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Abstract

Image sharpening in the presence of noise is formulated as a non-

convex variational problem. The energy functional incorporates a gradient-

dependent potential, a convex �delity criterion and a high order con-

vex regularizing term. The �rst term attains local minima at zero and

some high gradient magnitude, thus forming a triple well-shaped po-

tential (in the one-dimensional case). The energy minimization 
ow

results in sharpening of the dominant edges, while most noisy 
uctu-

ations are �ltered out.

Keywords: image �ltering, image enhancement, image sharpening, nonlin-

ear di�usion, hyper-di�usion, variational image processing.

1 Introduction

We address the issue of sharpening images degraded by blur-type operations

and contaminated by additive noise. The approach is based on an evolu-
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2 1 INTRODUCTION

tionary sharpening process, where in our case is derived from an energy

minimization 
ow of a multi well-shaped energy density function. Some-

what similar type of 
ows where examined in the analysis of formation of

microstructures in crystals [2, 10].

Let us �rst review the relation between nonlinear di�usion processes and

energy minimization 
ows. We de�ne a potential function (energy density)

	(jrIj) and a corresponding energy functional

E(I) =

Z



	(jrIj)dx: (1)

Minimization of this functional, using a gradient descent method, leads to a

nonlinear di�usion process:

It = div(J(rI)) = div(c(jrIj2)rI); (2)

where J(�) is the 
ux function given by

J(rI) :
= c(�)rI = 	0(jrIj); (3)

and c(�) is the di�usion coeÆcient. The initial condition is Ijt=0 = I0, where

I0 is in image processing applications the input image. Note that Neumann

boundary conditions are assumed. (For more details see [9, 34, 30] and the

references therein.)

Typical monotonically-increasing denoising potentials attain their mini-

mum at zero. These type of potentials can be divided into two main groups:

convex potentials (e.g. linear di�usion, Charbonnier et al. [6], Beltrami dif-

fusion [28]) and nonconvex potentials (e.g. Perona-Malik [22]). Processes de-

rived from convex potentials are well-posed, and their evolution approaches

the minimum global energy (zero gradient magnitude everywhere, that is

a constant function). Nonconvex potentials retain sturdier edge-preserving

properties, their 
ux is not monotonic and the theory of the proper energy

minimization process is more complex. H�ollig [12] showed the existence of

an in�nite number of solutions to a di�usion process with nonmonotonic


ux (non-convex potential) in one dimension. Yuo et al. [34] analyzed

two-dimensional nonlinear di�usion and proved that processes based on a

nonmonotone 
ux, with the condition

J(jrIj ! inf) = 0; (4)
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Figure 1: Potentials 	(s) plotted as a function of the gradient magnitude s

of some classical processes: (a) Linear forward di�usion (	 = 1

2
s2), (b) TV

(	 = s), (c) Charbonnier et al. (	 =
p
k4 + k2s2 � k2, k = 1), (d) Perona-

Malik (	 = 1

2
k2 log(1+ ( s

k
)2), k = 1), (e) Linear inverse (backward) di�usion

(	 = �1

2
s2).

can have an in�nite number of stationary points of the energy functional

(and therefore are ill-posed). Both studies were restricted to the case of pos-

itive di�usion coeÆcients. Fortunately, it was discovered that regularizing

the process by convolving the gradient with a Gaussian [5], or even by sim-

ple discretization [32], causes the the evolution to converge onto a constant

trivial steady state unique solution. The only apparent instabilities are the

staircasing e�ects [32, 30].

A limiting case between these two groups is the TV norm which has a

non-strictly convex potential. To avoid numerical problems at low gradients,

a small constant is usually added in the calculation of the gradient magnitude

(i.e jrIj is substituted by
pjrIj2 + �2), turning the process into a convex

one. (See Figs. 1,2 for examples of potential of some classical processes and

of the corresponding di�usion coeÆcients.)

