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Abstra
t

The linear and nonlinear s
ale spa
es are generalized in the 
om-

plex domain, by 
ombining the di�usion equation with the simpli�ed

S
hr�odinger equation. A fundamental solution for the linear 
ase is

developed. Preliminary analysis of the 
omplex di�usion shows that

the generalized di�usion has properties of both forward and inverse

di�usion. An important observation, supported theoreti
ally and nu-

meri
ally, is that the imaginary part 
an serve as an edge dete
tor

(smoothed se
ond derivative s
aled by time), when the 
omplex di�u-

sion 
oeÆ
ient approa
hes the real axis. Based on this observation,

we develop two nonlinear 
omplex pro
esses: a regularized sho
k �lter

for image enhan
ement and a ramp preserving denoising pro
ess.

1 Introdu
tion

The s
ale-spa
e approa
h is by now a well established multi-resolution te
h-

nique for image stru
ture analysis (see [24℄,[14℄,[21℄). Originally, the Gaussian
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2 1 INTRODUCTION

representation introdu
ed a s
ale dimension by 
onvolving the original im-

age with a Gaussian of a standard deviation � =
p
2t. This is analogous to

solving the initial value problem of the linear di�usion equation

It = 
r2
I; Ijt=0 = I0; 0 < 
 2 R; (1)

with a 
onstant di�usion 
oeÆ
ient 
 = 1.

Perona and Malik (P-M) [19℄ proposed a nonlinear adaptive di�usion

pro
ess, wherein di�usion takes pla
e with a variable di�usion 
oeÆ
ient,

in order to redu
e the smoothing e�e
t near edges. The P-M nonlinear

di�usion equation is of the form: It = r � (
(jrIj)rI); 
(�) > 0, where 


is a de
reasing fun
tion of the gradient. Our aim is to see if the linear and

nonlinear s
ale-spa
es 
an be viewed as spe
ial 
ases of a more general theory

of 
omplex di�usion-type pro
esses.

Complex di�usion-type pro
esses are en
ountered, for example in quan-

tum physi
s and in ele
tro-opti
s [6, 17℄. The time dependent S
hr�odinger

equation is the fundamental equation of quantum me
hani
s. In the simplest


ase of a parti
le without spin, subje
ted to an external �eld, it assumes the

form

i~
� 

�t
= �

~
2

2m
� + V (x) ; (2)

where  =  (t; x) is the wave fun
tion of a quantum parti
le, m is the mass

of the parti
le, ~ is Plan
k's 
onstant, V (x) is the potential as a fun
tion

of x, generating the external �eld, � denotes the Lapla
ian and i
:
=
p
�1.

With an initial 
ondition  jt=0 =  0(x), requiring that  (t; �) 2 L2 for ea
h

�xed t, the solution is  (t; �) = e
� i
~
tH
 0, where the exponent is a shorthand

for the 
orresponding power series, and the higher order terms are de�ned

re
ursively by Hn	 = H(Hn�1	). The operator

H = �
~
2

2m
�+ V (x); (3)

known as the S
hr�odinger operator, is interpreted as the energy operator

of the parti
le under 
onsideration. The �rst term is the kineti
 energy

and the se
ond is the potential energy. The duality relations that exist

between the S
hr�odinger equation and di�usion theory have been studied in

[16℄. Another important 
omplex PDE in the �eld of phase transitions of

traveling wave systems is the 
omplex Ginzburg-Landau equation (CGL,[7℄):

ut = (1 + i�)uxx + Ru� (1 + i�)juj2u. Note that although these 
ows have
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a di�usion stru
ture, be
ause of the 
omplex 
oeÆ
ient, they retain wave

propagation properties.

In both 
ases a non-linearity is introdu
ed by adding a potential term

while the kineti
 energy stays linear. In this study we employ the equation

with zero potential (no external �eld) but with non-linear \kineti
 energy".

The role of the potential fun
tion in modeling and 
onstraining the stru
ture

of textures, is investigated in a 
omplementary study.

To better understand the 
omplex 
ow, we study in Se
tion 2 the linear


ase and derive the fundamental solution. We show that for small imaginary

part of the 
omplex di�usion 
oeÆ
ient, the 
ow is approximately a linear

real di�usion for the real part, while the imaginary part behaves like a se
ond

derivative of the real part. Indeed, as expe
ted, the imaginary part is dire
tly

related to the lo
alized phase and, as su
h, to the zero 
rossings of the image.

This is one of the important properties obtained by generalizing the di�usion

approa
h to the 
omplex 
ase. The non-linear 
ase is presented in Se
tions

3 and 4, where the intuition gained from the analysis of the linear 
ase

fa
ilitates the development of two nonlinear 
omplex s
hemes for denoising

of ramps and for enhan
ement by regularized sho
k �lters. The advantages

over known real-valued PDE-based algorithms is demonstrated by means of

one- and two-dimensional examples.

2 Linear Complex Di�usion

2.1 Problem De�nition

We 
onsider the following initial value problem:

It = 
Ixx; t > 0; x 2 R (4)

I(x; 0) = I0 2 R; 
; I 2C :

This equation is a generalization of two equations: the linear di�usion equa-

tion (1) for 
 2 R and the simpli�ed S
hr�odinger equation, i.e. 
 2 I and

V (x) � 0. When 
 2 R there are two 
ases: for 
 > 0 the pro
ess is a

well posed forward di�usion, whereas for 
 < 0 an ill posed inverse di�usion

pro
ess is obtained. In the general 
ase the initial 
ondition I0 is 
omplex.

In this paper we dis
uss the parti
ular 
ase of real initial 
onditions, where

I0 is the original image.
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2.2 The Fundamental Solution

We seek the 
omplex fundamental solution h(x; t) that satis�es the relation:

I(x; t) = I0 � h(x; t); (5)

where � denotes 
onvolution. We rewrite the 
omplex di�usion 
oeÆ
ient

as 

:
= re

i�. Sin
e there does not exist a stable fundamental solution of the

inverse di�usion pro
ess, let us restri
t ourselves to a positive real value of


, that is � 2 (��

2
;
�

2
). Repla
ing the real time variable t by a 
omplex time

� = 
t, we get I� = Ixx, I(x; 0) = I0. This is the linear di�usion equation

with the Gaussian fun
tion being its fundamental solution. Reverting ba
k

to t, we get:

h(x; t) =
C

2
p
�t


e
�x2=(4t
)

; (6)

where C 2 C is a 
onstant 
al
ulated a

ording to the initial 
onditions.

