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Abstract

In this paper, we present a novel approach for real-time multichannel speech enhancement in environ-

ments of non-stationary noise and time-varying acoustical transfer functions (ATFs). The proposed system

integrates adaptive beamforming, ATF identification, soft signal detection, and multichannel postfiltering.

The noise canceller branch of the beamformer and the ATF identification are adaptively updated on-line

based on hypothesis test results. The noise canceller is updated only during stationary noise frames, and the

ATF identification is carried out only when desired source components have been detected. The hypothesis

testing is based on the non-stationarity of the signals and the transient power ratio between the beamformer

primary output and its reference noise signals. Following the beamforming and the hypothesis testing, esti-

mates for the signal presence probability and for the noise power spectral density are derived. Subsequently,

an optimal spectral gain function is applied that minimizes the mean-square error of the log-spectral am-

plitude. Experimental results demonstrate the usefulness of the proposed system in non-stationary noise

environments.
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I. Introduction

Postfiltering methods for multi-microphone speech enhancement algorithms have recently at-

tracted an increased interest. It is well known that an improvement in speech quality is encoun-

tered by beamforming methods [1]. However, when the noise field is spatially incoherent (e.g.,

diffuse noise field) significant performance degradation entails additional postfiltering [2]. Most

multi-microphone speech enhancement methods comprise a multichannel part (either delay and

sum beamformer or generalized sidelobe canceller (GSC) [3]) followed by a postfilter, which is based

on Wiener filtering (sometimes in conjunction with spectral subtarction). Numerous articles have

been published on the subject, e.g. [4], [5], [6], [7], [8], [9], [10], [11], [12] to mention just a few. A

major drawback of these multichannel postfiltering techniques is that highly non-stationary noise

components are not dealt with. The time variation of the interfering signals is assumed to be

sufficiently slow, such that the postfilter can track and adapt to the changes in the noise statistics.

Unfortunately, transient interferences are often much too brief and abrupt for the conventional

tracking methods.

Recently, a multichannel postfilter was incorporated into the GSC beamformer [13], [14]. The use

of both the beamformer primary output and the reference noise signals (resulting from the blocking

branch of the GSC) for distinguishing between speech transients and noise transients, enables the

algorithm to work in non-stationary noise environments. In [15], the multichannel postfilter is

combined with the transfer function GSC (TF-GSC) [16], and compared with single-microphone

postfilters, namely the Mixture-Maximum (MIXMAX) [17] and the optimally modified log spectral

amplitude estimator (OM-LSA) [18]. The multichannel postfilter, combined with the TF-GSC,

proved the best for handling abrupt noise spectral variations. However, in all past contributions

the beamformer stage feeds the postfilter, but the adverse is not true. The decisions made by

the postfilter, distinguishing between speech, stationary noise and transient noise, might be fed

back to the beamformer to enable the use of the method in real-time applications. Exploiting this

information will also enable tracking of the acoustical transfer functions (ATFs), caused by talker

movements.

In this paper, we present a real-time multichannel speech enhancement system, which integrates
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adaptive beamforming and multichannel postfiltering. The beamformer is based on the TF-GSC.

However, the requirement for the stationarity of the noise is relaxed. Furthermore, we allow the

ATFs to vary in time, which entails an on-line system identification procedure. We define hypothe-

ses that indicate absence of transients, presence of an interfering transient, and presence of desired

source components. The noise canceller branch of the beamformer is updated only during the

stationary noise frames, and the ATF identification is carried out only when desired source compo-

nents are present. Following the beamforming and the hypothesis testing, estimates for the signal

presence probability and for the noise power spectral density (PSD) are derived. Subsequently, an

optimal spectral gain function is applied that minimizes the mean-square error of the log-spectral

amplitude.

The performance of the proposed system is evaluated under non-stationary noise conditions,

and compared to that obtained with a single-channel postfiltering approach. We show that single-

channel postfiltering is inefficient at attenuating highly non-stationary noise components, since it

lacks the ability to differentiate such components from the desired source components. By contrast,

the proposed system achieves a significantly reduced level of background noise, whether stationary

or not, without further distorting the signal components.

The paper is organized as follows. In Section II, we introduce a novel approach for real-time

beamforming in non-stationary noise environments, under the circumstances of time-varying ATFs.

