao, A1)

Proposition 3 Let the delay suffered by the ith packet, DZ( =1t; — s,
be as small as possible subject to the constraint (8). It holds that
=0 d<ti_1—s8;
Pr{D{M) <l d < N a0 —pd) g\ g < g < Waldolon)
-1 d > WelAo)(si)
= p

(9)
where W, (Ay) (s) is defined as follows:

W, (4o) (s) = max{Ay (s.8) = p(t = )} (10)

10



Proof: In[18]it was shown that: (i) DZ(AO’AI) > % W, (Ao) (s;) — o) is nec-

essary so that W, (A1) (¢;) < o is satisfied, (ii) DZ(AO’AI) = % (W, (Ag) (si) — o)
implies that W, (A1) (t;) = min{W, (Ao) (s;),0}. These results were proved
in the context of Burstiness constrained traffic. However, it can be verified
that the proof in [18] holds for the broader class of stochastic traffic as well.
;From (ii) above it is easy to see that if {DZ(AO’AI) < % (W, (Ao) (si) — o)}
then {W, (A1) (t;) > o}.
According to Theorem 1 in [9], A; has EBB with upper rate p if

Pr{W,(A)) (t;) > o} < Ae™®.

Thus, A; has EBB if

i

1
Pr {D(AO’AI) < = (W, (4o) (s:) — o—)} < Ae™?,
P
Since the shaper transmits packets in an FCFS order we have
pr{p{" <af =0 vi<tii-s

Note that Dz(AO’Al) = W implies that W, (A1) (t;) = 0 and thus
(8) holds. Since Dl(AO’Al) is as small as possible subject to the constraint (8)
we have Pr {DgAO’Al) < d} =1Vd> W. Furthermore, one can see

that t; 1 — s; < W

Consider an EBB stream Ay with the parameters (p, Ay, ap) entering a

(p, A1, a1)-shaper. We have
Pr {Wp (Ao) (Sz) Z U} S Aoe_aoa

and, from (9),

D(A();Al) <

2

W, (Ag) (s:)
o)
Therefore,
Pr {D§A°’A1) > d} < Age—@0rd, (11)
We note that the upper bound on the shaper delay tail distribution in
(Ao,A1) _

(11) is very loose. The bound looseness results from taking D;

11



Wp(Ao)(si)
p
backlog W), (A1) (t;) is cleared.

The next proposition is necessary for the analysis in the next section

That is, assuming that the shaper delays all packet until the

where we consider (p, A, a)-shapers in series.
Proposition 4 Let p > 0 be given. For all 1 > 1 it holds that
Ap,A)]T
W, (A1) () = [W, (A0) (s5) = p- D] (12)

Proof: See Appendix B.

3.2 The multiple node case

We proceed to consider a sequence of service elements, which constitute a

path in the network, as depicted in Fig. 3.

3.2.1 Traffic shaper elements in series

A, —>| sShaper |—» A —>| Shaper |—A, —»| Shaper | A

Figure 3: EBB Shapers in Series

First, we study the effect of connecting a sequence of some n (p, A, @)-
shaper elements. Let (p, Ak, i) be the parameters of the kth shaper. Ay
represents the rate of the traffic output of the kth shaper and Ay represents
the rate of the traffic input to the system. Let DZ(AO’A’“) be the difference
between the time at which the ith packet begins to exit the kth shaper (¢¥)

and the time at which it begins to arrive to the system (s;).

12



Proposition 5 For all k =1,2,...,n it holds that:

Pr {DZ(AO’A’“) < d} < m]?JX Ake—ak(Wp(Ao)(Si)—pd) ti?fl —5;<d< Wp(Apo)(Si)
-1 d > WelAo)(si)
= P

(13)

Proof: We prove the proposition by induction on k. It holds for £ = 1 by
(9). Suppose it holds for some fixed k; we now show it still holds when £ is
replaced by £+ 1. To show that, we first apply Proposition 4 k£ times: in the
l(AO,Am,l), Si+D§A0,Am),D§AO,Am) B
, p instead of Ay, A1, s;,t;,d;, p, respectively. This implies

mth application we use A,,_1, A, s;+D

DgAO:Am—l)