In cases of monotonically increasing potentials, the di�usion coeÆcients

are positive. Thus the minimum-maximum principal is satis�ed (the mini-

mum and maximum of I(t) is bounded by that of the initial condition I0, for

all t > 0 in any dimension) and no real sharpening can occur. Note that this

is not the case for numerical schemes of systems with co-dimension > 1[7].

A classical ill-posed sharpening di�usion process is the linear backward (in-

verse) di�usion, where c = const < 0 and, consequently, the potential is
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Figure 2: Di�usion coeÆcients c(s) plotted as a function of the gradient

magnitude s of the above processes: (a) Linear forward di�usion (c = 1), (b)

TV (c = 1

s
), (c) Charbonnier et al. (c = 1p

1+s2=k2
, k = 1), (d) Perona-Malik

(c = 1

1+s2=k2
, k = 1), (e) Linear inverse (backward) di�usion (c = �1).

strictly concave. This process attains its minimum energy at in�nite gradi-

ent magnitudes, causing the explosion of the signal and severe noise ampli-

�cation. We propose a nonconvex non-monotonic potential that overcomes

most of the inverse di�usion instabilities, and yet is still powerful enough

to sharpen, and increase contrast of, important features. We address some

issues of regularization, and illustrate by numerical examples in one and two

dimensions how this process is being implemented. This extends our previ-

ous study ([11]), where we proposed a forward-and-backward (FAB) di�usion

process that shifts between denoising and sharpening, according to the local

gradient features. In [26] the authors presented another study involving non-

convex potential using multiple wells. Their work is fundamentally di�erent

from ours since their potential is based on the signal and not its gradient,

and its purpose is image classi�cation. In [15] some interesting bounds on

the norm of the solution to a gradient dependent inverse-di�usion problem

in one dimension are given. The di�usion coeÆcient, though, is negative

for small gradient magnitudes and the solution, tends, therefore, to create

microstructures.
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2 The Double Well Potential

Well-shaped potentials have been investigated recently in material science

and structural mechanics [10, 2, 17]. In this section we review some of the

mathematical and numerical aspects that are relevant to our case.

A mathematical model for the formation of microstructures in certain al-

loys was presented by Ball and James [2]. The theory is based on an energy

minimization process of a double-well potential. The gradient-dependent po-

tential attains its minimum value at symmetry-related deformation gradients

[10, 2, 17]. In the one-dimensional case, a typical example of such potential

is

	(Ix) = (I2x � k2)2: (5)

Though it was not referred to as a di�usion process, and the outcome of

this energy minimization 
ow does not resemble classical di�usion, it clearly

can be viewed as a nonlinear di�usion process, with the following di�usion

coeÆcient:

c(jIxj) = 4(I2x � k2): (6)

Plots of the potential and of the corresponding di�usion coeÆcient are pro-

vided in Fig. 3. This process is of a FAB type, where for low gradients

jIxj < k it is a backward di�usion process, and for large gradients jIxj > k it is

a forward one. This leads to the sharpening of low gradients and the smooth-

ing of large gradients where both approach a magnitude of k (Ix = �k).
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Figure 3: A double well potential (left) and the corresponding di�usion co-

eÆcient (right).
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As the potential is non-convex and in some parts decreasing (creating

an inverse di�usion 
ow), this process has stimulated a growing number of

studies dealing with both the theoretical and numerical diÆculties that it

entails. (See for example [2, 4, 13, 17, 18, 20]).

Three main methods for numerical solutions of such problems were pro-

posed [13]:

� Convexi�cation of the potential, wherein the original potential is re-

placed by its convex hull. There exists a minimizer and it can be easily

obtained, but at a cost of changing some of the process characteristics.

� Reformulation of the problem using Young measures (a mathematical

tool in the calculus of variations applying a gradient-generated family

of probability measures) [8, 21, 25].

� Direct minimization of the energy functional. In this type of methods,

the process may converge onto a �xed point of a local minimum, be-

cause of the nonconvex nature of the problem. In some applications,

though, those minima are also of interest.

