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Abstract

The linear and nonlinear scale spaces are generalized in the com-
plex domain, by combining the diffusion equation with the simplified
Schrodinger equation. A fundamental solution for the linear case is
developed. Preliminary analysis of the complex diffusion shows that
the generalized diffusion has properties of both forward and inverse
diffusion. An important observation, supported theoretically and nu-
merically, s that the tmaginary part can serve as an edge detector
(smoothed second derivative scaled by time), when the complezx diffu-
ston coefficient approaches the real axis. Based on this observation,
we develop two nonlinear complex processes: a reqularized shock filter
for image enhancement and a ramp preserving denoising process.

1 Introduction

The scale-space approach is by now a well established multi-resolution tech-
nique for image structure analysis (see [24],[14],[21]). Originally, the Gaussian
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2 1 INTRODUCTION

representation introduced a scale dimension by convolving the original im-
age with a Gaussian of a standard deviation ¢ = +/2t. This is analogous to
solving the initial value problem of the linear diffusion equation

I =cV2, Ilo=1I,, 0<ceR, (1)

with a constant diffusion coefficient ¢ = 1.

Perona and Malik (P-M) [19] proposed a nonlinear adaptive diffusion
process, wherein diffusion takes place with a variable diffusion coefficient,
in order to reduce the smoothing effect near edges. The P-M nonlinear
diffusion equation is of the form: I, = V - (¢(|VI|)VI), ¢(-) > 0, where ¢
is a decreasing function of the gradient. Our aim is to see if the linear and
nonlinear scale-spaces can be viewed as special cases of a more general theory
of complex diffusion-type processes.

Complex diffusion-type processes are encountered, for example in quan-
tum physics and in electro-optics [6, 17]. The time dependent Schrédinger
equation is the fundamental equation of quantum mechanics. In the simplest
case of a particle without spin, subjected to an external field, it assumes the
form

oy

where ¢ = 1(t, z) is the wave function of a quantum particle, m is the mass
of the particle, i is Planck’s constant, V(z) is the potential as a function
of , generating the external field, A denotes the Laplacian and i = /—1.
With an initial condition |-y = tg(x), requiring that (¢, ) € Ly for each
fixed ¢, the solution is v (t,-) = e~ 74}, where the exponent is a shorthand
for the corresponding power series, and the higher order terms are defined
recursively by H"U = H(H" '¥). The operator
h2

H = 2mA + V(z), (3)
known as the Schrodinger operator, is interpreted as the energy operator
of the particle under consideration. The first term is the kinetic energy
and the second is the potential energy. The duality relations that exist
between the Schrodinger equation and diffusion theory have been studied in
[16]. Another important complex PDE in the field of phase transitions of
traveling wave systems is the complex Ginzburg-Landau equation (CGL,[7]):
uy = (14 1)Uy + Ru — (1 + ip)|u|?u. Note that although these flows have



a diffusion structure, because of the complex coefficient, they retain wave
propagation properties.

In both cases a non-linearity is introduced by adding a potential term
while the kinetic energy stays linear. In this study we employ the equation
with zero potential (no external field) but with non-linear “kinetic energy”.
The role of the potential function in modeling and constraining the structure
of textures, is investigated in a complementary study.

To better understand the complex flow, we study in Section 2 the linear
case and derive the fundamental solution. We show that for small imaginary
part of the complex diffusion coefficient, the flow is approximately a linear
real diffusion for the real part, while the imaginary part behaves like a second
derivative of the real part. Indeed, as expected, the imaginary part is directly
related to the localized phase and, as such, to the zero crossings of the image.
This is one of the important properties obtained by generalizing the diffusion
approach to the complex case. The non-linear case is presented in Sections
3 and 4, where the intuition gained from the analysis of the linear case
facilitates the development of two nonlinear complex schemes for denoising
of ramps and for enhancement by regularized shock filters. The advantages
over known real-valued PDE-based algorithms is demonstrated by means of
one- and two-dimensional examples.