Separating the real and imaginary exponents, we get:

h(x; t) = Ce�i�=2

2
p
�tr

e
�x2 
os �=(4tr)

e
ix2 sin �=(4tr)

= CAg�(x; t)e
i�(x;t)

;

where g�(x; t) =
1p

2��(t)
e
�x2=2�2(t)

;

and

A =
1

p

os �

; �(x; t) =
x
2 sin �

4tr
�

�

2
; �(t) =

r
2tr


os �
: (7)

In order to satisfy the initial 
ondition I(x; 0) = I0 we require

(a)
R1
�1 h(x; t ! 0)dx = 1; that isR1
�1Refh(x; t ! 0)gdx = 1;

R1
�1 Imfh(x; t ! 0)gdx = 0;

(b)
R
jxj>�

jh(x; t ! 0)jdx! 0; where � = �(t); limt!0 �(t) = 0:

(8)

This leads to C = 1 (a detailed proof is in the appendix). The fundamental

solution is therefore:

h(x; t) = Ag�(x; t)e
i�(x;t)

; (9)

with the s
alar A, the Gaussian's standard deviation � and the exponent

fun
tion � as in (7).

Note that the 
onstant C (and 
onsequently Eq. (9)) derived above is

di�erent than the one in [13℄. This 
orre
tion is a 
onsequen
e of the expli
it

initial 
onditions requirements formulated in (8).
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Figure 1: Fundamental solution h�(x; t) as a fun
tion of x and � (t = 1).

Left - real part (hR), right - imaginary part normalized by � (hI=�).
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Figure 2: Fundamental solution h(x; t) as a fun
tion of x for small and large

values of theta (t = 1). Left - small theta (� = �=1000), right - large theta

(� = 7�=16). Top frames - real part, bottom frames - imaginary part.

2.3 Approximate Solution for Small Theta

We will now show that as � ! 0, the imaginary part 
an be regarded as a

smoothed se
ond derivative of the initial signal, fa
tored by � and the time

t. Generalizing the solution to any dimension with Cartesian 
oordinates

x
:
= (x1; x2; ::xN) 2 R

N , I(x; t) 2 C
N , and denoting that in this 
oordinate

system g�(x; t)
:
=
QN

i g�(xi; t), we show that:

lim
�!0

Im(I)

�
= t�g~� � I0; (10)

where Im(�) denotes the imaginary value and ~� = lim�!0� =
p
2t. For


onvenien
e we use here a unit 
omplex di�usion 
oeÆ
ient 
 = e
i�, and

utilize the following approximations for small �: 
os� = 1+O(�2) and sin� =

� + O(�3). Introdu
ing an operator ~H, whi
h is similar to the S
hr�odinger

operator, we 
an write equation (4) (in any dimension) as: It = ~HI; Ijt=0 =
I0, where ~H = 
�. The solution I = e

t ~H
I0, is the equivalent of (5) and (9).

Using the above approximations we get:

I(x; t) = e

t�

I0 = e
ei�t�

I0

� e
(1+i�)t�

I0 = e
t�
e
i�t�

I0

� e
t�(1 + i�t�)I0 = (1 + i�t�)g~� � I0:

A thorough analysis of the approximation error is 
urrently being studied.

Numeri
al experiments show that values of � < 1Æ = �=180 produ
e satis-
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fa
tory results. It is important to point out that empiri
ally the Gaussian

s
ale-spa
e zero 
rossing lo
ation is preserved. Resorting to the presentation

te
hnique of Witkin [24℄, we present in Fig. 5 evolution of the zero-
rossings

of the se
ond derivative of a real di�usion pro
ess versus the imaginary value

zero-
rossing of the 
omplex di�usion. It is observed that the behavior is

very similar (for small �).

Some further insight into the behavior of the small-theta approximation


an be gained by separating the real and imaginary parts of the signal, I =

IR + iII , and di�usion 
oeÆ
ient, 
 = 
R + i
I , into a set of two equations:

�
IRt = 
RIRxx � 
IIIxx ; IRjt=0 = I0

II t = 
IIRxx + 
RIIxx ; II jt=0 = 0;
(11)

where 
R = 
os � , 
I = sin�. The relation IRxx � �IIxx holds for small

enough �, whi
h allows us to omit the se
ond term on the r.h.s. of the �rst

equation, to get the small theta approximation:

IRt � IRxx ; II t � IIxx + �IRxx: (12)

In (12) IR is 
ontrolled by a linear forward di�usion equation, whereas II

is a�e
ted by both the real and imaginary equations. We 
an regard the

imaginary part as II t � �IRxx + ("a smoothing pro
ess"). Here �IRxx is the

dominant part as IIjt=0 = 0.

2.4 Examples

We present examples of 1D and 2D signal pro
essing with 
omplex di�usion

pro
esses 
hara
terized by small and large values of �. In Fig.'s (3) and (4),

a unit step is pro
essed with small and large � ( �

30
;
14�
30

respe
tively). The

same � values are used in the pro
essing of the the 
ameraman image (Fig.'s.

(6) and (7), respe
tively). The qualitative properties of the edge dete
tion

(smoothed se
ond derivative) are 
learly apparent in the imaginary part of

the signals, for the small � value, whereas the real value depi
ts the prop-

erties of ordinary Gaussian s
ale-spa
e. For large �, however, the imaginary

part feeds ba
k into the real part signi�
antly, 
reating wave-like ringing. In

addition, the signal overshoots and undershoots, ex
eeding the original max-

imum and minimum values and thereby violating the "Maximum-minimum"

prin
iple { a property suitable for sharpening purposes, similar to the Ma
h

Bands 
hara
teristi
 of vision [22℄.
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Figure 3: Complex di�usion of a small theta, � = �=30, applied to a step

signal. Left frame - real values, right frame - imaginary values. Ea
h frame

depi
ts from top to bottom: original step, di�used signal after times: 0.025,

0.25, 2.5, 25.

2.5 Generalization to Nonlinear Complex Di�usion

Nonlinear 
omplex pro
esses 
an be derived from the above-mentioned prop-

erties of the linear 
omplex di�usion. In the following se
tions we present

two nonlinear s
hemes, developed for appli
ation in image denoising and en-

han
ement.

3 Ramp Preserving Denoising

Consider the following example of a nonlinear pro
ess, developed for the

purpose of denoising ramp-type edges. Note that the ramp-type edge 
alls

for di�erent pro
essing from the widely-used methods applied in the 
ase of

step-type (singular) edges. We are looking for a general nonlinear di�usion

equation

It =
�

�x
(
(�)Ix) (13)

that preserves smoothed ramps. Following the same logi
 that utilized a gra-

dient measure in order to slow the di�usion near step edges, we sear
h for

a suitable di�erential operator D for ramp edges. Eq. (13) with a di�usion


oeÆ
ient 
(jDIj) whi
h is a de
reasing fun
tion of jDIj 
an be regarded as

a ramp preserving pro
ess. Examining the gradient, as a possible 
andidate,

leads to the 
on
lusion that it is not a suitable measure for two reasons:

The gradient does not dete
t the ramp main features - namely its endpoints;
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Figure 4: Complex di�usion of a large theta, � = 14�=30, applied to a step

signal. Left frame - real values, right frame - imaginary values. Ea
h frame

depi
ts from top to bottom: original step, di�used signal after times: 0.025,

0.25, 2.5, 25.

