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Abstract

We investigate the ultimate communication limits over rapid phase varying channels and consider
the capacity of a discrete-time non-coherent additive white Gaussian noise channel under the average
power constraint. We obtain necessary and sufficient conditions for the optimal, capacity achieving,
input distribution and show that the optimal distribution is discrete and possesses an infinite number
of mass points. Using this characterization of the capacity achieving distribution we compute a tight
lower bound on the capacity of the channel based on examining sub optimal input distributions. In
addition, we provide some easily computable lower and upper bounds on the channel capacity. Finally,
we extend some of these results to the partially coherent channel, where it is assumed that a phase
locked loop (PLL) is used to track the carrier phase at the receiver, and that an ideal interleaver and
de-interleaver are employed - rendering the Tikhonov distributed residual phase errors statistically
independent from one symbol interval to another.

Keywords: non-coherent channel, partially-coherent channel, channel capacity, capacity achieving
distribution, discrete, Kuhn-Tucker conditions.

1 Introduction

Non-coherent channels emerge in communication systems where it is difficult or even impossible to
provide a carrier phase reference at the receiver. In bandpass transmission this situation arises when
tracking of the carrier phase is not possible due to phase noise, frequency hopping and various other
reasons. In optical communication systems it is quite often not possible to transfer information
through the phase of the optical carrier [16]. That is why non-coherent channels play an important

role there as well [38].

Results concerning the behavior of the capacity of the non-coherent channel for asymptotically
low and high signal to noise ratios (SNR) under the average power constraint date back to Blachman

[2] (see also the work of Jelonek [17]), who considered the quadrature additive Gaussian channel
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where any combination of amplitude and phase modulations are employed under either average
power or peak power constraints. It was shown in [2] as well that choosing the input amplitude
to be positive normal distributed is capacity achieving for asymptotically high SNR. In [38] the
non-coherent channel under a peak amplitude constraint was considered, where it was shown that a
discrete distribution with finite cardinality is capacity achieving. Furthermore, a discrete capacity

achieving distribution was conjectured also for the case of an average power constraint.

In recent years attention has been devoted to the non-coherent channel mainly towards improv-
ing non-coherent detection methods [10], [11], [7]. In many cases these methods were shown to
achieve a performance approaching that of ideal coherent detection, when one assumed that the
unknown (random) carrier phase at the receiver is constant over a large number of consecutive

symbols [5], [25], [29], [30], [31] (and references therein).

The capacity of the blockwise non-coherent additive white Gaussian noise (NCAWGN) channel
where the input symbols are drawn from an M-ary phase shift keying (MPSK) alphabet has been
addressed in [29]. For a sequence of L transmitted symbols, over which the unknown carrier phase
is assumed constant, it was shown that capacity is achieved by uniformly and identically distributed
MPSK symbols. Moreover, it was shown that for large L the coherent capacity itself is approached.
A more general result was obtained in [6] where the capacity of the blockwise NCAWGN channel
was considered without imposing any constraints on the input alphabet. It was shown that the
capacity achieving distribution in this setting is not Gaussian (as in the coherent case) and is
composed of zero mean and uncorrelated components with uniformly distributed phases. As in the
MPSK case it was shown that as the length of the block of symbols tends to infinity, the capacity
achieving distribution tends to a Gaussian one with independent and identically distributed zero
mean components, and the capacity approaches that of a coherent channel. The channel discussed
in this paper can in fact be viewed as a specialization of the channel discussed in [6] to a unit block
length. A subsequent recent effort [28] extends some of the results of the present work [19] to block

non-coherent channels.

It should be noted that the support of a capacity achieving distribution for a continuous input
channel need not necessarily include a continuous component. One such example is the additive
scalar channel where the noise satisfies certain constraints [35] and the signal is subjected to a
peak-power constraint. See also [34] where this result was extended for the Gaussian case to the
quadrature (two-dimensional) channel. The same result holds also for some amplitude-limited
additive noise channels where the noise has a piecewise constant probability density [27]. See
also [12] for some more examples obeying this rule. A common feature of all the above cases
is the peak amplitude constraint imposed on the input. However, this behavior of the capacity

achieving distribution was demonstrated also in the case of the discrete-time memoryless Rayleigh



fading channel [1] under the average power constraint. See also [13] where this result was extended
to the discrete-time memoryless Rician fading channel when considered under the second and
fourth moment constraints. In [28] the channels treated in [34] and [1] are considered in the
multidimensional case, where results of similar flavor are again obtained regarding the topological
properties of the capacity achieving distributions. The capacity achieving input vector for the block
non-coherent channel was shown to be a product of an isotropic unit vector and a discrete positive
norm. Finally, in [9] the capacity achieving distributions of non Gaussian additive noise channels
under the average power constraint was considered, where it was shown that when the density of
the noise has a tail which decays slower (respectively faster) than the Gaussian, then the capacity

achieving distribution has bounded (respectively unbounded) support.

In this paper, using techniques similar to those found in [35] and [1], we prove that the capacity
achieving distribution of the discrete-time NCAWGN channel under the average power constraint is
discrete with an infinite number of mass points. Some upper and lower bounds on channel capacity

are also obtained, where a tight upper bound is obtained for asymptotically high SNR.

As opposed to the non-coherent case, there are some communication settings where estimation of
the carrier phase at the receiver is a viable option. Usually, some phase tracking device is employed
such as a phase locked loop (PLL), in which case the residual phase error at the receiver can be
assumed to possess a Tikhonov probability density. The capacity of the scalar partially-coherent
AWGN (PCAWGN) channel was considered in [14]-[15] (see also [3]), where it was shown that the
capacity achieving distribution is circularly symmetric, and not Gaussian (as in the coherent case).
However, a more detailed characterization of the capacity achieving distribution was not found.
Assuming that ideal interleaver and de-interleaver are employed in the transmitter and receiver,
respectively, causing the phase errors to be statistically independent, one can treat the PCAWGN
channel within the framework of memoryless channels. Following this approach, we show that the
capacity achieving distribution for the PCAWGN channel has a discrete amplitude and uniform
and independent phase (DAUIP).

The paper is organized as follows. In section 2 we formulate the problem and give necessary
and sufficient conditions for the capacity achieving distribution. In section 3 we establish our main
result regarding the discreteness and infiniteness of the capacity achieving distribution. Section 4
presents some numerical results concerning the capacity and the capacity achieving distribution. In
this section we also discuss some lower and upper bounds on the capacity. Section 5 extends some
of the results of section 3 to the partially coherent case. A summary concludes the paper where

some topics for further research are proposed. Detailed proofs are given in Appendices A - E.



