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Abstract

A novel approach for multi–microphone speech dereverberation is presented. The method is based on the

construction of the null subspace of the data matrix in the presence of colored noise, using the generalized

singular value decomposition (GSVD) technique, or the generalized eigenvalue decomposition (GEVD) of the

respective correlation matrices. The special Silvester structure of the filtering matrix, related to this subspace,

is exploited for deriving a total least squares (TLS) estimate for the acoustical transfer functions (ATFs).

Other, less robust but computationally more efficient methods are derived based on the same structure and

on the QR decomposition (QRD). A preliminary study of the incorporation of the subspace method into a
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subband framework proves to be efficient, although some problems remain open. Speech reconstruction is

achieved by virtue of the matched filter beamformer (MFBF). An experimental study supports the potential

of the proposed methods.
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I. Introduction

In many speech communication applications, the recorded speech signal is subject to reflections

on the room walls and other objects on its way from the source to the microphones. The resulting

speech signal is then called reverberated. The quality of the speech signal might deteriorate severely

and this can even cause a degradation in intelligibility. Subsequent processing of the speech signal,

such as speech coding or automatic speech recognition might be rendered useless in the presence

of reverberated speech. Although single–microphone dereverberation techniques do exist, the most

successful methods for dereverberation are based on multi-microphone measurements.

Spatio-temporal methods, which are directly applied to the received signals, have been presented

by Liu et al. [1] and by Sánchez–Bote et al. [2]. They consist of a spatial averaging of the minimum–

phase component of the speech signal and cepstrum domain processing for manipulating the all–

pass component of the speech signal. Other methods use the linear prediction residual signal to

dereverberate the speech signal [3],[4].

Beamforming methods [5],[6] which use an estimate of the related ATFs can reduce the amount of

reverberation, especially if some a priori knowledge of the acoustical transfer is given. The average

ATFs of all the microphones proves to be efficient and quite robust to small speaker movements.

However, if this information is not available, these methods can not eliminate the reverberation

completely. Hence, we will avoid using the small movement assumption in this work, as it is not

valid in many important applications.

Subspace methods appear to be the most promising methods for dereverberation. These methods

consist of estimating the null subspace of the data matrix. These null subspace vectors are used to

extract the ATFs (e.g. [7] and [8]). Of special interest is the EVAM algorithm presented by Gürelli

and Nikias [9]. As the null subspace vectors are shown to be filtered versions of the actual ATFs,

extraneous zeros should be eliminated. This is done by the “fractal” method which is essentially a
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recursive method for successively eliminating these zeros, yielding the correct filters.

The methods presented in this contribution are also based on null subspace estimation. The

special Silvester structure of the filtering matrix is taken into account to derive some algorithms.

The general dereverberation problem is presented in Section II. The proposed method is outlined

in III. We start by deriving a method for constructing the null subspace in the presence of colored

noise. Then, the special structure of the filtering matrix is exploited to derive a TLS approach

for acoustical transfer function (ATF) estimation. Suboptimal procedures, based on the QRD, are

derived in Section IV. The use of decimated subbands for reducing the complexity of the algorithm

and increasing its robustness, is explored in Section V. A reconstruction procedure, based on the

ATFs’ matched filter and incorporated into an extension of the generalized sidelobe canceller (GSC)

is proposed in Section VI. The derivation of the algorithms is followed by an experimental study

presented in Section VII.

II. Problem Formulation

Assume a speech signal is received by M microphones in a noisy and reverberating environment.

The microphones receive a speech signal which is subject to propagation through a set of ATFs

and contaminated by additive noise. The M received signals are given by,

zm(t) = ym(t) + nm(t) = am(t) ∗ s(t) + nm(t) =

na∑

k=0

am(k)s(t − k) + nm(t) (1)

where m = 1, . . . , M ; t = 0, 1, . . . , T . zm(t) is the m−th received signal, ym(t) is the corresponding

desired signal part, nm(t) is the noise signal received in the m−th microphone, s(t) is the desired

speech signal and T + 1 is the number of samples observed. The convolution operation is denoted

by ∗. We further assume that the ATFs relating the speech source and each of the M microphones

can be modelled as an FIR filter of order na, with taps given by

aT
m = [am(0), am(1), . . . , am(na)]; m = 1, 2, . . . ,M .

Define also the Z−transform of each of the M filters as,

Am(z) =

na∑

k=0

am(k)z−k; m = 1, 2, . . . ,M .

All the involved signals and ATFs are depicted in Fig. 1. The goal of the dereverberation problem



4

�✁✂✄
☎✆

z1(t)

z2(t)

s(t)

A1(z)

A2(z)

AM (z) zM (t)

n1(t)

n2(t)

y1(t)

y2(t) P

P

nM (t)

yM (t) P
Fig. 1. The general dereverberation problem.

is to reconstruct the speech signal s(t) from the noisy observations zm(t), m = 1, 2, . . . , M . In

this contribution we will try to achieve this goal by first estimating the ATFs, am, followed by a

signal reconstruction scheme based on these ATFs estimate. Schematically, an “ATF Estimation”

procedure, depicted in Fig. 2 is searched for.

z1(t)
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ÂM(z)
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Fig. 2. ATFs’ estimation.