W, (4%) (s + DY) = [W, (40) (s9) — pD ] . (14)

i

Pr {DZ(AO’A’““) < d} =0Vd < tffll — s; holds since all the shapers
transmit packets in an FCFS order.
Suppose that DZ(AO’A’““) - Dl(AO’A’“) > 0. Then, from (9),
Pr{DgAO;Ak+1) _ D§A07Ak) S d‘ D§A07Ak+l) _ D§A07Ak-) > 0}
(A0.A)
_ A ;4D _
< Apoye Qpy1 (Wp( k)(s +D; ) pd)
W) (Ao) (s4)

Vil — s <d< ;

Now if DI+ = iAoM) 0 then W), (4y) (s + DI ™)) > 0 and

the ‘+’ sign superscript in (14) can be removed. Hence,

pr{ pftetin) — pliets) < d‘ pfteties) _ plhed) 5 o}

i

_ N (A0sAg) _
< Agqae e <WP(A0)(SJ PD; pd)

W, (Ao) (Si)‘

Vit — s <d <
P

13
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Therefore,

2 = 2 )

PI‘{D(Ao,Ak+1) <d D(Ao,Alc+1) _ D(AO:Ak) S 0}
< Appre” k1 (Wo(Ao)(si)=pd)

Vit s <d < Wy (Ao) (i)

(15)
On the other hand, if DZ(AO’A’““) — DMoAR) = (), it follows from the
induction hypothesis that

Pr{DgAO’AW < d| pHote) _ ptdod) o} < max Age 0 (Fo(40)) =00

W, (40) (s1)

P (16)

Vbl — s <d <
Thus, from (15) and (16) it follows that

Pr{Dl(Ao,AkH) < d‘ Dl(AO,AHl) _ DZ(AmAk) _ 0} < r,?f:‘i( Ak+16_ak+1(Wp(AO)(Si)_pd)

W, (Ao) (Si)‘

Vit — s <d <
P

(17)
Note that Pr {Dl(AO’Ak“) < d} =0Vd < tfj'll — s; holds since all the
shapers transmit packets in an FCFS order.
Finally, suppose that pAoAn) W; then, from (14),

W, (4g) (i + D)) = 0. Thus, D
Wp(Ao)(si)

p

(Ao,AkJrl)_D(Ao,Ak) — 0and D(AO’Ak+1) _
(3

7 [

3.2.2 EDF-Scheduler and EBB-Shaper in Cascade

Consider two systems, S7 and Sy, where system S consists of a (p, A, a)-

shaper and system S5 consists of a ”delay” subsystem and an identical

14



(p, A, a)-shaper connected in series as depicted in Fig. 4. The delay sub-
system delays the ith arriving packet by #; > 0 and then delivers it to the
shaper. The following lemma relates the delays experienced by a packet in
the two systems S7 and So. More precisely, the lemma states that the delay
distribution in system S is upper-bounded by the same function that upper

bounds the distribution of the delay in system Sj.

System S,

A, ——| EBBShaper |—> A

-4 Dil -
System S,

A 4

Ao —»| Delay

EBB Shaper —>

< D2 o>

Figure 4: The Systems S; and S
Lemma 1 Assume that packets arrive to systems Sy, So according to the

same arrival process Ag. If DEI) and DZ@) are the delays of packet i in the
traffic shaper in systems S1 and So respectively, then, for allt=1,2,...,

=0 d< t51)1 - 351)
) sy
Pr {Df) +0; < d} < e (o0 (57) =) 10— s < d< (Aop)( &
€y
=1 d> W”(Aoz(si )
(18)
Proof: The equalities in (18) are straightforward. Consider, then, tz(l_)l -
W, (Ag) (st
oW < g < M)

15



Let 551) be the time the ith packet of length [; arrives to either of the
two systems. Let also 352) = 351) + 0; be the time that packet ¢ enters the

shaper in system S;. According to (9) we have, for n = 1,2,

Pr {D,(n) < d} < Ae_a(W”(AO)(sEn))_pd) (19)

Hence,
Pr {D§2) +0; < d} < pe (G (o) (s7) o) +0:) (20)

= max
0<s<s™ P
(21)
From the proof of Lemma 1 in [5] we have
9" (0) <g” (0) + i (22)

We note that, while (22) was proven in [5] in the context of deterministic
traffic, it is easy to verify that the proof holds, with no modification, for

stochastic traffic as well.
From (20) and (22), we have

Py {Dz@) +6; < d} < Ae 2P (@7 6D+0:) o ) mapg o)

therefore,
Pr{D + 0 <d} < e (Wolo) (s1) =nd).