2 Problem Formulation and Preliminary Results

We consider the complex envelope representation of a discrete-time NCAWGN memoryless channel,
Y; = X;el% + N; (1)

where X; is the complex valued channel input, Y; is the channel output, IV; are independent
circularly complex Gaussian random variables whose real and imaginary parts are independent of
each other and are each zero-mean with variance o2 (i.e. E [Re(NN;)?] = E [Jm(NV;)?] = 02 and
E [|N;]?] = 20?) and finally, §; are independent random phases each distributed uniformly in the
interval [—m, ). The discrete time is designated by the index ¢, and we assume that the sequences
6; and N; are sequences of independent and identically distributed (i.i.d.) random variables. This
channel is equivalent [18] (in the sense of capacity) to the envelope detected complex Gaussian
noise channel which emerges in the modelling of the optic fiber channel [38], and represented by

Y; = | X; + N;|, where X;, Y; and Nj are as defined above.

The input symbols X; are average power constrained according to
E [|X;]?] < P. (2)

Since the channel is memoryless, the capacity achieving inputs X; are i.i.d., and for this reason
henceforth we consider the channel (1) with the time index ¢ suppressed. We work with po-
lar coordinates and denote the channel input by X = z; 4+ jzo = re/¥ and channel output by

Y =y + jy» = Re?¥. The output PDF conditioned on the input and on 6 is given by,

(3)

R R%+ 72 —2Rrcos(p+60—1
fRp o 0RO |1, 0, 0) = 2exp{— (p )}.

2mo 202

The output density conditioned on the input alone is obtained by averaging over the uniform

distributed phase 6

g do
fR,1/J|r,<p(Ra¢|Ta 90) = fR,¢\r,<p,0(Ra¢|Ta ®, 0)%
R R? 412 rR

= 272 P {_ 202 }IO (ﬁ) ) )

Note, that the output conditional PDF is independent of the input phase ¢. Strictly speaking, the
capacity of the channel (1) subject to the power constraint (2) is given by

2up IR, ¢;r, @ Fry) (5)

T,
E[r2]<P



where F, ,(r, ¢)! is the joint CDF of the random variables r and ¢. However, since the input phase
is completely wiped out by the channel (see (4)), it is easily shown [18] that the mutual information
in (5) is equal to the mutual information between the input amplitude r and the output amplitude
R, I(R; r). In other words, the distribution of the input phase can be chosen arbitrarily (with no
effect on channel capacity) and the capacity is thus given by

sup I(R;r : Fp) (6)

E[rffgp

where F,. stands for the CDF of the input amplitude r, and the supremization is performed over all
such CDF's obeying the power constraint. In this case the output PDF conditioned on the input is
given by

fR|r(R|7") = Wwa\( P ) dy

R R? 412 TR
2 exp {—7202 } I (;) (7)

where we have used the fact that fg | (R, ¥ |7) = fry ro(R, V|7, ©).

Given the channel description (7) and the power constraint (2), which now assumes the form
Er? < P, we follow the approach used in [35], [34] and [1], and denote by F the set of all probability
distribution functions. Let Q C F be the set of all input CDFs F(r) defined for r > 0 and satisfying

the power constraint, i.e.

F(07) = 0
/ Oor2dF(r) < P (8)

Note that this definition of the set ) includes discrete input distributions. Now, for every F' € Q)

define the mutual information functional

(R|7“)
I(R // (R ) log 4t 2 ARAF(r) )

where f(R : F') is the channel output PDF induced by the input distribution F'

o0
fR:F)= [ 1R InaFG) (10)
The capacity is then given by
C = supI(R;r: F). (11)
FeQ

!We use the notations Fj, F.(a) and F(z) interchangeably throughout the paper to signify the cumulative

distribution function of the random variable z.



Existence and uniqueness of a solution to (11) follow from an optimization theorem based on [24,

Sec. 5.10] and proved in [1].

Theorem 1 [1] If J is a real-valued, weak® continuous functional on a weak* compact set
Q C X*, then J achieves its mazimum on . If furthermore Q) is convex, and J is strictly concave,
then the mazimum

C =max J(F)
FeQ

1s achieved by a unique Fy in .

The fact that the set €2 is convex and weak®* compact was shown in [1]. In Appendix A it is
shown that the mutual information functional in (9) is continuous and strictly concave. Therefore,
by theorem 1 we have shown existence and uniqueness. With that in hand it is possible to use the

following optimization theorem? (see [1] and [24, Sec. 8.3]).

Theorem 2 [24] Let X be a linear vector space, Z a normed space, F a convezr subspace of
X, and P the positive cone in Z. Assume that P contains an interior point. Let f be a real valued
concave functional on F and g a conver mapping from F to Z. Assume the ezxistence of a point
Fy € F for which g(F1) < 0. Let

C= sup f(F) (12)

FeF
9(F)<0

and assume C' is finite. Then there is an element z; > 0 in Z* such that

C= ffé?:{f(F) — 29 (9(F)) >} (13)

Furthermore, if the supremum is achieved in (12) at Fy, it is achieved by Fy in (13) and

7 (9(Fo)) = 0. (14)

As in [1] we apply the theorem to our problem where the functional f is the mutual information
functional (9) and F is the set of distribution functions of nonnegative random variables. It is
easily shown that F is convex. Moreover, in Appendix A it was shown that I(R; r : F') is concave

over F. Define the mapping g(F) : F — R

g(F) = / - r?dF(r) — P

0
2The expression z*(z) denotes the value of the functional z* belonging to the dual space X* evaluated for some

element x belonging to the vector space X.



where P > 0. The mapping g(F') is linear and hence convex. The positive cone in R has an interior

point, and if F} is the unit step, g(F}) < 0. By theorem 2, there exists v > 0 such that

C = sup {I(R; v : F) —g(F)}. (15)
FeF

Moreover, since capacity is achieved for some Fp, the supremum is achieved in (15) by Fp and
v9(Fp) = 0. (16)

As in [1] and in [34], we follow the footsteps of Smith [35] and use the following optimization
theorem, which relies on the notion of weak differentiability [35], in order to obtain necessary and

sufficient conditions for Fy to achieve the supremum in (15).
Theorem 3 [35] Assume a weakly differentiable functional f on a convex set F achieves its

maximum.

1) If f achieves its mazimum at Fy then fr, (F) <0 for all F € F.

2) If f is concave, then f}O(F) <0 for all F € F implies that f achieves its mazimum at  Fy.