The noise canceller branch of the beamformer and the ATF identification are adaptively updated

on-line based on hypothesis test results. In Section III, the problem of hypothesis testing in the time-

frequency plane is addressed. Signal components are detected and discriminated from the transient

noise components based on the transient power ratio between the beamformer primary output and

its reference noise signals. In Section IV, we introduce the multichannel postfilter, and outline the

implementation steps of the integrated TF-GSC and multichannel postfiltering algorithm. Finally,

in Section V, we evaluate the proposed system, and present experimental results, which validate

its usefulness.
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II. Transfer Function Generalized Sidelobe Cancelling

Let x(t) denote a desired speech source signal that, subject to some acoustic propagation, is

received by M microphones along with additive uncorrelated interfering signals. The interference

at the ith sensor comprises a pseudo-stationary noise signal, dis(t), and a transient noise component,

dit(t). The observed signals are given by

zi(t) = ai(t) ∗ x(t) + dis(t) + dit(t) , i = 1, . . . , M (1)

where ai(t) is the acoustical transfer function from the desired source to the ith sensor, and ∗ denotes

convolution. Using the short-time Fourier transform (STFT), we have in the time-frequency domain

Z(k, `) = A(k, `)X(k, `) + Ds(k, `) + Dt(k, `) (2)

where k represents the frequency bin index, ` the frame index, and

Z(k, `)
4
=

[

Z1(k, `) Z2(k, `) · · · ZM (k, `)
]T

A(k, `)
4
=

[

A1(k, `) A2(k, `) · · · AM (k, `)
]T

Ds(k, `)
4
=

[

D1s(k, `) D2s(k, `) · · · DMs(k, `)
]T

Dt(k, `)
4
=

[

D1t(k, `) D2t(k, `) · · · DMt(k, `)
]T

.

The observed noisy signals are processed by the system shown in Fig. 1. This structure is a

modification to the recently proposed TF-GSC [16], which is an extension of the linearly constrained

adaptive beamformer [3], [19] for the arbitrary transfer function case. In [16], transient interferences

are not dealt with, as signal enhancement is based on the non-stationarity of the desired source

signal, contrasted with the noise signal stationarity. As such, the ATF estimation was conducted

in an off-line manner. Here, the requirement for the stationarity of the noise is relaxed. So

a mechanism for discriminating interfering transients from desired signal components must be

included. Furthermore, in contrast to the assumption of time-invariant ATFs in [16], we allow

time-varying ATFs provided that their change rate is slow in comparison to that of the speech

statistics. This entails on-line adaptive estimates for the ATFs.
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Fig. 1. Block diagram of the transfer function generalized sidelobe canceller (TF-GSC).

The beamformer comprises three parts: a fixed beamformer W, which aligns the desired signal

components; a blocking matrix B, which blocks the desired components thus yielding the reference

noise signals {Ui : 2 ≤ i ≤ M}; and a multichannel adaptive noise canceller {Hi : 2 ≤ i ≤ M},

which eliminates the stationary noise that leaks through the sidelobes of the fixed beamformer. The

reference noise signals U(k, `) =
[

U2(k, `) U3(k, `) · · · UM (k, `)
]T

are generated by applying the

blocking matrix to the observed signal vector:

U(k, `) = BH(k, `)Z(k, `)

= BH(k, `) [A(k, `)X(k, `) + Ds(k, `) + Dt(k, `)] . (3)

The reference noise signals are emphasized by the adaptive noise canceller and subtracted from the

output of the fixed beamformer, yielding

Y (k, `) =
[

WH(k, `) − HH(k, `)BH(k, `)
]

Z(k, `) , (4)

where H(k, `) =
[

H2(k, `) H3(k, `) · · · HM (k, `)
]T

. It is worth mentioning that a perfect block-

ing matrix implies BH(k, `)A(k, `) = 0. In that case, U(k, `) indeed contains only noise compo-

nents,

U(k, `) = BH(k, `) [Ds(k, `) + Dt(k, `)] .
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In general, however, BH(k, `)A(k, `) 6= 0, thus desired signal components may leak into the noise

reference signals.

Let three hypotheses H0s, H0t and H1 indicate respectively absence of transients, presence of

an interfering transient, and presence of a desired source transient at the beamformer output.

The optimal solution for the filters H(k, `) is obtained by minimizing the power of the beam-

former output during the stationary noise frames (i.e., when H0s is true) [20]. Let ΦDsDs
(k, `) =

E
{

Ds(k, `)DH
s (k, `)

}

denote the power-spectral density (PSD) matrix of the input stationary noise.