Moreover, it has a nearly uniform value a
ross the whole smoothed ramp,


ausing a nonlinear gradient-dependent di�usion to slow the di�usion pro-


ess in that region, thus not being able to properly redu
e noise within a ramp

(
reating stair
asing e�e
ts). The se
ond derivative (Lapla
ian in more than

one dimension) is a suitable 
hoi
e: It has a high magnitude near the end-

points and low magnitude elsewhere, and thus enables the nonlinear di�usion

pro
ess to redu
e noise during the o

urren
e of a ramp.

We formulate 
(s) as a de
reasing fun
tion of s:


(s) =
1

1 + s2
; where 
(s) = 
(jIxxj); (14)

and apply it in (13) to yield:

It =
�

�x

�
Ix

1 + I2xx

�
=

1 + I
2
xx � 2IxIxxx

(1 + I2xx)
2

Ixx: (15)

There are two main problems in this s
heme. The �rst and more im-

portant one is the fa
t that noise has very large (theoreti
ally unbounded)

se
ond derivatives. Se
ondly, a numeri
al problem arises as third derivatives

should be 
omputed, with large numeri
al support and noisier derivative es-

timations. These two problems are solved by using the nonlinear 
omplex

di�usion.

Following the results of the linear 
omplex di�usion (Eq. 10), we estimate

by the imaginary value of the signal (divided by �) the smoothed se
ond

derivative multiplied by the time t.
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Figure 5: Comparison of linear real and 
omplex di�usion pro
esses applied

to a noisy step signal. Top frames depi
t (from top to bottom): original

signal, di�used signal after times: 0.25, 2, 10. Bottom frames portray the

evolution of the zero-
rossing lo
ations as a fun
tion of time. Top frames

(from left): real di�usion, real value of 
omplex di�usion � = �=1000, real

value of 
omplex di�usion � = �=10; Bottom frames: zero-
rossing of the

se
ond derivative of the signal 
orresponding to real value, imaginary value

of � = �=1000, and imaginary value of � = �=10, respe
tively.
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Figure 6: Complex di�usion with small theta (� = �=30), applied to the


ameraman image. Top images { real values, bottom images { imaginary

values (fa
tored by 20). Ea
h frame (from left to right): original image,

result obtained after pro
essing time 0.25, 2.5, 25, respe
tively.

Figure 7: Complex di�usion with large theta (� = 14�=30), applied to the


ameraman image. Top sequen
e of images { real values, bottom sequen
e {

imaginary values (fa
tored by 20). Ea
h sequen
e depi
ts from left to right

the original image and the results of the pro
essing after t=0.25, 2.5, and 25,

respe
tively.
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Whereas for small t this terms vanish, allowing stronger di�usion to re-

du
e the noise, with time its in
uen
e in
reases and preserves the ramp fea-

tures of the signal. We should 
omment that this type of se
ond derivative

estimation (i.e. nonlinear-based) is more biased than the one based on linear

pro
essing; The bias in this 
ase is a dire
t 
onsequen
e of the appli
ation of

a nonlinear pro
ess.

The equation for the multidimensional pro
ess is

It = r � (
(Im(I))rI);


(Im(I)) =
e
i�

1 +
�
Im(I)

k�

�2
(16)

where k is a threshold parameter. For the same reasons as those dis
ussed in

the linear 
ase, here too the phase angle � should be small (� << 1). Sin
e

the imaginary part is normalized by �, the pro
ess is not a�e
ted mu
h by


hanging the value of � as long as it stays small.

We implement this 
ow with forward Euler s
heme, using 
entral di�er-

en
e approximation for the spatial derivatives and ba
kward time derivative.

Care should be exer
ised in this implementation in determining what the

time step should be. As dis
ussed earlier, the fundamental solution in
ludes

a Gaussian-type kernel of varian
e �
2 = 2tr


os �
. Implementing Gaussian 
on-

volution of time � , by in
remental time steps where �
2 = 2� , requires the

time step bound to be: �� � 0:25h2 (in 2 dimensions, where h is the spa-

tial step). Here we have � = tr


os �
and hen
e in the general 
ase we require:

�t � 0:25h2 
os �
r
, and for our 
ase where r = 1, h = 1: �t � 0:25 
os �. Thus,

when � approa
hes �=2 it be
omes very ineÆ
ient to implement 
omplex dif-

fusion with in
remental time-steps. For small �, however, there is essentially

no di�eren
e from the 
ase of real di�usion.

In Figs. 8 and 9 we 
ompare denoising of a ramp signal by a P-M pro
ess,

with the performan
e of the above pro
ess (Eq. 16). This example illustrates

that the stair
asing e�e
t, 
hara
teristi
 of the P-M pro
ess, does not o

ur

in pro
essing by our nonlinear 
omplex s
heme. This important di�eren
e

is further substantiated by the results of pro
essing of images that 
ontain

both sharp (i.e. step-type) and soft (i.e. ramp-type) edges, su
h as the one

illustrated in Fig. 10. Note that using the regularized version of the P-M

pro
ess, proposed by Catte et al. [4℄, produ
es stair
asing results similar to

those generated by the original P-M pro
ess.
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Figure 8: Perona-Malik nonlinear di�usion pro
ess applied to a ramp-type

soft edge (k = 0:1). Left - original (top) and noisy ramp signal (white

Gaussian, SNR=15dB) . Middle - denoised signal at times 0:25; 1; 2:5, from

top to bottom, respe
tively. Right - respe
tive values of 
 
oeÆ
ient.
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Figure 9: Nonlinear 
omplex di�usion pro
ess applied to a ramp-type soft

edge (� = �=30, k = 0:07). Left - real values of denoised signal at times

0:25; 1; 2:5, from top to bottom, respe
tively. Middle - respe
tive imaginary

values, right - respe
tive real values of 
.

4 Regularized Sho
k Filters

Most of the resear
h 
on
erning the appli
ation of partial di�erential equa-

tions in the �elds of 
omputer vision and image pro
essing fo
used on paraboli


(di�usion-type) equations. In [18℄ Osher and Rudin proposed a hyperboli


equation 
alled sho
k �lter that 
an serve as a stable deblurring algorithm

approximating de
onvolution.

4.1 Problem Statement

The formulation of the sho
k �lter equation is:

It = �jIxjF (Ixx); (17)
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Figure 10: Nonlinear di�usion of an apple image: Top: left - image 
or-

rupted by white Gaussian noise (SNR=13dB), right - image denoised by

Perona-Malik pro
ess (k = 3,time = 2:5). Bottom: image denoised by 
om-

plex nonlinear s
heme (� = �=30, k = 2, time = 2:5), left - real part, right

- imaginary part. One 
an see that the apple is better denoised in the 
om-

plex s
heme, where stair
asing e�e
ts appear in the P-M pro
ess. Trying

to in
rease the P-M threshold in order to avoid stair
asing 
auses the whole

apple to get di�used with the ba
kground. Another observation is that the


omplex s
heme denoises faster (due to its impli
it time dependen
y).

where F should satisfy F (0) = 0, and F (s)sign(s) � 0. Note: the above

equation and all other evolutionary equations in this se
tion have initial


onditions I(x; 0) = I0(x) and Neumann boundary 
onditions ( �I
�n

= 0 where

n is the dire
tion perpendi
ular to the boundary).