In Appendix C it is shown that the functional I(R; r : F) —vg(F) is weakly differentiable in F.
Furthermore, since g(F) is linear and I(R; r : F) is concave, I(R; r : F) —~vg(F') is also concave.
Thus, we apply theorem 3 and obtain necessary and sufficient conditions for Fy to achieve the

supremum in (15), namely
I (R;7 : F) — g, (F) < 0, VFeF

which by the results of Appendix C can be written equivalently as

/oo[i(r;Fo)—’yr2] dF(r) < I(R;T:Fo)—’y/ooTQdFo(r)
0 0

where

(RIT)

i(r; Fy) = / fR|r)log 7R )

and where the last assertion in (17) follows from the fact that the Lagrange multiplier assumes the
value of zero if the power constraint is not met with equality.

The following theorem (which is proved in [18]) formulates the necessary and sufficient conditions

for the optimal distribution in a more convenient form.



Theorem 4 Let Ey denote the set of increase points of a distribution Fy. Then

/ [i(r: Fo) —4r%] dF(r) < C — AP (18)
0
for all F € F if and only if
i(r; Fy) < C+~(r?—P), Vr >0 (19)
i(r; Fo) = C+~(r*—P), vr € Ey. (20)

We refer to (19) and (20) as the Kuhn-Tucker conditions (KTC).

3 Main Result

In this section we present our main result concerning the capacity achieving distribution of the
NCAWGN channel, namely that it is discrete and possesses an infinite number of mass points. We
do not prove that discreteness and infiniteness hold directly. Rather, we show that all other options

are impossible. The main result is thus stated in the following theorem.

Theorem 5 The optimal input distribution Fy(r) achieving the supremum in (11) is discrete

with an infinite set of mass points®, but with only a finite number of mass points over any bounded

interval.

Proof: 1t is obvious that the optimal input must have one of the following properties.

1) Its support contains an infinite number of mass points on some bounded interval.
2) Tt is discrete, infinite, but with only a finite number of mass points over any bounded  interval.
3) It is discrete and finite.

Following Smith [35] and Shamai and Bar-David [34] we use the KTC to prove that the first
and third cases are not possible. Assume that case 1 holds. Since any closed interval is a compact

set, it follows by the Bolzano Weirstrass theorem that this interval contains an accumulation point

of the set of mass points. Now consider the function
9(2) = i(z; Fp) = C —~(z* = P) (21)

for any z € C satisfying fe(z) > 0. The following proposition is proved in Appendix B.

3A “mass point” or “increase point” zo of a probability distribution function Fx(a) satisfies

Fx(m‘o—f-e)—Fx(.’I:o—C) >0, Ve > 0.



Proposition The function g(z) is analytic for z € C satisfying Re(z) > 0.

By the KTC (20) it follows that g(z) equals zero for z € Ey. Thus, we have an analytic function
over a domain D = {z € C : Re(z) > 0} which equals zero over an infinite set of points having
an accumulation point in D. By the identity theorem [4, Sec. 2-8] the function g(z) equals zero
throughout the domain D. This implies, in particular, that the KTC hold with equality for all
r >0, or

f(R]r)

/0 f(R|r)logde=C+’y(r2—P), Vr > 0. (22)

2

After substituting (7) in (22) and performing the change of variables R = oz one obtains after

some manipulations

o 1 F
—/ x [e‘é"%z log fla: Fo) 5 0) Jo (zjr)dz =
0 ag°r

2

= —/ ze™ 27" J (zjr)log Jo (zjr) dx + (o + Br?) e30? (23)
0

where we have denoted the function f(z : Fp) = f(o?z : Fp) and defined the two constants o = 01—2(1 +C +logo? -

and 8 = 01—2 (v + 0—12) and where we have used the fact that Iy(z) = Jo(jz2).

We interpret the term on the left hand side (LHS) of (23) as an application of the Hankel
transform (see [32, p. 9-3], [36, Sec. 5.3] and [40]). Referring to [36], the Hankel transform pair,

namely
RS AT s t = sh= [ 70 (st)
F) = HoYE(s) 5 5 — 1) = /0 " B (s)J, (st) ds (24)

where t — s designates transformation from the ¢t domain to the s domain and vice verse, is well
defined for v > —1 and for a function f(t) for which v/#f(t) is piecewise continuous and absolutely
integrable on the positive real line. In Appendix D it is verified that the term in square brackets on
the LHS of (23) satisfies the above conditions for the Hankel transform, implying that the Hankel
transform in (23) exists, and it’s inverse is given according to (24). Notice, however, that the

Hankel transform in (23) is in fact evaluated along the imaginary axis.

Next, we identify the second term on the right hand side (RHS) of (23) as a Hankel transform

of some function, also evaluated along the imaginary axis. It is easily shown [18] that this term



can in fact be expressed as

2

1“2
(oz + ﬁr2) e2? = (a - ﬁt2) 67;072

t=jr

1
= Ho {aaQe_;”%Z — 280" (1 - 50'221}2) e 207 ;T — t} (25)

t=jr
Equation (23) can now be written as
f(z : F
— Ho {6502“2 log 7f($2 0) ; x—>t} =
o’z
t=jr
o0 1.2,..2
- / ze 277 Jy (xt)log Jp (zt) d:z:‘ +
0 t=jr
1
+ Ho {aer_%”2w2 — 260" (1 — 502332) e20°7’ ;T — t} (26)
t=jr

Since all the terms in (26) are analytic functions of ¢, we can conclude (by the identity theorem)
that equation (26) holds for all ¢ > 0. Taking the inverse Hankel transform on both sides of (26)

and rearranging we arrive at

f(.ZU : Fo) =

N

o0 o0
= Aze™P7" exp {e os? / / tue 37" Ty (ut) log {Jo (ut)} Jo (wt) dudt}, (27)
0 J0

where A = 026%"4_"“’2, which is a scaled version of the channel output PDF.

To invalidate the existence of a valid output PDF it is enough to show that this scaled version
is not a real function of z. We do this by showing that the imaginary part of f(z : Fp) is not

identically zero. Assume that it is identically zero. This implies that the phase of (27) is identically

zero for all z (since the PDF must be nonnegative). The phase of f(z : Fy) is given by
~ 1 2.9 [CfC 144
arg f(z : Fy) =Jmqe2’ ” / / tue” 27 " Jy (ut) log {Jo (ut) } Jo (xt) dudt ¢ .
0Jo
The phase is identically zero if and only if
o0 o0 12,2
/ / tue 27" Jo (ut) arg {Jo (ut)} Jo (zt) dudt
0o Jo

00 001 g 4,2
- / 2Jo () arg {Jo (2)} [ / STy (at) | dz =0,
0 0

10



Since the last term is identically zero by our assumption, its derivative with respect to z is also

identically zero. Integrating that derivative along the positive real axis must also then yield zero.