Then, the power of the stationary noise at the beamformer output is minimized by solving the un-

constrained optimization problem:

min
H

{

[W(k, `) − B(k, `)H(k, `)]H ΦDsDs
(k, `) [W(k, `) − B(k, `)H(k, `)]

}

. (5)

A multichannel Wiener solution is given by [21]

H(k, `) =
[

BH(k, `)ΦDsDs
(k, `)B(k)

]−1
BH(k, `)ΦDsDs

(k, `)W(k, `) . (6)

In practice, this optimization problem is solved by using the normalized LMS algorithm [20]:

H(k, ` + 1) =

{

H(k, `) + µh

Pest(k,`)U(k, `)Y ∗(k, `) if H0s is true,

H(k, `) , otherwise,
(7)

where

Pest(k, `) = αpPest(k, ` − 1) + (1 − αp)‖U(k, `)‖2 (8)

represents the power of the noise reference signals, µh is a step factor that regulates the convergence

rate, and αp is a smoothing parameter.

The fixed beamformer implements the alignment of the desired signal by applying a matched

filter to the ATF ratios [16]:

W(k, `)
4
=

Ã(k, `)

‖Ã(k, `)‖2
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where

Ã(k, `)
4
=

A(k, `)

A1(k, `)
=

[

1 A2(k,`)
A1(k,`) · · · AM (k,`)

A1(k)

]T

4
=

[

1 Ã2(k, `) · · · ÃM (k, `)
]T

denotes ATF ratios, with A1(k, `) chosen arbitrarily as the reference ATF. The blocking matrix B

is aimed at eliminating the desired signal and constructing reference noise signals. A proper (but

not unique) choice of the blocking matrix is given by [16],

B(k, `) =















−Ã∗
2(k, `) −Ã∗

3(k, `) . . . −Ã∗
M (k, `)

1 0 . . . 0
0 1 . . . 0

. . .
. . .

0 0 . . . 1















. (9)

Hence, for implementing both the fixed beamformer and the blocking matrix, we need to estimate

the ATF ratios. In contrast to previous works [16], [15], [14], the system identification should be

incorporated into the adaptive procedure, since the ATFs are time-varying. In [16], the system

identification procedure is based on the nonstationarity of the desired signal. Here, a modified

version is introduced, employing the already available time-frequency analysis of the beamformer

and the decisions made by hypothesis testing.

From (3) and (9) we have the following input-output relation between Z1(k, `) and Zi(k, `):

Zi(k, `) = Ãi(k, `)Z1(k, `) + Ui(k, `) , i = 2, . . . , M . (10)

Accordingly,

φZiZ1
(k, `) = Ãi(k, `)φZ1Z1

(k, `) + φUiZ1
(k, `), i = 2, . . . , M (11)

where φZiZ1
(k, `) = E {Zi(k, `)Z∗

1 (k, `)} is the cross-PSD between zi(t) and z1(t), and φUiZ1
(k, `)

is the cross-PSD between ui(t) and z1(t). The use of standard system identification methods is

inapplicable, since the interference signal ui(t) is strongly correlated to the system input z1(t).

However, when the hypothesis H1 is true, i.e. when transient noise is absent, the cross-PSD

φUiZ1
(k, `) becomes stationary. Therefore, φUiZ1

(k, `) may be replaced with φUiZ1
(k).
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For estimating the ATF ratios Ã(k, `), we need to collect several estimates of the PSD φZZ1
(k, `),

each of which is based on averaging several frames. Let a segment define a concatenation of N

frames for which the hypothesis H1 is true, and let an interval contain R such segments. Then, the

PSD estimation in each segment r (r = 1, . . . , R) is obtained by averaging the periodograms over

N frames:

φ̂
(r)

ZZ1
(k, `) =

1

N

∑

`∈Lr

Z(k, `)Z∗
1 (k, `)

where Lr represents the set of frames that belong to the rth segment. Denoting by ε
(r)
i (k, `) =

φ̂
(r)
UiZ1

(k, `) − φUiZ1
(k) the estimation error of the cross-PSD between ui(t) and z1(t) in the rth

segment, eq. (11) implies

φ̂
(r)
ZiZ1

(k, `) = Ãi(k, `)φ̂
(r)
Z1Z1

(k, `) + φUiZ1
(k) + ε

(r)
i (k, `), i = 2, . . . , M, r = 1, 2, . . . , R. (12)

The least-squares (LS) solution to this over-determined set of equation is given by [16]

Ã(k, `) =

〈

φ̂Z1Z1
(k, `)φ̂ZZ1

(k, `)
〉

−
〈

φ̂Z1Z1
(k, `)

〉〈

φ̂ZZ1
(k, `)

〉

〈

φ̂2
Z1Z1

(k, `)
〉

−
〈

φ̂Z1Z1
(k, `)

〉2 (13)

where the average operation on β(k, `) is defined by

〈β(k, `)〉
4
=

1

R

R
∑

r=1

β(r)(k, `) .