2 Linear Complex Diffusion

2.1 Problem Definition

We consider the following initial value problem:

I; = cly,, t >0, r €R (4)
I(z;0) = 1 eR ¢ [I€C

This equation is a generalization of two equations: the linear diffusion equa-
tion (1) for ¢ € R and the simplified Schrédinger equation, i.e. ¢ € I and
V(z) = 0. When ¢ € R there are two cases: for ¢ > 0 the process is a
well posed forward diffusion, whereas for ¢ < 0 an ill posed inverse diffusion
process is obtained. In the general case the initial condition [ is complex.
In this paper we discuss the particular case of real initial conditions, where
Iy is the original image.
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2.2 The Fundamental Solution

We seek the complex fundamental solution h(z;t) that satisfies the relation:
I(x;t) = Io x h(x:t), (5)

where * denotes convolution. We rewrite the complex diffusion coefficient
as ¢ = re?. Since there does not exist a stable fundamental solution of the
inverse diffusion process, let us restrict ourselves to a positive real value of
¢, that is 6 € (=5, ). Replacing the real time variable ¢ by a complex time
T = ct, we get I, = I,,, I(x;0) = Iy. This is the linear diffusion equation
with the Gaussian function being its fundamental solution. Reverting back
to ¢, we get: o
X _ —x?/(4tc)

h(z;t) = 2\/%6 : (6)
where ' € C is a constant calculated according to the initial conditions.
Separating the real and imaginary exponents, we get:

hz;t) = cze\;%2efﬁc?se/(4tr)eim2sine/(4tr)
= CAg,(z;t)e=t),

. _ 1 —x%/20%(t)

where ga(x,t)—\/ﬂg(t)e ,

and
1 B 22 sin 6

0 [ 2tr
\/m? Oc(:l?,t) - 4t7“ - 57 U(t) - COSQ‘ (7)

In order to satisfy the initial condition I(z;0) = Iy we require

A=

(@) [0 h(z;t = 0)dz =1, that is
2 Re{h(z;t = 0)}de =1, [T Im{h(z;t — 0)}dz =0, (8)

(b) f|x|>€ |h(z;t — 0)|dz — 0, where € = €(t), limy_o €(t) = 0.

This leads to C' =1 (a detailed proof is in the appendix). The fundamental
solution is therefore: ‘
h(z;t) = Agy(a;t)e’), 9)

with the scalar A, the Gaussian’s standard deviation o and the exponent
function « as in (7).

Note that the constant C' (and consequently Eq. (9)) derived above is
different than the one in [13]. This correction is a consequence of the explicit
initial conditions requirements formulated in (8).
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Figure 1: Fundamental solution hy(z;t) as a function of z and 0 (t = 1).
Left - real part (hg), right - imaginary part normalized by 6 (h;/0).
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Figure 2: Fundamental solution h(z;t) as a function of z for small and large
values of theta (¢ = 1). Left - small theta (¢ = 7/1000), right - large theta
(0 =77 /16). Top frames - real part, bottom frames - imaginary part.

2.3 Approximate Solution for Small Theta

We will now show that as # — 0, the imaginary part can be regarded as a
smoothed second derivative of the initial signal, factored by # and the time
t. Generalizing the solution to any dimension with Cartesian coordinates
X = (21, T9,..x5) € RN, I(x;t) € CV, and denoting that in this coordinate
system g, (x;t) = [ go(w;t), we show that:

éi_r)ré ImT(I) = tAg; * I, (10)
where I'm(-) denotes the imaginary value and 6 = limy_oo = +/2t. For
convenience we use here a unit complex diffusion coefficient ¢ = €, and
utilize the following approximations for small §: cosf = 14+0O(0?) and sinf =
0 + O(6%). Introducing an operator H, which is similar to the Schrédinger
operator, we can write equation (4) (in any dimension) as: I, = HI; I|,_g =
Iy, where H = ¢A. The solution I = e ], is the equivalent of (5) and (9).
Using the above approximations we get:

I(x,t) = et = "B,
~ 6(1+i0)tAIO — etAeiQtAIO
~ e (1 +i0tA) [y = (1 + i0tA)gs x I.

