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Abstrat

The linear and nonlinear sale spaes are generalized in the om-

plex domain, by ombining the di�usion equation with the simpli�ed

Shr�odinger equation. A fundamental solution for the linear ase is

developed. Preliminary analysis of the omplex di�usion shows that

the generalized di�usion has properties of both forward and inverse

di�usion. An important observation, supported theoretially and nu-

merially, is that the imaginary part an serve as an edge detetor

(smoothed seond derivative saled by time), when the omplex di�u-

sion oeÆient approahes the real axis. Based on this observation,

we develop two nonlinear omplex proesses: a regularized shok �lter

for image enhanement and a ramp preserving denoising proess.

1 Introdution

The sale-spae approah is by now a well established multi-resolution teh-

nique for image struture analysis (see [24℄,[14℄,[21℄). Originally, the Gaussian
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2 1 INTRODUCTION

representation introdued a sale dimension by onvolving the original im-

age with a Gaussian of a standard deviation � =
p
2t. This is analogous to

solving the initial value problem of the linear di�usion equation

It = r2
I; Ijt=0 = I0; 0 <  2 R; (1)

with a onstant di�usion oeÆient  = 1.

Perona and Malik (P-M) [19℄ proposed a nonlinear adaptive di�usion

proess, wherein di�usion takes plae with a variable di�usion oeÆient,

in order to redue the smoothing e�et near edges. The P-M nonlinear

di�usion equation is of the form: It = r � ((jrIj)rI); (�) > 0, where 

is a dereasing funtion of the gradient. Our aim is to see if the linear and

nonlinear sale-spaes an be viewed as speial ases of a more general theory

of omplex di�usion-type proesses.

Complex di�usion-type proesses are enountered, for example in quan-

tum physis and in eletro-optis [6, 17℄. The time dependent Shr�odinger

equation is the fundamental equation of quantum mehanis. In the simplest

ase of a partile without spin, subjeted to an external �eld, it assumes the

form

i~
� 

�t
= �

~
2

2m
� + V (x) ; (2)

where  =  (t; x) is the wave funtion of a quantum partile, m is the mass

of the partile, ~ is Plank's onstant, V (x) is the potential as a funtion

of x, generating the external �eld, � denotes the Laplaian and i
:
=
p
�1.

With an initial ondition  jt=0 =  0(x), requiring that  (t; �) 2 L2 for eah

�xed t, the solution is  (t; �) = e
� i
~
tH
 0, where the exponent is a shorthand

for the orresponding power series, and the higher order terms are de�ned

reursively by Hn	 = H(Hn�1	). The operator

H = �
~
2

2m
�+ V (x); (3)

known as the Shr�odinger operator, is interpreted as the energy operator

of the partile under onsideration. The �rst term is the kineti energy

and the seond is the potential energy. The duality relations that exist

between the Shr�odinger equation and di�usion theory have been studied in

[16℄. Another important omplex PDE in the �eld of phase transitions of

traveling wave systems is the omplex Ginzburg-Landau equation (CGL,[7℄):

ut = (1 + i�)uxx + Ru� (1 + i�)juj2u. Note that although these ows have
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a di�usion struture, beause of the omplex oeÆient, they retain wave

propagation properties.

In both ases a non-linearity is introdued by adding a potential term

while the kineti energy stays linear. In this study we employ the equation

with zero potential (no external �eld) but with non-linear \kineti energy".

The role of the potential funtion in modeling and onstraining the struture

of textures, is investigated in a omplementary study.

To better understand the omplex ow, we study in Setion 2 the linear

ase and derive the fundamental solution. We show that for small imaginary

part of the omplex di�usion oeÆient, the ow is approximately a linear

real di�usion for the real part, while the imaginary part behaves like a seond

derivative of the real part. Indeed, as expeted, the imaginary part is diretly

related to the loalized phase and, as suh, to the zero rossings of the image.

This is one of the important properties obtained by generalizing the di�usion

approah to the omplex ase. The non-linear ase is presented in Setions

3 and 4, where the intuition gained from the analysis of the linear ase

failitates the development of two nonlinear omplex shemes for denoising

of ramps and for enhanement by regularized shok �lters. The advantages

over known real-valued PDE-based algorithms is demonstrated by means of

one- and two-dimensional examples.

2 Linear Complex Di�usion

2.1 Problem De�nition

We onsider the following initial value problem:

It = Ixx; t > 0; x 2 R (4)

I(x; 0) = I0 2 R; ; I 2C :

This equation is a generalization of two equations: the linear di�usion equa-

tion (1) for  2 R and the simpli�ed Shr�odinger equation, i.e.  2 I and

V (x) � 0. When  2 R there are two ases: for  > 0 the proess is a

well posed forward di�usion, whereas for  < 0 an ill posed inverse di�usion

proess is obtained. In the general ase the initial ondition I0 is omplex.

In this paper we disuss the partiular ase of real initial onditions, where

I0 is the original image.
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2.2 The Fundamental Solution

We seek the omplex fundamental solution h(x; t) that satis�es the relation:

I(x; t) = I0 � h(x; t); (5)

where � denotes onvolution. We rewrite the omplex di�usion oeÆient

as 
:
= re

i�. Sine there does not exist a stable fundamental solution of the

inverse di�usion proess, let us restrit ourselves to a positive real value of

, that is � 2 (��

2
;
�

2
). Replaing the real time variable t by a omplex time

� = t, we get I� = Ixx, I(x; 0) = I0. This is the linear di�usion equation

with the Gaussian funtion being its fundamental solution. Reverting bak

to t, we get:

h(x; t) =
C

2
p
�t

e
�x2=(4t)

; (6)

where C 2 C is a onstant alulated aording to the initial onditions.