Practically, the estimates for φ̂
(r)

ZZ1
(k, `) (r = 1, . . . , R) are recursively obtained as follows. In

each time-frequency bin (k, `) we assume that R PSD estimates are already available (excluding

initial conditions). Values of Ã(k, `) are thus ready for use in the next frame (k, ` + 1). Frames,

for which the hypothesis H1 is true, are collected for obtaining a new PSD estimate φ̂
(R+1)

ZZ1
(k, `),

φ̂
(R+1)

ZZ1
(k, ` + 1) = φ̂

(R+1)

ZZ1
(k, `) +

1

N
Z(k, `)Z∗

1 (k, `) . (14)

A counter nk is used for counting the times eq. (14) is processed (counting the number of H1 frames

in frequency bin k). Whenever nk reaches N , the estimate in segment R + 1 is stacked into the
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previous estimates, the oldest estimate (r = 1) is discarded, and nk is initialized. The new R

estimates are then used for obtaining a new estimate for the ATF ratios Ã(k, `+1) for the next bin

(k, `+1). This procedure is active for all frames ` enabling a real-time tracking of the beamformer.

Altogether, an interval containing N × R frames, for which H1 is true, is used for obtaining an

estimate for Ã(k, `). Special attention should be given for choosing this quantity. On the one hand,

it should be long enough for stabilizing the solution. On the other hand, it should be short enough

for the ATF quasi-stationarity assumption to hold during the interval. We note that for frequency

bins with low speech content, the interval (observation time) required for obtaining an estimate for

Ã(k, `) might be very long, since only frames for which H1 is true are collected.

III. Hypothesis Testing

Generally, the TF-GSC output comprises three components: a non-stationary desired source

component, a pseudo-stationary noise component, and a transient interference. Our objective is to

determine which category a given time-frequency bin belongs to, based on the beamformer output

and the reference signals. Clearly, if transients have not been detected at the beamformer output

and the reference signals, we can accept the H0s hypothesis. In case a transient is detected at the

beamformer output, but not at the reference signals, the transient is likely a source component

and therefore we determine that H1 is true. On the contrary, a transient that is detected at one of

the reference signals but not at the beamformer output is likely an interfering component, which

implies that H0t is true. In case a transient is simultaneously detected at the beamformer output

and at one of the reference signals, a further test is required, which involves the ratio between the

transient power at beamformer output and the transient power at the reference signals.

From (3) and (4), the PSD-matrix of the reference signals and the PSD of the beamformer output

are obtained by

ΦUU(k, `) = BH(k)ΦZZ(k, `)B(k) (15)

φY Y (k, `) = [W(k) − B(k)H(k, `)]H ΦZZ(k, `) [W(k) − B(k)H(k, `)] . (16)

If we assume that the stationary, as well as transient, noise fields are homogeneous, then the PSD-

matrices of the input noise signals are related to the corresponding spatial coherence matrices,
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Γs(k, `) and Γt(k, `), by

ΦDsDs
(k, `) = λs(k, `)Γs(k, `)

ΦDtDt
(k, `) = λt(k, `)Γt(k, `)

where λs(k, `) and λt(k, `) represent the input noise power at a single sensor. The input PSD-matrix

is therefore given by

ΦZZ(k, `) = λx(k, `)A(k, `)AH(k, `) + λs(k, `)Γs(k, `) + λt(k, `)Γt(k, `) (17)

where λx(k, `)
4
= E

{

|X(k, `)|2
}

is the PSD of the desired source signal. Substituting (17) into (15)

and (16), we have the following linear relation between the PSD’s of the beamformer output, the

reference signals, the desired source signal, and the input interferences [14]:











φY Y (k, `)
φU2U2

(k, `)
...

φUMUM
(k, `)











=







C11(k, `) C12(k, `) C13(k, `)
...

...
...

CM1(k, `) CM2(k, `) CM3(k, `)











λx(k, `)
λs(k, `)
λt(k, `)



 (18)

where

[

C11 C12 C13

]

= [W − BH]H
[

AAH Γs Γt

]

(I3 ⊗ [W − BH]) (19)

[

C21 · · · CM1

]

= diag
{

BHAAHB
}

(20)

[

C22 · · · CM2

]

= diag
{

BHΓsB
}

(21)

[

C23 · · · CM3

]

= diag
{

BHΓtB
}

, (22)

I3 is a 3-by-3 identity matrix, ⊗ denotes Kronecker product, and diag{·} represents a row vector

constructed from the diagonal of a square matrix.

