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Abstract

Sequential signaling over the single-user and two-user multiple-access Poisson channel subject
to peak-power constraint is considered. Specifically, we analyze first the performance of a se-
quential signaling scheme similar to the one proposed by Schalkwijk and Barron in [1], for the
AWGN channel, in the Poisson regime. Assuming that information is transmitted in blocks, and
the channel is corrupted by additive constant dark current, the error exponent for the single-user
case in the low power regime is determined. Then an extension of the Schalkwijk-Barron scheme
for the two-user case is suggested and in this case an attainable exponent in the low power regime
is established.

Index Terms — Poisson channel, feedback error exponent, sequential signaling.

*Department of Electrical Engineering Technion, Haifa 32000, Israel email:dabbagh@techunix.technion.ac.il
tDepartment of Electrical Engineering Technion, Haifa 32000, Israel email:shraga@ee.technion.ac.il


gitta
CCIT Report # 399                             October 2002


I. Introduction

A coding scheme for the infinite bandwidth additive white Gaussian noise (AWGN) channel with
noiseless feedback has been considered in [1]. Specifically, the authors describe a peak-power con-
strained sequential signaling scheme that improves the one-way coding error exponent using a causal
noiseless feedback link. Whereas the reliability function for the infinite bandwidth AWGN channel is
expressed as [2, 3]

C/2 — R, 0<R<C/4
w0 ={ (& Vap, ciasn<o (”

the attainable error exponent for the signaling scheme of [1] in the presence of feedback is larger and
given by

E;(k,R) = (\/mC—R—i—\/C—R)Z , 2)

where x £ P / Py, is the permissible peak-to-average power ratio.

The Schalkwijk-Barron scheme consists of two modes. First an orthogonal M-ary transmission
is performed for a fixed duration 7. By the termination of this mode the decoder decides on the
most likely message out of the M hypotheses, denoted as m. The second mode executes sequential
binary signaling wherein the two antipodal signals m and —m are used in order to confirm or reject,
respectively, the decoded result m. Since during this mode their decoding scheme uses Viterbi’s
sequential decision feedback [26], the time required for the receiver to make a decision varies from
one transmission to another and admits random duration T5. It is well known that feedback does not
increase the capacity of a discrete memoryless channel as shown by Shannon [5] and later generalized
to continuous-time memoryless channels by Kadota et al. [6]. Thus, the Schalkwijk-Barron result as
well as [7, 10] demonstrate that whereas unbounded random transmission time codes cannot enlarge
the capacity they can improve significantly the attainable error exponent.

The model for the two-user continuous-time Poisson multiple access channel (MAC) studied here
is described as follows. Two independent users generate inputs A, (t) , i = 1,2, 0 < ¢t < oo, that
determine the rates of two corresponding doubly stochastic Poisson processes d;(t). Specifically, d;(t)
corresponds to the number of counts registered by a direct detection device in the interval [0, %], in
reaction to the input A, (¢). The observation is

2

v(t) = " dift) + D(1)

i=1

which is also a Poisson process with instantaneous rate A(£) = Ao + > -, A, (t). The dark current
represented by D(t) is a homogeneous Poisson process of rate \g. Thus, conditional on the input
{\(t)}, the signal {v(t)} is a counting process with independent increments and

(fst )\(T)dT)k
k!

Here Z* denotes the set of nonnegative integers. It is further assumed that a causal feedback link
informs both encoders at every time ¢ of the channel output v(t) at all times prior to t. Our main

Pr(v(t) — v(s) = k[{A(t)}) = e~ s A  t>s, keZT.
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focus herein will be the case where A\g > 0 which henceforth will be referred as the non-ideal Poisson
MAC. We shall consider as well the single-user Poisson channel with noiseless feedback, the model of
which follows straightforward from the above two-user setting.

The capacity of the single-user Poisson channel was found by Kabanov [8] and Davis [9]. The
effect of feedback on the capacity of the single-user Poisson channel has been studied by Frey [12] who
showed that as long as the dark current is deterministic, capacity is not increased by feedback, whereas
feedback may improve the capacity in the case of a random dark current. The reliability function (i.e.
the exponential behavior of the probability of error for the best code, as the coding delay increases
while the transmission rate is held fixed) of the one-way single-user Poisson channel was determined
by Wyner in his seminal contribution [4]. In addition, the impact that feedback has on the reliability
of the single-user Poisson channel when Ay = 0 was found by Lapidoth in [10]. The capacity of the
Poisson MAC has been obtained by Lapidoth and Shamai in [11], while the reliability function for this
channel was found in [13].

In contrast to the single-user channel, feedback can enlarge the capacity region of the discrete-time
memoryless MAC [15, 16]. In particular, the feedback capacity of the discrete-time two-user AWGN
MAC was determined by Ozarow in [17].

Our interest here is in random transmission time schemes, of the Schalkwijk-Barron type, which
satisfy the peak and average-power constraints (A4,cA) while improving the one-way coding error
exponent of the (single-user and two-user) Poisson channel when Ay # 0. Specifically, we shall consider
coding schemes which meet the peak and average-power constraints

() <A, 2

T,
< :/ Am()dt < oA | i=1,2 0<t<T,, (3)
Tt 0

where T, denotes the mean transmission time. Except for these input constraints, it is assumed
throughout that the channel is unlimited in bandwidth.

