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Abstract 

GaN-based lasers include, apart from the separate confinement 

waveguide, a parasitic GaN buffer waveguide. The effect of coupling between 

the active laser waveguide and the buffer waveguide on the lasing modes is 

studied in terms of coupled mode formalism and a round-trip analysis.  

Assuming a low reflectivity internal mirror, Fabry-Perot modes with an 

intensity envelope, which resembles experimental measurements is obtained. 

The gradual change in the modes, taking part in the round-trip model, is 

presented as a function of wavelength and temperature. The influence of 

temperature changes on the peak wavelength of the output spectrum, predicted 

by this analysis, are in good agreement with experimental reports. 
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  1. Introduction 

 The rapid progress in implementation of GaN-based lasers
1
 uncovered many 

peculiar properties of the III-Nitride material system
2-3

. One important feature of such 

lasers is the spectral distribution near threshold. Unlike semiconductor lasers 

implemented in other material systems, GaN-based lasers exhibit a Fabry-Perot (FP) 

mode-spectrum with an envelope of modes periodically modulated (side lobes). Such 

a mode spectrum is a manifestation of coupled cavity effects
4
. It has been proposed 

that the mode envelope modulation (the spectral satellites) stems from interference 

between a lasing mode propagating along the laser waveguide and an electromagnetic 

beam bouncing back and forth between the upper contact and the GaN-substrate 

interface
5
, but the details of such interference were never worked out into a 

quantitative model. A similar modulated FP spectrum in GaAs-GaInAs lasers was 

modeled through a quantitative calculation of the interference properties when a 

guided laser mode is coupled to substrate modes
6
, however, when scaling down the 

“substrate” thickness in such model to the thickness of the GaN epitaxial structure, the 

modulation of spontaneous emission does not correspond to the spectral periodicity 

measured in GaN-based lasers. The extremely stable single longitudinal mode 

operation of GaN-based lasers is also surprising, because the active layer of such 

lasers is likely to be at elevated temperatures during operation. The following 

considerations can provide a clue to understand these unusual properties:  

 (i) GaN-based lasers grown hetero-epitaxially, include a 2-3µm thick GaN layer next 

to the interface with the substrate. This layer serves as a material buffer to filter-out 

extended defects in the subsequent layers. The GaN buffer layer behaves also as an 

additional optical waveguide, which becomes coupled to the separate confined laser 

waveguide. 
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(ii) A large density of extended defects, typical of the material system, can behave as 

optical scattering centers, or as internal mirrors (contra-directional couplers), in the 

buffer layer.  

(iii) Reflectivity differences or relative phase shifts at the end facets of the laser and 

the buffer waveguide may result in cavity modes with strong wavelength selectivity
7-

9
.  

Here we present a detailed analysis of the waveguide properties of GaN-laser 

structure. We clarify the parametric dependence of the various waveguide modes of 

the structure and the coupling among them. A round-trip coupled-cavity formalism is 

applied to find the FP modes and their threshold gain. Lateral as well as longitudinal 

coupling is considered. We show that an extended defect with a modest reflectivity 

(~2%) can produce a spectral distribution that explains well the experimental 

modulated FP spectrum. By using analytic expressions for the refractive indices of the 

structure, the temperature evolution of the lasing mode is studied.   

 

2. Analysis of the N-Layer Lossless Waveguide 

The electromagnetic field in a multi-layer, piecewise constant refractive index 

structure can be obtained by matching the boundary conditions of the lateral electric 

fields of the constituent layers at each interface
2
. This leads to a 2×2 transmission 

matrix formalism. For sinusoidal time varying fields with TE-polarization, the field 

Ei(x,z,t)  propagating in  direction can be written as: ẑ

i

 

,( , , ) ( ) exp[ ( )]i y ix z t x j t zε ωΕ = − β  (1) 
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Ιn Eq.(1), βι is the propagation constant and εy,i is the amplitude of the field (variation 

in ŷ lateral direction ignored), which solves the wave equation:    

2

2, 2 2

0 ,2
( ) (

y i

i j y ik n x) 0
x

ε
β ε

∂
− − =

∂  (2) 

 

where k0 = 2π/λ0 is the wavenumber, nj is the refractive index of the j-th layer and λ0 

is the vacuum wavelength.              