Separating the real and imaginary exponents, we get:

h(x; t) = Ce�i�=2

2
p
�tr

e
�x2 os �=(4tr)

e
ix2 sin �=(4tr)

= CAg�(x; t)e
i�(x;t)

;

where g�(x; t) =
1p

2��(t)
e
�x2=2�2(t)

;

and

A =
1

p
os �

; �(x; t) =
x
2 sin �

4tr
�

�

2
; �(t) =

r
2tr

os �
: (7)

In order to satisfy the initial ondition I(x; 0) = I0 we require

(a)
R1
�1 h(x; t ! 0)dx = 1; that isR1
�1Refh(x; t ! 0)gdx = 1;

R1
�1 Imfh(x; t ! 0)gdx = 0;

(b)
R
jxj>�

jh(x; t ! 0)jdx! 0; where � = �(t); limt!0 �(t) = 0:

(8)

This leads to C = 1 (a detailed proof is in the appendix). The fundamental

solution is therefore:

h(x; t) = Ag�(x; t)e
i�(x;t)

; (9)

with the salar A, the Gaussian's standard deviation � and the exponent

funtion � as in (7).

Note that the onstant C (and onsequently Eq. (9)) derived above is

di�erent than the one in [13℄. This orretion is a onsequene of the expliit

initial onditions requirements formulated in (8).
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Figure 1: Fundamental solution h�(x; t) as a funtion of x and � (t = 1).

Left - real part (hR), right - imaginary part normalized by � (hI=�).
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Figure 2: Fundamental solution h(x; t) as a funtion of x for small and large

values of theta (t = 1). Left - small theta (� = �=1000), right - large theta

(� = 7�=16). Top frames - real part, bottom frames - imaginary part.

2.3 Approximate Solution for Small Theta

We will now show that as � ! 0, the imaginary part an be regarded as a

smoothed seond derivative of the initial signal, fatored by � and the time

t. Generalizing the solution to any dimension with Cartesian oordinates

x
:
= (x1; x2; ::xN) 2 R

N , I(x; t) 2 C
N , and denoting that in this oordinate

system g�(x; t)
:
=
QN

i g�(xi; t), we show that:

lim
�!0

Im(I)

�
= t�g~� � I0; (10)

where Im(�) denotes the imaginary value and ~� = lim�!0� =
p
2t. For

onveniene we use here a unit omplex di�usion oeÆient  = e
i�, and

utilize the following approximations for small �: os� = 1+O(�2) and sin� =

� + O(�3). Introduing an operator ~H, whih is similar to the Shr�odinger

operator, we an write equation (4) (in any dimension) as: It = ~HI; Ijt=0 =
I0, where ~H = �. The solution I = e

t ~H
I0, is the equivalent of (5) and (9).

Using the above approximations we get:

I(x; t) = e
t�

I0 = e
ei�t�

I0

� e
(1+i�)t�

I0 = e
t�
e
i�t�

I0

� e
t�(1 + i�t�)I0 = (1 + i�t�)g~� � I0:

A thorough analysis of the approximation error is urrently being studied.

Numerial experiments show that values of � < 1Æ = �=180 produe satis-
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fatory results. It is important to point out that empirially the Gaussian

sale-spae zero rossing loation is preserved. Resorting to the presentation

tehnique of Witkin [24℄, we present in Fig. 5 evolution of the zero-rossings

of the seond derivative of a real di�usion proess versus the imaginary value

zero-rossing of the omplex di�usion. It is observed that the behavior is

very similar (for small �).

Some further insight into the behavior of the small-theta approximation

an be gained by separating the real and imaginary parts of the signal, I =

IR + iII , and di�usion oeÆient,  = R + iI , into a set of two equations:

�
IRt = RIRxx � IIIxx ; IRjt=0 = I0

II t = IIRxx + RIIxx ; II jt=0 = 0;
(11)

where R = os � , I = sin�. The relation IRxx � �IIxx holds for small

enough �, whih allows us to omit the seond term on the r.h.s. of the �rst

equation, to get the small theta approximation:

IRt � IRxx ; II t � IIxx + �IRxx: (12)

In (12) IR is ontrolled by a linear forward di�usion equation, whereas II

is a�eted by both the real and imaginary equations. We an regard the

imaginary part as II t � �IRxx + ("a smoothing proess"). Here �IRxx is the

dominant part as IIjt=0 = 0.

2.4 Examples

We present examples of 1D and 2D signal proessing with omplex di�usion

proesses haraterized by small and large values of �. In Fig.'s (3) and (4),

a unit step is proessed with small and large � ( �

30
;
14�
30

respetively). The

same � values are used in the proessing of the the ameraman image (Fig.'s.

(6) and (7), respetively). The qualitative properties of the edge detetion

(smoothed seond derivative) are learly apparent in the imaginary part of

the signals, for the small � value, whereas the real value depits the prop-

erties of ordinary Gaussian sale-spae. For large �, however, the imaginary

part feeds bak into the real part signi�antly, reating wave-like ringing. In

addition, the signal overshoots and undershoots, exeeding the original max-

imum and minimum values and thereby violating the "Maximum-minimum"

priniple { a property suitable for sharpening purposes, similar to the Mah

Bands harateristi of vision [22℄.
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Figure 3: Complex di�usion of a small theta, � = �=30, applied to a step

signal. Left frame - real values, right frame - imaginary values. Eah frame

depits from top to bottom: original step, di�used signal after times: 0.025,

0.25, 2.5, 25.

2.5 Generalization to Nonlinear Complex Di�usion

Nonlinear omplex proesses an be derived from the above-mentioned prop-

erties of the linear omplex di�usion. In the following setions we present

two nonlinear shemes, developed for appliation in image denoising and en-

hanement.

3 Ramp Preserving Denoising

Consider the following example of a nonlinear proess, developed for the

purpose of denoising ramp-type edges. Note that the ramp-type edge alls

for di�erent proessing from the widely-used methods applied in the ase of

step-type (singular) edges. We are looking for a general nonlinear di�usion

equation

It =
�

�x
((�)Ix) (13)

that preserves smoothed ramps. Following the same logi that utilized a gra-

dient measure in order to slow the di�usion near step edges, we searh for

a suitable di�erential operator D for ramp edges. Eq. (13) with a di�usion

oeÆient (jDIj) whih is a dereasing funtion of jDIj an be regarded as

a ramp preserving proess. Examining the gradient, as a possible andidate,

leads to the onlusion that it is not a suitable measure for two reasons:

The gradient does not detet the ramp main features - namely its endpoints;
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Figure 4: Complex di�usion of a large theta, � = 14�=30, applied to a step

signal. Left frame - real values, right frame - imaginary values. Eah frame

depits from top to bottom: original step, di�used signal after times: 0.025,

0.25, 2.5, 25.