The paper is organized as follows. In section II we propose a random transmission-time code
for the single-user case, compute the attainable exponent and establish its optimality subject to the
assumption that information is transmitted in blocks. Akin to the Schalkwijk-Barron result (2) wherein
4(C — R) is the optimal error exponent when x = 1, it is shown that in the Poisson low power regime
4(C — R) is the optimal error exponent, yet it is achievable with x > 2.

In section III a two-user random transmission-time code, based on a sequential procedure for
multi-hypothesis testing, is considered. Analyzing the performance of this scheme a lower bound for
the two-user attainable feedback exponent is established. Our analysis gives rise to a lower bound on
E¢(Rsum) in the low power regime,

Ef(Rsum) > 2(Cis’um - Rsum) s

where Ry, and Cg,, are the two-user rate-sum and rate-sum capacity respectively. Again, this
exponent is achievable with communication cost of k > 2.

II. A single-user random transmission-time code

We start, by recalling Wyner’s construction of a family of exponentially optimal one-way single-user
codes [4]. To this end define a code with parameters (M, T, o, P,) by



e A set of waveforms {\,(¢)},1 < m < M,0 <t < T, which satisfy the peak and the average
power constraints,

1 T
0<AH) <A T/ An()dt <oA , 0<o<1.
0

e A decoder mapping D : vl — {1,2,..., M} such that its average probability of error is given
by

P, = % mz::lpr (D) £ mAn()} -

The code is defined as follows: Let 0 < ¢ < 0 < 1 be fixed. For any positive integer [ such that lq is
an integer, let A%9 denote the binary matrix of dimension [ x (llq), the columns of which are the (llq)

distinct binary [-vectors with exactly lg ones. Subdivide the interval It = [0, 7] into (llq) disjoint half

open, closed on the right, equi-length subintervals. Set for m € {1,..., M} and ¢ in subinterval j of
Ir

l
= (M’q) ) —
Am(t) = A (A MJ,g LzHWQJ. (4)

The decoder mapping D is defined as follows: For 1 < m < M let v,,,([0,T]) = {t € [0,T] : A\ (t) =
A}. The decoder observes the counting process {v(t)} and computes,

Yy = / dv(t) = number of arrivals in v,,([0,7]) , 1< m < M .
vm ([0,T1)

Then D(v}) = m* if,

U <y, 1<m<m” (5)
¢m§¢m*a m*<mSM

Wiyner proved that for this family of codes with parameter M = efT the error probability decays
according to P, = exp{—E(R)T 4+ o(T)} , T — oo and the error exponent is given by

0<¢<0

( maxo<p<1 Alg+s—s(1+7¢)'"?]—pR R.<R<C
| At -¢) (VIFs—v5) - R 0<R<R,

_1
Here 7 = 7(p) £ (1 + %) T —1, 52 )\/A, ¢ = min{o, 1/2}, while the channel capacity and critical
rate are given by

C = Algf(1+s)In(1+s)+ (1 —¢")slns — (¢" + s) In(¢* + 5)]

;= min{a,(l%)m—s}
R — As{(q*f(l)ﬂ)%@m <1+§) — (¢r(1) +1)’In (q*7(1)+1)} o ®)
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In the range R, < R < C the pair (R, F(R)) is expressed parametrically in the variable p € [0, 1] via
(see [4, equation 1.10])

R() = As{£%%%¥£ﬂ@<l+é>Hpm<l+é>—¢L+ﬂMﬂ”ﬂﬂl+ﬂMﬂ}

o = wnfa () -l

Particularizing (6) to s — o0, i.e., the low power (high-noise) regime, Wyner showed that

CA¢(—g) 0
Coron = = '+0(?), (7)

while F(R)s s coincides with the “very noisy channel” error exponent (1).

We shall now proceed to exhibit a random transmission time signaling scheme with peak and
average-power constraints (A, ¢A),q < o. Similar to [1] the scheme has two modes. The first mode is
an M-ary signaling mode wherein the sender uses Wyner’s codebook in order to transmit a message
m € {1,...,M} over a duration T interval, where M = ef17 (the subscript 1 refers to the first
transmission mode). Let the decoder perform as per Wyner’s rule (5), then for rates Ry — C and
s — 00, we have from (1)

2
-qm«@zT@@—wm) L C/A< R <C 8)

substituting Ry = (1 — €)C in (8) we have for € > 0 small,
—InPy(e) = TC? /44 O(€) . (9)

We improve on this performance by continuing with a binary signaling mode. Given the decoder’s
maximum likelihood decision 7 (which is known to the sender via the feedback link) the encoder
transmits sequentially, in N periods each of duration 7} (where the number of periods N is random),

the waveform (assuming that time zero refers to the beginning of the first mode) A, (t — L%JTI, — T)
where

[ (), i =m
%@‘{Ammifm¢m

Here \,,(t) is the Wyner codeword corresponding to message m, for transmission over the interval
[0, T3], and X¢,(t) denotes its complement codeword over this interval. Thus, we associate the a pos-
teriori most probable message m with the waveform \;(t), while the alternative (i.e., any message
m' € {1,..., M} \ ) is associated with the waveform A¢ (¢). If the decoder’s decision, by the termi-
nation of the second transmission phase of random duration 7o = NTj, is upon A\ (t), m is the final
decision. If, however, A% (t) is decided upon, the encoder-decoder pair start over with a new M-ary
signaling period, and so forth.