Choosing F (s) = sign(s) yields the 
lassi
al sho
k �lter equation:

It = �sign(Ixx)jIxj; (18)
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generalized in the 2D 
ase to:

It = �sign(I��)jrIj; (19)

where � is the dire
tion of the gradient.

The 1D pro
ess (Eq. 18) is approximated by the following dis
rete

s
heme:

I
n+1
i = I

n
i ��tjDI

n
i jsign(D

2
I
n
i ); (20)

where
DI

n
i

:
= m(�+I

n
i ;��I

n
i )=h;

D
2
I
n
i

:
= (�+��I

n
i )=h

2
;

(21)

m(x; y) is the minmod fun
tion:

m(x; y)
:
=

�
sign(x)min(jxj; jyj); if xy > 0;

0 otherwise;

and ��
:
= �(ui�1 � ui) . The CFL 
ondition in the 1D 
ase is �t � 0:5h.

The sho
k �lter main properties are:

� Sho
ks develop at in
e
tion points (zero 
rossings of se
ond derivative).

� Lo
al extrema remain un
hanged in time. No new lo
al extrema are


reated. The s
heme is total-variation-preserving (TVP).

� The steady state (weak) solution is pie
ewise 
onstant (with dis
onti-

nuities at the in
e
tion points of I0).

� The pro
ess approximates de
onvolution.

Most rigorous analysis and proofs of these properties were based on the dis-


rete s
heme (Eq. 20).

As noted already in the original paper, any noise in the blurred signal

will also be enhan
ed. As a matter of fa
t this pro
ess is extremely sensitive

to noise. Theoreti
ally, in the 
ontinuous domain, any white noise added

to the signal may add an in�nite number of in
e
tion points, disrupting

the pro
ess 
ompletely. Dis
retization may help somewhat, but in general

the same sensitivity to noise o

urs. This is illustrated by 
omparison of the

pro
essing of a noiseless and a noisy sine wave signals (Fig. (11)). Whereas in

the 
ase of a noiseless signal the sho
k �lter well enhan
es the edges, turning

a sine wave into a square-wave signal, in the noisy 
ase - the sho
k �lter

does not enhan
e the edges at all, and the primary result of the pro
essing

is noise ampli�
ation, although only a very low level of white Gaussian noise

was added to the input signal (SNR=40dB).
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Figure 11: Noiseless sine wave signal (top left) and the steady state of its pro-


essing by a sho
k �lter (top right), 
ompared with the pro
essing of a noisy

signal, generated by adding low level of white Gaussian noise{ SNR=40dB

(bottom left). The steady state of the pro
essed noisy signal does not depi
t

any enhan
ement and the only result is noise ampli�
ation (bottom right).

4.2 Previous Related Studies

The noise sensitivity problem is 
riti
al and, unless properly solved, will 
on-

tinue to hinder most pra
ti
al appli
ations of sho
k �lters. Previous studies

addressing this issue 
ame up with several possible solutions. The 
ommon

approa
h to in
rease robustness ([1, 5, 15, 23℄), is to 
onvolve the signal's

se
ond derivative with a lowpass �lter, su
h as a Gaussian:

It = �sign(G� � Ixx)jIxj; (22)

where G� is a Gaussian of standard deviation �.

This is generally not suÆ
ient to over
ome the noise problem: 
onvolving

the signal with a Gaussian of moderate width, does not 
an
el in many


ases the in
e
tion points produ
ed by the noise; Their magnitude be
omes


onsiderably lower, but there is still a 
hange of sign at these points, whi
h

indu
es 
ow in opposite dire
tion on ea
h side of the in
e
tion point. For

very wide (large s
ale) Gaussians, most in
e
tion points produ
ed by the

noise are diminished, but at a 
ost: the lo
ation of the signal's in
e
tion

points be
ome less a

urate. Moreover, the e�e
tive Gaussian's width � is in
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many 
ases larger than the length of the signal, thus 
ausing the boundary


onditions imposed on the pro
ess to strongly a�e
t the solution. Lastly, from

a 
omputational point of view, the 
onvolution pro
ess in ea
h iteration is


ostly.

A more 
omplex approa
h, is to address the issue as an enhan
ing-

denoising problem: smoother parts are denoised, whereas edges are enhan
ed

and sharpened. The main idea is to add some sort of anisotropi
 di�usion

term with an adaptive weight between the sho
k and the di�usion pro
esses.

Alvarez and Mazorra were the �rst to 
ouple sho
k and di�usion, proposing

an equation of the form [1℄:

It = �sign(G� � I��)jrIj+ 
I��; (23)

where 
 is a positive 
onstant and � is the dire
tion perpendi
ular to the

gradient rI. This equation, though, degenerates to (22) in the 1D 
ase and

the di�usion part is lost.

A somewhat similar s
heme, was proposed by Kornprobst et al. [15℄:

It = �r(h�I�� + I��)� �e(1� h� )sign(G� � I��)jrIj; (24)

where h� = h� (jG~� �rIj) = 1 if jG~� �rIj < �; and 0 otherwise. The original

s
heme in
ludes another �delity term �f(I�I0) that is omitted here (as su
h

a term 
an be added to any s
heme).

The pro
ess proposed by Coulon and Arridge [5℄,

It = div(
rI)� (1� 
)�sign(G� � I��)jrIj; (25)

where 
 = exp(� jG~��rIj2

k
) , was originally used for 
lassi�
ation, based on a

probabilisti
 framework. Eq. (25) is the adaptation of the original pro
ess

for dire
t pro
essing of images.

The performan
e of these s
hemes will be later 
ompared with that of the

pro
ess proposed by us.

4.3 The magnitude of the se
ond derivative

To a

ount for the magnitude of the se
ond derivative 
ontrolling the 
ow,

we return to the original sho
k �lter formulation of (17) and employ F (s) =
2
�
ar
tan(as), where a is a parameter that 
ontrols the sharpness of the slope
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near zero. This 'soft-sign' fun
tion is similar to the logisti
 fun
tion, widely

used in neural networks. With this F (s), Eq. (11) be
omes:

It = �
2

�
ar
tan(aIxx)jIxj+ �Ixx: (26)

Consequently, the in
e
tion points are not of equal weight any longer; re-

gions near edges, with large magnitude of the se
ond derivative near the zero


rossing, are sharpened mu
h faster than relatively smooth regions.