The following proposition considers a series of an EDF-scheduler and an

EBB-shaper.

16



Proposition 6 Assume that the output of a (p, Ao, ap)-shaper Ay enters a
system S, for which it is known that the delay experienced by a packet i is

exponentially bounded as follows:
Pr{D;(t) > d} < Ae ¥ Vd>d.

The output of system S enters (p, A1, )-shaper A;.

The total delay, D;, experienced by a packet ©, from the time it enters

the scheduler till the time it exits Ay, is exponentially bounded as follows:

Pr {Di > d} < (Ag n ]\) o FE vy > d. (23)

Original System

—3| Shaper Ab —»| System S

A 4

Shaper Ai -

+—0pD—>»<+—DpD!—>»
I ~ I
= D >

Modified System

—>{ Shaper A, | System S' [—»{ Delay

\ 4

Shaper Al .

<«—D' —» «—D, P >
Figure 5: Original and Modified System

Proof: Let D; be the delay of packet ¢ in system S, and let DZ(I) be its
delay in A;. Therefore, D; = D; + DEI). First, consider a modified system
where a delay subsystem with 6; = (J — Di)+ is inserted between S and
A1, and let Dl@) be the delay of packet 7 in A; under this new arrangement.

Next, replace S with a modified system S’ in which all packets experience

17



the same delay D’ such that
Pr{D'>d} <Ae ™’ Vd>d. (24)

(See Fig. 5.) Observe now that, since the delay of every packet between
its entrance to S’ and its exit from the delay system is max {D' ,J}, the
traffic entering the shaper A; is a time-shifted version of the traffic exiting

Apy. Hence Dl@) = DgAO’Al) and from (11) we have

Pr {DZ@) > d} < Age—o0rd, (25)
Applying sample path reasoning along with Lemma 1 we get
Pr {bi > d} < Pr {D’ + D@ > d} vd > d. (26)

(24) and (25) imply that both D' and DZ@) are EB. Thus, we have to
sum two EB processes. The proposition follows from the calculus of EB
processes presented in [9].

Observe that the upper bound on the delay tail distribution presented
in Proposition 6 is loose. This is due to the use of the upper bound given
n (11) for an isolated shaper element. A tighter bound can be achieved
for the special case where A; is a (p, Ao, ap)-shaper. Consider the modified
system presented in the proof of proposition 6. The traffic entering Ay,
which has EBB with the parameters (p, Ag, o), need not be delayed in Ay;
the (p, Ap, ap)-shaper, A;, should forward the input traffic immediately to
the output with no further delay, since the input traffic has already the

required output characteristics. Thus, we have:
Pr {f)i > d} < Ae ¥ vy >d. (27)

Note that even tighter upper bound may be achieved by using the more
general (p, A, )-shaper in A;, and by considering the actual parameters of

the shaper rather than just those presented in (9).
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3.2.3 End-to-end Delay

Finally, consider a connection k& with (pk, AF, ozk)—EBB traffic. The con-
nection is routed through a path p in which all nodes employ the RC-EDF
service discipline. We assume that the traffic shaper parameters for connec-
tion k£ at each node along its path are (pk,Ak,ak). Then, the stochastic

bound on the end-to-end delay is given in the following theorem.

Theorem 1 For any session k in an RC-EDF network with (pk,Ak,ak)—
EBB traffic and (pk,Ak,ak)—tmﬁfic shapers, the end-to-end delay D* (p) is
stochastically upper bounded as follows:

all oo |d 1
B JEN 5
P (D ()2 a) < | Yhe A ) | & 2

lep

Proof: The end-to-end delay consists of the delays along a series of shapers
and schedulers in cascade. We enforce, at internal nodes, the same traffic
parameters as at the network access point. In this case, we showed in the
previous section, namely expression (27), that the delay of a cascaded traffic
shaper and EDF scheduler is exponentially bounded with the same bound
as the delay of an EDF scheduler in isolation. Thus, the end-to-end delay
can be calculated from the sum of the EB delays in the schedulers. The
theorem follows from the calculus of EB processes in [9] and the the delay
bound of a single EDF scheduler (4).