The nature of the double-well and other related problems is quite sim-

ilar to the formalism of our problem, and numerical techniques in image

processing can most likely bene�t from the research conducted in the (math-

ematically and computationally) related �eld. Yet, we should not overlook,

and even stress, the following di�erences from the problem that we have at

hand:

� The potential does not have a "relaxed" region, where gradients are

being smoothed. Speci�cally, constant functions are unstable.

� The basic solution of the crystalline microstructure intends to have

oscillations, which is not desirable in our case.

� The boundary conditions are di�erent (Dirichlet versus Neumann in

our case).

� The motivation is di�erent: We are interested in the evolution of the

input image, whereas analysis of the double-well model focuses on the

�nal minimal energy state with weak relations to any primary initial

evolutionary state.
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3 Energy wells in image processing

3.1 The model

We assume the following general model of our degraded image Y :

Y = B(X) + n; (7)

where X is the original image, B is a smoothing (blurring) transformation,

not necessarily linear or shift invariant and n is some noise, uncorrelated

with the signal (not necessarily white, but not of impulsive nature). We

assume that large gradients (i.e. edges) of X are still relatively large in

B(X). After some sort of smoothing (or discretization) of Y (e.g. ~Y =

Y � g� = B(X) � g� + n � g�) we assume that the gradient magnitude of

the noise is less than an upper bound k with a very high probability (e.g.

Prob(jrn � g�j < k)! 1).

Our objective is to sharpen important edges of the image. That is, edges

with a relative large gradient magnitude in a neighborhood and with suÆcient

support. An imperative requirement is that noise should not be ampli�ed in

the process (and preferably even reduced). The noise ampli�cation byproduct

is a major drawback of many classical sharpening processes.

3.2 The Energy Functional

We choose to minimize the following energy functional:

E(I) =

Z



(W (jrIj) + �F (I) + "R(jr2Ij))dx; (8)

where W is a potential generating a selective sharpening 
ow, F is a convex

�delity criterion related to the input image

F (I) = �(jI � I0j): (9)

We choose here �(s) = 1

2
s2 but other choices are possible (e.g. [19]), and R

is a higher order regularizing term (discussed later).

3.3 The Triple Well Potential

We begin by discussing the shape of the potentialW derived from our objec-

tives. The blurring process smears edges, thus gradients of large magnitude
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decrease. We would like to reverse this process and increase medium gradi-

ents back to their original state. Therefore high gradients should retain a

lower energy state ("cost less energy") and the energy minimization process

would thus be rewarded on edge sharpening.

However, two restrictions must be made: a saturation of the sharpening

should be de�ned so very high gradients would not continue to be sharpened

and cause the explosion of the signal. As we do not want to fall in the category

of the ill-posed problems of condition (4), very large gradients should be even

smoothed slowly, to reduce staircasing.

Secondly, low gradients should not be enhanced in order to avoid as much

as possible noise ampli�cation. Speci�cally, the zero gradient should not

contribute any energy (be of zero potential).

From this discussion it follows that a potential intended for sharpening

should be constructed of three basic attractors (low energy states) in one

dimension: Two for high gradients (of positive and negative values) and

one for the zero gradient. In two dimensions the potential is rotationally

symmetric. This leads to a triple well-shaped potential.

Formally we set the following requirements:

(a) W (0) = 0

(b) W (�s) = W (s); 8s
(c) W (s) � 0; 8s
(d) 9 0 < a < b <1 : W 0(s 2 (a; b)) < 0

(e) W 0(s!1) > 0:

(10)

We suggest the following formula for the potential:

W (s) =
q
k4f + k2fs

2 � k2f �
�

2
k2b log(1 + (

s

kb
)2); (11)

where kf ; kb are parameters determining the lower-gradients forward di�usion

region and the higher-gradients backward di�usion region, respectively (kf <

kb), and � is a weight parameter. In order to ful�ll (10.c) a proper bound on

� should be set.