4.4 In
orporating time dependen
y into the pro
ess

Another desirable goal is to have an adaptive pro
ess behavior, wherein the

pro
essing 
hara
teristi
s vary as a fun
tion of time in a 
ontrolled manner.

This 
an be a

omplished by expli
itly in
orporating time into Perona-Malik-

type s
hemes [10℄, [19℄. The basi
 idea is that pro
esses 
ontrolled by the

gradient magnitude have large errors in estimating gradients at the initial

stages, where the signal is still very noisy. Therefore it is advantageous to

emphasize the noise �ltering during the initial phase of the pro
essing. In

[10℄ we presented two pro
esses with 
ontinuous transition in time, beginning

with linear di�usion at time zero (primarily denoising), advan
ing towards

high nonlinearity (emphasizing edge-preserving properties).

Similar ideas 
an be applied here too. We would like to de
rease the

sho
k e�e
ts of the pro
ess at the beginning (when estimating the signal's

in
e
tion points is diÆ
ult), allowing the di�usion pro
ess to smooth out the

noise. As the signal further evolves, false in
e
tion points produ
ed by the

noise are greatly redu
ed and the enhan
ing 'sho
k treatment' predominates.

A simple way to indu
e this type of transition in pro
essing properties is to

multiply the se
ond derivative of the sho
k 
omponent by the time t:

It = �
2

�
ar
tan(aIxxt)jIxj+ �Ixx: (27)

This type of pro
ess will be implemented in a new 
omplex PDE formu-

lation.

4.5 Complex Sho
k Filters

From (27) and (10) we derive the 
omplex sho
k �lter formulation for small

�:

It = �
2

�
ar
tan(aIm(

I

�
))jIxj+ �Ixx; (28)
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Figure 12: Noisy sine wave signal pro
essed by several algorithms. From

top, left: signal with additive white Gaussian noise (SNR=5dB), right: ideal

steady state sho
k result; left: steady state of original sho
k �lter Eq. (18),

right: steady state of Eq. (22) - Gaussian 
onvolved derivative, � = 100;

left: evolution of Eq. (24) - Kornprobst et al. (�r = 1; �e = 0:5; � =

0:04; � = 30; ~� = 5), right: evolution of Eq. (25) - Coulon-Arridge (k =

0:01; � = 1; � = 30; ~� = 5); bottom: evolution of Eq. (28) - 
omplex sho
k

�lter (our proposed s
heme), left: real values, right: imaginary values, (j�j =
0:5; a = 5). All evolution graphs depi
t 3 time points along the evolution:

300 (dotted), 3,000 (dashed) and 30,000 (solid) iteration.
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where � = re
i�is a 
omplex s
alar. Equation (28) is implemented by the

same dis
rete approximations (ex
ept that all 
omputations are 
omplex);

the CFL 
ondition in 1D is �t � 0:5h2 
os �
r
.

Generalization of the 
omplex sho
k �lter to 2D yields:

It = �
2

�
ar
tan(aIm(

I

�
))jrIj+ �I�� + ~�I��; (29)

where ~� is a real s
alar.

The 
omplex �lter is an elegant way to avoid the need for 
onvolving

the signal in ea
h iteration and still get smoothed estimations. The time

dependen
y of the pro
ess is inherent, without the need to expli
itly use

the evolution time t. Moreover, the imaginary value re
eives feedba
k{ it is

smoothed by the di�usion and enhan
ed at sharp transitions by the sho
k

and, thus, 
an better 
ontrol the pro
ess than a simple se
ond derivative.

To illustrate the advantages a�orded by the pro
essing with the 
omplex

sho
k �lter, its performan
e in pro
essing of noisy sine wave signals is 
om-

pared with those of the sho
k �lters des
ribed earlier (Fig. 12). The original

sho
k �lter (Eq. (18)) and the one with Gaussian-
onvolved se
ond derivative

(Eq. (22)) are 
learly not suitable for this task. The pro
ess of Kornprobst

et al. (Eq. (24)) performs relatively well but the minimum and maximum of

the signal de
ay quite fast and the deblurring is not so profound. Moreover

there are 5 parameters that need to be adjusted and from our experien
e the

performan
e of the pro
ess is quite sensitive to a few of them (espe
ially to

�). The pro
ess of Coulon and Arridge (Eq. (25)) behaves somewhat better

in this 1D example; it produ
es sho
k stru
tures but is strongly a�e
ted by

the boundary 
onditions and tends to move the sho
ks towards the 
enter.

Our 
omplex sho
k �lter s
heme (Eq. (28)) seems to produ
e the best result,


ompared to the ideal result shown at the top right. The s
heme is stable in

time, de
ays slowly and well preserves the lo
ation of the sho
ks. Another

advantage of our s
heme is that we basi
ally have only two parameters: j�j
and a (in the 1D 
ase, three in 2D). Note that as the pro
ess is normalized,

it is not a�e
ted by the exa
t value of � as long as it is small. In all our

experiments we took � = 0:01. At the bottom right we 
an see the imaginary

value of the 
omplex pro
ess (the s
ale is 100 times smaller). One 
an see

that the zero 
rossings are at the in
e
tion points and that the energy of the

imaginary value energy grows with time, thus enabling good preservation of

the sho
ks.
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Figure 13: Top row (from left): Original tools image, Gaussian blurred (� =

2) with added white Gaussian noise (SNR=15dB), ideal sho
k response (of

blurred image without the noise); middle row: evolutions of Eq. (23) -

Alvarez-Mazorra (� = 10), Eq. (24) - Kornprobst et al. (�r = 0:2; �e =

0:1; � = 0:2; � = 10; ~� = 1), Eq. (25) - Coulon-Arridge (k = 5; � = 1; � =

10; ~� = 1); bottom: evolution of Eq. (28) - 
omplex pro
ess, left: real values,

middle: imaginary values (j�j = 0:1; ~� = 0:5; a = 0:5), right: grey level

values generated along a horizontal line in the 
ourse of 
omplex evolution of

the pro
ess (thin line 1 iteration; bold line 100 iterations). All of the image

evolution results are presented for 100 iterations (dt=0.1).
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In Fig. 13 a blurred and noisy tools image is pro
essed. In the 
ase

of two dimensional signals, only the s
heme of Kornprobst et at. and our


omplex s
heme produ
e a

eptable results at this levels of noise (Fig. 13).

Pro
essing with the 
omplex pro
ess results, however, in sharper edges and

is 
loser to the sho
k pro
ess, as 
an be observed in a 
omparison to an ideal

sho
k response to a blurred image without noise (top-right image of Fig. 13).

The 
ombined enhan
ement-denoising properties of the 
omplex s
heme are

highlighted by the display of one horizontal line of the image (bottom right

of Fig. 13).