Let S be a smoothing operator in the power spectral domain,

SY (k, `) = αs · SY (k, ` − 1) + (1 − αs)
w
∑

i=−w

bi|Y (k − i, `)|2 (23)

where αs (0 ≤ αs ≤ 1) is a forgetting factor for the smoothing in time, and b is a normalized window

function (
∑w

i=−w bi = 1) that determines the order of smoothing in frequency. Let M denote
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an estimator for the PSD of the background pseudo-stationary noise, derived using the Minima

Controlled Recursive Averaging approach [18], [22]. The decision rules for detecting transients at

the TF-GSC output and reference signals are

ΛY (k, `)
4
= SY (k, `)/MY (k, `) > Λ0 (24)

ΛU(k, `)
4
= max

2≤i≤M

{

SUi(k, `)

MUi(k, `)

}

> Λ1 , (25)

respectively, where ΛY and ΛU denote measures of the local non-stationarities (LNS) [14], and Λ0

and Λ1 are the corresponding threshold values for detecting transients. For a given signal, the LNS

fluctuates about 1 in the absence of transients, and increases well above 1 in the neighborhood of

time-frequency bins that contain transients. The false alarm and detection probabilities are defined

by

Pf,Y (k, `) = P (ΛY (k, `) > Λ0 | H0s) (26)

Pd,Y (k, `) = P (ΛY (k, `) > Λ0 | H1 ∪ H0t) (27)

Pf,U (k, `) = P (ΛU (k, `) > Λ1 | H0s) (28)

Pd,U (k, `) = P (ΛU (k, `) > Λ1 | H1 ∪ H0t) . (29)

Then for specified Pf,Y and Pf,U , the required threshold values and the detection probabilities are

given by [14]

Λ0 =
1

µ
F−1

χ2;µ
(1 − Pf,Y ) (30)

Pd,Y (k, `) = 1 − Fχ2;µ

[

1

1 + ξY (k, `)
F−1

χ2;µ
(1 − Pf,Y )

]

(31)

Λ1 =
1

µ
F−1

χ2;µ

[

(1 − Pf,U )
1

M−1

]

(32)

Pd,U (k, `) = 1 − (1 − Pf,U )
M−2

M−1 Fχ2;µ

(

1

1 + ξU (k, `)
F−1

χ2;µ

[

(1 − Pf,U )
1

M−1

]

)

(33)

where

ξY (k, `)
4
=

C11(k, `)λx(k, `) + C13(k, `)λt(k, `)

C12(k, `)λs(k, `)
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Fig. 2. Receiver operating characteristic curves for detection of transients at (a) the beamformer output,

and at (b) the reference noise signals, using M = 4 sensors (µ = 32.2).

and

ξU (k, `)
4
= max

2≤i≤M

{

Ci1(k, `)λx(k, `) + Ci3(k, `)λt(k, `)

Ci2(k, `)λs(k, `)

}

represent the ratios between the transient and pseudo-stationary power at the beamformer output

and reference signals, and Fχ2;µ(x) denotes the standard chi-square distribution function with µ

degrees of freedom. Fig. 2 shows the receiver operating characteristic (ROC) curves for detection

of transients at the beamformer output and reference signals, with the false alarm probability as

parameter. Four sensors are used, and µ is set to 32.2 (this value of µ is obtained for a smoothing

S of the form (23), with αs = 0.9, and b =
[

0.25 0.5 0.25
]

).

The transient beam-to-reference ratio (TBRR) is defined by the ratio between the transient power

of the beamformer output and the transient power of the strongest reference signal:

Ω(k, `) =
SY (k, `) −MY (k, `)

max
2≤i≤M

{SUi(k, `) −MUi(k, `)}
. (34)
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Given that H1 or H0t is true, we have

Ω(k, `)|H1∪H0t
≈

φY Y (k, `) − C12(k, `)λs(k, `)

max
2≤i≤M

{φUiUi
(k, `) − Ci2(k, `)λs(k, `)}

=
C11(k, `)λx(k, `) + C13(k, `)λt(k, `)

max
2≤i≤M

{Ci1(k)λx(k, `) + Ci3(k, `)λt(k, `)}
. (35)

Assuming there exist thresholds Ωhigh(k) and Ωlow(k) such that

Ω(k, `)|H0t
≈

C13(k, `)

max
2≤i≤M

{Ci3(k, `)}
≤ Ωlow(k) ≤ Ωhigh(k)