III. ATF Estimation - Algorithm Derivation

In this section the proposed algorithm is derived in several stages. First, it is shown that the

desired ATFs are embedded in a data matrix null subspace. Then, the special structure of the

null subspace is exploited to derive several estimation methods. We start our discussion with the

special case of the problem, namely, the two microphones noiseless case. We proceed through the

two microphones contaminated by colored noise case. We end with the general multi–microphone

colored noise case.
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A. Two Microphone Noiseless Case - Preliminaries

In this section we lay the foundations of the algorithm by showing that the desired ATFs are

embedded in the null subspace of a signal data matrix. This proof is merely a repetition of previously

established results (e.g. [9]), but in a more intuitive way of presentation.

The two microphone noiseless case is depicted in Fig. 3. The noiseless signals, ym(t), are given

in Eq. 2, as can be seen from the left-hand side of the figure.

y1(t) = a1(t) ∗ s(t) (2)

y2(t) = a2(t) ∗ s(t).

Clearly, as depicted in the right-hand side of Fig. 3, the identity in Eq. 3 holds.

SIGNALS NULL SPACE

A2(z)

A1(z)

s(t) 0

y2(t)

y1(t)
A2(z)

−A1(z)

El(z)

El(z)

Fig. 3. Null subspace in the two microphone noiseless case.

[y2(t) ∗ a1(t) − y1(t) ∗ a2(t)] ∗ el(t) = 0 (3)

where, el(t), l = 0, 1, 2, . . . are arbitrary and unknown filters, the number of which and their order

will be discussed in the sequel. It is evident that filtered version of the desired ATFs, subject to

the constraint that the arbitrary filters, el(t) are common to all the microphone, might result in

zero output. This observation was previously shown in [7],[9],[8].

Define the (n̂a + 1) × (T + n̂a + 1) single channel data matrix Ym, given in Eq. 4. Note, that as

the ATFs order, na, is unknown, we use instead an (over-) estimated value, n̂a. An estimate of the
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correct order would be a product of the proposed algorithm.

Ym =




ym(0) ym(1) · · · ym(n̂a) ym(n̂a + 1) · · · ym(T ) 0 · · · 0

0 ym(0) ym(1) · · ·
...

... · · · ym(T ) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .

0 · · · 0 ym(0) ym(1) · · · ym(n̂a) · · · ym(T )




(4)

We assume that the inequality n̂a ≥ na holds, i.e., the ATFs order is always overestimated. Define

also the two-channel data matrix,

Y =


 Y2

−Y1


 .

The 2(n̂a + 1) × 2(n̂a + 1) correlation matrix of the data is thus given by R̂y = YYT

T+1 .

Now, following [9] and [7], the null subspace of the correlation matrix can be calculated by virtue

of the eigenvalue decomposition. Let λl ; l = 0, 1, . . . , 2n̂a + 1 be the eigenvalues of the correlation

matrix R̂y, then by sorting them in ascending order we have,

λl = 0 l = 0, 1, . . . , n̂a − na

λl > 0 otherwise
. (5)

Thus, as proven by Gürelli and Nikias [9], the rank of the null subspace of the correlation matrix

is n̂a − na + 1. This rank is useful for determining the correct ATFs order, na. We note that the

singular value decomposition (SVD) of the data matrix, Y, might be used instead of the eigenvalue

decomposition for determining the null subspace. The SVD is generally regarded as a more robust

method.

Denote the null subspace vectors (eigenvectors corresponding to zero eigenvalues or singular

values) by gl for l = 0, 1, 2, . . . , n̂a−na +1. Then, splitting each null subspace vector into two parts

of equal length n̂a + 1 we obtain,

G =
[

g0 g1 · · · gn̂a−na

]
=


 ã1,0 ã1,1 · · · ã1,n̂a−na

ã2,0 ã2,1 · · · ã2,n̂a−na


 .

Each of the vectors ãm,l represents a null subspace filter of order n̂a.

Ãml(z) =

n̂a∑

k=0

ãml(k)z−k; l = 0, 1, . . . , n̂a − na, m = 1, 2.
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From the above discussion, these null subspace filters may be presented in the following product,

Ãml(z) = Am(z)El(z); l = 0, 1, . . . , n̂a − na, m = 1, 2. (6)

Thus, the zeros of the filters Ãml(z) extracted from the null subspace of the data, contain the roots

of the desired filters as well as some extraneous zeros. This observation was proven by Gürelli and

Nikias [9] as the basis of their EVAM algorithm. It can be stated in the following lemma (for the

general M channel case):

Lemma 1: Let ãml be the partitions of the null subspace eigenvectors into M vectors of length

n̂a + 1, with Ãml(z) their equivalent filters. Then, all the filters Ãml(z) for l = 0, . . . , n̂a − na have

na common roots, which constitute the desired ATF Am(z), and n̂a−na different extraneous roots,

which constitute El(z). These extraneous roots are common for all partitions of the same vector,

i.e., Ãml(z) for m = 1, . . . , M . ¥

Under several regularity conditions (stated, for example by Moulines et al. [7]), the filters Am(z)

can be found. Of special interest is the observation that common roots of the filters Am(z) can

not be extracted by the algorithm, as they are treated as the extraneous roots which constitute

El(z). Although a drawback of the method, we will take benefit of it, while constructing a subband

structure in Section V.