Following the formulation of Lapidoth in [10] a channel use is a pair of probability measures, P°
and P™, defined on a measurable space (€2, F) on which the “input” process A(¢), and the “output”
process v(t), are defined. The probability measure P° serves as a reference probability measure in the
sense that v(t) is a homogeneous Poisson process of intensity Ag with respect to its natural history
F? and the measure P°. We shall use the notation that v(t) admits the (P° F})-intensity Ag. It is
further assumed that P™ is absolutely continuous with respect to P?, i.e., P™ < P°, and with respect
to the measure P™ the output process v(t) admits the predictable (P™, F})-intensity A, (t).

Thus, a convenient description of P™ is expressed via its Radon-Nykodim derivative with respect
to the reference probability P°. Denote by P! the restriction of PV to F},v € {0,m}, and define the
(P™, F/) martingale L; by
dpP"
ar? -

Lt:

By [23] it follows that

[T o [}

n>1

where T;, denotes the stopping time when the nth jump occurred, and xq; denotes the indicator
function of the set G.

As the processes A, (t),m € {1,..., M} defined by Wyner’s construction are all adapted to F/,
they are JF} predictable. The existence of a measure P™ which induces a predictable F}-intensity
given by A, (t) follows now by [23].

To this end let the decoder observe v, = {v(t) :t € Ty = [T + (k — 1)T},, T + kT3]}, and consider
the sequence of independent identically distributed observations {vg;k = 1,2,...} where

Hy : yy~P™ k=1,2,...
Hi @ yp~P™  k=1,2,...
where P™ induces the predictable F}*-intensity \s(t),t € Ty, while P™ induces the predictable JF,*-

intensity A%, (¢),t € Ty. According to (10) a sequential decision rule can be defined via the Radon-
Nykodim derivative

c dPtTn Am ! C
L, (M, M) = — 5 = H e X{Tp<t} | - €XP / [A5(8) — Am(s)]ds ¢
dP] AT 0

Consequently, the decoder maps each observation v, — Lg; € R. This is done by sampling the
sufficient statistics yx = (nok, nx), where ng, denotes the number of arrivals which fall in v, (7)), and
ny denotes the total number of arrivals in T}.

Let vx(Ty) = v(T + kT) — v(T + (k — 1)T;) and let

Pi(yk) = Pr(¢mi = nok, v (1) =n|H = Hj) , 7=0,1

be the conditional density of y; given H;,j = 0,1. Assuming that j = 0, the Poisson process v, (T}) is
the sum of two independent Poisson processes with parameters Aoy = (14s)gATy and Aqg = (1—q)sAT,



therefore v, (7},) is a Poisson process with parameter Ag = Agy + A1g = (¢ + s)ATy. Furthermore,
conditional on vy (T},) = nk, ¥m x has the binomial distribution

ng

Pr{tm 1 = nox|vk(Ty) = ng, Ho} = ( )Wg%(l — )"k 0k

ok
where Ty = Ago/(Ago + A1o) = q(1+ 5)/(g + s). Thus the joint density po(y) is
po(yk) = Pr(vmr = nok, ve(1p) = ng|H = Hy)

—A()Ank
T (nk>”3°’°<1—7fo)"’°"°’°- (11)
k-

Nogk

Similarly, assuming that j = 1, the Poisson process vx(T}) is the sum of two independent Poisson
processes with parameters Ag; = sqAT, and A3 = (1 —¢q)(1+s)ATy. Thus, v,x(T3) is a Poisson process
with parameter A; = Agy + Aj; = (1 — g + s) ATy, and the joint density p; (yg) is

pi(yk) = Pr(Ymg = nok, ve(Ty) = ng|H = Hy)

—Aq Ank
_ € 1 (nk )W?Ok(l _ ,ﬂ-l)nk_W/Ok ’ (12)
nk' ok

where m; £ Ag1/(Ao1 + A11) = gs/(1 —q + s).
Combining (11) and (12) we conclude that

A Ng Mok 1— Nk —Nok
Ly (o X5) = PO _ ouons (A—) (”—) ( m) - (13)
1

p1(Yk) T 1-m

Since during the second mode we have a binary hypothesis testing problem it is assumed that the
decoder performs a Sequential Probability Ratio Test (SPRT). The properties of the SPRT have been
thoroughly investigated in the literature [18]-[22]. It is particularly suitable for our purpose due to its
optimality property; for specified levels of error probability, the SPRT is the test with the minimum
expected stopping time [18, 21].

Let the observation space € = R be the set of all real numbers. Following [22], a sequential decision
rule is a pair of sequences (¢, ) where ¢ = {¢;;7 =0,1,2,...}, ¢; : RN — {0, 1} being a stopping rule,
while § = {d;;7 =0,1,2,. ..} being a terminal decision rule. Here d; is a decision rule on (R?, B) for
each j > 0, where B denotes the o-algebra on R. The rule (¢, d) makes the decision dn(y1, ¥z, -- -, Yn),
where N is the stopping time defined by N = min{n : ¢(y1, ¥z, ..., yn) = 1}.