4 Call Admission Control and Routing algorithms

The related call admission control problem, namely, whether a new con-
nection request can be accommodated, has been exclusively studied under

deterministic settings and many schemes have been proposed. However, the
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corresponding routing problem, namely, the identification of a suitable path
for establishing a new connection, has gained little attention. Thus, although
the main focus of the paper is on EBB traffic and stochastic guarantees,
the first part of this section considers routing algorithms with deterministic
guarantees. These schemes, under the deterministic setting, provide some of
the required basics for routing schemes under the stochastic settings, which

we study next.

4.1 The Deterministic Setting

Under the deterministic setting we assume that the traffic arriving in a closed
interval [s, s + 7] is deterministically bounded. More precisely, we assume
that there is a nonnegative function A (7) called envelope of A[s,s+ 7],
such that for all nonnegative s and 7, A[s,s + 7] < A (7). With such traffic
characteristics, deterministic upper bound on the end-to-end delay can be
guaranteed.

Under the deterministic setting, the routing problem has been studied
in [13, 14] and several schemes have been proposed. However, the focus in
those studies was on identifying feasible, but not necessarily (networkwide)
efficient paths. For example, the proposed table-driven distributed route-

”qualified” route (if such

selection scheme in [14] is guaranteed to find a
exists) that meets the performance requirement of the requested channel
without compromising any of the existing guarantees. When a feasible path
is found, the remainder delay, after subtracting the link delays from the end-
to-end delay bound, is subdivided evenly among the links along the path.
Such a path selection and a delay partition is not necessarily (networkwide)
optimal. Thus, efficient schemes, which aim at balancing the load or, alter-
natively, at maximizing the ability to accommodate future calls, are called
for. Obviously, such schemes should efficiently partition the delay.

First, we describe the deterministic model and the assumptions under

which the routing schemes are suggested. We assume that the input traffic
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is Burstiness Constrained [18]. A traffic stream with a rate function A (%),

is Burstiness Constrained (BC) if
Attt +7]<pr+o V7>0,

where AJ [t,t 4+ 7] = tt+T A (8) ds, pis the long term upper rate of the arrival
process and o is the maximal burst size.

Based on more general traffic models, [3, 19] established schedulability
conditions for an EDF scheduler. The authors of [3] considered bounded
traffic with general envelop functions A’ (7) and established the following
conditions:

a set of N connections is EDF-schedulable if and only if for all £ > 0:

rt> Y Al (t—di)

JEN
and for all &* <t < dWVl:

rt > E AJ t—dj)—i—maxL]
dI >t
JEN

_. ) . 1 t>0
Taking A7 (1) = (p/7 + 07) 1 (1), where 1(t) = ~ , we have:
0 t<0

a set of N connections, with Burstiness Constrained traffic, is EDF-
schedulable if and only if for all ¢ > 0:

rt> Y [p (t—d) + o] 1(t—d)
JEN

and for all &' <t < dWVl:

/AR E PR i
rt> Y[ (t—d) + o] 1(¢ d)+f£i’§L'
JEN

Note that Burstiness Constrained traffic is a special case of the (C, o, p)

Token Bucket flows considered in [19] in which C' = co.
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4.1.1 Call Admission Control

To consider call admission control, we exploit the following terms: (i) the

(work) availability function [19]

F(ty=rt—> [p/(t—d') +0']1(t—d') — max L,
‘ &>t
JEN
and (ii) the minimum worst-case response time (MWRT) [14], which is the
minimum delay that can be guaranteed to a new session while conforming
to the schedulability conditions.

The call admission of a new session k£ can be depicted as follows:

Algorithm Admission Control - Minimum worst-case response
time (AC-MWRT)

1. if 3 p/ 4 p* > r then exit ”cannot accept session k”
JEN

2. calculate the minimum d* such that

F(t)—(pk (t—czk>+0k>u(t—czk> >0

The establishment of efficient schemes to calculate d¥ is not in the scope

of this study. Such schemes can be found in [19].

4.1.2 Routing Algorithms

Here, we consider the more general problem, of optimizing the route choice
in terms of balancing the loads and accommodating multiple connections.