In matrix form, Eq. 6 may be written in the following manner. Define the (n̂a +1)× (n̂a−na +1)

Silvester filtering matrix (recall we assume n̂a ≥ na),

Am =




am(0) 0 0 · · · 0

am(1) am(0) 0 · · · 0
... am(1)

. . .
...

am(na)
...

. . .
. . . 0

0 am(na)
. . . am(0)

... 0 am(1)
...

. . .
...

0 0 · · · 0 am(na)




︸ ︷︷ ︸
n̂a−na+1

. (7)

Then,

ãml = Amel, (8)
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where, eT
l =

[
el(0) el(1) . . . el(n̂a − na)

]
are vectors of the coefficients of the arbitrary unknown

filters El(z). Thus, the number of different filters (as shown in Eq. 6) is n̂a −na +1 and their order

is n̂a − na. Using Fig 3 and Eq. 3 and denoting,

E =
[
e0 e1 · · · en̂a−na

]
,

we conclude

G =


 A1

A2


 E

△
= AE . (9)

E is an unknown (n̂a − na + 1)× (n̂a − na + 1) matrix. We note, that in the special case when the

ATFs’ order is known, i.e. n̂a = na, there is only one vector in the null subspace and its partitions

ãm0 ; m = 1, . . . , M are equal to the desired filters am up to a (common) scaling factor ambiguity.

In the case where n̂a > na, the actual ATFs Am(z) are embedded in Ãml(z) ; l = 0, 1, . . . , n̂a − na.

The case n̂a < na could not be treated properly by the proposed method.

The special structure depicted in Eq. 9 and Eq. 7 forms the basis of our suggested algorithm.

B. Two Microphone Noiseless Case - Algorithm

Based on the special structure of Eq. 9 and in particular on the Silvester structure of A1 and

A2, found in Eq. 7, we derive now an algorithm for finding the ATFs Am(z).

Note that E in Eq. 9 is a square and arbitrary matrix, implying that its inverse usually exists.

Denote this inverse by E i = inv(E). Then.

GE i = A (10)

Denote the columns of E i by, E i =
[
ei

0 ei
1 · · · ei

n̂a−na

]
. Eq. 10 can be then rewritten as,

G̃x = 0 (11)

where, G̃ is defined as,

G̃ =




G O · · · · · · · · · O −I(0)

O G O · · · · · · O −I(1)

... O
. . .

...
...

...
...

. . .
. . .

...
...

...
...

. . .
. . . O

...

O O · · · · · · O G −In̂a−na




(12)
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and the vector of unknowns is defined as,

xT =
[
ei

0
T

ei
1
T

· · · ei
n̂a−na

T
a1

T a2
T

]

where 0 is a vector of zeros: 0T =
[

0 0 · · · 0
]
. We used the following expressions: O is a

2(n̂a + 1) × (n̂a − na + 1) all-zeros matrix and I(l) ; l = 0, 1, . . . , n̂a − na is a fixed shifting matrix

given by,

I(l) =




Ol×(na+1)

I(na+1)×(na+1)

O(n̂a−na−l)×(na+1)

O(n̂a+1)×(na+1)

O(n̂a+1)×(na+1)

Ol×(na+1)

I(na+1)×(na+1)

O(n̂a−na−l)×(na+1)




.

I(na+1)×(na+1) is the (na + 1) × (na + 1) Identity matrix. A non-trivial (and exact) solution for

the homogenous set of equations (11) may be obtained by finding the eigenvector of the matrix

G̃ corresponding to its zero eigenvalue. The ATF coefficients are given by the last 2(na + 1)

terms of this eigenvector. The beginning of the eigenvector contains the nuisance parameters

ei
l; l = 0, 1, . . . , n̂a − na. In the presence of noise, the somewhat non–straight–forward procedure

will prove to be useful.

C. Two Microphone Noisy Case

Recall that G is a matrix containing the eigenvectors corresponding to zero eigenvalues of the

noiseless data matrix. In the presence of additive noise, the noisy observations zm(t), given in

Eq. 1, can be stacked into a data matrix fulfilling

Z = Y + N ,
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where, Z and N are noisy signal and noise-only signal data matrices, respectively, given by 13 and

14.

Zm =




zm(0) zm(1) · · · zm(n̂a) zm(n̂a + 1) · · · zm(T ) 0 · · · 0

0 zm(0) zm(1) · · ·
...

... · · · zm(T ) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .

0 · · · 0 zm(0) zm(1) · · · zm(n̂a) · · · zm(T )




(13)

and,

Nm =




nm(0) nm(1) · · · nm(n̂a) nm(n̂a + 1) · · · nm(T ) 0 · · · 0

0 nm(0) nm(1) · · ·
...

... · · · nm(T ) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .

0 · · · 0 nm(0) nm(1) · · · nm(n̂a) · · · nm(T )




.

(14)

Now, for a long observation time the following approximation holds,

R̂z ≈ R̂y + R̂n

where, R̂z = ZZT

T+1 and R̂n = NNT

T+1 are the noisy signal and noise-only signal correlation matrices,

respectively. Now, Eq. 11 will not be accurate anymore. First, the null subspace matrix G should

be determined in a slightly different manner than suggested in Eq. 5. The white noise and colored

noises cases are treated separately in the sequel. Second, the matrix G̃ will in general not have an

eigenvalue of value 0. A reasonable approximation for the solution, although not exact, would be

to transform Eq. 11 into the following problem,

G̃x = µ. (15)

where µ is an error term, which should be minimized. To obtain this minimization, the eigenvector

corresponding to the smallest eigenvalue is chosen, and the desired ATFs are obtained from the

last part of the vector (as in the noiseless case). Note, that this is exactly the total least squares

(TLS) approach for estimating the parameters. As the matrix G̃ is highly structured, more efficient

structured total least squares (STLS) methods [10] are called for. This issue will not be treated in

this work anymore.
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C.1 White Noise Case

In the case of spatio-temporally white noise - i.e. R̂n ≈ σ2I, where I is the identity matrix - the

first n̂a − na + 1 eigenvalues in Eq. 5 will be σ2 instead of zero. The corresponding eigenvectors

will remain intact. Thus, the algorithm remains unchanged.

C.2 Colored Noise Case

The case of non–white noise signal was addressed in [7],[9]. In contrast to the noise balancing

method presented in [9] and the pre-whitening of the noise correlation matrix, presented in [7],

the problem is treated here more rigourously, with the application of the generalized eigenvalue

decomposition (GEVD) or generalized singular value decomposition (GSVD) techniques. These

alternative methods are computationally more efficient. We suggest to use the (GEVD) of the

measurement correlation matrix, Rz and the noise correlation matrix Rn (usually, the latter is

estimated from speech-free data segments). The null subspace matrix G is formed by choosing

the generalized eigenvectors related to the generalized eigenvalues of value 1. Alternatively, the

generalized singular value decomposition (GSVD) of the corresponding data matrices, Z and N ,

can be used. After determining the null subspace matrix, subsequent steps of the algorithm remain

intact.

D. Multi Microphone Case (M > 2)

In the multi microphone case a reasonable extension would be based on channel pairing (see [9]).

Each of the M×(M−1)
2 pairs fulfills 16,

[yi(t) ∗ aj(t) − yj(t) ∗ ai(t)] ∗ el(t) = 0 (16)

i, j = 1, 2, . . . , M ; l = 0, 1, . . . , n̂a − na.
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Thus, the new data matrix would be constructed as follows,

Z =




Z2 Z3 · · · ZM O · · · O · · · O

−Z1 O · · · Z3 · · · ZM O

O −Z1 −Z2 O
...

... O
. . .

... O
...

. . . O ZM

O O · · · −Z1 · · · −Z2 · · · −ZM−1




(17)

where O here is an (n̂a + 1) × (T + n̂a + 1) all-zero matrix. This data matrix, as well as the

corresponding noise matrix can be used by either the GEVD or the GSVD methods to construct

the null subspace. Denoting this null subspace by G, we can construct a new TLS equation.

G̃x = µ

where, G̃ is constructed in a similar way G̃ was constructed in Eq. 12. The vector of unknowns x

is given by,

xT =
[
ei

0
T

ei
1
T

· · · ei
n̂a−na

T
a1

T a2
T . . . aM

T .
]

Note, that the last M × (na +1) terms of x are the required filter coefficients, am; m = 1, 2, . . . ,M .

E. Partial Knowledge Of The Null Subspace

In the noisy case, especially when the dynamic range of the input signal s(t) is high (which is

the case for speech signals), determination of the null subspace might be a troublesome task. As

there are no zero eigenvalues and as some of the eigenvalues are small due to the input signal, the

borderline between the signal eigenvalues and the noise eigenvalues becomes vague. As the number

of actual null subspace vectors is not known in advance, using only a subgroup of the eigenvectors,

which are associated with the smallest eigenvalues, might increase the robustness of the method.

Based on Lemma 1, it is obvious that, in the noiseless case, even two null subspace vectors are

sufficient to estimate the ATFs, just by extracting their common zeros. Denote by L̄ < n̂a −na the

number of eigenvectors used. The matrix E in Eq. 9 is than of dimensions (n̂a − na + 1) × L̄ and

thus non–invertible. To overcome this problem we suggest to concatenate several shifted versions

of Eq. 9 in a manner depicted in Eq. 18.
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Ḡ =




G 0 0 0

0 G 0 0

...
. . . 0

. . .
...