The general solution of Eq.( 2) has the form:          

                            

, ( ) exp{ ( )} exp{ ( )}y i j j j j j jx A x D B xε γ γ= − + − − D          (3) 

 

where γj = (βi
2
 – k0

2
nj

2
)
1/2

,  are complex coefficients and Djj BA , j is the position of 

the boundary between layer (j-1)  and layer j  relative to the cladding, D1 equals to 0. 

 Continuity of the electric field and its derivative provide the following 

relations: 
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 jd D  is the thickness of the j-th layer.  1j j D
+

≡ −

The 2×2 matrix of Eq.(4) is the transfer matrix, T . The coefficients of substrate and 

cladding layer are connected by a recursive relationship: 

j
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       (5)                               

 As boundary condition we’ll have to take Aclad = 0 and Bclad = const. The 

requirement of decaying fields for large values of |x| results in the condition 

Ttot,22(β)=0, whose eigenvalues are the propagation constants βi of the i
th

 guided TE 

modes (i=0, 1, 2, 3….). Modes are labeled according to decreasing values of βi i.e. 

1 2 Nβ β β> > ⋅⋅⋅ > .  and  for each particular value of  βjj A,γ jB i are calculated and 

substituted into Eq.(3) to obtain the field profile of the modes, εy,i (in the following, 

subscript y will be omitted).  

 

3. Laser Structure and Waveguide Approximation  

As an example, we consider the laser structure shown on Fig.(1) as 

representation of a typical GaN-based laser
10

. This rather complicated structure 

includes superlattices (layers 2 and 10) and an inhomogeneous layer (layer 4). In 

order to obtain a more tractable structure, we replaced in the following calculations 

thin layers (dj << λ) by a single layer whose thickness is the sum of the thickness of 

the constituent layers and whose refractive index is the average refractive index of 

these layers. Thus, the superlattice layers, the multi-quantum well (MQW), the 

inhomogeneous layers and layers 6-7 were approximated by equivalent homogeneous 

layers. 

The wavelength and composition dependence of the refractive indices of GaN 

and AlqGa1-qN was obtained experimentally by spectroscopic ellipsometry in our 

previous work
12

. The composition (q) and temperature (T) dependence of the 
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dielectric function of AlqGa1-qN in the transparent region at elevated temperatures can 

be expressed as: 

 
1.5 2

2 1 1( , )
( , , ) ( , )

( , )

d
diel d d

g

p pA q T
E q T C q T

E q T p
ε

− + − −

= + ⋅         (6) 

 

where p = [Ed+iΓ
~
(q,T) ] / Eg(q,T), Ad (q,T) and Γ

~
(q,T)  are the transition strength 

parameter and the broadening of the fundamental transition, respectively, and the 

constant term Cd(q,T) takes into account the contributions from higher energy 

transitions. Eg(q,T) is the temperature-and composition-dependent band-gap of 

AlqGa1-qN, Ed is the photon energy and T is  the temperature. The refractive index of 

the layers are given by:  

( )
1

2
2 21

( , , ) ( , , ) ( , , ) ( , , )
2

d r d r d im dn E q T E q T E q T E q Tε ε ε
 

= + +  
   (7) 

 

In Eq.(7) εr and εI  are the real and the imaginary parts of the dielectric constant , 

respectively. The constants Cd(q,T), Ad((q,T) and Γ
~

(q,T) were used as fitting 

parameters. A quadratic best-fit procedure leads to the following composition and 

temperature dependence
11-12

:  

 

2 5 2 4 2 2( , ) 79.30 8.37 10 6.73 10 (18.99 0.13 1.76 10 ) 37.51
d

A q T T T T T q q eV− − − = − ⋅ + ⋅ + + − ⋅ + 
1.5        (8a) 

( )3 6 2 3 6( , ) 2.49 2.27 10 1.80 10 0.74 4.61 10 5.33 10dC q T T T T T q− − − −

= + ⋅ − ⋅ − + ⋅ − ⋅
2         (8b) 

( )2 2 3( , ) 8.69 4.13 10 248.24 0.19 10q T T T q eV− − Γ = − + ⋅ + − ⋅ 
ɶ                (8c) 
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Under operating conditions, the temperature of the layers is well above room 

temperature, mainly due to the relatively high resistance of the p-type region and the 

low thermal conductivity of the sapphire substrate. The estimated operating 

temperature is ~365K (a calculation is given in Appendix A).InGaN layers (in the 

multi-quantum well) were modeled by extrapolating Cd(0,T), Ad(0,T) and (0,T) 

along with InN energy gap, thermal expansion coefficient and InGaN Bowing 

parameter. The refractive indices of the cladding and the substrate are n

�Γ

clad = nair = 1 

and nsub = nsapphire = 1.68. The refractive index diagram of the resulting simplified 

structure, calculated at 365K, is shown in Fig.(2). (Layers are numbered by j, 1≤j≤13). 