5 Con
luding remarks and dis
ussion

Generalization of the linear and nonlinear s
ale spa
es to the 
omplex do-

main, by 
ombining the di�usion equation with the simpli�ed S
hr�odinger

equation, further enhan
es the theoreti
al framework of the di�usion-type

PDE approa
h to image pro
essing. The fundamental solution of the lin-

ear 
omplex di�usion indi
ates that there exists a stable pro
ess over the

wide range of the angular orientation of the 
omplex di�usion 
oeÆ
ient,

� 2 (��

2
;
�

2
), that restri
ts the real value of the 
oeÆ
ient to be positive. [Is-

sues related to aspe
ts of inverse di�usion in image pro
essing, i.e. negative

real-valued di�usion 
oeÆ
ient, are dealt with elsewhere [11℄.℄

In the 
ase of small �, two observations 
on
erning the properties of the

real and imaginary 
omponents of the 
omplex di�usion pro
ess are relevant

with regard to the appli
ation of this pro
ess in image pro
essing: The real

fun
tion is e�e
tively de
oupled from the imaginary one, and behaves like

a real linear di�usion pro
ess, whereas the imaginary part approximates a

smoothed se
ond derivative of the real part, and 
an therefore well serve as

an edge dete
tor. In other words, the single 
omplex di�usion pro
ess gen-

erates simultaneously an approximation of both the Gaussian and Lapla
ian

pyramids [3℄ (at dis
rete set of temporal sampling points), i.e. the s
ale-

spa
e.

Although the nonlinear s
heme remains to be further analyzed and better

understood, nonlinear 
omplex di�usion-type pro
esses 
an be derived from

the properties of the 
omplex linear di�usion, and applied in image pro
essing

and enhan
ement. Su
h are the two nonlinear 
omplex s
hemes developed

for denoising of ramp edges and for regularization of sho
k �lters. In the �rst

s
heme, the nonlinear 
omplex di�usion pro
ess avoids the stair
asing e�e
t
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that is 
hara
teristi
 of the P-M pro
ess [19℄ and of the regularized version

of the P-M pro
ess proposed by Catte et al. [4℄. (See Figures 8, 9 and 10).

The se
ond proposed s
heme, presents a 
omplex sho
k �lter that over
omes

problems inherent in the enhan
ement of noisy signals and images by the

sho
k �lters [18℄ and its various variants [1, 5, 15, 23℄. The 
omplex s
heme

sharpens signals and images similarly to the ideal sho
k response, even under

noisy 
onditions that either minimize or eliminate the sho
k e�e
t in the 
ase

of appli
ation of one of the variants of the sho
k s
heme. Under su
h noisy


onditions, the original Osher-Rudin sho
k �lter does not enhan
e the signal

at all and even even further degrades it (insofar as the SNR 
ondition is


on
erned, see Fig. 11).

Generalization of the linear and nonlinear s
ale spa
es by 
ombining the

di�usion equation with the S
hr�odinger equation, lends itself to interesting

wider range of s
hemes, appropriate for superresolution and enhan
ement of

fully textured images, by proper sele
tion and lo
al adaptation of the po-

tential, introdu
ed into the generalized s
heme by the S
hr�odinger equation.

The 
on
i
ting requirements of sharpening (i.e. edge enhan
ement) and �l-

tering (i.e. noise redu
tion) are in this and other related studies (e.g. [19℄,

[11℄) simultaneously a

omplished by invoking the smoothness assumption,

i.e. a pixel is assumed to belong to either a smooth area or an edge. (This

does not have to be an all-or none de
ision and, in fa
t as in this study

too the di�usion 
oeÆ
ient or other pro
essing parameters are a fun
tion of

the gradient). This assumption, that is generally valid over a wide range of

lo
i distributed over natural images, is violated over highly textured areas.

The latter are 
onsequently either smoothed, eliminating important features


hara
teristi
 of natural images, or give rise to erroneous edges as a result

of the sharpening properties of the pro
ess. The potential 
omponent of the

S
hr�odinger equation add the extra dependent variable that 
an take 
are of

�ne periodi
 stru
tures, 
hara
teristi
 of various textures, sin
e it imposes

periodi
 
onstraints on the solution. However, in su
h an implementation

the potential has to be lo
ally adopted to the the various texture properties

distributed over the image. This extra fa
et of the the generalized 
omplex

s
heme is 
urrently under investigation.
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APPENDIX

A Properties of the fundamental solution

We analyze the fundamental solution (9) to the problem stated in (4). The

kernel 
an be separated to its real and imaginary parts. As the initial 
on-

dition I0 is real valued in this study, the real part of I(x; t) is a�e
ted only

by the real kernel and the imaginary part of I(x; t) is a�e
ted only by the

imaginary kernel:

I(x; t) = IR + iII = I0 � h = I0 � hR + iI0 � hI ; (30)

where h = hR + ihI . (we get IR = I0 � hR, II = I0 � hI).
The nature of the 
omplex kernel do not 
hange through the evolution,

the kernel is basi
ally res
aled a

ording the the time t (or to �). Therefore

we 
an analyze a few 
hara
teristi
s of the kernel as a fun
tion of � for

di�erent values of �. In the following se
tions we give some of the major


hara
teristi
s of the real and imaginary kernels. An important result is

that the approximation for small � of the real part to a Gaussian and of the

imaginary part to its se
ond derivative, s
aled by time is of the order O(�2).

In se
tion A.3 we give a detailed 
al
ulation of the 
onstant di
tated by

the initial 
onditions.

A.1 Properties of hR

hR(x; t) = Ag�(x; t) 
os�(x; t): (31)
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A.1.1 Operator norm

The norm (maximum ampli�
ation of the input signal) is bounded by:

kThRk1 � khRk1 see se
tion A.4 (norm of a 
onvolution operator)

=
R1
�1 jhR(x)jdx

=
R1
�1 jAg�(x) 
os�(x)jdx

� A
R1
�1 jg�(x)jdx

= A = (
os �)�1=2

= 1 + �2

4
+O(�4):

(32)

A.1.2 E�e
tively positive kernels

One requirement of the linear s
ale-spa
e is the non-
reation of new lo
al

extrema along the s
ale-spa
e in 1D. Kernels obeying this requirement should

be positive. In 1D this is equivalent for the operator to be 
ausal, (see

Lindeberg, Romeny, "Linear s
ale-spa
e", in [21℄).

As this kernel is not positive at all points, we would like to 
he
k how


lose is it to a positive kernel. A �rst "positivity 
riterion" 
an be to 
al
ulate

the smallest point x0 > 0 where hR is not positive, that is hR(x0) = 0. As

hR(0) > 0 and hR is symmetri
, this means that hR(x) > 0 for all x 2
(�x0; x0).

hR(x0) = Ag�(x0) 
os�(x0) = 0

) 
os�(x0) = 0

) �(x0) =
x20 sin �

4tr
� �

2
= �

2

x0 =
p
2(� + �)tr= sin �

= �

p
(� + �) 
ot � (�2 = 2tr= 
os �):

(33)

For example, for � = 1Æ = �
180

we get x0 = 13:4�.