0 G




= Ā




E 0 0 0

0 E 0 0

...
. . . 0

. . .
...

0 E




︸ ︷︷ ︸
L>n̂a−na+l̂

= ĀĒ (18)

The new dimensions of Ē is L × (n̂a − na + l̂), where l̂ is the number of blocks added. Each block

adds 1 to the row dimension and L̄ to the columns dimension.

The matrix Ā has a similar structure as A in Eqs. 7 and 9 but with more columns. The resulting

matrix Ē has now more columns than rows and thus can generally be pseudo-inverted

EPi = Pinv(Ē) = ĒT (Ē ĒT )−1 (19)

resulting into,

ḠEPi = Ā (20)

Now the extended matrix Ḡ can be used in Eq. 15, instead of G to construct G̃ in a similar manner

to Eq. 12. Subsequent stages of the algorithm remain intact.

IV. A Suboptimal Method - The QR Decomposition and Estimates Averaging

Recall that the special structure of the filtering matrix A was the basis for the TLS approach. In

this section a new method is derived for the estimate of the ATFs, which is computationally more

efficient although less robust. We rely again on the fact that each column of the Silvester matrix is

a delayed version of the previous one. Thus, in the noiseless case, it is enough to extract one of the

columns. In the noisy case, each column may be different. Thus extracting all the columns might

give several slightly different estimates. We can take the median (or average) of these estimates to

increase the robustness.

A. Complete Knowledge Of The Null Subspace

Apply the transpose operation to Eq. 9:

GT = ET AT . (21)
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As ET is an arbitrary matrix it will usually have a QRD (11). Denote, ET = QERE . Then,

GT = QEREA
T = QERG (22)

where, RG = REA
T is also an upper triangular matrix, since it consists of a multiplication of two

upper triangular matrices. Since the QRD is unique Eq. 22 constitutes the QRD of GT . As RE

is a square and upper triangular matrix it has only 1 non–zero element in its last row. Therefore,

the last row of RG will be a scaled version of the last column of A. This last column consists of a

concatenation of the vectors am, m = 1, 2, . . . , M each preceded by n̂a − na zeros.

For extracting the other columns of the matrix A, we use rotations of the null subspace matrix

G. Note that the previous procedure will extract the last column of A regardless of the its Silvester

structure. Define, the K × K row rotation matrix,

JK =




0 0 · · · 0 1

1 0 · · · 0

0
. . . 0 · · · 0

... 0
. . .

...

0 · · · 1 0




.

It is obvious that left multiplication of a K-row matrix by Jk
K will rotate its rows downwards k

times, while right multiplication of a L-columns matrix by (J l
L)T will rotate its columns rightwards

l times. Lemma 2 can now be used to extract an estimate of the ATFs.

Lemma 2: Compute the QR decomposition of the transpose of the k-times (k ≤ n̂a −na + 1)row

rotated null subspace matrix G. The last row of the “R” matrix equals the last but k column of

the filtering matrix A up to a scaling factor. ¥

The proof of this lemma follows.

Proof: Rotate the M(n̂a + 1) × (n̂a − na + 1) null subspace matrix G not more than n̂a − na + 1

times. Then,

GR = Jk
M(n̂a+1)G = Jk

M(n̂a+1)AE .

Exploiting the orthogonality of the matrices Jk
K we have,

GR = Jk
M(n̂a+1)A(Jk

n̂a−na+1)
T Jk

n̂a−na+1E .
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Then, applying the transpose operation

(
GR

)T
= (Jk

n̂a−na+1E)T (Jk
M(n̂a+1)A(Jk

n̂a−na+1)
T )T

Now assume a QRD for the first term (although, E is not known),

(Jk
n̂a−na+1E)T = QR.

Then,

(GR)T = QR(Jk
M(n̂a+1)A(Jk

n̂a−na+1)
T )T = QR̃. (23)

The last row of (Jk
M(n̂a+1)A(Jk

n̂a−na+1)
T )T is the last but k row of AT , provided k ≤ n̂a − na + 1

and it is still an upper triangular matrix. Thus, the same statements regarding the non–rotated

matrices apply for the rotated matrices.¥

By rotating through all the columns of matrix A several estimates of the desired filter are ob-

tained. An average or a median of these estimated can be used to obtain a more robust estimate.

B. Partial Knowledge Of The Null Subspace

As in the TLS approach we may want to use only part of the null subspace vectors. Assume that

we have only two of these null subspace vectors.

Ğ = AĔ

where, Ğ is an M(n̂a + 1)× 2 matrix and Ĕ is an (n̂a − na + 1)× 2 matrix. Since Ĕ is not a square

matrix the algorithm of Section IV-A is not applicable anymore.

Let,

ĞT =


 (̃a1,0)

T (ã2,0)
T · · · (ãM,0)

T

(̃a1,1)
T (ã2,1)

T · · · (ãM,1)
T


 . (24)

Each of the vectors ãm,l represents a null subspace filter of order n̂a. Since there are only two rows,

applying the QRD to ĞT , will yield the following RĞ matrix,

RĞ =


 · · · · · ·

[
0 (̃a

′

1,1)
T
] [

0 (ã′
2,1)

T
]

· · ·
[
0 (ã′

M,1)
T
]


 .