/ooO % {/ooo zJo (z) arg {Jo (2)} [/ooo %6_%02%:% (<) dt} dz} &

_ —/oono( yarg {Jo (2)} [/Oooe5”2f§/ooojl (wt) dmdt} dz

- / / oo () arg {Jo ()} e 37 7 1

where the last inequality holds because of the non-negativity of the integrand. This contradicts

however,

dtdz >0

:~l~|b—‘

our assumption that the function f (x : Fp) is real, and invalidates the output PDF. Thus the
assumption of an infinite number of mass points over some bounded interval is false, proving that
the optimal distribution is discrete, either finite or infinite, with a finite number of mass points

over any bounded interval.

We now proceed to the last part of the proof where we wish to prove that the discrete optimal
distribution is infinite*. Assume, therefore, that case 3 holds, i.e. that the optimal input distribution

is discrete and finite.

Referring to (19) we begin with the necessary and sufficient conditions for the optimal input

distribution, namely
/ f(R|7)log (( Ir ))dR<C+’y(r —P), Vr>0 (28)

where equality in (28) holds for r € Ey, Ep now denoting the set of mass points of the discrete
optimal input distribution Fp(r). Assume that the set of mass points {r;} ; is such that r; <

ro < --- < ry. Also, let the set of corresponding probabilities be {pi}fil where p; = Prob{r =r;}.
Now, f(R : Fp) can be expressed by

f(R: Fy) = sz (R|ri)- (29)

Substituting (29) in (28) yields after some simple manipulation

1
dR > (rﬂ—fy)rz — Cy(r) — C + vP (30)

o0 il urh Rr;
|7 rinog | me e (2
0 i=1

4By “infinite distribution” we refer to a distribution with an infinite number of mass points.

11



where C,(r) is defined as

/ f(R|r)log (R |)dR log oe. (31)

Equation (31) is the Wyner polyphase capacity whose behavior for small and large signal to noise

ratios (SNRs) was studied in [41].

We first claim that v < # To see why this is so consider the following chain of arguments.
The parameter « is a Lagrange multiplier. As such it represents the slope of the optimum of the
object function as a function of the constraint value. In this case, the Kuhn-Tucker equation (30) is
stated for the case of a fixed noise variance of 202 and a variable power constraint P. Therefore, v
is actually the slope of the curve C,(P) at P. Now consider the capacity of the complex Gaussian
channel C%(P) = log(1 + %) This capacity is evidently an upper bound to the capacity of the
non-coherent channel. Therefore, when P tends to infinity, the slope of C,(P) must also tend
to zero. If that were not the case, then we would have the non-coherent capacity curve C,(P)
exceed the capacity curve of the complex Gaussian channel at some P. From the convexity and
monotonicity of channel capacity we can safely say that the largest slopes of both capacity curves

are located at P = 0. The slope of C¢(P) at P =0i is 5. Iy > we could find a small enough

2% 2a
P such that the capacity of the non-coherent channel would exceed the capacity of the complex
Gaussian channel. As this is not possible, we conclude that 7 < 5 for all P > 0. In fact, for
P = 0 there actually holds an equality between the slopes of the capa01ty curves of the complex
Gaussian channel and the non-coherent channel. This is because the slope of the capacity curve at

P = 0 is inversely proportional to the minimum ﬁ—g which is the same for both channels [39].

Now, evaluate the LHS of (30)

dR

LHS < / F(R|7)log [Zp,e 20210(R’"N>

=1

/ f(R|r logIO(R >dR+log

where the second term in (32) is some constant independent of 7. Focus on the first term which is

further bounded by

/Ooof(R|r)logIo<%) dR < /Ooof(R|r)logeXp{%} dR

= %/0 f(R|r)RdR.

2

sze 2"72

=1

(32)

—_

12



We show that the last integral grows at most linearly with r.

/Of(R|r)RdR /Of(R|r)RdR+/r F(R|r)RdR

< r/o f(R|r)dR+/r F(R|r)RAR
< 1+Eg), {RIg>r}
< T+\/ER\T{R2}ER\T{I%1>T} (33)

Y i T e

21 9,2
< r+\/(7“2+202)7r +20 (34)
T
2 2
= o+ (35)

where we have used the Cauchy Schwartz inequality in (33) and the Chebysev inequality in (34).
To conclude, we have shown that the LHS of (30) is upper bounded by

27“N 27‘1\7

LHS < —&5r+— +log (36)
(o T

i
> pie” 2
i

However, (30) must hold for all » > 0. This can not be, since the RHS of (30) grows faster than
the LHS. We therefore conclude that case 3 does not hold, and we are left with the only possibility
that the optimal input distribution achieving the channel capacity is discrete with infinitely many

mass points, but with only a finite number of mass points over any bounded interval.

4 Numerical Results

4.1 Lower Bounds

One of the serious implications of theorem 5 is that it prevents the numerical computation of the
capacity achieving distribution as one can not solve (numerically) an optimization problem with an
infinite number of design variables (mass points’ locations and probabilities). This situation is in
contrast to the cases studied in [35], [34], [1] and [13] where the set of mass points of the optimal

input distribution was shown to be finite.

Of course, for any finite set of mass points, an optimization of the mutual information over that
set yields a sub-optimal input distribution and a corresponding lower bound on capacity, which

can only improve with the addition of more mass points to the optimization process. We take

13



this approach, and compute (numerically) a “tight” lower bound on capacity by optimizing over a
sufficient number of mass points. By “sufficient” we mean that adding more mass points does not
alter the mutual information significantly. In what follows all numerical results are obtained with

o2 =1 and SNR is defined as the ratio %.

Figure 1 depicts the locations of the non zero mass points belonging to the sub-optimal input
distributions. It should be noted, however, that a mass point at zero is always present. Each line
corresponds to some mass point, and shows the dependence of its location as function of the SNR.
Notice how at low SNR the locations of the mass points further away from zero “escape” to infinity.
As SNR increases the mass points closer to zero tend to fixed values (more or less equally spaced)

and new mass points arrive from infinity.

201

=

o L
4+
0 I

0

Location

5 SNR 10 15

Figure 1: Non-zero mass points of sub-optimal input distributions

Figure 2 shows the probabilities of all mass points, including the zero mass point, versus SNR.
Higher probabilities correspond to mass point closer to zero. Notice how the probability of all mass
points (other than the zero mass point) tends to zero at low SNR. Also note that at any SNR the
probabilities of mass points further away from zero tend rapidly to zero. This intuitively suggest
that the mass points above a certain number do not convey a significant contribution to the mutual

information.