The corresponding di�usion coeÆcient is

cW (s) =
1p

1 + (s=kf)2
� �

1 + (s=kb)2
: (12)

The potential is 'designed' such that the resultant di�usion coeÆcient is as

simple as possible; After all, we use the di�usion coeÆcient to compute the
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Figure 4: A triple well potential (left) and the corresponding one-dimensional

di�usion coeÆcient (right).


ow in the numerical implementation. (See Fig. 4 for plots of W and cW .)

Other, more sophisticated formulas, with more parameters controlling the

shape of the potential, can be used. In [11] we proposed a di�erent formula

for a forward-backward di�usion coeÆcient. However, in that study the

process was not formulated as a variational problem. As a consequence some

of the stabilizing elements introduced here where not included in the earlier

study, namely, the restriction to positive potentials, the positive di�usivity

at very large gradients and the addition of higher order regularization.

3.4 Higher Order Regularization

We wish to have the 'smoothest' possible energy minimizer in order to reduce

oscillations between the three low energy states. (The reasoning is similar

to what is given in cases of viscosity solutions). For this purpose we add the

following high order convex regularization term to the total energy density

function:

R(jr2Ij) = 1

2
jr2Ij2: (13)

This adds a linear fourth order term�r4I to the gradient descent 
ow, where

r4 is the biharmonic operator (or bi-Laplacian). In the one-dimensional case,

r4I = Ixxxx, whereas in two dimensions r4I = Ixxxx + 2Ixxyy + Iyyyy. The

fourth order linear equation

It = �r4I; Ijt=0 = I0 (14)
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is often referred to as a hyper-di�usion 
ow (also super-di�usion). The funda-

mental solution of (14) in the frequency domain of (!) is e�!
4t, implying that

it is a strongly-low-pass �ltering 
ow that rapidly diminishes high frequency

oscillations. (See Fig.5 for plots of the fundamental solution, and Figs. 6,

7 for examples of hyper-di�usion in one and two dimensions.) A nonlinear

hyper-di�usion term was added in [29] to the standard Perona-Malik equa-

tion [22], to rapidly remove the noise. Note, though, that hyper-di�usion

does not obey the minimum-maximum principle (the spatial fundamental

solution is not strictly positive and resembles more the the ideal lowpass sinc

function (Fig. 5)). Thus, its implementation for denoising purposes should

be executed with care.
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Figure 5: Fundamental solution of the hyper-di�usion (line) vs. di�usion

(dots), plotted in the spatial domain (left) and frequency domains (right).

Whereas the di�usion kernel is a Gaussian in both domains, the hyper-

di�usion has a sharper frequency cuto� and is not strictly positive in the

spatial domain.

The Cahn-Hilliard [3] and Kuramoto-Sivashinsky [14, 27] equations have

a hyper-di�usion term, that is stabilizing inverse di�usion processes (along

with a �rst order nonlinearity). These equations were used to model evolution

of phase �elds in alloy mixtures [3], oscillatory chemical reactions [14] and

fronts of premixed 
ames [27], among other natural phenomenon [24, 33].

It was shown in [33] that a nonlinear forward-backward di�usion process

with higher order regularization (of hyper-di�usion and a viscous relaxation

term) yields a unique solution. Although the equations are di�erent (e.g. the

nonlinear di�usion coeÆcient in [33] is a function of the signal itself (c = c(I))
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Figure 6: Comparison of hyper-di�usion (left) and linear di�usion (right)

processing of noise and a step edge, given at times 0, 0.1, 1, 10 (from top to

bottom, respectively). Hyper-di�usion diminishes high frequency noise more

rapidly, while low frequencies decay slower. Also, hyper-di�usion does not

obey the minimum-maximum principle (most apparent in the step process-

ing).

and not of its gradient), we assume that similar results can be obtained in

our case.
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Figure 7: Hyper-di�usion processing of the cameraman image, given at nor-

malized times 0 (top-left), 0.1 (top-right), 1 (bottom-left), 10.
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3.5 Energy Minimization Flow

We use the following dissipating energy process:

It = div(cW (jrIj2)rI) + �(I0 � I)� "r4I;

Ijt=0 = I0; @nIjx2@
 = 0; @2nIjx2@
 = 0;
(15)

where n is a unit vector, normal to the boundary @
. The second boundary

condition is stated in this case for the fourth order PDE to be well de�ned

(in addition to the standard �rst order Neumann BC).