Note, that now ã′
m,1 relate to filters that have an order which is lower than their corresponding

filters ãm,1 by 1. As the first row RĞ is not important, it is not presented. To further reduce the
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order by virtue of another QRD application, we need another set of filtered version of the ATFs.

These set may be obtained in several ways. One possibility (although others are also applicable)

is to rotate each part of Ğ, i.e. ãm,l, downwards and apply the QRD again. After this two steps

stage we obtain a shorter null subspace,

Ğ′
T

=


 (̃a

′

1,0)
T (ã′

2,0)
T · · · (ã′

M,0)
T

(̃a
′

1,1)
T (ã′

2,1)
T · · · (ã′

M,1)
T


 .

This process is repeated n̂a − na times, until the correct order is reached and only a common

scale factor ambiguity remains. This method has an appealing structure, since the extra roots are

eliminated recursively, one in each stage of the algorithm. Each stage of the recursion is similar to

the previous one. This property resembles the “fractal” nature of the EVAM algorithm [9].

V. Subband Method

The proposed method although theoretically supported can have several drawbacks in real–life

scenarios. First, actual ATFs in real room environments may be very long (1000–2000 taps are

common in medium–sized room). In such a case the GEVD procedure is not robust enough and

it is quite sensitive to small errors in the null subspace matrix [11]. Furthermore, the matrices

involved become extremely large causing huge memory and computation requirements. Another

problem is the speech signal wide dynamic range. This may result in erroneous estimates of the

frequency response of the ATFs in the low energy parts of the input signal.

Thus, frequency domain approaches are called for. In this section we suggest to incorporate

the TLS subspace method into a subband structure. The use of subbands for splitting adap-

tive filters, especially in the context of echo cancellation, has gained recent interest in the litera-

ture [12],[13],[14],[15]. However, the use of subbands in subspace methods is not as common. The

design of the subbands is of crucial importance. Special emphasis should be given to adjusting

the subband structure to the problem at hand. In this contribution we only aim at demonstrating

the ability of the method, thus only a simple 8–channel subband structure was used as depicted in

Fig. 4. Each of the channel filters is an FIR filter of order 150. The filters are equi–spaced along

the frequency axis and are of equal bandwidth.

Now the M microphone signals are filtered by the subband structure. The subspace methods

presented above can be applied on each subband signal separately. Although the resulting subband
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Fig. 4. Subband structure. 8 equi–spaced equi–bandwidth filters.

signal correspond to a longer filter (which is the convolution of the corresponding ATF and the

subband filter), the algorithm is aimed to reconstruct the ATF alone, ignoring the filterbank roots.

This is due to the fact that the subband filter is common for all channels. Recall that subspace

methods are blind to common zeros, as discussed in Section III. For properly exploiting the benefits

of the subband structure, each subband signal should be decimated. We took critically decimated

filterbank, i.e. decimation factor equals the number of bands. By doing so, the ATF order in

each band is reduced by the decimation factor, making the estimation task easier. Note that now

we need only to over–estimate the reduced order of the ATFs in each subband, rather than the

fullband order. Another benefit arises from the decimation. The signals in each subband are

flatter in the frequency domain, making the signals processed to be whiter, and thus enabling lower

dynamic range and resulting in improved performance. After estimating the decimated ATFs, they

are combined together using a proper synthesis filterbank, comprised of interpolation followed by

filtering with a filterbank similar to the analysis subband filters. The overall subband system is

depicted in Fig. 5, where the “ATF Estimation” block is shown schematically in Fig. 2.

Gain ambiguity may be a major drawback of the subband method. Recall that all the subspace

methods are estimating the ATFs only up to a common gain factor. In the fullband scheme this does
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Â
0
M

(z)

Â
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Fig. 5. Null subspace in the two microphone noiseless case.

not impose any problem since it results in overall scaling of the output. In the subband scheme,

the gain factor is common for all subband signals but is generally different from band to band.

Thus, the estimated ATFs (and the reconstructed signal) is actually filtered by a new arbitrary

filter, which can be regarded as a new reverberation term. Several methods can be applied to

overcome this gain ambiguity problem. First, the original gain of the signals in each subband may

be restored an approximate gain adjustment. Another method was suggested by Rahbar et al. [16].

The method imposes the resulting filters to have as few taps as possible (actually, the filters are
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constrained to be FIR). The order of the these filters should be determined in advance. As we do

not have this information we suggest to use the ATFs order estimation obtained by the subspace

method. The use of this method is a topic of further research. In this contribution we will assume

that the gain in each subband is known, and thus we would only demonstrate the ability of the

method to estimate the frequency shaping of the method in each band.

VI. Signal Reconstruction

Having the estimated ATFs, we can invert them and apply the inverse filter to the received

signals to obtain the desired signal estimate. A method for inverting multi–channel FIR filters by

a multi–channel set of FIR filters is presented in [17].