It is observed that for very low SNR values there are effectively only two mass points. One at
zero, and the other away from zero, with an appropriately small probability, so as to satisfy the
average power constraint. As SNR increases, the probability of the positive mass point increases,
and its location decreases. When SNR increases further, additional mass points join the input
distribution allowing for more signal levels. The additional masses emerge from infinity, with ap-

propriately scaled probabilities, so as to meet the overall power constraint, resembling the Rayleigh
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Figure 2: Probabilities of mass points of sub-optimal input distributions

fading channel treated in [1]. The “tight” lower bound on capacity obtained from evaluating the
average mutual information for the sub-optimal distributions is depicted in figure 3. Note that
for higher SNR the numerical optimization becomes increasingly complex because more and more
significant mass points emerge in the optimal input distribution. Therefore, one must resort to

other (less tighter) bounds which can be computed more easily.

Three such lower bounds are obtained by evaluating the average mutual information for three
continuous distributions. The first is the geometric distribution where the input amplitude is

distributed according to

fr(a) = %exp {— %a} , a>0. (37)

For the second lower bound we choose a Rayleigh distributed input amplitude. This input distri-
bution corresponds to a complex Gaussian input to the channel (1). The bounds are depicted in
figure 3. As can be seen in figure 3, the geometric lower bound shows tighter behavior for SNR
lower than 15 dB, however for higher SNR the Rayleigh lower bound displays better performance,
and has a tighter trend as SNR increases further. The Rayleigh input lower bound coincides with
similar results by Colavolpe and Raheli [6] and Hou, Belzer and Fischer [15]. For the third lower
bound we compute the average mutual information for an input amplitude distributed according

to the positive normal distribution, namely,

fole) = \/szexp{—g}, o>0. (39)

The positive normal distribution (38) was discovered to be capacity achieving for high SNR by
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Blachman [2]. Recently, it was also shown by Lapidoth [21] that this lower bound is indeed asymp-
totically tight for large SNR. The bound is plotted in figure 3.

4.2 Upper Bounds

In order to gain some more insight as to the behavior of the capacity curve we provide some upper
bounds on the capacity as well, adopting several approaches. Our first approach, which is motivated
by the work of Taricco and Elia [37] on the Rayleigh fading channel, is to maximize the mutual
information with respect to output densities. Since the set of output densities is a superset of the
set of output densities induced by legitimate input distributions, by maximizing over the set of

output densities one obtains an upper bound on capacity.

First note that the channel model (1) can be equivalently expressed as Y = re/? + N where r
is the nonnegative channel input, and N, # and Y are as defined in section 2. This is because we
can consider only nonnegative real inputs due to the complete phase loss. In this case, the mutual

information between the input r and output Y can be expressed as

I(r;Y)=I(r,0;Y)—1(0;Y|r). (39)

Now, we would like to maximize the first term on the RHS of (39), over all output densities,
while constraining the second term on the RHS of (39) to a fixed value, A, and then to maximize

the result over A to obtain an upper bound on the channel capacity.

Denoting Y = Re’¥ and fr(R) the density of the output amplitude, we have that the first term
on the RHS of (39) is given by

I(r,6;Y) = HY)—-H({|r,0)

- / ” fr(R)log fR](%R) dR —log o’e (40)
0

where (40) is justified by the uniform output phase which is also independent of the output ampli-
tude. Further, denoting by F,(r) the CDF of the input r, the second term on the RHS of (39) can
be expressed by
(e o]
1060:Y|r) = / 160; Y |r = a)dF.(a)
0

_ /0 ~ Cy(a) dF, (a) (41)

where Cy,(a) is as defined in (31).
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Now, substitute (40) and (41) into (39) and consider the following optimization problem the

solution of which when optimized over A is none other than the channel capacity.

{ / fr( log )dR—loga%— /0 oon(r)dFT(r)}. (42)
Joe dF,

Jo" r2dF;, (7')<P
Jo© Cu(r) dFy (r)<A

Note that by replacing the function Cy(r) in (42) with a function «(r) which satisfies a(r) <
Cw(r), r > 0 we obtain an optimization problem the solution of which upper bounds channel
capacity. This is because the new object function would be greater than or equal to the old one,

and because by doing so the constraints are relaxed. We select

= /OOO f(R|T) {logR— % [log 20 — CE]} dR (43)

where Cg is Euler’s constant. It is possible to show that the condition a(r) < C,(r), r > 0 holds
(for details see [18]). Notice that the third term of the object function in (42) (which appears also

in the constraints) when C,,(r) is replaced with a(r) assumes the form

/000 a(r)dF.(r) = /Ooo {logR— % [log 26° —C’E}}fR(R) dR

After substituting the last term into (42) we arrive at the following optimization problem the

solution of which upper bounds channel capacity

© 1 2
max {—/ fr(R)log fr(R)dR + = [log 5 — CE] } . (44)
fr 0 2 o’e
I3 fr(R)dR=1
I5° R? fr(R) dR<P+202
Js° log Rfr(R) dR<A+[log 202 —Cj)

This problem can be solved (for details see [18]) for any fixed A using the calculus of variations

as was done in [37]. The solution to this problem is given by the following pair of equations

Cup(n) = logD'(p) — p (I;((ﬁ)) - 1) +A-Cp—1

1 P\ 1/T() 1
A= Zlog14+ =) +:= ~1 2. 4
2og( +22)+2(F(M) og [t +20E (45)

It can be verified that optimizing the last result over A yields the upper bound

1 P 1], on
= —log(1+=—=)+= |log=" —
Cu = o8 (1+505) + 3 |l06 7 - Ci

1

1 P
2 log (1 + g) +0.13. (46)
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This upper bound is plotted in figure 3 as the mutual information upper bound. Although it is not
at all tight, it is however very easily computed and has a closed form analytic expression for any

SNR.