 

A brief inspection of the refractive index profile shown in Fig.(2), leads to the 

following conclusions: (a) the complete structure may support a large quantity of 

guided modes; (b) the laser “active region waveguide” (around the InGaN quantum 

wells) could have been single moded, if the Ga0.8Al0.2N cladding layers were infinitely 

thick; and (c) a “parasitic” waveguide is formed next to the substrate (the “buffer 

waveguide”). 

 

4. Guided Modes of the Laser Structure and Waveguide 

Coupling  

 Using the 2×2 matrix formalism described in section 2, and the refractive 

index profile of Fig.(2) we calculated the propagation parameters and field 

distributions for the TE bounded modes at λ=405.5nm.  The whole structure supports 

about 40 TE modes, most of them are guided in the buffer waveguide. In Fig.(3), the 

field distribution of the first 6 normalized modes is plotted. One may observe that 
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there is one mode, which is highly confined to the active (MQW) region, the 3
rd

 

mode. Among all β-values those of modes 3 and 4 are the closest. Moreover, these 

two modes have the strongest peak in the MQW region, and the highest values of 

confinement factor (Γ) to this region. These considerations make these two modes the 

natural candidates for coupling interaction. Their role in the round-trip analysis will 

be explained later. The field distribution of modes 3 and 4 is shown in greater detail in 

Fig.(4).      

Further observation of the modal profiles in Fig.(4) reveals that the structure 

can be regarded as composed of two coupled waveguides: the “laser active 

waveguide”  (WG-I) and the GaN “buffer waveguide” (WG-II). Since the lasing 

mode is obviously not the lowest order mode of the structure and it may switch from 

one mode to another one with wavelength or temperature, it is instructive to split the 

structure into two coupled waveguides and to make use of coupled wave theory, in 

order to get a basic understanding of the modal spectrum. WG-I supports a single TE 

mode and WG-II supports 9 TE modes. Modes with close values of  β will exhibit 

strong coupling. In our case, the single mode of WG-I couples, at λ=405.5nm and 

T=365K, with the 3
rd

 mode of WG-II, both of them along with the corresponding 

waveguide structures are presented at Fig.(5). 

 

5. Cavity modes and Frequency Selectivity 

Consider two coupled waveguides in the laser resonator, with end-facet 

reflections rI and rII, respectively, as shown on Fig.(6). Suppose that each channel 

alone guides a mode with the propagation parameters βI and βII with the 

corresponding fields εI(x) and εII(x), and effective indices neff,I and neff,II, respectively,  

(even if one of the waveguides is multi-mode, only a single mode is strongly coupled 
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for certain values of β). The coupling coefficients between WG-I and WG-II are κI,II 

and κII,I 
 
respectively

9
 . The laterally coupled combined structure will guide two 

supermodes with field profiles wI(x) and wII(x).  

We proceed with defining the rest of the expressions needed for the formalism: 

βav = (βI+βII )/2 

∆=(βI-βII )/2 

                                  (9)  2

, ,I II II Is κ κ= ∆ +

IIβ−

I−

I

The supermode propagation constants are given by: 

σI,II = βav ± s 

The total field along the waveguide can be described approximately either in terms of 

individual modes: 

 

    ε ε  (10) ( , ) ( ) ( )Ij z j z

I I II IIx z a x e a x e
β

ε
−

= +

 

or in the terms of the supermodes: 

 

   ε   (11) ( , ) ( ) ( )I Ij z j z

I I II IIx z b w x e b w x e
σ σ−

= +

 

where al, bl (l=I or II) are the mode amplitudes. We can describe the field along the 

waveguide either by Eq.(10) or by Eq.(11). If the individual mode fields and the 

supermode fields are known, the total electric field at a fixed value of z could be 

described by one of the vectors: 