Moreover, it has a nearly uniform value aross the whole smoothed ramp,

ausing a nonlinear gradient-dependent di�usion to slow the di�usion pro-

ess in that region, thus not being able to properly redue noise within a ramp

(reating stairasing e�ets). The seond derivative (Laplaian in more than

one dimension) is a suitable hoie: It has a high magnitude near the end-

points and low magnitude elsewhere, and thus enables the nonlinear di�usion

proess to redue noise during the ourrene of a ramp.

We formulate (s) as a dereasing funtion of s:

(s) =
1

1 + s2
; where (s) = (jIxxj); (14)

and apply it in (13) to yield:

It =
�

�x

�
Ix

1 + I2xx

�
=

1 + I
2
xx � 2IxIxxx

(1 + I2xx)
2

Ixx: (15)

There are two main problems in this sheme. The �rst and more im-

portant one is the fat that noise has very large (theoretially unbounded)

seond derivatives. Seondly, a numerial problem arises as third derivatives

should be omputed, with large numerial support and noisier derivative es-

timations. These two problems are solved by using the nonlinear omplex

di�usion.

Following the results of the linear omplex di�usion (Eq. 10), we estimate

by the imaginary value of the signal (divided by �) the smoothed seond

derivative multiplied by the time t.
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Figure 5: Comparison of linear real and omplex di�usion proesses applied

to a noisy step signal. Top frames depit (from top to bottom): original

signal, di�used signal after times: 0.25, 2, 10. Bottom frames portray the

evolution of the zero-rossing loations as a funtion of time. Top frames

(from left): real di�usion, real value of omplex di�usion � = �=1000, real

value of omplex di�usion � = �=10; Bottom frames: zero-rossing of the

seond derivative of the signal orresponding to real value, imaginary value

of � = �=1000, and imaginary value of � = �=10, respetively.
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Figure 6: Complex di�usion with small theta (� = �=30), applied to the

ameraman image. Top images { real values, bottom images { imaginary

values (fatored by 20). Eah frame (from left to right): original image,

result obtained after proessing time 0.25, 2.5, 25, respetively.

Figure 7: Complex di�usion with large theta (� = 14�=30), applied to the

ameraman image. Top sequene of images { real values, bottom sequene {

imaginary values (fatored by 20). Eah sequene depits from left to right

the original image and the results of the proessing after t=0.25, 2.5, and 25,

respetively.
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Whereas for small t this terms vanish, allowing stronger di�usion to re-

due the noise, with time its inuene inreases and preserves the ramp fea-

tures of the signal. We should omment that this type of seond derivative

estimation (i.e. nonlinear-based) is more biased than the one based on linear

proessing; The bias in this ase is a diret onsequene of the appliation of

a nonlinear proess.

The equation for the multidimensional proess is

It = r � ((Im(I))rI);

(Im(I)) =
e
i�

1 +
�
Im(I)

k�

�2
(16)

where k is a threshold parameter. For the same reasons as those disussed in

the linear ase, here too the phase angle � should be small (� << 1). Sine

the imaginary part is normalized by �, the proess is not a�eted muh by

hanging the value of � as long as it stays small.

We implement this ow with forward Euler sheme, using entral di�er-

ene approximation for the spatial derivatives and bakward time derivative.

Care should be exerised in this implementation in determining what the

time step should be. As disussed earlier, the fundamental solution inludes

a Gaussian-type kernel of variane �
2 = 2tr

os �
. Implementing Gaussian on-

volution of time � , by inremental time steps where �
2 = 2� , requires the

time step bound to be: �� � 0:25h2 (in 2 dimensions, where h is the spa-

tial step). Here we have � = tr

os �
and hene in the general ase we require:

�t � 0:25h2 os �
r
, and for our ase where r = 1, h = 1: �t � 0:25 os �. Thus,

when � approahes �=2 it beomes very ineÆient to implement omplex dif-

fusion with inremental time-steps. For small �, however, there is essentially

no di�erene from the ase of real di�usion.

In Figs. 8 and 9 we ompare denoising of a ramp signal by a P-M proess,

with the performane of the above proess (Eq. 16). This example illustrates

that the stairasing e�et, harateristi of the P-M proess, does not our

in proessing by our nonlinear omplex sheme. This important di�erene

is further substantiated by the results of proessing of images that ontain

both sharp (i.e. step-type) and soft (i.e. ramp-type) edges, suh as the one

illustrated in Fig. 10. Note that using the regularized version of the P-M

proess, proposed by Catte et al. [4℄, produes stairasing results similar to

those generated by the original P-M proess.
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Figure 8: Perona-Malik nonlinear di�usion proess applied to a ramp-type

soft edge (k = 0:1). Left - original (top) and noisy ramp signal (white

Gaussian, SNR=15dB) . Middle - denoised signal at times 0:25; 1; 2:5, from

top to bottom, respetively. Right - respetive values of  oeÆient.
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Figure 9: Nonlinear omplex di�usion proess applied to a ramp-type soft

edge (� = �=30, k = 0:07). Left - real values of denoised signal at times

0:25; 1; 2:5, from top to bottom, respetively. Middle - respetive imaginary

values, right - respetive real values of .

4 Regularized Shok Filters

Most of the researh onerning the appliation of partial di�erential equa-

tions in the �elds of omputer vision and image proessing foused on paraboli

(di�usion-type) equations. In [18℄ Osher and Rudin proposed a hyperboli

equation alled shok �lter that an serve as a stable deblurring algorithm

approximating deonvolution.

4.1 Problem Statement

The formulation of the shok �lter equation is:

It = �jIxjF (Ixx); (17)
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Figure 10: Nonlinear di�usion of an apple image: Top: left - image or-

rupted by white Gaussian noise (SNR=13dB), right - image denoised by

Perona-Malik proess (k = 3,time = 2:5). Bottom: image denoised by om-

plex nonlinear sheme (� = �=30, k = 2, time = 2:5), left - real part, right

- imaginary part. One an see that the apple is better denoised in the om-

plex sheme, where stairasing e�ets appear in the P-M proess. Trying

to inrease the P-M threshold in order to avoid stairasing auses the whole

apple to get di�used with the bakground. Another observation is that the

omplex sheme denoises faster (due to its impliit time dependeny).

where F should satisfy F (0) = 0, and F (s)sign(s) � 0. Note: the above

equation and all other evolutionary equations in this setion have initial

onditions I(x; 0) = I0(x) and Neumann boundary onditions ( �I
�n

= 0 where

n is the diretion perpendiular to the boundary).