The sequential probability ratio test SPRT(A,B), with boundaries A and B satisfying 0 < A <1 <
B < o0, is defined by

n
w'fl(yla R yn) - H LTk
k=1

0, if A<wu(y1,...,yn) <B
1, otherwise

Gu(Y1,- -1 Yn) = {

and

): H07 if wn(yla"'vyn)ZB
Hla if wn(yla"'ayn) S A
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Thus, the expected number of successive transmissions during the second mode can be expressed
as

E[N] = (1 — Pi(e))E[N|Ho] + Pi(e)E[N|Hi]
since 1 — Pj(e) and P;(e) are the priors of the hypotheses Hy and H; respectively. Furthermore, it
is evident that A determines the probability of initiating a new M-ary signaling period, whereas B

determines the final message error probability.
Let n and « be miss and false alarm probabilities, defined by

n = Pr(On(yi,...,yn) = Hi|Ho) = Py(9,9)
a = Pr (5N(y11 .. .,yN) = H()‘Hl) £ PF(?,é) s

and suppose that N is sufficiently large, in which case one can ignore the “excess over the boundaries”

and assume that wy(y1,...,yn) = A or wy(y1,...,yn) = B. In this case Wald’s approximations for
the SPRT(A,B) yield B = (1 —n)/a, A= n/(1 — «) and by [22, Proposition I1I11.D.3]
1 n 1- 77:| 1
E|N|Hy| = In +(1—n)ln In In
M) = o [ a-nwl s E ghn-na)
ENH] = ~|(1-a)ln—"+am =" ~ L (ny—ala) (14)
v 51 l -« Q 51 7 ’

with & £ Eln Ly, (A, AS) |H;] , j = 0,1, and the approximations on the r.h.s. of (14) are valid for
small a and 7.
Noting that E(ny|H;) = A; and E(nek|H;) = Ao; we obtain using (13)

© = Al [1_2q+(3(2q—1)+q)1n(11_8)}

S

& = AT, [1—2q+(5(2q—1)—(1—(1))1“(1“)} |

Using the Taylor series expansion In(1+ z) =z — 2%/2+ 2*/3+ ... for z — 0, we obtain for the low
power regime (s — o0)

[ 1
= AT, |1-2 2 — 1 T —
s—00 ’ I 4+ (2= +a) (5 252 * 3s3 +0 (s‘*))]

(1 g—2 1
= AT, |=— O|—=
b_2s+ 652 * (53)]

= AT, _1—2q+(s(2q—1)—(1‘q» (%‘%32+3_23+0(8i4>>]

_ g, [QL - +o<83>] | (15)

For simplicity we assume that o = 7, in which case as s — o0

€o

&1

§—00

E[N|Hy] ~ _12_00‘
EIN|H,] ~ 12—1“ (16)



while at the same time (14) and (15) imply that up to first order terms (i.e. O(1)) E[N|H,] = E[N|Hjy)].
Now let € — 0 in such a way that €T — oo, then R; = (1 — €¢)C — C and Py(e) — 0 by (9) whence
E[N] = E[N|H,] = E[N|H,].

The second mode fails (i.e., it terminates with an irreversible erroneous decision) if and only if
the decoder’s decision by the end of the first mode was m # m and then during the second mode
a false alarm has occurred. Consequently, the message error probability for our scheme is P(e) =
Pi(e)Pp(Ho|H1) = Pi(e)a. We shall henceforth assume that the exponent of « is significantly larger
than the exponent of P;(e).

Let T,, denote the mean time for transmission of a single message via our coding scheme, then the
error exponent for our random transmission time scheme can be expressed as

In P(e) In
E¢fR)= ———=—=.
Ty Ty
The mean time for the termination of the second phase follows from (16),

_ Ina
1

The mean time for transmission of a single message can be written in the following way,

T+ T,

Tmz(T+Tﬂ{L+H@N+V“@P+'“}:Ti7ﬂ5

(18)
Define the information rate R of the system in terms of R, the information rate during the first mode,

as
RT,,=InM = RT . (19)

For rate R, approaching the capacity R, = (1 —€)C — C, and Py(e) — 0, we get from (17) (18) and
(19, T, =T +T, = R%Tm + T'5, whence

Ry — R— — C—-R_— Ina
T,=T, — —T,,=T,— .
Ry 2 C ’ &1
Therefore, the error exponent can be expressed as,
Ina &L C—R
E/(R)=———r = —2 ——
1(R) T T, O
1 1—gq 1 C—R
[2s+ 652 +O<s3>] ( C ) (20)

where the last step follows from (15).

Equation (20) reveals that, as s — co, up to first order terms (i.e. O(3)) Ef(R) is insensitive to
the choice of ¢ during the orthogonal phase, whereas the second order term dictates that ¢ should be
as small as possible. This is due to the fact that when s gets large the coefficient of % in &7 is obtained
by subtraction of the Poisson process intensities over the orthogonal intervals thus eliminating ¢. On
the other hand it is obvious from (20) that E(R) depends on C' and hence sensitive to the choice of
the average power during the M-ary signaling period.