       (12) ,
I

v v

II II

a b
A B

a b

   
= =   
   
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The former is the channel-mode representation, and the latter is the super-

mode representation (We assume, in the following, that these vectors are normalized: 

(|Av|= |Bv| = 1). Both representations are interchangeable through the transformation
8-

9
 Av = V⋅Bv, where: 

     
I I

II I

Ip p
V

p p

− 

 
=      (13)  

and  

      ,

1

2
I II

sp =     (14) 

  

∆
±

It should be mentioned that the modal amplitudes, given in Eq.(12) are eigen-

solution of the infinitely long waveguide structure. In real devices, two reflecting 

facets terminate the waveguide. The reflectivity at the end-facet depends on the 

refractive indices, facet tilt, roughness, coating etc, and therefore the reflectivity of 

WG-I can be slightly different from that of WG-II. This may be particularly relevant 

for GaN-based lasers, with etched (or polished) end mirrors. 

 Thus, a round trip analysis of the cavity has to be performed, in order to obtain 

the cavity modes of the structure. These modes will be a superposition of the eigen-

modes as in Eq.(12). 

The propagation of the field along the waveguide is easier to express in the super-

mode representation (subscript SM), since the propagation matrix in this 

representation is diagonal: 

    .   (15) 
0

( )
0

I

II

j z

SM j z

e
P z

e

σ

σ

−

−

 
= 
 


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The mirror reflectivity operator, on the other hand, is diagonal in the channel-mode 

representation (subscript CM): 

 

       (16) 







=

II

I

CM
r

r
R

0

0

 

In the supermode representation, we have RSM = V·RCM·V
-1

. In order to take 

into account the mentioned limitations of GaN technology, a slightly different value 

than rI can be assumed for rII. We realize that if rI ≠ rII, RSM contains non-diagonal 

terms, thus, the two modes wI and wII couple to each other upon reflection. 

The oscillating mode of the resonator is the field that reproduces itself after 

one round trip:  TSMB = B, where TSM  = RSM
L
 PSM (L) RSM

R 
PSM (L) is the round trip 

matrix in the super-mode representation (L is the waveguide length). Nontrivial 

solutions exist if and only if: 

 

 (17)    det(TSM-I) = 0     

 

Eq.(17) is the characteristic equation of the resonant cavity.  

 Coming back to the laser, we assume that excess carriers supply the gain in the 

laser only in the area of the MQW, therefore we can rewrite the gain as: 

 

( ) ( ) ( ) (1 )

( ) ( ) ( ) (1 )

I I m I

II II m II m

g g

g g

λ λ λ α

λ λ λ

= Γ ⋅ + −Γ

= Γ ⋅ + −Γ

m

α
 ,     (18) 
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where Γl(λ) (l =I, II), is the confinement factor of the supermodes in the MQW layer, 

gm is the material gain supplied by current; and αm is the average absorption loss in 

the passive layers. For the purpose of this modeling, it is sufficient to calculate the 

propagation constants of the passive waveguides (real values of σl), since the 

imaginary part is neglible; and afterwards write ad hoc σl_new = σl + i·(gl /2), l=I,II . 

When gain and/or loss in each layer are taken into account through a complex 

refractive index, the guided modes and their propagation constants may be slightly 

different than those of passive waveguides. However, these differences do not affect 

the main conclusions of this work. For solving Eq.(17), it is necessary to scan, for 

each wavelength, the value of gm. The obtained wavelengths in which a solution of 

Eq.(17) is found are the FP modes, with wavelengths λj,FP. gm(λj,FP) is the required 

material gain at each one of them. The photon population (emitted intensity) at a 

certain wavelength is proportional to
13

:   

 

      
,

,

, ,

( )

( ) ( )

tot j FB

out j FB

tot tot j FB tot j FBg

λ
λ

α λ λ

Γ
∝

− ⋅Γ
( )P   (19)   

 

where Γtot(λj,FP) is the total confinement factor of the round-trip cavity mode (the 

expression will be given later), αtot represents the total losses (it was taken as a 

constant at a certain temperature) and gtot(λj,FP) is the total gain at each mode, 

calculated as gtot(λj,FP) = Γtot(λj,FP) ⋅gm(λj,FP)  + (1-Γtot(λj,FP))⋅αm. 