Choosing F (s) = sign(s) yields the lassial shok �lter equation:

It = �sign(Ixx)jIxj; (18)
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generalized in the 2D ase to:

It = �sign(I��)jrIj; (19)

where � is the diretion of the gradient.

The 1D proess (Eq. 18) is approximated by the following disrete

sheme:

I
n+1
i = I

n
i ��tjDI

n
i jsign(D

2
I
n
i ); (20)

where
DI

n
i

:
= m(�+I

n
i ;��I

n
i )=h;

D
2
I
n
i

:
= (�+��I

n
i )=h

2
;

(21)

m(x; y) is the minmod funtion:

m(x; y)
:
=

�
sign(x)min(jxj; jyj); if xy > 0;

0 otherwise;

and ��
:
= �(ui�1 � ui) . The CFL ondition in the 1D ase is �t � 0:5h.

The shok �lter main properties are:

� Shoks develop at inetion points (zero rossings of seond derivative).

� Loal extrema remain unhanged in time. No new loal extrema are

reated. The sheme is total-variation-preserving (TVP).

� The steady state (weak) solution is pieewise onstant (with disonti-

nuities at the inetion points of I0).

� The proess approximates deonvolution.

Most rigorous analysis and proofs of these properties were based on the dis-

rete sheme (Eq. 20).

As noted already in the original paper, any noise in the blurred signal

will also be enhaned. As a matter of fat this proess is extremely sensitive

to noise. Theoretially, in the ontinuous domain, any white noise added

to the signal may add an in�nite number of inetion points, disrupting

the proess ompletely. Disretization may help somewhat, but in general

the same sensitivity to noise ours. This is illustrated by omparison of the

proessing of a noiseless and a noisy sine wave signals (Fig. (11)). Whereas in

the ase of a noiseless signal the shok �lter well enhanes the edges, turning

a sine wave into a square-wave signal, in the noisy ase - the shok �lter

does not enhane the edges at all, and the primary result of the proessing

is noise ampli�ation, although only a very low level of white Gaussian noise

was added to the input signal (SNR=40dB).
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Figure 11: Noiseless sine wave signal (top left) and the steady state of its pro-

essing by a shok �lter (top right), ompared with the proessing of a noisy

signal, generated by adding low level of white Gaussian noise{ SNR=40dB

(bottom left). The steady state of the proessed noisy signal does not depit

any enhanement and the only result is noise ampli�ation (bottom right).

4.2 Previous Related Studies

The noise sensitivity problem is ritial and, unless properly solved, will on-

tinue to hinder most pratial appliations of shok �lters. Previous studies

addressing this issue ame up with several possible solutions. The ommon

approah to inrease robustness ([1, 5, 15, 23℄), is to onvolve the signal's

seond derivative with a lowpass �lter, suh as a Gaussian:

It = �sign(G� � Ixx)jIxj; (22)

where G� is a Gaussian of standard deviation �.

This is generally not suÆient to overome the noise problem: onvolving

the signal with a Gaussian of moderate width, does not anel in many

ases the inetion points produed by the noise; Their magnitude beomes

onsiderably lower, but there is still a hange of sign at these points, whih

indues ow in opposite diretion on eah side of the inetion point. For

very wide (large sale) Gaussians, most inetion points produed by the

noise are diminished, but at a ost: the loation of the signal's inetion

points beome less aurate. Moreover, the e�etive Gaussian's width � is in
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many ases larger than the length of the signal, thus ausing the boundary

onditions imposed on the proess to strongly a�et the solution. Lastly, from

a omputational point of view, the onvolution proess in eah iteration is

ostly.

A more omplex approah, is to address the issue as an enhaning-

denoising problem: smoother parts are denoised, whereas edges are enhaned

and sharpened. The main idea is to add some sort of anisotropi di�usion

term with an adaptive weight between the shok and the di�usion proesses.

Alvarez and Mazorra were the �rst to ouple shok and di�usion, proposing

an equation of the form [1℄:

It = �sign(G� � I��)jrIj+ I��; (23)

where  is a positive onstant and � is the diretion perpendiular to the

gradient rI. This equation, though, degenerates to (22) in the 1D ase and

the di�usion part is lost.

A somewhat similar sheme, was proposed by Kornprobst et al. [15℄:

It = �r(h�I�� + I��)� �e(1� h� )sign(G� � I��)jrIj; (24)

where h� = h� (jG~� �rIj) = 1 if jG~� �rIj < �; and 0 otherwise. The original

sheme inludes another �delity term �f(I�I0) that is omitted here (as suh

a term an be added to any sheme).

The proess proposed by Coulon and Arridge [5℄,

It = div(rI)� (1� )�sign(G� � I��)jrIj; (25)

where  = exp(� jG~��rIj2

k
) , was originally used for lassi�ation, based on a

probabilisti framework. Eq. (25) is the adaptation of the original proess

for diret proessing of images.

The performane of these shemes will be later ompared with that of the

proess proposed by us.

4.3 The magnitude of the seond derivative

To aount for the magnitude of the seond derivative ontrolling the ow,

we return to the original shok �lter formulation of (17) and employ F (s) =
2
�
artan(as), where a is a parameter that ontrols the sharpness of the slope
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near zero. This 'soft-sign' funtion is similar to the logisti funtion, widely

used in neural networks. With this F (s), Eq. (11) beomes:

It = �
2

�
artan(aIxx)jIxj+ �Ixx: (26)

Consequently, the inetion points are not of equal weight any longer; re-

gions near edges, with large magnitude of the seond derivative near the zero

rossing, are sharpened muh faster than relatively smooth regions.

4.4 Inorporating time dependeny into the proess

Another desirable goal is to have an adaptive proess behavior, wherein the

proessing harateristis vary as a funtion of time in a ontrolled manner.