≤
C11(k, `)

max
2≤i≤M

{Ci1(k)}
≈ Ω(k, `)|H1

(36)

the decision rule for differentiating desired signal components from the transient interference com-

ponents is

H0t : γs(k, `) ≤ 1 or Ω(k, `) ≤ Ωlow(k)

H1 : γs(k, `) ≥ γ0 and Ω(k, `) ≥ Ωhigh(k)

Hr : otherwise (37)

where

γs(k, `)
4
=

|Y (k, `)|2

MY (k, `)
(38)

represents the a posteriori SNR at the beamformer output with respect to the pseudo-stationary

noise, γ0 denotes a constant satisfying P (γs(k, `) ≥ γ0 | H0s) < ε for a certain significance level ε,

and Hr designates a reject option where the conditional error of making a decision between H0t

and H1 is high.

Fig. 3 summarizes a block diagram for the hypothesis testing. The hypothesis testing is carried

out in the time-frequency plane for each frame and frequency bin. H0s is accepted when transients

have neither been detected at the beamformer output nor at the reference signals. In case a transient

is detected at the beamformer output but not at the reference signals, we accept H1. On the other
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Fig. 3. Block diagram for the hypothesis testing.

hand, if a transient is detected at one of the reference signals but not at the beamformer output, we

accept H0t. In case a transient is detected simultaneously at the beamformer output and at one of

the reference signals, we compute the TBRR, Ω(k, `), and the a posteriori SNR at the beamformer

output with respect to the pseudo-stationary noise, γs(k, `), and decide on the hypothesis according

to (37).

IV. Multichannel Postfiltering

In this section, we address the problem of estimating the time-varying PSD of the TF-GSC

output noise, and present the multichannel postfiltering technique. Fig. 4 describes a block diagram

of the multichannel postfiltering. Following the hypothesis testing, an estimate q̂(k, `) for the

a priori signal absence probability is produced. Subsequently, we derive an estimate p(k, `)
4
=

P (H1 | Y,U) for the signal presence probability, and an estimate λ̂d(k, `) for the noise PSD. Finally,

spectral enhancement of the beamformer output is achieved by applying the OM-LSA gain function

[18], which minimizes the mean-square error of the log-spectral amplitude under signal presence

uncertainty.
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Fig. 4. Block diagram of the multichannel postfiltering.

Based on a Gaussian statistical model [23], the signal presence probability is given by

p(k, `) =

{

1 +
q(k, `)

1 − q(k, `)
(1 + ξ(k, `)) exp(−υ(k, `))

}−1

(39)

where ξ(k, `)
4
= λx(k, `)/λd(k, `) is the a priori SNR, λd(k, `) is the noise PSD at the beamformer

output, υ(k, `)
4
= γ(k, `) ξ(k, `)/(1 + ξ(k, `)), and γ(k, `)

4
= |Y (k, `)|2 /λd(k, `) is the a posteriori

SNR. The a priori signal absence probability q̂(k, `) is set to 1 if signal absence hypotheses (H0s or

H0t) are accepted, and is set to 0 if signal presence hypothesis (H1) is accepted. In case of the reject

hypothesis Hr, a soft signal detection is accomplished by letting q̂(k, `) be inversely proportional

to Ω(k, `) and γs(k, `):

q̂(k, `) = max

{

γ0 − γs(k, `)

γ0 − 1
,
Ωhigh − Ω(k, `)

Ωhigh − Ωlow

}

. (40)

The a priori SNR is estimated by [18]

ξ̂(k, `) = αG2
H1

(k, ` − 1)γ(k, ` − 1) + (1 − α) max {γ(k, `) − 1, 0} (41)

where α is a weighting factor that controls the trade-off between noise reduction and signal distor-

tion, and

GH1
(k, `)

4
=

ξ(k, `)

1 + ξ(k, `)
exp

(

1

2

∫ ∞

υ(k,`)

e−t

t
dt

)

(42)

is the spectral gain function of the Log-Spectral Amplitude (LSA) estimator when signal is surely

present [24]. An estimate for noise PSD is obtained by recursively averaging past spectral power
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values of the noisy measurement, using a time-varying frequency-dependent smoothing parameter.

The recursive averaging is given by

λ̂d(k, ` + 1) = α̃d(k, `)λ̂d(k, `) + β · [1 − α̃d(k, `)]|Y (k, `)|2 (43)

where the smoothing parameter α̃d(k, `) is determined by the signal presence probability p(k, `),

α̃d(k, `)
4
= αd + (1 − αd) p(k, `) , (44)

and β is a factor that compensates the bias when signal is absent. The constant αd (0 < αd < 1)

represents the minimal smoothing parameter value. The smoothing parameter is close to 1 when

signal is present, to prevent an increase in the noise estimate as a result of signal components.