A thorough analysis of the approximation error is currently being studied.
Numerical experiments show that values of § < 1° = /180 produce satis-
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factory results. It is important to point out that empirically the Gaussian
scale-space zero crossing location is preserved. Resorting to the presentation
technique of Witkin [24], we present in Fig. 5 evolution of the zero-crossings
of the second derivative of a real diffusion process versus the imaginary value
zero-crossing of the complex diffusion. It is observed that the behavior is
very similar (for small ).

Some further insight into the behavior of the small-theta approximation
can be gained by separating the real and imaginary parts of the signal, I =
Ir + 17, and diffusion coefficient, ¢ = cg + icy, into a set of two equations:

{ Irs =crlree — C1lree 5 IR|t=0 = Lo (11)
[It - CI[RJ:J: + CRIIJ:J: 7II|t:0 - 07

where cg = cosf , ¢; = sinfl. The relation Ip,, > 61;,, holds for small
enough €, which allows us to omit the second term on the r.h.s. of the first
equation, to get the small theta approximation:

IRt ~ ]R:M; ) IIt ~ I[xx + QIR;U;U (12)

In (12) I is controlled by a linear forward diffusion equation, whereas I;
is affected by both the real and imaginary equations. We can regard the
imaginary part as I7; ~ 0Ig,, + ("a smoothing process”). Here 01,, is the
dominant part as Ir|;—o = 0.

2.4 Examples

We present examples of 1D and 2D signal processing with complex diffusion
processes characterized by small and large values of 6. In Fig.’s (3) and (4),
a unit step is processed with small and large 6 (3, 1:;1—0“ respectively). The
same 6 values are used in the processing of the the cameraman image (Fig.’s.
(6) and (7), respectively). The qualitative properties of the edge detection
(smoothed second derivative) are clearly apparent in the imaginary part of
the signals, for the small # value, whereas the real value depicts the prop-
erties of ordinary Gaussian scale-space. For large #, however, the imaginary
part feeds back into the real part significantly, creating wave-like ringing. In
addition, the signal overshoots and undershoots, exceeding the original max-
imum and minimum values and thereby violating the ” Maximum-minimum”
principle — a property suitable for sharpening purposes, similar to the Mach

Bands characteristic of vision [22].
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Figure 3: Complex diffusion of a small theta, # = 7/30, applied to a step
signal. Left frame - real values, right frame - imaginary values. Each frame
depicts from top to bottom: original step, diffused signal after times: 0.025,
0.25, 2.5, 25.

2.5 Generalization to Nonlinear Complex Diffusion

Nonlinear complex processes can be derived from the above-mentioned prop-
erties of the linear complex diffusion. In the following sections we present
two nonlinear schemes, developed for application in image denoising and en-
hancement.

3 Ramp Preserving Denoising

Consider the following example of a nonlinear process, developed for the
purpose of denoising ramp-type edges. Note that the ramp-type edge calls
for different processing from the widely-used methods applied in the case of
step-type (singular) edges. We are looking for a general nonlinear diffusion
equation

0
Iy = 5 - (c() 1) (13)

that preserves smoothed ramps. Following the same logic that utilized a gra-
dient measure in order to slow the diffusion near step edges, we search for
a suitable differential operator D for ramp edges. Eq. (13) with a diffusion
coefficient ¢(|DI|) which is a decreasing function of |DI| can be regarded as
a ramp preserving process. Examining the gradient, as a possible candidate,
leads to the conclusion that it is not a suitable measure for two reasons:
The gradient does not detect the ramp main features - namely its endpoints;



Figure 4: Complex diffusion of a large theta, § = 147 /30, applied to a step
signal. Left frame - real values, right frame - imaginary values. Each frame
depicts from top to bottom: original step, diffused signal after times: 0.025,
0.25, 2.5, 25.