This an be aomplished by expliitly inorporating time into Perona-Malik-

type shemes [10℄, [19℄. The basi idea is that proesses ontrolled by the

gradient magnitude have large errors in estimating gradients at the initial

stages, where the signal is still very noisy. Therefore it is advantageous to

emphasize the noise �ltering during the initial phase of the proessing. In

[10℄ we presented two proesses with ontinuous transition in time, beginning

with linear di�usion at time zero (primarily denoising), advaning towards

high nonlinearity (emphasizing edge-preserving properties).

Similar ideas an be applied here too. We would like to derease the

shok e�ets of the proess at the beginning (when estimating the signal's

inetion points is diÆult), allowing the di�usion proess to smooth out the

noise. As the signal further evolves, false inetion points produed by the

noise are greatly redued and the enhaning 'shok treatment' predominates.

A simple way to indue this type of transition in proessing properties is to

multiply the seond derivative of the shok omponent by the time t:

It = �
2

�
artan(aIxxt)jIxj+ �Ixx: (27)

This type of proess will be implemented in a new omplex PDE formu-

lation.

4.5 Complex Shok Filters

From (27) and (10) we derive the omplex shok �lter formulation for small

�:

It = �
2

�
artan(aIm(

I

�
))jIxj+ �Ixx; (28)
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Figure 12: Noisy sine wave signal proessed by several algorithms. From

top, left: signal with additive white Gaussian noise (SNR=5dB), right: ideal

steady state shok result; left: steady state of original shok �lter Eq. (18),

right: steady state of Eq. (22) - Gaussian onvolved derivative, � = 100;

left: evolution of Eq. (24) - Kornprobst et al. (�r = 1; �e = 0:5; � =

0:04; � = 30; ~� = 5), right: evolution of Eq. (25) - Coulon-Arridge (k =

0:01; � = 1; � = 30; ~� = 5); bottom: evolution of Eq. (28) - omplex shok

�lter (our proposed sheme), left: real values, right: imaginary values, (j�j =
0:5; a = 5). All evolution graphs depit 3 time points along the evolution:

300 (dotted), 3,000 (dashed) and 30,000 (solid) iteration.
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where � = re
i�is a omplex salar. Equation (28) is implemented by the

same disrete approximations (exept that all omputations are omplex);

the CFL ondition in 1D is �t � 0:5h2 os �
r
.

Generalization of the omplex shok �lter to 2D yields:

It = �
2

�
artan(aIm(

I

�
))jrIj+ �I�� + ~�I��; (29)

where ~� is a real salar.

The omplex �lter is an elegant way to avoid the need for onvolving

the signal in eah iteration and still get smoothed estimations. The time

dependeny of the proess is inherent, without the need to expliitly use

the evolution time t. Moreover, the imaginary value reeives feedbak{ it is

smoothed by the di�usion and enhaned at sharp transitions by the shok

and, thus, an better ontrol the proess than a simple seond derivative.

To illustrate the advantages a�orded by the proessing with the omplex

shok �lter, its performane in proessing of noisy sine wave signals is om-

pared with those of the shok �lters desribed earlier (Fig. 12). The original

shok �lter (Eq. (18)) and the one with Gaussian-onvolved seond derivative

(Eq. (22)) are learly not suitable for this task. The proess of Kornprobst

et al. (Eq. (24)) performs relatively well but the minimum and maximum of

the signal deay quite fast and the deblurring is not so profound. Moreover

there are 5 parameters that need to be adjusted and from our experiene the

performane of the proess is quite sensitive to a few of them (espeially to

�). The proess of Coulon and Arridge (Eq. (25)) behaves somewhat better

in this 1D example; it produes shok strutures but is strongly a�eted by

the boundary onditions and tends to move the shoks towards the enter.

Our omplex shok �lter sheme (Eq. (28)) seems to produe the best result,

ompared to the ideal result shown at the top right. The sheme is stable in

time, deays slowly and well preserves the loation of the shoks. Another

advantage of our sheme is that we basially have only two parameters: j�j
and a (in the 1D ase, three in 2D). Note that as the proess is normalized,

it is not a�eted by the exat value of � as long as it is small. In all our

experiments we took � = 0:01. At the bottom right we an see the imaginary

value of the omplex proess (the sale is 100 times smaller). One an see

that the zero rossings are at the inetion points and that the energy of the

imaginary value energy grows with time, thus enabling good preservation of

the shoks.
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Figure 13: Top row (from left): Original tools image, Gaussian blurred (� =

2) with added white Gaussian noise (SNR=15dB), ideal shok response (of

blurred image without the noise); middle row: evolutions of Eq. (23) -

Alvarez-Mazorra (� = 10), Eq. (24) - Kornprobst et al. (�r = 0:2; �e =

0:1; � = 0:2; � = 10; ~� = 1), Eq. (25) - Coulon-Arridge (k = 5; � = 1; � =

10; ~� = 1); bottom: evolution of Eq. (28) - omplex proess, left: real values,

middle: imaginary values (j�j = 0:1; ~� = 0:5; a = 0:5), right: grey level

values generated along a horizontal line in the ourse of omplex evolution of

the proess (thin line 1 iteration; bold line 100 iterations). All of the image

evolution results are presented for 100 iterations (dt=0.1).
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In Fig. 13 a blurred and noisy tools image is proessed. In the ase

of two dimensional signals, only the sheme of Kornprobst et at. and our

omplex sheme produe aeptable results at this levels of noise (Fig. 13).

Proessing with the omplex proess results, however, in sharper edges and

is loser to the shok proess, as an be observed in a omparison to an ideal

shok response to a blurred image without noise (top-right image of Fig. 13).

The ombined enhanement-denoising properties of the omplex sheme are

highlighted by the display of one horizontal line of the image (bottom right

of Fig. 13).

5 Conluding remarks and disussion

Generalization of the linear and nonlinear sale spaes to the omplex do-

main, by ombining the di�usion equation with the simpli�ed Shr�odinger

equation, further enhanes the theoretial framework of the di�usion-type

PDE approah to image proessing. The fundamental solution of the lin-

ear omplex di�usion indiates that there exists a stable proess over the

wide range of the angular orientation of the omplex di�usion oeÆient,

� 2 (��

2
;
�

2
), that restrits the real value of the oeÆient to be positive. [Is-

sues related to aspets of inverse di�usion in image proessing, i.e. negative

real-valued di�usion oeÆient, are dealt with elsewhere [11℄.℄

In the ase of small �, two observations onerning the properties of the

real and imaginary omponents of the omplex di�usion proess are relevant

with regard to the appliation of this proess in image proessing: The real

funtion is e�etively deoupled from the imaginary one, and behaves like

a real linear di�usion proess, whereas the imaginary part approximates a

smoothed seond derivative of the real part, and an therefore well serve as

an edge detetor. In other words, the single omplex di�usion proess gen-

erates simultaneously an approximation of both the Gaussian and Laplaian

pyramids [3℄ (at disrete set of temporal sampling points), i.e. the sale-

spae.