4 Examples
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Figure 8: Straight edge with additive white Gaussian noise (SNR=7dB).

A one dimensional signal resembling a blurred line (two close step edges

of opposite signs), with additive noise, was processed (Fig. 8. This example

demonstrates a noise removing process sharpens edges. Whereas the two

edges are sharpened, the noise was smoothed out. This process can handle

multiple types of blurs, both isotropic and anisotropic, simultaneously (Fig.

9. This is in contrast to deconvolution techniques that assume either an a pri-

ori known or an unknown (blind deconvolution) stationary (generally linear)

blurring kernel. In 10 a blurred 
ower image is processed. We used adaptive

parameters (kf ; kb) for the triple-well potential, as described in [11], to be

able to sharpen a wide range of gradient edges. Though edges are sharper,

there are still some staircasing e�ects and the edges are not so smooth. A
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a

d

b

c

Figure 9: Processing of a non-stationarily blurred step image, contaminated

by additive noise. Top left: Degradation function, highlighting regions of

di�erent types of degradations: (a) Isotropic Gaussian blur (� = 2), (b)

Anisotropic exponential blur, e�jxj+jyj=5, (c) 5x5 uniform averaging blur, (d)

Jagginess. Regions overlapped by a few �lters were processed by all of them.

Top right - degraded image, with added Gaussian white and uniform white

noise (SNR=15dB). Bottom - processed image.

straightforward improvement could be the implementation of tensor di�usiv-

ity, instead of a scalar one (as in Weickert's coherence enhancing di�usion

[31]), where the sharpening triple-well potential is used across the edge, and

some smoothing potential is used along the edge.

The numerical implementation consists of two iterative stages: at each

time step, the nonlinear FAB di�usion, with a �delity term, is calculated

by a standard 3x3 template. The second stage implements the linear hyper-

di�usion, by convolution with a 5x5 kernel (the minimal support required in

the case of a fourth order equation). For the triple-well potential we used, in

all examples, � = 2:2kf=kb.
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Figure 10: Processing of a Gaussianly blurred 
ower image, (� = 2), con-

taminated by white Gaussian noise (SNR=15dB). Left - input image, right

- processed image.

5 Discussion and Conclusion

The main novelty of this study is the formulation of sharpening processes

according to a variational framework. The task has been to increase impor-

tant gradients (edges), in order to reverse the blurring e�ect, required to be

accomplished without noise ampli�cation and by avoiding signal 'explosion'.

These aims and constraints led us to propose a gradient dependent functional

in the form of a triple-well. The process is a FAB di�usion-type, sharpening

sharp edges while denoising 
uctuations and noise.

To accomplish the desired task, two additional terms were added to the

general energy functional: a standard �delity term and the square magnitude

of the Laplacian, serving as a high order regularizing term. The energy min-

imization of the last term leads to a hyper-di�usion 
ow; a fourth order pro-

cess that entails strong low-pass �ltering, and can attenuate high frequency

oscillations that are characteristic of inverse di�usion. The hyper-di�usion

eliminates the e�ect of enhancement of isolated points, otherwise sharpened

by the triple-well potential. Moreover, edges become more coherent. As the

weight of this smoothing term increases, the sharpening a�ects become less

apparent. Some other a�ects of hyper-di�usion on the general process are

yet to be fully analyzed and understood. Also, e�ort should be directed

to reach conclusions regarding stability properties and well-posedness of the
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equations.

The use of triple-well potentials could be generalized to color images,

using the Beltrami framework, and may be extended to other processes in-

tended for feature sharpening.
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