Recently, it was shown that the capacity of the NCAWGN channel can be achieved by input
distributions that escape to infinity [21], [22]. This means that the behavior of the capacity for
high SNR is unchanged if we assume that the input is constrained to be bounded away arbitrarily
far from zero. Under this assumption we can select &(r) = a(r) + 3 (log  — Cg). Although
the condition &(r) < Cy(r), 7> 0 no longer holds, the functions a(r) and Cy(r) have the same
asymptotic behavior [18]. Therefore, for every € > 0 we can find a sufficiently large ry,;;, such that
a(r) —e < Cy(r), > rmin. This means that for every e > 0 choosing &(r) — e in place of C,,(r) in
(42) yields an optimization problem the solution of which upper bounds capacity for asymptotically
high SNR. Since the capacity is a continuous function of the constraints, we can take the limit as
€ — 0. Performing this substitution in (42) and solving once again yields the following bound for

large SNR

1 P 1
o = §log (1—}-@) — 510g2.
This result coincides with Lapidoth [21] where this bound was shown to be asymptotically tight.

Our second approach is inspired by corollary 3.4 in [8, p. 142] which states the P average power
constrained capacity of a discrete memoryless channel (DMC) with input alphabet X, output

alphabet ) and conditional probability matrix W (y|z) by means of a dual expression, namely

Cc(pP) = o, min max [D (W (-|2) [IR()) + v (P — 27)] (47)

where P()) denotes the set of all probability measures on Y. In particular, for any output proba-

bility distribution R(-) capacity is bounded from above by

C(P) < min max [D (W (o) IR ()) +7 (P = 2%)]. (48)

Extension of (48) to channels with continuous alphabets is possible due to Lapidoth and Moser
[22] who showed that for any probability measure Q(-) on X and any probability measure R(-) on

Y, where X and ) are any separable metric spaces, there holds

1Q:W) < [ DY (I2)|IR() Q) (49

where I(Q ;W) is as defined in [22]. In Appendix E this inequality is extended to the case where

an average power constraint is imposed on the input implying the validity of (48) for channels with
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continuous alphabets. Rewriting (48) in the notations of the NCAWGN channel we get the upper
bound

C(P) < min max [/oof(RM") log f(R]|r) dR+~ (P —1?) (50)
T 720 120 Lo fr(R)

where fr(R) is any output density. Selecting in (50) an output density which is induced by

a geometrically distributed input as in (37) yields the bound plotted in figure 3 and denoted

geometric induced output (divergence based). An even better upper bound is obtained by using a

parameterized output density of the form

R 1)
S Tz L

Substituting this density in (50) and optimizing the RHS over p yields the bound in figure 3 denoted
parametric induced output (divergence based). Numerical computation of this upper bound reveal
that the behavior of this upper bound for large SNR is %log(l + SNR) — %log 2 as in the case of
the first approach. In other words this bound is asymptotically tight.

T T T
— Tight Lower Bound on Capacity
— - Rayleigh Input Distribution

+ Geometric Input Distribution

* Positive Normal input Distribution

O Mutual Information Upper Bound

— Geometric Induced Output (Divergence Based)

Parametric Induced Output (Divergence Based)

Figure 3: Upper and lower bounds on capacity

5 Extension To the Partially-Coherent Case

In this section we consider the PCAWGN channel where some phase tracking scheme is employed
(such as a PLL). We assume that an ideal interleaver is present, rendering the residual phase
estimation errors independent from one symbol interval to another. In this case we can consider

the memoryless channel model Y = Xe/? + N, where N is the circularly symmetric complex
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eP cos @

Gaussian noise, X is the complex input, and 6 is Tikhonov distributed according to p(f) = T

for some positive p. We denote the channel output by Y = Re/¥ and channel input by X = ref%.

The channel’s conditional output density is
™
fR,¢\1‘,Lp(R7¢|Ta SD) = / fR,1p\r,<p,0(R7w|Ta P 9)p(0)d9
—

R R2 472 Iy (v)
2702 exp{— 202 }Io(p) (52)

where v = \/% + Qp% cos(¢p — ) + p?. It has been shown in [14]-[15] that the capacity achieving
input distribution is circularly symmetric, i.e. the phase ¢ is independent of the amplitude r, and
uniformly distributed over [—m, 7). Assuming such a characteristic of the input distribution, we
are left with finding the amplitude distribution only. Thus, the capacity of the channel is given by
sup I(R, ¢, ¢ : Fp). (53)
Fr
E[r2]<P
where ¢ is uniformly distributed and independent of r. Using similar arguments to those which
were already used in the NCAWGN channel, it can be shown [18] that necessary and sufficient
conditions (Kuhn Tucker) for a distribution Fy(r) to achieve the capacity are given by

o f(R7w|T7 ()0) 7"2— r
| ] s@sin onog il aran < 04a6?-P)
< F(R, ¥ |7, p) _ 2
/0 77rf(R,¢|r, LP)IOg—f(R,z/J - dRdy = C+H+~(r*—P) VreEy (54)

where Ej is the set of increase points of Fy. Continuing along the same path as in the NCAWGN
channel it is possible to show [18] the analyticity of the function g(z) defined by

f(R, |z, p)

md¢dR—C—7(z — P). (55)

9(2)2/0 3 f(R, ¥ |z, p)log

By identical techniques to those employed for the NCAWGN channel it can be shown that Ey does
not contain an infinite set of mass points on any bounded interval, extending the result which was
established for the NCAWGN channel. The proof is omitted for brevity, as it does not convey any

new concepts and can be found in [18].

6 Summary and Discussion

We considered the capacity of the discrete-time NCAWGN memoryless channel under the average

power constraint. Incorporating standard optimization techniques, it was shown that the capacity
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achieving distribution is discrete with an infinite number of mass points, and with only a finite
number of them located over any bounded interval. Also, necessary and sufficient conditions for
a capacity achieving distribution were obtained. This result was partly extended to the more
general case where the unknown carrier phase manifests itself through the Tikhonov distribution,
corresponding to the case where it is estimated by a PLL in conjunction to the employment of an
ideal interleaver. Finally, some lower and upper bounds on channel capacity were derived, shedding
some light on the behavior of the capacity for various values of SNR. These bounds could be used to
examine the performance of coding schemes in communication systems which work under a regime

where the carrier phase is rapidly varying with time.

A serious pitfall in computing the capacity achieving distribution for the NCAWGN channel is
embodied in the fact that the optimal input distribution has infinitely many mass points. This fact
makes it difficult for us to compute the capacity achieving distribution with standard numerical
optimization tools. Any numerical optimization of the average mutual information over a finite
collection of mass points is bound to be sub-optimal, and hence considered a lower bound on ca-
pacity. An unanswered question is the quantification of this sub-optimality. It would be of practical
importance if one could quantify the trade off which exists between the number of optimized mass

points and the relative distance from the actual capacity curve.