 

In a first attempt to understand the peculiar spectrum of GaN-based lasers, we 

have used Eq. (17) to calculate the FP resonance wavelengths λj,FP, and the gain 

gtot(λj,FP). In our calculation we assumed a total cavity length L=550µm, average 
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losses αm=10cm
-1

, 1

, , 100I II II I cmκ κ κ
−

= = , rI = 0.7 and rII = 0.67.  We then used 

the obtained values of gtot(λj,FP) to calculate the photon density spectrum at threshold. 

A slight modulation due to the coupled–cavity effect was observed in the final 

spectrum, but the strong side lobes typical of GaN-based lasers was not obtained. In 

order to better model the reported experimental observations, we invoke the fact that 

extended defects (grain boundaries) may be present at the material of WG-II, 

constituting internal partial mirrors. We thus replace rII by
13

: 

 

                                
2

2 '

, 2

(1 )
e

1
II

II

j L II
eff II j L

II

r r

r r e

β ε
ε β

ε

−

= +

+
'

r r    (20) 

 

In Eq. (20), rε and L’ are the partial reflectivity of an internal mirror (an extended 

defect) and its distance from the end facet. Inserting reff,II  instead of rII in Eq. (16), 

with rε = 0.02, results in a photon density distribution as shown in Fig.(7). The value 

of L’ was varied until the spectral periodicity matched the experimental results. 

Fig.(7) was obtained with L’ = 90µm. One should note that the periodicity in the FP 

spectrum varies between different reports
1
, reflecting the fact that such an “internal 

mirror” is related to material imperfections. Thus, value of L’ may change from 

sample to sample. Therefore, we suggest that L’ represents the distance between the 

exit mirror and the nearest grain boundary present in the GaN layer. Such grain 

boundaries may be the vertical facets of the hexagonal hillocks, which during the 

early stage of GaN film growth, merge into a uniform layer
1
. The fact that the 

introduction of reff,II   (Eq. (20)) in the round-trip equation (Eq. (17)) resembles the 

observed spectrum, suggests that the longitudinal coupled-cavity effect (and not the 

lateral effect) governs the emission properties of this type of lasers
14

. 
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The total confinement factor, used in Eq. (19) is calculated as follows: we first 

define a z-dependent confinement factor in SM representation, using Eq.(11). 

 

   

2

2

( ) ( )

( )

( ) ( )

I I

I I

j z j z

I I II II

MQW

j z j z

I I II II

b w x e b w x e dx

z

b w x e b w x e dx

σ σ

σ σ

− −

∞

− −

−∞

+

+

∫

∫

I

I

totΓ =   (21) 

 

Using the orthonormal properties of wI and wII ; and the normalization of Bv, we 

obtain: 

 

    Γtot(z)=bI
2
ΓI + bII

2
ΓII +∆Γ(z)     (22) 

 

where ∆Γ(z) is an interference term, and its z dependence is ~exp[(σI - σII)z]. We then 

calculate the average value of this expression over the cavity, 

0

1
( ) ( )

L

z z dz
L

∆Γ = ∆Γ∫  

and use this value in the following calculations. By using Eq. (22), Γtot is calculated vs 

wavelength. 

 

6. Wavelength and Temperature Dependence of Lasing Mode 

Given a waveguide structure with fixed refractive indices and fixed layer 

widths, all possible propagation constants and field profiles for guided modes are 

uniquely determined. Therefore, they also determine such mode properties as 

confinement factor in each layer. The modification of the refractive index with 

wavelength or with temperature will cause perturbations in the propagation 
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parameters, and as a result, variations in the field profiles, confinement factors, and 

round trip cavity modes. 

The use of photon energy and temperature dependent refractive indices (Eq. 

(7)) makes it possible to investigate the changes in lasing properties with wavelength 

and temperature. Although this model includes an over-simplified fraction of the 

waveguide parameters and complex propagation constants, it is useful to gain a 

qualitative understanding of the coupled cavity effect, and its wavelength and 

temperature dependence. 