We use instead a frequency domain method. Rewrite Eq. 1 in time–frequency presentation, using

the short time Fourier transform (STFT):

Zm(t, ejω) = Am(t, ejω)S(t, ejω) + Nm(t, ejω).

Eliminating the reverberation term can be obtained by a matched filter beamformer:

Ŝ(t, ejω) =
1

∑M
m=1 |Âm(t, ejω)|2

M∑

m=1

Zm(t, ejω)Â∗
m(t, ejω) = (25)

S(t, ejω)
1

∑M
m=1 |Âm(t, ejω)|2

M∑

m=1

Am(t, ejω)Â∗
m(t, ejω) +

1
∑M

m=1 |Âm(t, ejω)|2

M∑

m=1

Nm(t, ejω)Â∗
m(t, ejω)

It is easily verified that if the estimation of the ATFs is sufficiently accurate, i.e. Âm(t, ejω) ≃

Am(t, ejω), then the first term in Eq. 25 becomes S(t, ejω) and dereverberation is obtained. The

second term is a residual noise term, which can even be amplified by the procedure. To achieve a

better estimation of the speech signal, when noise is present, we suggest to incorporate the procedure

into the recently proposed extended GSC, derived by Gannot et al. [18], shown schematically in

Fig. 6 and summarized in Fig. 7. This GSC based structure enables the use of general ATFs rather

than delay-only filters in order to dereverberate the speech signal and to reduce the noise level. It

consists of a fixed beamformer branch - which is essentially the MFBF described in Eq. 25, a noise

reference construction block - which uses the ATFs ratios (note that Um(t, ejω) contain only noise

terms), and a multi-channel noise canceller branch (consisting of the filters Gm(t, ejω)). The use

of the GSC structure is only essential when the noise level is relatively high, otherwise the MFBF

branch produces sufficiently accurate estimate.
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Fig. 6. Extended GSC structure for joint noise reduction and dereverberation.
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1. Estimate ATF-s: Am(ejω),m = 1, 2, . . . ,M .

Define A(t, ejω) =
[
A1(t, e

jω) A2(t, e
jω) . . . AM (t, ejω)

]
.

2. Fixed beamformer (FBF) W 0(t, e
jω) = A(t,ejω)

‖A(t,ejω)‖2 .

FBF output: YFBF(t, ejω) = W
†
0(e

jω)Z(t, ejω).

3. Noise reference signals:

Um(t, ejω) = A1(e
jω)Zm(t, ejω) − Am(t, ejω)Z1(t, e

jω) ;m = 2, . . . , M .

4. Output signal: Y (t, ejω) = YFBF(t, ejω) − G†(t, ejω)U(t, ejω).

5. Filters update. For m = 1, . . . , M − 1:

G̃m(t + 1, ejω) = Gm(t, ejω) + µ
Um(t, ejω)Y ∗(t, ejω)

Pest(t, ejω)

Gm(t + 1, ejω)
FIR

←− G̃m(t + 1, ejω)
where, Pest(t, e

jω) = ρPest(t − 1, ejω) + (1 − ρ)
∑

m |Zm(t, ejω)|2.

6. Keep only non-aliased samples, according to the overlap & save method [19].

Fig. 7. Summary of the TF–GSC algorithm.
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VII. Experimental Study

The validity of the proposed methods was tested using various input signals and randomly chosen

FIR filters, and compared with the EVAM algorithm [9]. This input signal consisted of either

white noise, or speech-like noise (white signal colored to have a speech–like spectrum, drawn from

the NOISEX-92 database [20]), or a real speech signal comprised of a concatenation of several

speech signals drawn from the TIMIT database [21]. The input signal was 32000 samples long

(corresponding to 4sec for the 8KHz sampled speech signal, including silence periods). Three

microphone signals were simulated, by randomly choosing the ATFs. The ATF order used was

either 32 or 8. Various SNR levels were taken to test the robustness of the algorithms to additive

noise. Temporally non–white but spatially white (i.e., no correlation between noise signals at the

microphones) noise signals were used. The noise correlation matrix was estimated using signals

drawn from the same source but at different segments. The basic fullband algorithm (using all

the null subspace vectors or only part of them), as well as QRD based algorithms (again, with

all the vectors or only part of them) were tested and compared with the state–of–the–art EVAM

algorithm. Then, the subband based algorithm was evaluated to confirm its ability to comprehend

with longer filters. The gain ambiguity problem was not addressed in this experimental study, and

the gain levels in the various bands were assumed to be known a priori (see also [5]).

The frequency response of the real ATFs compared with the estimated ATFs for the fullband

algorithm are depicted in Figures 8,9,10 for SNR levels of 45dB, 35dB and 25dB, respectively.
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Fig. 8. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like noise input. Fullband method. SNR=45dB.