9



Suppose next that an average-power constraint o < 1/2 is imposed on our signaling scheme. Let
the average signaling power during the M-ary phase be A, while that during the sequential binary
transmission phase be yA, where § > 7,7 < 1/2. As a result

—InPy(e) ~ TC(B)e?/4 ,

for R; = (1 — €)C(B) and € > 0 small, where C'(3) £ AB(1 — B)/(2s).

Provided that P;(e) — 0, we can use during the second phase the signaling pair (A, A5, ) as follows.
If the decoder decodes m = m, we transmit \; with average-power vA, while if the decoder is wrong
we transmit A\§, with average-power (1 — y)A. Since this event has vanishing probability, it does not

affect the average power. Furthermore, by (20) the exponent E( ) (R) is given by

s -l 50 ()] (855).

Consequently, one needs to maximize F (57 (R) subject to the average-power constraint
f J g
BT +~+Ty < oT,, , Pi(e) =0

which implies v < (¢C(B) — BR) / (C(B) — R).
It can be easily verified that

3(%)—}%) _ R(1-2p)
B\ C@B 521 - B)?
& (C(ﬁ)—R) _ “2R[B(L— ) + (1 —26)°]
op\ C(B B3(1— )3 ’

with R 2 R/4 o
Consequently, on the interval [0, 1], E Bim) (R) is a concave function of 8. Furthermore, on [0, 1/2]

it is an increasing function of 3, and it attains its global maximum at § = 1/2. Taking into account
the average-power constraint o, we conclude that

ﬁz%, y=ex1l if R/(s)
1—%/(‘2—;’) , y=ex 1 if R/(")_

It is instructive to note that our analysis implies that Ej(cﬂ ) (R) is maximized by picking ~ as small
as possible. The same conclusion has been reached by Schalkwijk-Barron with regard to the average
signaling power during the second stage of the transmission in [1, section III].

To summarize our results so far, as long as R/ ( ”) < 1, similar to C,_,,, the error exponent
E¢(R)s—o0 is maximized with § =1 / 2, in which case

g (R = B0, = 4 [5+0(3)] (Ca)
~ 4(Cyy00— R) . (21)

In order to show that 4(C' — R) is the maximum achievable exponent for the Poisson single-user channel
with constant dark current we follow the same steps as in [1, Appendix],

10



e The expected time to decision for the optimum sequential test for a given message error probabil-
ity P(e) is not smaller than the two-step test which upon reaching the value 1—7,, 7, > P(e) > 0
for some message m, joins together all other messages and continues with an optimal binary test.

e For the first transmission phase it follows by the same arguments as in [1, Appendix] that
T>(InM)/C.

e Following a similar procedure as in [33] one can show that in order to communicate a binary
message over the Poisson feedback channel, in the presence of constant dark current, with a
peak-power and intensity-modulating-waveform constraints, the optimal signals are orthogonal.
It follows then by our analysis herein that asymptotically

In P(e) In P(e)

T, ~ =T, =

where the last step follows from (16), (7) and the approximation of & as s — 0.

e The above steps establish 4(C'— R) as an upper bound on the attainable exponent for the optimal
sequential test.

We see that the restriction to intensity modulated pulses penalizes the communication cost in the
sense that, while 4(C' — R) is an achievable exponent for the AWGN channel with x = 1, the same
exponent is achievable in the Poisson regime, via a similar coding approach, yet with k£ > 2 (equality
holds when o = 1/2).

ITII. A two-user random transmission time code

In this section we propose a random transmission time scheme that incorporates the noiseless
feedback in order to improve the attainable exponent for the two-user Poisson MAC.

We begin by recalling some known results about the two-user Poisson MAC without feedback.
The capacity region for this model was determined by Lapidoth-Shamai in [11] and it is described as
follows. For a fixed peak power A and average-power constraint (¢; A, ¢g2A) on the two users the set

{R=(R1,Ry) : R1<Ag(q2,q1),R2 < Ag(q1,¢2), R1 + R2 < Af(q1,42)} (22)

describes a “typical” pentagon of attainable rates under the (¢; A, ¢2A) average-power constraint, where

fla, ) & —(5+qa+g)In(s+q + @) +qg2+s)In(2+s)
+(1—q1)(1 —go)slns + (q1 + g2 — 2¢1¢2) (1 + s) In(1 + s)
9(q,¢) & —(1—q)(s+@)In(s+q)—a(l+s+g)n(l+s+q)
+q1g2(2+ ) In(2 4 8) + (1 — ¢1)(1 — g2)s1n s
+(1 + ¢ — 2q1g2) (1 + s) In(1 + s) .
The pentagon’s size and shape depend on the parameters (g1, ¢z, s), and in particular as s — oo the

pentagon becomes a rectangle. It is shown in [11, Lemmas 3,4] that one of the vertices of the pentagon
(22) intersects the boundary of the capacity region provided that

of (a1, q2) ) 09(q2, q1) B 0f(q1,92) . 09(q2,q1)

=0.
oq 0qs 0qy oq

11



Furthermore, the rate-sum capacity is attainable with symmetric average-power constraint [11].
Computing the limit of f(gq,q) as s — oo, assuming average-power constraint cA on both users,
one obtains

(1 —gqg* 1
Cloum = A% +0 <?> , ¢ =min{o,1/2} . (23)

A two-user code with parameters (M, My, T, 0, P.) for this model is defined by

e Two sets of waveforms {\,,,(t)} and { A, (£)} , 1 <my < My, 1 <my < My, 0 <t <T, which
satisfy the peak and average-power constraints (3).

e A decoder mapping D : v} — {1,2,..., My} x {1,2,..., My} such that its average probability
of error is given by

M1 M

P, MlMg Z Z Pr{D(v}) # (m1,ma)[Am, (-); Amy ()} -

mi1=1mao=1

A code construction of a family of exponentially optimal one-way two-user codes is exhibited in [13],
and it is defined as follows. When ¢; = ¢o = ¢ < o construct first AM+M2:9)  then subdivide the

interval Iz = [0, 7] into ((Ajﬁ[/[fgz ) disjoint half open, closed on the right, equi-length subintervals.