Although the nonlinear sheme remains to be further analyzed and better

understood, nonlinear omplex di�usion-type proesses an be derived from

the properties of the omplex linear di�usion, and applied in image proessing

and enhanement. Suh are the two nonlinear omplex shemes developed

for denoising of ramp edges and for regularization of shok �lters. In the �rst

sheme, the nonlinear omplex di�usion proess avoids the stairasing e�et
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that is harateristi of the P-M proess [19℄ and of the regularized version

of the P-M proess proposed by Catte et al. [4℄. (See Figures 8, 9 and 10).

The seond proposed sheme, presents a omplex shok �lter that overomes

problems inherent in the enhanement of noisy signals and images by the

shok �lters [18℄ and its various variants [1, 5, 15, 23℄. The omplex sheme

sharpens signals and images similarly to the ideal shok response, even under

noisy onditions that either minimize or eliminate the shok e�et in the ase

of appliation of one of the variants of the shok sheme. Under suh noisy

onditions, the original Osher-Rudin shok �lter does not enhane the signal

at all and even even further degrades it (insofar as the SNR ondition is

onerned, see Fig. 11).

Generalization of the linear and nonlinear sale spaes by ombining the

di�usion equation with the Shr�odinger equation, lends itself to interesting

wider range of shemes, appropriate for superresolution and enhanement of

fully textured images, by proper seletion and loal adaptation of the po-

tential, introdued into the generalized sheme by the Shr�odinger equation.

The oniting requirements of sharpening (i.e. edge enhanement) and �l-

tering (i.e. noise redution) are in this and other related studies (e.g. [19℄,

[11℄) simultaneously aomplished by invoking the smoothness assumption,

i.e. a pixel is assumed to belong to either a smooth area or an edge. (This

does not have to be an all-or none deision and, in fat as in this study

too the di�usion oeÆient or other proessing parameters are a funtion of

the gradient). This assumption, that is generally valid over a wide range of

loi distributed over natural images, is violated over highly textured areas.

The latter are onsequently either smoothed, eliminating important features

harateristi of natural images, or give rise to erroneous edges as a result

of the sharpening properties of the proess. The potential omponent of the

Shr�odinger equation add the extra dependent variable that an take are of

�ne periodi strutures, harateristi of various textures, sine it imposes

periodi onstraints on the solution. However, in suh an implementation

the potential has to be loally adopted to the the various texture properties

distributed over the image. This extra faet of the the generalized omplex

sheme is urrently under investigation.
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APPENDIX

A Properties of the fundamental solution

We analyze the fundamental solution (9) to the problem stated in (4). The

kernel an be separated to its real and imaginary parts. As the initial on-

dition I0 is real valued in this study, the real part of I(x; t) is a�eted only

by the real kernel and the imaginary part of I(x; t) is a�eted only by the

imaginary kernel:

I(x; t) = IR + iII = I0 � h = I0 � hR + iI0 � hI ; (30)

where h = hR + ihI . (we get IR = I0 � hR, II = I0 � hI).
The nature of the omplex kernel do not hange through the evolution,

the kernel is basially resaled aording the the time t (or to �). Therefore

we an analyze a few harateristis of the kernel as a funtion of � for

di�erent values of �. In the following setions we give some of the major

harateristis of the real and imaginary kernels. An important result is

that the approximation for small � of the real part to a Gaussian and of the

imaginary part to its seond derivative, saled by time is of the order O(�2).

In setion A.3 we give a detailed alulation of the onstant ditated by

the initial onditions.

A.1 Properties of hR

hR(x; t) = Ag�(x; t) os�(x; t): (31)
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A.1.1 Operator norm

The norm (maximum ampli�ation of the input signal) is bounded by:

kThRk1 � khRk1 see setion A.4 (norm of a onvolution operator)

=
R1
�1 jhR(x)jdx

=
R1
�1 jAg�(x) os�(x)jdx

� A
R1
�1 jg�(x)jdx

= A = (os �)�1=2

= 1 + �2

4
+O(�4):

(32)

A.1.2 E�etively positive kernels

One requirement of the linear sale-spae is the non-reation of new loal

extrema along the sale-spae in 1D. Kernels obeying this requirement should

be positive. In 1D this is equivalent for the operator to be ausal, (see

Lindeberg, Romeny, "Linear sale-spae", in [21℄).

As this kernel is not positive at all points, we would like to hek how

lose is it to a positive kernel. A �rst "positivity riterion" an be to alulate

the smallest point x0 > 0 where hR is not positive, that is hR(x0) = 0. As

hR(0) > 0 and hR is symmetri, this means that hR(x) > 0 for all x 2
(�x0; x0).

hR(x0) = Ag�(x0) os�(x0) = 0

) os�(x0) = 0

) �(x0) =
x20 sin �

4tr
� �

2
= �

2

x0 =
p
2(� + �)tr= sin �

= �

p
(� + �) ot � (�2 = 2tr= os �):

(33)

For example, for � = 1Æ = �
180

we get x0 = 13:4�.

Trying to be more preise in measuring the relation between hR and a

positive kernel we de�ne a positivity measure �1 � Ph � 1 of a kernel h as

follows:

Ph
:
=

R1
�1 h(x)dxR1
�1 jh(x)jdx

: (34)

We would like to determine the onditions for hR to be e�etively positive,

that is 1� � � PhR � 1.



26 A PROPERTIES OF THE FUNDAMENTAL SOLUTION

In order to give some bound on PhR let us �rst �nd a point x1 > 0 where

os�(x1) = 0:5:

os�(x1) = 1
2

)
�(x1) =

x21 sin �

4tr
� �

2
= �

3
)

x1 =
q

2
3
(2� + 3�)tr= sin �

= �

q
(2
3
� + �) ot � (�2 = 2tr= os �):

(35)

For this bound we assume x1 > �, so it is valid for 1:28rad = 73Æ > � > 0.