First, we aim at balancing the loads by seeking a path for which the
residual maximal rate (after establishing the new connection) of its bottle-
neck link is maximal. Algorithm MRB identifies such a path.

Let 0; be the residual rate at link [, i.e., & = 7, — > p’ and let the
JEN;
Al > A% > .. > AU be the different values of §;, where U < M. Denote

by D the session k required end-to-end delay.
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Algorithm Maximum Residual Bottleneck (MRB)
1. foru=1to U

(a) delete all links [ for which §; < A%
(b) find the shortest path with respect to the metric {Jf}

(c) if 3 dF < D then
lep*
i. p* is the required path
ii. subdivide the remainder delay D — > czf“ evenly

lep*
among the links along p*

2. if no path was identified, then the connection is not feasible

While the above algorithm aims at balancing the load, it does not ef-
ficiently partition the remainder delay along the identified path. The fol-
lowing algorithm, MWA, takes another approach to balance the load and
to efficiently partition the delays along the path. MWA aims at maximiz-
ing the available work function (after accommodating the new connection)
at the bottleneck link (with respect to the available work function). More
precisely, Let W, (Jf) be the minimal available work function at link [ after

accommodating a new connection k,

Wi (af) = minyri= 32 (o (1) + ') 1 (1= )]
JEN
J#k
k 7k k 7k
— t—d; )+ 1{t—dj | —maxL;y;
(7 (e )+ ) 1 (1= ) — e, |
given a connection k£ and a feasible path p denote by W[]f the minimal

available work of its bottleneck link [*, i.e.,

W[]f = Ilréigl Wk (Jf“)

The problem then is to find a feasible path p and a feasible partition J‘f Vi €
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p (df > a?f, > dF < D) that maximizes W[]f.
lep
Note that W; (df) is a non-decreasing piecewise linear function of (d‘f)

and the function discontinuities occur at times Jf = CZ{ Vi eMN.
Let W! > W2 > ... > WV be the different values of W, (Jf) Vie E
at all the discontinuities points. It hods that U < M - M.y, where Npax =

max Nj.
leE

Algorithm MWA
1. delete all links [ which cannot accept session k
2. fori=1,2,...,U

(a) for all I € E compute df (i) for which W, (dF (i)) = W*

(b) find a path p (i) that is the shortest path with respect to
the metric {df (i) }
(c) if 3 dF (i) < D then
lep(i)
i. p (i) is the required path
ii. subdivide the remainder delay D — Y~ dF (i) evenly

lep(i)
among the links along p (7)

3. If no path was identified, then the connection is not feasible

Complexity For each possible value of the available work function at a
discontinuity point W* we compute the delay at each link in O (1) steps and
find a shortest path in O (N log N + M) steps (through dijkstra’s algorithm).
Thus the overall complexity is O (M - Npax (N log N + M)).

4.2 The Stochastic Setting

We now briefly discuss the problem in our framework, namely, RC-EDF

schedulers under a stochastic setting.
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4.2.1 Call Admission Control

Consider the stochastic end-to-end delay bound in (28). It is easy to see
that the QoS guarantee of a session is affected by the traffic of other ses-
sions at each service element along its path. Thus, each service element v
must meet certain performance bounds in order to provide QoS guarantees.
These bounds, which characterize the achievable QoS at each service ele-
ment should be advertised in the network for routing purposes. It can be
verified that the following set of performance bounds is sufficient:

o > v <h,

JEN,

IN
>
N

> A —%( > ijJ;—Lmax>
<j€/\/ o ieXn, ol NNy
1

——L(T—.E ol
1—e JENV al seNy

Accordingly we propose the following algorithm for admission control of
EBB sessions. The algorithm takes as inputs the characteristics and delay
guarantees for the existing sessions in AV, and the characteristics for the new
session k. It outputs the minimum (stochastically) guarantee-able deadline

for session k.
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Algorithm Admission Control - Minimum Deadline (AC-MD)

(input: (pj,Aj,aj,J‘Z), o (P, A% a%) ; output: df )
1€ENY

1. if 3 p/ + p* > p, then exit ”cannot accept session k”
JENY

2. if ﬁ < @&y, then exit ”cannot accept session k”
. of ok

3. let d* be the minimal d* such that
14 14

= P a’:fLm)