Partition arbitrarily the set of M; + M, rows of AM+M2.9) into two subsets of sizes M; and M,
respectively, thereby obtaining two submatrices denoted as A%JFMM and A(M1+M2’q), respectively.

Set for my € {1,..., M1}, my € {1,..., My} and t in subinterval j of I
i) = A (AfEH0)

mi1
Ang(t) = A (AEFY0)

m2

ml;j

m2 ;j

When ¢, # ¢» assume, without loss of generality, that ¢; < ¢o. In this case we generate first the code

("45\1/\{/[11 +M2,q) A% +M3,q)

q1- To this end define ¢ = q1/¢> < 1. Next, construct AM-9 et ¢ = (Mllq) and modify the jth row of
A(M1+M2;q)

) and modify A(M1+M2’q) replacing it with another matrix that conforms with

as follows
e Replace any 1 with the jth row of AM1:9),

e Replace any 0 with a (-repetition of itself.

As aresult we get a pair of simplex systems, corresponding to the parameters ¢y, g2, where it is implicitly
assumed that the new matrix Ay, corresponds now to a “refinement” of the original partitioning of
Ir.

This code is shown in [13] to exhibit the properties of a “random code”. That is, as we let x;
denote the support x; = {t : A\;j(t) = A} then if x; and x;,i # j belong both either to A, or Au,
then one of the following holds (here u(B) denotes Lebesgue measure of a measurable set B)

1 1
‘TU{Xi}—CII <e ‘TU{XiﬂXj}_Q% <e,
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or

1 1
‘TN{Xi}_QZ <e ‘fu{xiﬂxj}—qi <e,

while otherwise we have

1
‘TU{XiﬂXj}_QNIQ <€, Xi E-A./\/h » X E.AM2 .

A suitable mapping D for the decoder is defined as follows. For any hypothesis m = (my,ms) the
decoder computes

P = / dv(t) = number of arrivals in X, N X,
Xmi N Xmoy

Then D(vI) = m* = (m}, m}) iff
o UL > ol + o) VY m £ m
o 190 + % = )+ then Yl > i)
e If two pairs m and m* exist such that w,(,? = % and ¢§,S2 = ¥ and both maximize () + ¢©

an error is declared.

The reliability function for the one-way two-user Poisson MAC was determined in [13] and it is
defined as follows. For any rate pair (R;, Ry) inside the capacity region, the average probability of
error decays according to P, = exp{—E(Ry, R2)T + o(T)},T — oo and the error exponent is given by

E(Rl, R2) = min{ogﬁé AEll(ﬂlaQ%Ql) —piRy 01511;2135(1 AE11(P2,(11,(]2) — p2 Ry

max AF1(ps, q1,92) — p3(R1 + RZ)} ;

0<ps<1

where

Ei(pqi.q2) = s+aq+ag— (1—q)s[l+moq]™ — g2(1+ 8)[1 + wign])

Ei(pqi.02) = s+a+a
1 1 1 7lte
- [(1 —q1)(1 — q2)s™ + (@1 + g2 — 2q1g2) (1 + 8) ™ + q1ga(2 + 5) T

and




The reliability function E(R;, R2) has been obtained in [13] assuming that the decoder is a maximum-
likelihood decoder. Nevertheless, it can be shown using the bounding technique proposed in [14] that
the aforementioned code construction and decoder mapping achieve F(R;, Ry) as well.

In what follows we consider a symmetric two-user signaling scheme and analogously to the single-
user code, during the first phase of the transmission both senders will communicate at rate-sum
approaching the rate-sum capacity. Since the dominating exponent for rate pairs approaching the rate-
sum capacity of the pentagon (22) (assuming fixed average-power signaling) is AF15(p, ¢, q)—p(R1+Rs)
(see for example [24, Fig. 8]) we compute the limit of this exponent in the low power regime. To this
end note that

Ealp,q) = s+2¢—s[1+ qrs]"™”
T 2(1 —q)m1 + q72
1\ ™
n A <1+—> "
S
s 2\
To = 1+— —1
S

Taking the limit of 7, and 75 as s — oo we get

v = w0 (3)]

v = w0 (8)]
Therefore,
and

2
e 2 o) e o)
p _QO—QX+O<l)_ (24)

(I+p) s s?