Trying to be more pre
ise in measuring the relation between hR and a

positive kernel we de�ne a positivity measure �1 � Ph � 1 of a kernel h as

follows:

Ph
:
=

R1
�1 h(x)dxR1
�1 jh(x)jdx

: (34)

We would like to determine the 
onditions for hR to be e�e
tively positive,

that is 1� � � PhR � 1.



26 A PROPERTIES OF THE FUNDAMENTAL SOLUTION

In order to give some bound on PhR let us �rst �nd a point x1 > 0 where


os�(x1) = 0:5:


os�(x1) = 1
2

)
�(x1) =

x21 sin �

4tr
� �

2
= �

3
)

x1 =
q

2
3
(2� + 3�)tr= sin �

= �

q
(2
3
� + �) 
ot � (�2 = 2tr= 
os �):

(35)

For this bound we assume x1 > �, so it is valid for 1:28rad = 73Æ > � > 0.

We use the relations:

(�) �
R1
x1

g�(x)dx �
R1
x1

g�(x) 
os�(x)dx �
R1
x1

g�(x)dx

(as � 1 � 
os�(x) � 1; g� > 0);

(��) 1
8
� 1

2

R �

0
g�(x)dx � 1

2

R x1

0
g�(x)dx �

R x1

0
g�(x) 
os�(x)dx

(as 
os�(x) � 1
2
for all x 2 [0; x1℄ , and x1 > �):

PhR =
R
1

�1
hR(x)dxR

1

�1
jhR(x)jdx

=
R
1

0
g�(x) 
os�(x)dxR

1

0
jg�(x) 
os�(x)jdx

(symmetri
 kernel)

=

R x1
0 g�(x) 
os�(x)dx+

R
1

x1
g�(x) 
os�(x)dx

R x1
0 jg�(x) 
os�(x)jdx+

R
1

x1
jg�(x) 
os�(x)jdx

=
1+

R
1

x1
g�(x) 
os�(x)dx

R x1
0

g�(x) 
os�(x)dx

1+

R
1

x1
jg�(x) 
os�(x)jdx

R x1
0

g�(x) 
os�(x)dx

�
1�

R
1

x1
g�(x)dx

Rx1
0

g�(x) 
os�(x)dx

1+

R
1

x1
g�(x)dx

Rx1
0

g�(x) 
os�(x)dx

(�)

�
1�8

R
1

x1
g�(x)dx

1+8
R
1

x1
g�(x)dx

(��)

=
1�8�(�x1=�)
1+8�(�x1=�)

(36)

where

�(x) =

Z x

�1
g�=1(s)ds (37)

Example (a): for � = 1Æ = �

180
we get x1 = 11�, and PhR �

1�8�(�11)
1+8�(�11) =

1� 2 � 10�27.
Example (b): for PhR > 0:99999; (� < 10�5) we require � < 5Æ.
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Figure 14: Top: hR (full line) and g� (dashed line) as a fun
tion of x. Bottom:

The di�eren
e fun
tion fR = hR � g�. � = �
10
.
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Figure 15: Top: dR, bottom dR=�
2 as a fun
tion of �, (t = 1).
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Figure 16: dR as a fun
tion of t, (� = �=1000). Top: t 2 (0; 10), bottom

t 2 (5; 500).
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A.1.3 Distan
e between hR and a Gaussian

Let us denote fR as the di�eren
e fun
tion between hR and a Gaussian at

time t (see Fig. 14):

fR(x; t) = hR(x; t)� g�(x; t): (38)

We de�ne the distan
e between hR and g� as the norm of the 
onvolution

operator with kernel fR, that is:

d(hR; g�)
:
= dR

:
= kTfRk1 (39)

First we will obtain the order of this distan
e as a fun
tion of theta:

dR = kTfRk1 � kfRk1 =
R1
�1 jhR(x)� g�(x)jdx

=
R1
�1 jAg�(x) 
os�(x)� g�(x)jdx

= 2
R1
0
jA 
os(x

2 sin �
4tr

� �
2
)� 1jg�(x)dx

= 2
R1
0
jA 
os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx

= 2
R a

0
jA 
os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx+ 2

R1
a
jA 
os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx

< 2
R a

0
jA 
os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx+ 2(A+ 1)

R1
a

g�(x)dx

< 2maxx2[0;a℄ [jA 
os(x
2 tan �
2�2

� �

2
)� 1j℄

R a

0
g�(x)dx + 4A�(�a=�)

< 2maxx2[0;a℄ [jA 
os(x
2 tan �
2�2

� �

2
)� 1j℄ + 4A�(�a=�)

(40)

Let us 
hoose a =
p
n� su
h that n > 1 and �(a)� �

2
(therefore 
os(�(x)) >

0 for any x 2 [0; a℄). Re
alling that tan � = � +O(�3) and A = 1+O(�2) we

get

maxx2[0;a℄ [jA 
os(x
2 tan �
2�2

� �

2
)� 1j℄

= max fmaxx2[0;a℄ (A 
os(x
2 tan �
2�2

� �

2
)� 1);maxx2[0;a℄�(A 
os(x

2 tan �
2�2

� �

2
)� 1)g

= max f(maxx2[0;a℄(A 
os(x
2 tan �
2�2

� �

2
))� 1); (1�minx2[0;a℄(A 
os(x

2 tan �
2�2

� �

2
)))g

= max f(A� 1); (1� (A 
os(a
2 tan �
2�2

� �

2
)))g

= max f(A� 1); (1� A 
os(n tan �
2

� �

2
))g

= max f(A� 1); (1� A 
os(~n� +O(�3)))g
= max fO(�2); (1� (1 +O(�2))(1� ~n2

�
2
=2 +O(�4)))g

= O(�2):

(41)

The term �(�a=�) = �(�
p
n) de
ays exponentially with the growth of n.

Therefore we 
on
lude that

dR = O(�2) (42)
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The exa
t analyti
al expression of dR is a 
ompli
ated fun
tion of � and

t. Therefore we show graphi
ally a bound on dR as a fun
tion of � (Fig.

15) and its behavior as a fun
tion of time (Fig. 16) (to whi
h we have no

analyti
al expression). Main results:

dR < 0:5�2; 8� 2 (0;
�

10
); 8t (43)

dR(t0) > dR(t1); 8t1 > t0 > 0; 8� 2 (0;
�

10
) (44)

The approximation error de
reases in proportion to �
2 (for small �) and

de
reases monotoni
ally with time.

A.1.4 De�nite integral of hRZ 1

�1
hR(x; t)dx = 1 (45)

for all �; t (follows dire
tly from se
tion A.3).