[ B
> A+ AR e ie%f.,jJr;lk_ (JEN"
JENL

IN
N’1>

1 i k
o |t X P )
l-e iR, a7 TaF ( JENy

holds

4.2.2 Routing Algorithms

With the stochastic bound (28) on the end-to-end delay and the call admis-
sion control algorithm AC-MD at hand, we investigate the corresponding
routing problem. We adopt the concept of g-feasible paths introduced in
[8]. Namely, we assume that each session is associated with a certain prob-
ability ¢, which reflects its ”sensitivity” to end-to-end fluctuations beyond
the required delay D. Intuitively, a path is said to be feasible if the end-to-
end delay fluctuations beyond the required value conforms with the session’s
”sensitivity”. More precisely, a path p is g-feasible if Pr{D (p) > D} < g.
We begin by considering the basic problem of identifying ¢-feasible paths.
If several g-feasible paths exist, we seek a path with the minimal end-to-end
delay tail distribution. The problem, then, is to find a path that minimizes

the delay distribution upper bound, i.e., solve the following problem:

1
D
. & (p—pt) b T @ T T ik
min ZI‘le 1\ I ]e lep D > Zdl, v di > dj.
lep lep
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One can observe that the solution to this problem essentially involves
high computational complexity. Thus, we consider the following problem,
which follows by employing the trivial bound Y ﬁ < _np)_

lep

- mindlrl '
lep

min é&;r;
. N PN _lep D - 5 ~
min ZFleo‘l(pl L P D > Zd?, v df > df.
P I lep

lep

The following algorithm correctly solves the problem.

Let ar! > ar? > ... > drY be the different values of qyry, where U < M.

27



Algorithm Minimum Delay tail Distribution (MDD)
1. delete all links / which cannot accept session k
2. foru<+1toU

(a) delete all links | with d;r; < dar®
(b) forn +1to H

i. find the shortest path with respect to the metric
{fledl(f’l*”k)df } among n-hops paths under the constraint
> ch < D (through a restricted shortest path algorithm)
lep

ii. compute the stochastic bound

min &7

716p(n,u) D

> [yt (or=")df | o= ate(man
lep(n,u)

3. among H - U paths choose the path p* with the minimal bound

min dlrl

. N SN A _lep*

4. if (Z Fleo‘l(p’ P )dl> e 9 P < gthen
lep*

(a) p* is a g-feasible path

min &;ry
: 8y (p—p)ar | R : 5 :
(b) while ( > Te™ (Pi=r )dl> e 9 P < g increase df to maxi-

lep*
mize

2. N

JEN

1 ¥
- (= pfdl—Lmax>
( )6 fgf,w(jw

min | I'; —

lep* .
- 21_1_<’".E f”)
1—e i€V &N

5. else there is no g-feasible path

Notice that algorithm MDD balances the consumed resources along the

identified path; however, it does not balance the load in the network. The
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following algorithm considers the more general problem, of optimizing the
route choice in terms of balancing the loads and accommodating multiple

connections.

Let &; be the residual rate at link /, i.e., & = oy — Y. p’ and let the
JEM
A > A? > .. > AU be the different values of §;, where U < M.

Algorithm MRB aims at balancing loads by seeking a ¢-feasible path
for which the residual rate (after establishing the new connection) of its

bottleneck link is maximal.

Algorithm Maximum Residual Bottleneck (MRB)
l. foru=1to U

(a) delete all links [ for which §; < A

(b) execute algorithm MDD

(c) if algorithm MDD identifies a g-feasible path p*, then p* is
the required path

2. if no g-feasible path was identified, then the connection is not fea-
sible

The above algorithm focuses on the residual rate; however, it can be
easily modified to consider each of the other bounds guaranteed by each

service element, i.e., &; or I';.

5 Conclusion

This study establishes a scalable approach to end-to-end QoS provisioning
of traffic aggregates. Such aggregates translate into looser (stochastic) char-
acterization of traffic profiles. Previous studies (e.g., [6, 7, 8]) dealt with
either the generalized processor sharing scheduling discipline (GPS), under
both deterministic and stochastic settings, or with the rate-controlled ear-

liest deadline first discipline (RC-EDF), under a deterministic setting (e.g.,

29



[3, 4, 5]). The present study is the first to provide end-to-end bounds for
exponentially bounded burstiness (EBB) traffic and systems of RC-EDF
schedulers.