Eix(p,q) = s+2¢q—s [1 + (14 p)r3q + M(qu)z + O(Tg’q?’)}

Combining (23) with (24) we conclude that in the low power regime

E(Rsum) ~ max LC’sum - pRsum ) 0 S Rsum S Csum )
0<p<1 |1+ p

from which it follows as in [25, Section 3.4, pp. 155-157] that

Csum/2 - Rsum O S Rsum/osum
2
(\/Csum - \/Rsum) i S Rsum/csum

14

<1
=7
<1 (25)

B(Rum) = {



This result is expected since the joint decoder utilizes the power of both users. As a result, when
considering a symmetric scheme wherein ¢; = g2 = ¢, the error exponent of the joint decoder improves
by a factor of two as compared to the situation of a single-user with average-power q.

We shall now proceed to exhibit a random transmission time signaling scheme with peak and average
power constraints (A, ¢A, ¢A),q < o, and as before the scheme consists of two phases. The first phase
is a regular two-user M; Ms-ary signaling phase wherein the senders use the aforementioned codebook
in order to communicate a message pair m = (mq,mz), m; € {1,...,M;},i = 1,2 over a duration T’

i ) . .
interval, where M; = R (the superscript 1 refers to the first transmission phase). Let the decoder

use the joint decoding rule as defined above, then for rate-sums Ry, = Rﬁ” + Rgl) = (1 — €)Csym and
s — 00, we have from (25)

—In Py(e) = TCyyme? /4 + O(e?) . (26)

We improve on this performance by continuing with a quaternary signaling mode. Given the
decoder’s decision 7 = (71, m2) (which is known to both senders via the feedback link) encoder
i transmits sequentially, in N periods each of duration Ty (where again the number of periods
N is random), the waveform (assuming that time zero refers to the beginning of the first mode)

)‘z(Q) (t - [%JTQ — T) where for 0 <y < 1/2
A if te€[0,7Tg] and m; =m;

NP S [VTo, To] and 1, = m;

! 0 if te€[0,7Tg] and m; #m;

A if t € [To,To] and 1y #m;

That is, each sender conveys (repeatedly) to the decoder whether or not its corresponding message
has been decoded correctly via binary signaling as follows,

e It activates its peak power over [0,7Tg]| to confirm the decoder’s decision regarding its message.

e It activates its peak power over [yTg, Tg] to reject the decoder’s decision regarding its message.

If the decoder’s decision, by the termination of the second transmission phase of random duration
T, = NTg, is upon a positive confirmation from both senders, 1 = (7, 72) is the final decision. If
however, the decoder decides that at least one sender conveyed a rejection, the encoders-decoder start
over with a new MjMs-ary signaling period, and so forth.

This decision protocol is suboptimal in the sense that no partial information is allowed, either both
messages are accepted or both are rejected. Thus, it is clear that the resulting error exponent lower
bounds the optimal one.

Denote the four possible message combinations during the sequential phase as
H, : both encoders confirm.
H, : encoder 1 confirms while encoder 2 rejects.
H, : encoder 1 rejects while encoder 2 confirms.
Hj : both encoders reject.
Next let the decoder observe v, = {v(t):t € Ty = [T+ (k — 1)Tp, T + kTg]}, and consider the
sequence of independent identically distributed observations {vg; k = 1,2,...} where

Hi : l/kaj, k=1,2, s j=0,1,2,3
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where fo induces the predictable F;*-intensity

M) = 2A te [T+ (k- 1Ty, T+ (k- 1)Ty + 10
T10 te(T+ (k- 1Ty +1Tg T+ kTyg)

f1 and f5 induce the predictable F;*-intensity A(¢) = A,t € Ty, and f3 induces the predictable F;*-
intensity

T\ 24 te(T+(k—VTo+~To, T+ kT

To proceed further, it is helpful to denote the Kullback-Leibler distance (referred also as the relative
entropy) between the densities f and g by D(f || g), so that

D(fllg) £ E, [1%] - [ s@ mg% i

A straightforward computation shows that when f; induces the predictable F;*-intensity A0) (t) and
fi induces the predictable F;*-intensity A(‘)(¢), then (see also [27, pp. 1025, example 2])

e - o AD(2
D(f; |l fi) =/ [)\(l)(t) — A(J)(t)] dt+/ AD(#) In (t) gt
0 0 AD ()
In our case the relative entropies admit the values

D(foll f1) = D(foll f2)

_ oz, [1 242+ s)yhn <%> +5(1-7)n (%ﬂ)]

D(foll fs) = AT [2(1 = 27)+(2+s)yln (i) Fs{l=7)ln (zisﬂ

from which one can verify that in the low power regime

2 4y—8 1
= AT, |2 +2L==° —
§—00 @ [8 + 382 +O <83>:|

1 v 1 1
oo~ Ala [z—m—ﬁw(@)] - (27)

D(fo |l fs)

D(fo |l f1)

Since during the second phase the decoder faces a quaternary hypothesis testing problem, we
consider as a test strategy the M-ary sequential probability ratio test (MSPRT), defined in the sequel.

Let X1, X5, ... be an infinite sequence of i.i.d. distributed random variables with density f, and let
H; be the hypothesis that f = f; for j =0,1,..., M — 1. It is asumed that f; # f; almost surely for
all 7 # [. Assume further that the prior probabilities of the hypotheses are known, and let 7; denote
the prior probability of H;. If only n observations are available, the minimum-probability-of-error test

uses as the test statistics the vector of posterior probabilities: p, = (pg, .M *1) where

pl, =Pr{H = H;|Xy,...,X,} .
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The minimum-probability-of-error test picks the hypothesis with the largest posterior probability,
conditioned on the observations [22]. When the observations arrive periodically over time a compromise
must be struck between the number of observations and the error probability. A sequential test strikes
such a compromise, and it consists of a stopping rule and a final decision rule.