A.2 properties of hI

A.2.1 small theta approximation from fundamental solution

The se
ond derivative of a Gaussian (in 1D) is:

�2

�x2
g�(x) = �2

�x2
Ce
�x2=2�2 ,where C = 1p

2��(t)

= �

�x
(� C

x

�2
e
�x2=2�2)

= C
x2��2
�4

e
�x2=2�2

:

(46)

Small theta approximation of hI :

hI = Ag�(x; t) sin�(x; t)

= 1p

os �

Ce
�x2=2�2 sin (x

2 sin �
4tr

� �

2
)

� Ce
�x2=2�2 sin (x

2�
4tr
� �

2
) (

p

os � � 1 ; sin � � �)

� Ce
�x2=2�2(

�(x2�2tr)

4tr
) ( sin(x

2�
4tr
� �

2
) � (x

2�
4tr
� �

2
))

� Ce
�x2=2�2(

�(x2��2)
2�2

) (�2 = 2tr= 
os � � 2tr)

= C
x2��2
�4

e
�x2=2�2

�tr

= �2

�x2
g�(x)�tr:

(47)
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g�t (dashed line) as a fun
tion of x.

Bottom: The di�eren
e fun
tion fI . � = �
10
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A.2.2 Approximation error

We follow the same logi
 of the real part analysis. Let us denote fI as the

di�eren
e fun
tion between hI=� and a Gaussian's 2nd derivative s
aled by

time (see Fig. 17):

fI(x; t) =
hI(x; t)

�
�

�
2

�x2
g�(x; t)t: (48)

We de�ne the distan
e as the norm of the 
onvolution operator with kernel

fI :

d(hI=�;
�
2

�x2
g�t)

:
= dI

:
= kTfIk1 (49)

The analyti
al result follows the same arguments as in the real part se
-

tion and we get

dI = O(�2) (50)

The graphi
al results (Figs. 18, 19) lead also to similar 
hara
teristi
s:

dI < 0:5�2; 8� 2 (0;
�

10
); 8t: (51)

dI(t0) > dI(t1); 8t1 > t0 > 0; 8� 2 (0;
�

10
): (52)

We 
an 
on
lude that the approximation error de
reases in proportion to �
2

(for small �) and de
reases monotoni
ally with time.

A.2.3 De�nite integral of hIZ 1

�1
hI(x; t)dx = 0 (53)

for all �; t (follows dire
tly from se
tion A.3).

A.3 Constant of the fundamental solution

The basi
 fundamental solution is

h(x; t) = Ke
�x2 
os �

4tr e
ix

2 sin �
4tr

= Ke
� x2

2�2 e
ix

2 tan �

2�2 ; (�2 = 2tr

os �

)

= jKjei'e�
x2

2�2 e
ix

2 tan �

2�2

= jKje�
x2

2�2 e
i(x

2 tan �

2�2
+')

(54)
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As the 
onstant K is 
omplex, there are two degrees of freedom: the

magnitude jKj and the phase '. The initial 
ondition di
tates:

(a)
R1
�1 h(x; t! 0)dx = 1;

(b)
R
jxj>� jh(x; t! 0)jdx! 0; where � = �(t ! 0)! 0:

(55)

From (55.a) we require

(a:I)
R1
�1 hR(x; t! 0)dx = 1

(a:II)
R1
�1 hI(x; t! 0)dx = 0:

(56)

We will see that (55.b) is satis�ed readily from the Gaussian properties.

First, let us �nd the de�nite integral of hR. We use the following de�nite

integral formula (taken from [20℄ p. 459, Eq. 16):

R1
�1 e

�ax2+bx+
f sin j 
os g(px2 + qx+ r)dx =
p
�

(a2+p2)1=4
exp [

a(b2�4a
)�(aq2�2bpq+4
p2

4(a2+p2)
℄f sin j 
os g[1

2
ar
tan p

a
� p(q2�4pr)�(b2p�2abq+4a2r)

4(a2+p2)
℄

(57)

From (54) we write hR as

hR = jKje�
x2

2�2 
os (x
2 tan �
2�2

+ ')

= jKje�ax2 
os (px2 + ')

where a = 1
2�2

; p = tan �
2�2

:

(58)

From (57) and (58) we get:R1
�1 hR(x)dx =

jKj
R1
�1 e

�ax2 
os (px2 + ')dx =

= jKj
p
�

(a2+p2)1=4

os [1

2
ar
tan p

a
+ '℄

= jKj
p
2��

(1+tan2 �)1=4

os (1

2
� + ')

= jKj
p
2� 
os �� 
os (1

2
� + '):

(59)

Similarly R1
�1 hI(x)dx =

jKj
R1
�1 e

�ax2 sin (px2 + ')dx =

= jKj
p
2� 
os �� sin (1

2
� + '):

(60)

From (56.a:II) and (60) we get

' = �
1

2
� ; (61)
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from (56.a:I) and (59) we get

jKj =
1

p
2� 
os ��

; (62)

hen
e the 
onstant K is

K =
e
�i 1

2
�

p
2� 
os ��

: (63)

Requirement (55.b) is retained due to the 
hara
teristi
s of the Gaussian

fun
tion. Let us 
hoose � =
p
�. Therefore �(t) = (2tr= 
os �)1=4 !t!0 0 for

any j�j < �
2
. And we get

R
jxj>�

jh(x)jdx =R
jxj>�

j 1p

os �

g�(x)e
i�(x)jdx =

2p

os �

R �p�
�1 g�(x)dx =

2p

os �

�(� 1p
�
)!�!0 0 :

(64)

In the 
on
ise writing of the fundamental solution (9) K is a
tually sep-

arated to 3 multipli
ative parts in the expressions of A, g� and �. Therefore

C = 1.

A.4 Norm of a 
onvolution operator

Let f be a bounded fun
tion max(f) < M , (f 2 L
1). Let Th be the


onvolution operator with the kernel h (h 2 L
1): Thf = h � f . We want to

prove the relation

kThk1 � khk1: (65)

Let us �rst �nd a bound on kThfk1. We use Young's inequality

kf � hkr � kfkpkhkq;
f 2 L

p
; g 2 L

q
; r

�1 = p
�1 + q

�1 � 1; (1 � p; q; r � 1):
(66)

Setting p =1; q = 1; r =1 we get

kThfk1 � kfk1khk1: (67)
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To get some intuition of why this is true, we show step by step, the one-

dimensional 
ase:

kThfk1 = kh � fk1 = maxx jh � f j
= maxx j

R1
�1 h(x� y)f(y)dyj

� maxx
R1
�1 jh(x� y)f(y)jdy

� maxx
R1
�1 jh(x� y)jmaxy(jf(y)j)dy

= kfk1maxx
R1
�1 jh(y)jdy

= kfk1khk1:

Re
alling the de�nition of a norm of a linear operator

kThk1
:
= sup
kfk6=0

kThfk1
kfk1

we let

fsup = argsupkfk6=0
kThfk1
kfk1

so that kThfsupk1 = kThk1kfsupk1. Using the relation of (67) we get

kThk1kfsupk1 � khk1kfsupk1:
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