It decreases when the probability of signal presence decreases, to allow a fast update of the noise

estimate.

The estimate of the clean signal STFT is finally given by

X̂(k, `) = G(k, `)Y (k, `) , (45)

where

G(k, `) = {GH1
(k, `)}p(k,`) · G

1−p(k,`)
min (46)

is the OM-LSA gain function and Gmin denotes a lower bound constraint for the gain when signal

is absent. The implementation of the integrated TF-GSC and multichannel postfiltering algorithm

is summarized in Fig. 5. Typical values of the respective parameters, for a sampling rate of 8 kHz,

are given in Table I.

V. Experimental Results

In this section, we compare under non-stationary noise conditions the performance of the pro-

posed real-time system to a system consisting of an off-line TF-GSC and a single-channel postfilter.

The performance evaluation includes objective quality measures, a subjective study of speech spec-

trograms and informal listening tests.

A linear array, consisting of four microphones with 5 cm spacing, is mounted in a car on the

visor. Clean speech signals are recorded at a sampling rate of 8 kHz in the absence of background
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Initialize variables at the first frame for all frequency bins k:

GH1
(k, 0) = γ(k, 0) = 1; Pest(k, 0) = ‖U(k.0)‖2;

SY (k, 0) = MY (k, 0) = λ̂d(k, 0) = |Y (k, 0)|2;

Let nk = 0 ; % nk is a counter for H1 frames in frequency bin k.

For i = 2 to M

SUi(k, 0) = MUi(k, 0) = |Ui(k, 0)|2; Hi(k, 0) = 0; Ãi(k, 0) = 1;

For all time frames `

For all frequency bins k

Compute the reference noise signals U(k, `) using (3), and the TF-GSC output Y (k, `) using
(4).

Compute the recursively averaged spectrum of the TF-GSC output and reference signals,
SY (k, `) and SUi(k, `), using (23), and update the MCRA estimates of the background pseudo-
stationary noise, MY (k, `) and MUi(k, `), using [22] (i = 2, . . . ,M).

Compute the local non-stationarities of the TF-GSC output and reference signals, ΛY (k, `)
and ΛU(k, `), using (24) and (25).

Using the block diagram for the hypothesis testing (Fig. 3), determine the relevant hypothesis;
it possibly requires computation of the transient beam-to-reference ratio Ω(k, `) using (34), and
the a posteriori SNR at the beamformer output with respect to the pseudo-stationary noise
γs(k, `) using (38).

Update the estimate for the power of the reference signals Pest(k, `) using (8). In case of
absence of transients (H0s), update the multichannel adaptive noise canceller H(k, ` + 1) using
(7).

In case of desired signal presence (H1), update the estimate φ̂
(R+1)

ZZ1
(k, ` + 1) using (14), and

increment nk by 1.

If nk ≡ N , then: store φ̂
(r+1)

ZZ1
(k, ` + 1) as φ̂

(r)

ZZ1
(k, ` + 1) for r = 1, . . . , R; update the ATF

ratios Ã(k, `) using (13); reset φ̂
(R+1)

ZZ1
(k, ` + 1) and nk to zero.

In case of H0s or H0t, set the a priori signal absence probability q̂(k, `) to 1. In case of H1,
set q̂(k, `) to 0. In case of Hr, compute q̂(k, `) according to (40).

Compute the a priori SNR ξ̂(k, `) using (41), the conditional gain GH1
(k, `) using (42), and

the signal presence probability p(k, `) using (39).

Compute the time-varying smoothing parameter α̃d(k, `) using (44), and update the noise

spectrum estimate λ̂d(k, ` + 1) using (43).

Compute the OM-LSA estimate of the clean signal, X̂(k, `), using (45) and (46).

Fig. 5. The integrated TF-GSC and multichannel postfiltering algorithm.
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TABLE I

Values of Parameters Used in the Implementation of the Proposed Algorithm, For a

Sampling Rate of 8 kHz

α = 0.92 αd = 0.85 αp = 0.9 αs = 0.9
β = 1.47 γ0 = 4.6 µ = 32.2 µh = 0.05
Λ0 = 1.67 Λ1 = 1.81 Ωlow = 1 Ωhigh = 3
b = [0.25 0.5 0.25] N = 10 R = 10
Gmin = −20 dB

noise (standing car, silent environment). An interfering speaker is recorded while the car speed

is about 60 km/h. The input microphone signals are generated by mixing the speech and noise

signals at various SNR levels in the range [−5, 10] dB. Two objective quality measures are used.