The filter order was overestimated by 5, that is n̂a −na = 5 in all cases. While the estimation with

speech–like noise (with a wide dynamic range) is quite good at the higher SNR level and filter order
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Fig. 9. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

White noise input. Fullband method. SNR=35dB.
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Fig. 10. Real and estimated frequency response of an arbitrary ATF of order 8 (frequency axis in Hz).

White noise input. Fullband method. SNR=25dB.

32 (Fig. 8), when the SNR decreases to 35dB, the performance is maintained only with a white

noise input signal (Fig. 9). For SNR level of 25dB, the algorithm fails to work with the longer filter

and its order had to be reduced to only 8 (Fig. 10). The sensitivity to the noise level is thus clearly

indicated.

Results for the suboptimal QRD based algorithm are depicted in Fig. 11 for the speech–like input

and an SNR level of 45dB, and in Fig. 12 for a white noise input and an SNR level of 35dB The

QRD based method is more sensitive to the noise level. At 35dB good results could be obtained

only with white noise input and filter order of 8.

In all cases, using only part of the null subspace vectors yielded reduced performance. Therefore,

we omit results concerning these experiments from the presentation.

For comparison we used the EVAM algorithm, while successively reducing the overestimation of

the filter order in their “fractal” based method as explained in [9]. Results for the speech–like input

are depicted in Figures 13 and 14 for SNR levels of 45dB and 25dB respectively. It is clearly shown
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Fig. 11. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like noise input. QRD method. SNR=45dB.
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Fig. 12. Real and estimated frequency response of an arbitrary ATF of order 8 (frequency axis in Hz).

White noise input. QRD method. SNR=35dB.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Real
EVAM−−Full

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Real
EVAM−−Full

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

Real
EVAM−−Full

Fig. 13. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like input. EVAM method. SNR=45dB.



24

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Real
EVAM−−Full

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Real
EVAM−−Full

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

Real
EVAM−−Full

Fig. 14. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like input. EVAM method. SNR=25dB.

that while high performance of the EVAM algorithm is demonstrated, degradation is encountered

at the lower SNR level, especially at the high frequency range where the input signal content is

low.

Finally, the incorporation of the subspace method into a subband structure is given in Figures 15

and 16. We used the 8 subband structure shown in Fig. 4. The decimation in each channel by a

factor of 8 (critically decimated) allowed for a significant order reduction. In particular, the correct

order of the filter in each channel was only 4. In this case we overestimated the correct order only

by 2, since the null subspace determination is less robust. In Fig. 15 the subband structure is

depicted, and the estimated response is given in each band separately. In Fig. 16 all the bands are

combined to form the entire frequency response of the ATFs. The results demonstrate the ability
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Fig. 15. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like input. Subband method. SNR=25dB.

of the algorithm to work well at lower SNR levels (25dB) while the filter order is still relatively high

(na = 32), even for the speech–like signal. It is worth noting that errors in the frequency response

are mainly encountered in the transition regions between the frequency bands. This phenomenon
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Fig. 16. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech–like input. Subband method. SNR=25dB.

should be explored in depth, to enable a filterbank design, which is more suited to the problem at

hand.

Finally, the fullband algorithm is tested with real speech signal. For demonstrating the dere-

verberation ability we used a high SNR level (45dB) and na = 32. The frequency response of the

estimated filter is depicted in Fig. 17, for either using the entire null subspace vectors or only part

of it. Performance degradation in using only part of the subspace is evident. The dereverberated

speech signal is shown in Fig. 18. It is clearly shown from the figure, that while the microphone sig-
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Fig. 17. Real and estimated frequency response of an arbitrary ATF of order 32 (frequency axis in Hz).

Speech signal input. Fullband and Part methods. SNR=45dB.

nal is different from the original signal (due to the filtering by the ATF) ,the dereverberated signal

resembles it. This is also supported by a more than 9dB decrease in the power of the difference.
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Fig. 18. Dereverberated speech. ATF of order 32. Speech signal input. Subband method. SNR=45dB.

VIII. Conclusions

A novel method for speech dereverberation, based on null subspace extraction (applying either

GSVD to a noisy data matrix or GEVD to the corresponding correlation matrix) is suggested. An

ATF estimation procedure is obtained by exploiting the special Silvester structure of the corre-

sponding filtering matrix by using TLS fitting. An alternative, more efficient method, is proposed,

based on the same null subspace structure, and on the QR decomposition. The TLS approach,

although imposing a high computational burden, is found to be superior to the cheaper QRD

method. The desired signal is obtained by incorporating the estimated ATFs into an extended

GSC structure.

Of special interest is the subband framework, in which the ATFs estimation is done in each

decimated band separately and than combined to form the fullband ATFs. This technique allows

an increase of the filter order which can be treated by the proposed system, while maintaining good

performance even with real speech signals and higher noise levels. This method still suffers from

the gain ambiguity problem, and thus, should be further explored. We note, that such subband

structure might be incorporated into other methods as well (e.g. the EVAM algorithm). An

experimental study supports the above conclusions. It is worth mentioning that the method (as
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well as other methods in the literature) should be further explored and tested in actual scenarios,

where the ATFs are much longer.
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