We use the relations:

(�) �
R1
x1

g�(x)dx �
R1
x1

g�(x) os�(x)dx �
R1
x1

g�(x)dx

(as � 1 � os�(x) � 1; g� > 0);

(��) 1
8
� 1

2

R �

0
g�(x)dx � 1

2

R x1

0
g�(x)dx �

R x1

0
g�(x) os�(x)dx

(as os�(x) � 1
2
for all x 2 [0; x1℄ , and x1 > �):

PhR =
R
1

�1
hR(x)dxR

1

�1
jhR(x)jdx

=
R
1

0
g�(x) os�(x)dxR

1

0
jg�(x) os�(x)jdx

(symmetri kernel)

=

R x1
0 g�(x) os�(x)dx+

R
1

x1
g�(x) os�(x)dx

R x1
0 jg�(x) os�(x)jdx+

R
1

x1
jg�(x) os�(x)jdx

=
1+

R
1

x1
g�(x) os�(x)dx

R x1
0

g�(x) os�(x)dx

1+

R
1

x1
jg�(x) os�(x)jdx

R x1
0

g�(x) os�(x)dx

�
1�

R
1

x1
g�(x)dx

Rx1
0

g�(x) os�(x)dx

1+

R
1

x1
g�(x)dx

Rx1
0

g�(x) os�(x)dx

(�)

�
1�8

R
1

x1
g�(x)dx

1+8
R
1

x1
g�(x)dx

(��)

=
1�8�(�x1=�)
1+8�(�x1=�)

(36)

where

�(x) =

Z x

�1
g�=1(s)ds (37)

Example (a): for � = 1Æ = �

180
we get x1 = 11�, and PhR �

1�8�(�11)
1+8�(�11) =

1� 2 � 10�27.
Example (b): for PhR > 0:99999; (� < 10�5) we require � < 5Æ.
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Figure 14: Top: hR (full line) and g� (dashed line) as a funtion of x. Bottom:
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2 as a funtion of �, (t = 1).

0 1 2 3 4 5 6 7 8 9 10
2

2.2

2.4

2.6

2.8

3

3.2
x 10

−6

t

||T
f R||

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

−6

t

||T
f R||

Figure 16: dR as a funtion of t, (� = �=1000). Top: t 2 (0; 10), bottom

t 2 (5; 500).
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A.1.3 Distane between hR and a Gaussian

Let us denote fR as the di�erene funtion between hR and a Gaussian at

time t (see Fig. 14):

fR(x; t) = hR(x; t)� g�(x; t): (38)

We de�ne the distane between hR and g� as the norm of the onvolution

operator with kernel fR, that is:

d(hR; g�)
:
= dR

:
= kTfRk1 (39)

First we will obtain the order of this distane as a funtion of theta:

dR = kTfRk1 � kfRk1 =
R1
�1 jhR(x)� g�(x)jdx

=
R1
�1 jAg�(x) os�(x)� g�(x)jdx

= 2
R1
0
jA os(x

2 sin �
4tr

� �
2
)� 1jg�(x)dx

= 2
R1
0
jA os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx

= 2
R a

0
jA os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx+ 2

R1
a
jA os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx

< 2
R a

0
jA os(x

2 tan �
2�2

� �

2
)� 1jg�(x)dx+ 2(A+ 1)

R1
a

g�(x)dx

< 2maxx2[0;a℄ [jA os(x
2 tan �
2�2

� �

2
)� 1j℄

R a

0
g�(x)dx + 4A�(�a=�)

< 2maxx2[0;a℄ [jA os(x
2 tan �
2�2

� �

2
)� 1j℄ + 4A�(�a=�)

(40)

Let us hoose a =
p
n� suh that n > 1 and �(a)� �

2
(therefore os(�(x)) >

0 for any x 2 [0; a℄). Realling that tan � = � +O(�3) and A = 1+O(�2) we

get

maxx2[0;a℄ [jA os(x
2 tan �
2�2

� �

2
)� 1j℄

= max fmaxx2[0;a℄ (A os(x
2 tan �
2�2

� �

2
)� 1);maxx2[0;a℄�(A os(x

2 tan �
2�2

� �

2
)� 1)g

= max f(maxx2[0;a℄(A os(x
2 tan �
2�2

� �

2
))� 1); (1�minx2[0;a℄(A os(x

2 tan �
2�2

� �

2
)))g

= max f(A� 1); (1� (A os(a
2 tan �
2�2

� �

2
)))g

= max f(A� 1); (1� A os(n tan �
2

� �

2
))g

= max f(A� 1); (1� A os(~n� +O(�3)))g
= max fO(�2); (1� (1 +O(�2))(1� ~n2

�
2
=2 +O(�4)))g

= O(�2):

(41)

The term �(�a=�) = �(�
p
n) deays exponentially with the growth of n.

Therefore we onlude that

dR = O(�2) (42)
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The exat analytial expression of dR is a ompliated funtion of � and

t. Therefore we show graphially a bound on dR as a funtion of � (Fig.

15) and its behavior as a funtion of time (Fig. 16) (to whih we have no

analytial expression). Main results:

dR < 0:5�2; 8� 2 (0;
�

10
); 8t (43)

dR(t0) > dR(t1); 8t1 > t0 > 0; 8� 2 (0;
�

10
) (44)

The approximation error dereases in proportion to �
2 (for small �) and

dereases monotonially with time.

A.1.4 De�nite integral of hRZ 1

�1
hR(x; t)dx = 1 (45)

for all �; t (follows diretly from setion A.3).