The first is segmental SNR defined by [25]

SegSNR =
1

L

L−1
∑

`=0

10 · log

∑K−1
n=0 x2(n + `K/2)

∑K−1
n=0 [x(n + `K/2) − x̂(n + `K/2)]2

[dB] (47)

where L represents the number of frames in the signal, and K = 256 is the number of samples per

frame (corresponding to 32 ms frames, and 50% overlap). The segmental SNR at each frame is

limited to perceptually meaningful range between 35 dB and −10 dB [26], [27]. The second quality

measure is log-spectral distance (LSD), which is defined by

LSD =
1

L

L−1
∑

`=0







1

K/2 + 1

K/2
∑

k=0

[

10 · log CX(k, `) − 10 · log CX̂(k, `)
]2







1

2

[dB] (48)

where CX(k, `)
4
= max

{

|X(k, `)|2 , δ
}

is the spectral power, clipped such that the log-spectral

dynamic range is confined to about 50 dB (that is, δ = 10−50/10 · max
k,`

{

|X(k, `)|2
}

).

Fig. 6 shows experimental results obtained for various noise levels. The quality measures are

evaluated at the first microphone, the off-line TF-GSC output, the single-channel postfiltering

output, and the proposed system output. The single-channel postfiltering output is obtained by

applying an OM-LSA estimator to the off-line TF-GSC output. A theoretical limit postfiltering is
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Fig. 6. (a) Average segmental SNR, and (b) average log-spectral distance, at (4) microphone #1, (◦)

TF-GSC output, (×) single-channel postfiltering output, (solid line) the proposed system output, and (∗)

theoretical limit postfiltering output.

achieved by calculating the noise PSD from the noise itself. It can be readily seen that TF-GSC

alone does not provide sufficient noise reduction in a car environment, owing to its limited ability to

reduce diffuse noise [16]. Furthermore, the proposed real-time system performs considerably better

than off-line TF-GSC combined with single-channel postfiltering.

A subjective evaluation of the proposed system was conducted using speech spectrograms and

validated by informal listening tests. Typical examples of speech spectrograms are presented in

Fig. 7. The TF-GSC output is characterized by a high level of noise. Single-channel postfiltering

suppresses pseudo-stationary car noise components, but is inefficient at attenuating transients and

interfering speech components. By contrast, the proposed system achieves superior noise attenu-

ation, while preserving the desired speech signal. This is verified by subjective informal listening

tests.

VI. Conclusion

We have described an integrated real-time beamforming and postfiltering system, that is partic-

ularly advantageous in non-stationary noise environments. The system is based on the TF-GSC

beamformer and OM-LSA multichannel postfilter. The TF-GSC beamformer primary output and

the reference noise signals are exploited for deciding between speech, stationary noise and transient

noise hypotheses. The decisions are used for deriving estimators for the signal presence probability
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Fig. 7. Speech spectrograms. (a) Original clean speech signal at microphone #1: “Dial one two three four

five six seven eight nine.”; (b) Noisy signal at microphone #1 (SNR = −4.2 dB, SegSNR = −7.9 dB, LSD

= 11.5 dB); (c) TF-GSC output (SegSNR = −7.8 dB, LSD = 10.3 dB); (d) Single-channel postfiltering

output (SegSNR = −2.2 dB, LSD = 4.2 dB); (e) Proposed system output (SegSNR = 0.0 dB, LSD = 3.5

dB); (f) Theoretical limit (SegSNR = 0.5 dB, LSD = 3.2 dB).
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and for the noise PSD. The signal presence probability modifies the spectral gain function for esti-

mating the clean signal spectral amplitude. The proposed system was tested under non-stationary

noise conditions, and its performance was compared to that of a system based on off-line beam-

forming and single-channel postfiltering. While transient noise components are indistinguishable

from desired source components if using a single-channel postfiltering approach, the enhancement

of the beamformer output by multichannel postfiltering produces a significantly reduced level of

residual transient noise without further distorting the desired signal components.

The novel method has applications in realistic environments, where a desired speech signal is

received by several microphones. In typical office environment scenarios, the speech signal is sub-

ject to propagation through time-varying acoustical transfer functions (due to talker movements).

Stationary noise signals (e.g. noise from an air-conditioning unit), as well as non-stationary inter-

ferences (e.g. radio or another talker) are often received by the microphones, contaminating the

desired speech. The main contribution of the proposed method is the incorporation of the hypoth-

esis test results back into the beamforming stage, allowing to control the noise canceller branch of

the beamformer, as well as the ATF identification.
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