Another attempt to assess channel capacity here could be by first introducing an additional
constraint, which causes the capacity achieving input to have a finite number of mass points. As
was mentioned in section 1, imposing a peak constraint on the input guarantees in many other
cases a capacity achieving distribution with a finite number of mass points. A finite number
of mass points might even achieve the capacity of the NCAWGN channel if in addition to the
average power constraint a fourth moment constraint is imposed on the input. Recent studies [13]
have investigated cases where such a constraint does yield a finite mass point capacity achieving
distribution. In any case, given that adding a constraint causes the channel to have a discrete
and finite capacity achieving distribution, one can then relax this constraint asymptotically, and
examine the capacity behavior which should tend to that of the NCAWGN channel under the
average power constraint, which we have explored in our work. Such results can then be compared

with ours.

A subsequent extension of part of our results [19], has recently been reported in [26] for the
blockwise non-coherent channel. The cardinality of the capacity achieving discrete set is not yet

known for this general case.

As to the partially coherent case, it should be noted that the infiniteness of the capacity achiev-
ing distribution was not established here. It should not be surprising if the same regime holds here

as well, when one considers the limiting case were the loop SNR parameter p is taken to be very
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large (the coherent case) where the capacity achieving distribution being Gaussian definitely has

an infinite number of mass points. A rigorous proof of this conjecture is called for.

The NCAWGN and PCAWGN channels are special cases of the general fading channel, where
the complex fading variable assumes an amplitude of unity and where the phase assumes the uniform
distribution in the NCAWGN case, and the Tikhonov distribution in the PCAWGN case. Both
channels have been shown here to have discrete capacity achieving distributions. When considering
these channels in the wider context of fading channels, it is desirable to be able to fully characterize

the fading variable which causes the capacity achieving distribution to be discrete.

Appendix A
Weak* Continuity and Strict Concavity of Mutual Information

Weak* continuity of a functional f defined over the set of probability distributions is equivalent to

E,(r) v, F(r) = f(Fn) — f(F). We write the mutual information functional from (9) as the

difference I(R; 7 : F) = hg(F) — BR‘T(F) where

f(R : F)

hr(F) = /fR F)log """ 4R

hpp(F) = — /OOZOOf(RM)log@deF. (A.1)

We first show that hp(F) is weak* continuous. Let Fy(r) w F(r). We will show that hg(F,) —
hi(F).

nlgx;ohR(Fn) = nli_)ngo{ / f(R : F,)log (RRF n) dR} (A.2)
_ o JfR:F) . f(R:F)
= -/ Rnhﬁngo{ 7 log 7 }dR (A.3)
- / F(R : F)log? (RR F) ir (A4)
= hr(F). (A.5)

Equations (A.2) and (A.5) are definitions. To establish (A.4) note that f(R_er) where f(R|7) is

defined in (7) is a bounded continuous function of r. By definition of the weak* topology

f(R:F) [ f(R]r)
pE A /0 T ar(ry (A.6)
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is a continuous function of F for every R > 0. Since zlogx is continuous, it follows that

! (RR: ) 1og £ (RR: ) is continuous in F. By the definition of weak continuity there holds
. f(R:Fn) f(R: Fy) _f(R:F) f(R: F)
nh_)n;o { 7 log 7 = 7 log T (A.7)

To establish the interchange of integral and limit in (A.3) we use the Lebesgue dominated conver-

gence theorem, and find an integrable function g such that

f(R: F,)
R

log <g(R) Vn. (A.8)

‘f(R t Fn)
R

In [18] it is shown that the function ! (RéF") is bounded for all F;, by the function §(R) defined by

o2

T
g(R) — 1\46 202 Tf R S 20'2 (A.g)
213 if R> V20

&

for some M > 0 and ¢ € (0, 1). Thus, it follows that

< g(R)

f(R:Fn) f(R:Fn)
‘ R8T R

where g is given by

2
01—267%2 ‘10g02+% if R < V202
s [log M — (24 6)log R| if R > v/202

g(R) = (A.10)

which is piecewise continuous, bounded, and integrable. We have shown so far that ﬁR(F) is
weak* continuous. Next, we show that iLR|,,.<F) is weak® continuous in F. Note from (A.1) that
the innermost integral can be expressed in terms of Wyner’s capacity of polyphase coding [41].
The Wyner capacity Cy,(r) expresses the capacity of an AWGN channel where a polyphase coding
scheme is employed as function of the (fixed) input amplitude r. This capacity is given by [41]

Cuw(r) = _/000 f(R|r)log @ dR — log o”e. (A.11)

The function h rjr (F') can now be written as
- o0
hgjr(F) :/ [Cuw(r) +1loga®e| dF(r).
0
Let Fp(r) v F(r). We must show that

/0 " Cu(r) dFa(r) — /0 ~ Cu(r) dF(r).
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This follows if the function

(A.12)

g(r):{o ifr<0

Cw(r) ifr>0

is uniformly integrable in F;, [23, Sec. 11.4], that is, if ¢ is continuous, if [ |g|dF, < oo, and if

(o9}

lim Cu(r)dFy(r) =0 (A.13)
b—oo Jp
uniformly in n. The function g can be shown to be an analytic function of r on the right half of

the complex plane (see Appendix B). In particular, it is continuous in r for » > 0. Furthermore,

from [41] it is known that for small values of r, Cy(r) = % + O(r*), and for large values of r,

Cuw(r) = 3log 2;2’"; + €(r), where €(r) =% 0. From these two assertions it follows that there exists

some positive number K such that |g| < % + K for all r. Therefore, there holds

o] 00 ,,.2 P

for every n. To verify (A.13) note that for similar arguments there must exist a number a > 0 such

that Cy,(r) < ar for r > 0. Therefore, for b > 1
o o
/ Co(r) dEa(r) < / ar dFy (r)
b b

a [ o

— rdFy,(r)
b Jp

aP

< & (A.15)

IA

which is a bound independent of n that converges to 0 as b — oo. Hence, g is uniformly integrable in
F,, and h rjr(F') is a weak™ continuous function of F'. Being the difference of two weak™ continuous

functions, the mutual information I(R; r : F') is consequently a weak* continuous function of F.