These bounds provide the required foundations for several related net-
work control problems. In this study, we demonstrated how the end-to-end
delay bound can be applied in order to devise an adequate call admission
control and routing schemes. Due to the complexity of the end-to-end bound
under the stochastic setting, these schemes are quite complex. However,
the complexity can be appropriately reduced by resorting to approximation
techniques that employ scaling and rounding, hence obtaining sub-optimal
(e-optimal) solutions.

An important direction for future research is a performance comparison
between the RC-EDF scheduling discipline and the GPS discipline under
stochastic settings. In particular, under the deterministic setting, RC-EDF
was proven to outperform GPS in providing end-to-end delay guarantees
in a network [5]; whether a similar result can be obtained also under the

stochastic setting is a challenging open question.
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Proof of proposition 1

Consider a tagged packet from connection k& € N that arrives at an EDF-

scheduler at time ¢ and is completely transmitted at time ¢ + D¥ (¢). Let
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WPk (t + 1) be the workload in the scheduler at time # + 7 that is served
before the tagged packet (from connection k with arrival time ). The tagged
packet has a deadline violation greater than d if for all 7, 0 < 7 < d¥ + d,
WL (t+17) >0, i.ec.,

Pr {D’c (t) > d* + d} — Pr {0<rr<12%+d{Wk’t (t+ 7)} > 0} .

Let t —b (t) (where b (t) > 0) be the last time before ¢ at which the scheduler
does not contain traffic with a deadline less than or equal to the deadline
of the tagged packet. Since the scheduler is empty before time 0, the time
t — b (t) is guaranteed to exist. b(t) is given by:

b(t) :min{z|W§t+gk (t—2)=0,z2 20},

where W=7 (y) denotes the workload in the scheduler at time y due to

packets with deadlines less than or equal to 2. We have:
— t —
Pr {Dk () > d* + d} =Y pr ({D’c (t) > d* + d} N{b(t) = %})
#=0

:;Prq min {Wk’t(t+7)}>0}ﬂ{b(t)

0<7<dk+d

+}> (A.29)

Note that {b(¢) = 7} implies that, in each of the 7 time slots, r units of data
have been transmitted. Also, note that {W"!(t+7) >0} V7 (0 <7 <d* +d)
implies that some additional r- 7 data units have been transmitted from ¢ to
t+ 7. Moreover, {b(t) = 7} also implies that the queue at time ¢ — 7 did not
contain any packets whose deadline was less than or equal to ¢ + d*; these
packets enter the scheduler only from ¢t — 7 to min {t + 7t 4+ dF —d } Note

that the deadlines of packets from session j that arrive after t + d* — d’ are
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greater than ¢ + d*. Therefore,

=Prd min {3 A [i—pmin{t+ri+ & B +RE-7) —r(F 1) >0,

Tk
0<r<ditd | A%

where R (t — b(t)) denotes the amount of untransmitted data of a possible
packet that is in transmission at time ¢ — b (¢). We distinguish between two
cases, namely whether at time ¢ — 7 the scheduler is empty or transmitting

a packet.

Case 1 W (t—7) = 0. In this case, the scheduler is empty at time ¢t — 7,
i.e., R(t —7) = 0. We obtain from (A.30):

Pr ({Dk (t) > d¥ +d} n{b(t) = f})

=Pr{ min ZAJ'[t—%,min{t+r,t+&k—JjH—r(%+r) >0

k
0<7<di+d | A%

=Pr min ZAj[t—f',t—i-T]—i- Z Aj[t—ﬁt““jk_czj]_r(%‘i‘ﬂ

0<7<d*+d
ST SeT(n) JEN—T(r)

where j € Z (1) if t +7 < t+d* —d’. Since the sessions traffic is stationary,

it is easy to see that the minimum is achieved for Z (7) = (). Thus,
Pr ({Dk (t) > d* + d} N{b(t) = %})