A.2 properties of hI

A.2.1 small theta approximation from fundamental solution

The seond derivative of a Gaussian (in 1D) is:

�2

�x2
g�(x) = �2

�x2
Ce
�x2=2�2 ,where C = 1p

2��(t)

= �

�x
(� C

x

�2
e
�x2=2�2)

= C
x2��2
�4

e
�x2=2�2

:

(46)

Small theta approximation of hI :

hI = Ag�(x; t) sin�(x; t)

= 1p
os �

Ce
�x2=2�2 sin (x

2 sin �
4tr

� �

2
)

� Ce
�x2=2�2 sin (x

2�
4tr
� �

2
) (

p
os � � 1 ; sin � � �)

� Ce
�x2=2�2(

�(x2�2tr)

4tr
) ( sin(x

2�
4tr
� �

2
) � (x

2�
4tr
� �

2
))

� Ce
�x2=2�2(

�(x2��2)
2�2

) (�2 = 2tr= os � � 2tr)

= C
x2��2
�4

e
�x2=2�2

�tr

= �2

�x2
g�(x)�tr:

(47)
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A.2.2 Approximation error

We follow the same logi of the real part analysis. Let us denote fI as the

di�erene funtion between hI=� and a Gaussian's 2nd derivative saled by

time (see Fig. 17):

fI(x; t) =
hI(x; t)

�
�

�
2

�x2
g�(x; t)t: (48)

We de�ne the distane as the norm of the onvolution operator with kernel

fI :

d(hI=�;
�
2

�x2
g�t)

:
= dI

:
= kTfIk1 (49)

The analytial result follows the same arguments as in the real part se-

tion and we get

dI = O(�2) (50)

The graphial results (Figs. 18, 19) lead also to similar harateristis:

dI < 0:5�2; 8� 2 (0;
�

10
); 8t: (51)

dI(t0) > dI(t1); 8t1 > t0 > 0; 8� 2 (0;
�

10
): (52)

We an onlude that the approximation error dereases in proportion to �
2

(for small �) and dereases monotonially with time.

A.2.3 De�nite integral of hIZ 1

�1
hI(x; t)dx = 0 (53)

for all �; t (follows diretly from setion A.3).

A.3 Constant of the fundamental solution

The basi fundamental solution is

h(x; t) = Ke
�x2 os �

4tr e
ix

2 sin �
4tr

= Ke
� x2

2�2 e
ix

2 tan �

2�2 ; (�2 = 2tr
os �

)

= jKjei'e�
x2

2�2 e
ix

2 tan �

2�2

= jKje�
x2

2�2 e
i(x

2 tan �

2�2
+')

(54)
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As the onstant K is omplex, there are two degrees of freedom: the

magnitude jKj and the phase '. The initial ondition ditates:

(a)
R1
�1 h(x; t! 0)dx = 1;

(b)
R
jxj>� jh(x; t! 0)jdx! 0; where � = �(t ! 0)! 0:

(55)

From (55.a) we require

(a:I)
R1
�1 hR(x; t! 0)dx = 1

(a:II)
R1
�1 hI(x; t! 0)dx = 0:

(56)

We will see that (55.b) is satis�ed readily from the Gaussian properties.

First, let us �nd the de�nite integral of hR. We use the following de�nite

integral formula (taken from [20℄ p. 459, Eq. 16):

R1
�1 e

�ax2+bx+f sin j os g(px2 + qx+ r)dx =
p
�

(a2+p2)1=4
exp [

a(b2�4a)�(aq2�2bpq+4p2

4(a2+p2)
℄f sin j os g[1

2
artan p

a
� p(q2�4pr)�(b2p�2abq+4a2r)

4(a2+p2)
℄

(57)

From (54) we write hR as

hR = jKje�
x2

2�2 os (x
2 tan �
2�2

+ ')

= jKje�ax2 os (px2 + ')

where a = 1
2�2

; p = tan �
2�2

:

(58)

From (57) and (58) we get:R1
�1 hR(x)dx =

jKj
R1
�1 e

�ax2 os (px2 + ')dx =

= jKj
p
�

(a2+p2)1=4
os [1

2
artan p

a
+ '℄

= jKj
p
2��

(1+tan2 �)1=4
os (1

2
� + ')

= jKj
p
2� os �� os (1

2
� + '):

(59)

Similarly R1
�1 hI(x)dx =

jKj
R1
�1 e

�ax2 sin (px2 + ')dx =

= jKj
p
2� os �� sin (1

2
� + '):

(60)

From (56.a:II) and (60) we get

' = �
1

2
� ; (61)
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from (56.a:I) and (59) we get

jKj =
1

p
2� os ��

; (62)

hene the onstant K is

K =
e
�i 1

2
�

p
2� os ��

: (63)

Requirement (55.b) is retained due to the harateristis of the Gaussian

funtion. Let us hoose � =
p
�. Therefore �(t) = (2tr= os �)1=4 !t!0 0 for

any j�j < �
2
. And we get

R
jxj>�

jh(x)jdx =R
jxj>�

j 1p
os �

g�(x)e
i�(x)jdx =

2p
os �

R �p�
�1 g�(x)dx =

2p
os �

�(� 1p
�
)!�!0 0 :

(64)

In the onise writing of the fundamental solution (9) K is atually sep-

arated to 3 multipliative parts in the expressions of A, g� and �. Therefore

C = 1.

A.4 Norm of a onvolution operator

Let f be a bounded funtion max(f) < M , (f 2 L
1). Let Th be the

onvolution operator with the kernel h (h 2 L
1): Thf = h � f . We want to

prove the relation

kThk1 � khk1: (65)

Let us �rst �nd a bound on kThfk1. We use Young's inequality

kf � hkr � kfkpkhkq;
f 2 L

p
; g 2 L

q
; r

�1 = p
�1 + q

�1 � 1; (1 � p; q; r � 1):
(66)

Setting p =1; q = 1; r =1 we get

kThfk1 � kfk1khk1: (67)
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To get some intuition of why this is true, we show step by step, the one-

dimensional ase:

kThfk1 = kh � fk1 = maxx jh � f j
= maxx j

R1
�1 h(x� y)f(y)dyj

� maxx
R1
�1 jh(x� y)f(y)jdy

� maxx
R1
�1 jh(x� y)jmaxy(jf(y)j)dy

= kfk1maxx
R1
�1 jh(y)jdy

= kfk1khk1:

Realling the de�nition of a norm of a linear operator

kThk1
:
= sup
kfk6=0

kThfk1
kfk1

we let

fsup = argsupkfk6=0
kThfk1
kfk1

so that kThfsupk1 = kThk1kfsupk1. Using the relation of (67) we get

kThk1kfsupk1 � khk1kfsupk1:
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