That mutual information is concave is a known fact (see for example [8, p. 50]). It remains to
be shown that the concavity is strict, i.e. that for any distribution functions Fi, F5 € F and for

any 6 € (0, 1) there holds
IR;r: (1—0)F1+0F)=(1-60)I(R;r : F1)+0I(R;r : F3) (A.16)

if and only if F} = Fy. The “if” part is trivial. For the “only if” part consider the decomposition

of the mutual information in the beginning of this Appendix. Note that BR‘T(F ) is linear in F'. To
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show that hg(F) is strictly concave let Fy = (1 — 6)F, + 0F,. By (10) the corresponding output
PDFis f(R: Fp)=(1—0)f(R : F1)+0f(R : F,). Now, evaluate the difference

hr(Fy) — (1 — 0)hg(F1) — Ohp(Fy) =
= (1=0)D(f(R: F)IIf(R : Fp))+0D(f(R : F)||f(R : Fp)). (A.17)

The RHS of (A.17) is identically zero if and only if f(R : Fy) = f(R : F3). It remains to be shown
that f(R : F1) = f(R : F») implies F} = F», or equivalently that

®R _R4r? R
/ —¢€ R2<7+ I() <T )d(Fl—Fg):():}F‘l—FQZO.
0 O'

g

However, this fact was shown to hold in [34]. Therefore, hg(F) is strictly concave. Since the mutual
information functional is a sum of a linear function and a strictly concave function, it is therefore

strictly concave.

Appendix B
Analyticity Of g(z) for the NCAWGN Channel

In this Appendix we show that the function g(z)

/fR| ) log (I))

is analytic throughout the domain D = {z € C : Re(z) > 0}. It suffices to show that the first term

dR—C — (2> = P), Re(z) >0 (B.1)

of g(z) is analytic, because every polynomial is analytic in the whole complex plane. Denote the

first term of g(z) by

w(z) = / F(R|2) (( |))dR

— /Oohl(R, z)dR—/oohg(R, z)dR (B.2)
0 0

where

R R? 4 22 zR R? 4 22 ZR
hi(R, z) = e [— log o — 57 + log Iy (F)] exp {— 952 }Io (F)

R R*+2? R R : F
hao(R, z) = ;exp{— 20; }Io (z )lo %.

We use the differentiation lemma [20, p. 392] to prove the analyticity of the two terms in (B.2).
Consider the first term in (B.2). h; is continuous on {z € C : Re(z) > 0} x [0, 00) and analytic for
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each R as a combination of continuous and analytic functions (the principal branch of the logarithm
taken). Now, since every compact set in the complex plane is closed and bounded, it suffices to show
that the first term in (B.2) is uniformly convergent for any rectangle {z € C : a < fRe(z) < b, —b < Im(z) < b}.
Any other compact set in the right half of the complex plane is contained in some rectangle of that
form. Let K be such a compact set for some positive a and b, and let z be an element of K.

Evaluation of the first term in (B.2) yields

o
/ hi(R, 2) dR‘ <
0

1 2 [e ] 2 2 _R2
< —en? R‘—logaz—}z#—#loglo (ﬁ) 727 | I (ﬁ)‘d}%

o 0 o o o

1 a2 ? ? _ B
< ;ez’iﬂ/o [|10g02|+ R —I—M-I—B}e 27 I, (%) dR (B.3)
< o0

where (B.3) comes by the fact that |Io(z)| < Io(Re(z)) for z € C and by the fact that |log I (25%)]
can be bounded by B for any z € K as a continuous function over K. We conclude that the first
term in (B.2) is uniformly convergent for all z € K. Hence, by the differentiation lemma, it is

analytic for Re(z) > 0.

We now show that the second term in (B.2) is also analytic. The function hy(R, z) is continuous
on {z € C: Re(z) > 0} x [0,00) because the function f(R : F) is continuous for all R > 0 [18].
Moreover, it is also an analytic function of z for each R, being a combination of analytic functions.

Thus, it is left for us to establish that the function hy(R, z) is uniformly convergent for all z € K.

It can be shown [18] that the function log (R ) is bounded by

R:F R?
log% < max{‘QU logﬁ

, [log o |} . (B.4)

1'2
where O = [;° e 27 dF(r) is a constant belonging to (0, 1]. Now, we evaluate the second term

n (B.2)

o0
/ ho(R, 2) dR‘ <
0

2 o 2 .
< —Qe# Re 37 (zR>H F(R : Fy) dR
g 0 R

2 2
< —ezo/ Re 21§2I0 Rb max R——logﬁ
202

which implies the uniform convergence of the second term in (B.2). To conclude, we have shown

|log02‘} dR < >
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that the conditions of the differentiation lemma hold also for the second term in (B.2). This

establishes the analyticity of w(z), and therefore, the analyticity of g(z).

Appendix C
Weak Differentiability of I(R; r : F) — vyg(F)

We define the marginal mutual information

i(r; F) = / f(R|r)log ((Rl )) dR (C.1)

denote Fy = (1 — 0)Fy + 0F, and compute the difference
I(R;r —I(R;r Fo) (C.2)

//f R|r log ideFo +9/00/0;ET;F9)deF(T)—}—

6 /0 00/05?7«; Fy) dR dFy(r).

The weak derivative is given by [35]

In(R;r: F) = lim

I
S~
8
&
S
Q
=
2
|
=
-
<
S

For the weak derivative of g we have

9k, (F) = g(F) — g(Fp). (C.3)

Since these two derivatives are valid for all Fy and all F' in F it follows that the functional

I(R;r : F)—~g(F) is weakly differentiable.

Appendix D
Conditions for the Hankel Transform

The continuity of f(R : Fp) implies the continuity of f (z : Fy), and thus we have that the function

(a: Fo) (z Fo)

e300 log is continuous for > 0. Next, we show that the function /ze™ 200" log
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is absolutely integrable.

r

)
1.2.2
= / \/56_50 z
0

\/56_%02I2 log flx : Fp)

o2z

dr =

f(.’IJ Fo)

o2z

oo
/ \/Ee_%"%z max { L
0 2

F
—o%2? —log ﬂ—2°
ag

log dz

INA

, |10g02‘} dr < oo

where in the last inequality we have used the results of Appendix B, namely, (B.4).

Appendix E
Upper Bound For Continuous Alphabets

Begin with (49) and add the power constraint term on both sides to obtain
I(Q;W) +~(P — Eqa?) < / D (W (-|2)IIR("))) dQ(z) + (P — Eqa?)

= /[D(W(-Ix)IIR(-)))+7(P—w2)] dQ(z)

< max [D (W (J2)|[R() +2(P - %) (E1)

Now, since (E.1) holds for any @), we can take the maximum of the LHS with respect to  and

obtain

max [1(Q; W) +~(P — Eqaz®)] < max [D (W (-})[|R(-))) + (P = z?)] . (E.2)

Since the last inequality holds for any -y, we can minimize both sides with respect to y

minmax [1(Q; W) + (P — Eqz®)] < minmax [D (W (-|o)][R())) + (P —2%)]

where the LHS is the capacity of the channel.
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