The refractive index of all the layers in the structure decreases with 

wavelength and increases with temperature. Their slopes, 
dn

dλ
 and 

dn

dT
 is steeper 

for layers in which Eg is closer to the actual photon energy, Ed 
11

. Thus, the refractive 

index of the InGaN layers (the QWs, in particular) changes with wavelength more 

rapidly than that of GaN and AlGaN layers and as a consequence, the confinement 

factor into the MQW of WG-I channel mode is lowered with wavelength. In addition 

to that, the propagation constant of WG-I mode decreases at a higher rate than those 

of WG-II modes.   

An important result is the change in the role of each one of the modes in terms 

of being the highest confined one (in the SM representation). We have calculated the 

propagation constants and the confinement factors of the laser modes (both SM and 

CM) at various wavelengths. Fig.(8a) shows the change in the propagation constants 

of WG-I and some of WG-II. As seen in Fig.(8a), the value of β1 in WG-I crosses the 

values of the propagation constants of WG-II modes. Thus, the mode of WG-II that 

couples to the mode of WG-I changes (only modes with close values in propagation 

constants couple efficiently). In the wavelength range shown it is the 3
rd

 mode, which 
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acts as the coupled mode at the beginning of the range and the 5
th

 one at the end of it. 

Fig. (8b) shows the corresponding change in the propagation constants of the 

supermodes. Each crossing point in propagation constants is an indication of a 

crossing point also in the SM confinement factors as shown at Fig.(8c). Fig.(9) 

represents the field profiles of three SM, which take part in the round-trip analysis in 

the range scanned at Fig.(8).           

In order to apply this formalism to study the temperature dependence of the 

lasing wavelengths, we realized that the spontaneous emission just below laser 

threshold can be well approximated by a Lorenzian envelope
13

 with a peak 

wavelength (λ0(T)) corresponding to Eg, and use Eg(T) of InGaN:   

 

    
2

2 2

( )2
( )

1 (2 ( ))

in

in

T

h c T

τπ

π τ

=

+ ⋅ ⋅ ⋅

L u   (23) 
u

 

where u = 1/λ - 1/λ0 , λ0 is the central wavelength, τin is the intraband relaxation time 

and c is the speed of light in vaccum. The temperature dependence of τin was taken 

according to
15

. InGaN energy gap and τin both decrease with temperature, therefore 

the Lorenzian lineshape function not only shifts to higher wavelengths with 

temperature, but also broadens and reaches its peak value. 

We then calculate λj,FP(T) and gtot(λj,FP(T)) and multiply the obtained spectrum 

by L(u(T)). The peak wavelength for each temperature is shown on Fig.(11). The   

moderate changes in λ peak values are caused when the maximum “moves” to the 

next FP mode in the same side lobe. The larger discontinuities in peak wavelength are 

caused when the maximum  value is found in the adjacent side lobe. These results are 

in good agreement with the experimental results reported in
 
reference 1.   
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8. Conclusions 

In this work we have used a round-trip analysis along with coupled mode 

theory to model a GaN-based semiconductor laser spectrum. The effect of lateral and 

longitudinial coupled cavity effect were taken into account. By adding an internal 

mirror in the parasitic waveguide, we obtained a spectrum, which resembles 

experimental measurements. This internal mirror is probably derived from GaN 

extended defects (grain boundary). The spacing between such effects exhibits a length 

scale of the order of several tens of microns. This model also enabled us to explain the 

“jumps” in the peak wavelengths with temperature.    

Another aspect of this work showed that the modes, which participate in the 

round-trip model, change gradually with wavelength. A similar phenomenon may also 

occur, if we could select a specific wavelength and study temperature influences on 

the modes that take part in the laser field. 

 

This work was supported by the Fund for the Promotion of Research at the Technion, 

and by the Israel Science Foundation (Grant No. 308/00-2).  

 

9. Appendix A.  

LD CW operation temperature 

The device CW operation temperature is taken as T=365K (92°C). It is 

evaluated by the following formula T(device center) = Troom +ZTPin(1-η) ~ Troom +ZTIV(1-

η),  where ZT is the thermal impedance (~50 K/W for GaN devices on sapphire
16

), I is 

17 



the current, V is the applied voltage and η is the external quantum efficiency. By 

using typical values: I~150-200 mA, V~7-9 V, η~ 5 %
17

 and Troom~25°C, one gets 

T(device center) ≅ 75-111°C = 348-384K. The average value is 366K.  
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