For the cost assignment, we assume that each time step taken by the test costs a positive amount
¢, and that decision errors in the final decision are penalized through a uniform cost function W (4; H),
that is,

W(H;,H;) = 0
WHLH) = 1, Vj#l.

The Bayesian optimization problem is then
rr}SinIE{cN +W(H)}

where § denotes the set of all admissible sequential tests.

A recursive solution for the optimal multihypothesis sequential test in a Bayesian setting has been
obtained in [28]-[30], but this solution is very complex and impractical except for a few special cases.
This motivates the interest in alternative suboptimal tests that exhibit a simple structure and which
are amenable to practical implementation. In this sense the MSPRT appears to be a good choice. Our
choice is further justified since we are mainly interested in the asymptotic performance of the M-ary
sequential test when the error probabilities are small and the expected stopping time is large, in which
case it is shown in [31, section III] that an approximation to the optimal test gives exactly the MSPRT
structure. Furthermore, it is shown in [32] that the MSPRT is asymptotically optimal relative not
only to the expected sample size but also to any positive moment of the stopping time distribution,
when the error probabilities are small.

For the M-ary sequential probability ratio test the stopping time N4 and final decision § are
described as follows [31, section II]:

e N, = first n > 1 such that p!, > 1/(1+ A;) for at least one [ .
e 0 =H,, , where m = argmaxjp]m :

The parameters A; are assumed to be positive, and typically they are less than one in which case the
condition p/ > 1/(1+ A;) can be satisfied by at most one j. It can be verified that the MSPRT with
M = 2 reduces to the SPRT with parameters (mA;/mo, m1/(mAo)).

Let aj; = Py, (accept H;) and let

oy = P(accept H; incorrectly) = Z i) -
G
The asymptotic performance of the MSPRT (i.e. the behavior of the test in the limit as A; = 0, j =
1,2,...) can be summarized via the following approximations due to Baum and Veeravalli in [31]
—1In Al
ming.; D(fi || f;)
o & mAmn, (28)

Efz [NA]
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where 0 < 1, < 1 for each [. Here the a;’s are the frequentist error probabilities, not to be confused
with the probabilities of error conditioned on a particular hypothesis.

The second phase fails if and only if the decoder’s decision by the end of the first phase was m # m
and then during the second phase a false alarm has occurred. This is due to the fact that any other
error during the second phase will not cause a retransmission of the two messages. Consequently, the
message error probability for our scheme is

3
Pe) = Z Pr(sent message is H;) Py, (accept Hp)
j=1
= P (accept Hy incorrectly) = «y -

Letting T, = T + TQ denote the mean time for transmission of a message pair m = (mq, ms) via
our coding scheme, then following similar considerations as in section II we obtain that

3
Tq = To Y miEp[Na] ~ ToEy, [Na]
=0

Ve al Csum
Tr = ToEg [N4] . R
—In AO C’sum

Q

To— ,
lenj:j?éOD(fO ” fj) Csum - Rsum

where the last step follows from (28). We now assume that the exponent of ag is determined by the
exponent of Ay, and suppose further that during the first phase of M;Ms-ary communication both
senders use the same average-power § while during the second phase of 4-ary hypothesis testing they
use average-power <y to confirm the decoder’s decision. It follows that

In P(e)
Ej(ﬂﬂﬁ)( Roum) = -— =

1 Csum(ﬁ) - Rsum .

— - D ) - 29
Combining (27) with (29) we conclude that in the low power regime
1 Y 1 1 Csum (ﬁ) - Rsum

E(/J”’Y) Rom) = A|l— — — — — 4+ 01 = . 30
f ( ) 2s 3(1 -+ 8)2 352 + s3 Csum(ﬂ) ( )

Again, equation (30) reveals that, as s — oo, up to first order terms (i.e. O(2)) E](JB ’”(Rsum) is
insensitive to the choice of v, whereas the second order term dictates that v should be as small as
possible. On the other hand it is obvious from (30) that El(tﬂ ) (Rsym) depends on C and hence sensitive
to the choice of 8 during the M-ary signaling period.

Consequently, one needs to maximize E® Rgum) subject to the average-power constraint
Yy f J g

BT ++Tg < 0Ty , Pi(e) =0
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The optimization yields

B:%’ ’y:€<<1 lf Rsum/(%)<1
st ) | gmexn i R ()2

To summarize our results so far, as long as Ry / (‘3—5") < 1, similar to Cysym|s—c0, the error exponent
E¢(Rsum)|s—o00 is maximized with 8 = 1/2, in which case

sl j(([;‘” +_OR(5‘/12))] (Cméif()lzzfsuﬂ

rnﬂax E¢(Rsum)

|4

We see that for the two-user Poisson MAC subject to constant dark current, the attainable feedback
exponent in the low power regime is at least 2(Cyypy — Rsym). This is achieved with communication
cost of k =2/ (R/2) > 2.
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