_ N S R
Pr %Aj{t 7ot +d dJ] r(T—i—d +d)>0

Case2 W (t—0b(t)) > 0. The scheduler is transmitting traffic at time t—7

from some connection j’. By the definition of 7 the traffic in transmission
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>0
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has a deadline greater that ¢ + d*, that is, d' > # + d*. Without loss of

generality, we assume that j' is such that Ly = _max_ L7. From (A.29)
d) >7+d
and (A.30) and using similar arguments as in Case 1, we have:

Pr ({Dk () > d* + d} n{dp(t) = ﬂ)

=Pr min ZAj{t—ﬁmin{t—FT,t-i-Jk—JjH—i—fmaxiLj—r(f'—i-T) >0
0<7<dkF+d JeN di >#+dk

=Prd y A [t—%,t+J’f—Jj] + max Lj—r<%+J’f+d) >0
JeN di>7+dk

(A.32)

From (A.29),(A.31) and (A.32) we get

Pr {D’c (t) >Jk+d}
gzt:Pr ZAJ' [t—%,t+J’“—Jj] + max Lj>r(%+J’“+d)

i~ A1 gk
o JEN dI>T+d

(A.33)

B Proof of proposition 4

The proof of the proposition goes along similar lines to that of Lemma 5.1
in [18].

We show (12) by induction. It holds for the first packet (i = 1) since
W (A1) (t1) = W, (Ag) (s1) = D) = 0. We now assume that (12) holds
for some fixed ¢ and show that it also holds when ¢ is replaced by ¢ + 1, i.e.,

we show that

+
W, (A1) (tiy1) = [Wp (Ao) (si41) — p- DEV]
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We have
W, (A1) (tiy1)

= [W, (A1) (t;) + Li — p (tix1 — )] (B.34)
+

i

= | W, (4) (s5) — pD o) T p (tit1 — i)
I

Consider the following various cases:

Case 1: W, (A1) (tix1) =0 In this case (B.34) implies

Ag,A1)

0> W, (Ao) (s5) — pDI ) + Li = p (i1 — 1)
(Ao,Al)_

=W, (Ao) (si) + Li — p(si+1 — si) — pD; )

(B.35)

Since Dgfg’Al) > 0, (B.35) implies
Ao, A
W, (Ao) (5:) + Li — p(si21 — :)] " — pD{0 ™) <0
Thus,
W, (Ao) (si41) — pDLT ™ <0
and

+
W, (A1) (tis1) = [W, (Ao) (si1) — pDLi0A)

in this case.

Case 2: W, (A1) (tiy1) > 0,W, (A1) (¢;) > 0 In this case the plus sign
superscripts can be removed from the right-hand side of (B.34). Thus

W, (A1) (ti1)

=W, (Ao) (1) = pDy"™) 4 Li = p (111 — 1:)

=W, (Ao) (i) + Li — p(sit1 — 8i) — PDz(ff’Al)

= W), (A40) (s0) + Li = p (sis1 = s2)]* = pDL .

= W, (Ao) (si41) = pDLY5

= [Wp (Ao) (sit1) — PDz(f?’Al)r :

Note that (B.36) follows since W, (A1) (t;+1) > 0 in this case.

Ag,A1)
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Case 3: W, (A1) (tix1) > 0,W, (A1) (t;) =0 From Proposition 3 we have

pD M < W, (40) (si)

i
We will consider two subcases of this case.

Subcase 3A: W, (Ap) (s;) =0 In this subcase it follows that Dz(AO’Al) =0.

Hence it follows from (B.34) that

W, (A1) (ti1) = W, (Ag) (si) — pDY ™) 4 Li — p(tia — ). (B.37)

Subcase 3B: W, (Ag) (s;) >0 From the definition of Case 3 (W, (A1) (;) =
0) and the induction hypothesis it follows that W), (Ag) (s;) — pDZ(AO’Al) <0.
Z(AO’AI) < W, (Ap) (i), we have le(AO’Al) = W, (Ao) (si). Hence it

follows from (B.34) that

Since pD

W, (A1) (tir1) = W, (o) (si) — pDO™) 4 Ly — p(tisr — ti) . (B.38)

Now, (B.37) (B.38) are equivalent to (B.36). Thus, the identical reasoning
+
used in Case 2 can be used to show that W, (A1) (ti41) = [Wp (Ao) (8i41) — pDZ(j_‘g,Al) :
]

37