Moreover, it has a nearly uniform value across the whole smoothed ramp,
causing a nonlinear gradient-dependent diffusion to slow the diffusion pro-
cess in that region, thus not being able to properly reduce noise within a ramp
(creating staircasing effects). The second derivative (Laplacian in more than
one dimension) is a suitable choice: It has a high magnitude near the end-
points and low magnitude elsewhere, and thus enables the nonlinear diffusion
process to reduce noise during the occurrence of a ramp.
We formulate c(s) as a decreasing function of s:

c(s) = ﬁlsz’ where ¢(s) = ¢(|Lz]), (14)

and apply it in (13) to yield:

0 I, 1412, - 2L 0,
SO \1+12,) (1+12,)2

There are two main problems in this scheme. The first and more im-
portant one is the fact that noise has very large (theoretically unbounded)
second derivatives. Secondly, a numerical problem arises as third derivatives
should be computed, with large numerical support and noisier derivative es-
timations. These two problems are solved by using the nonlinear complex
diffusion.

Following the results of the linear complex diffusion (Eq. 10), we estimate
by the imaginary value of the signal (divided by #) the smoothed second
derivative multiplied by the time t.

Iy

L. (15)
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Figure 5: Comparison of linear real and complex diffusion processes applied
to a noisy step signal. Top frames depict (from top to bottom): original
signal, diffused signal after times: 0.25, 2, 10. Bottom frames portray the
evolution of the zero-crossing locations as a function of time. Top frames
(from left): real diffusion, real value of complex diffusion # = 7/1000, real
value of complex diffusion # = 7/10; Bottom frames: zero-crossing of the
second derivative of the signal corresponding to real value, imaginary value
of # = 7/1000, and imaginary value of § = 7 /10, respectively.
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Figure 6: Complex diffusion with small theta (§ = 7/30), applied to the
cameraman image. Top images — real values, bottom images — imaginary
values (factored by 20). Each frame (from left to right): original image,
result obtained after processing time 0.25, 2.5, 25, respectively.

Figure 7: Complex diffusion with large theta (# = 147/30), applied to the
cameraman image. Top sequence of images — real values, bottom sequence —
imaginary values (factored by 20). Each sequence depicts from left to right
the original image and the results of the processing after t=0.25, 2.5, and 25,
respectively.
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Whereas for small ¢ this terms vanish, allowing stronger diffusion to re-
duce the noise, with time its influence increases and preserves the ramp fea-
tures of the signal. We should comment that this type of second derivative
estimation (i.e. nonlinear-based) is more biased than the one based on linear
processing; The bias in this case is a direct consequence of the application of
a nonlinear process.

The equation for the multidimensional process is

I = V-(C(ém(f))W%
c(Im(I)) = — (16)

2
1+ (“};‘g’))

where k is a threshold parameter. For the same reasons as those discussed in
the linear case, here too the phase angle # should be small (# << 1). Since
the imaginary part is normalized by 6, the process is not affected much by
changing the value of # as long as it stays small.

We implement this flow with forward Euler scheme, using central differ-
ence approximation for the spatial derivatives and backward time derivative.
Care should be exercised in this implementation in determining what the
time step should be. As discussed earlier, the fundamental solution includes
a Gaussian-type kernel of variance o? = %. Implementing Gaussian con-
volution of time 7, by incremental time steps where o? = 27, requires the
time step bound to be: A7 < 0.25h% (in 2 dimensions, where h is the spa-
tial step). Here we have 7 = -~ and hence in the general case we require:
At < 0.25h2¥, and for our case where r =1, h = 1: At < 0.25cosf. Thus,
when 6 approaches 7/2 it becomes very inefficient to implement complex dif-
fusion with incremental time-steps. For small ¢, however, there is essentially

no difference from the case of real diffusion.

In Figs. 8 and 9 we compare denoising of a ramp signal by a P-M process,
with the performance of the above process (Eq. 16). This example illustrates
that the staircasing effect, characteristic of the P-M process, does not occur
in processing by our nonlinear complex scheme. This important difference
is further substantiated by the results of processing of images that contain
both sharp (i.e. step-type) and soft (i.e. ramp-type) edges, such as the one
illustrated in Fig. 10. Note that using the regularized version of the P-M
process, proposed by Catte et al. [4], produces staircasing results similar to
those generated by the original P-M process.
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Figure 8: Perona-Malik nonlinear diffusion process applied to a ramp-type
soft edge (kK = 0.1). Left - original (top) and noisy ramp signal (white
Gaussian, SNR=15dB) . Middle - denoised signal at times 0.25,1,2.5, from
top to bottom, respectively. Right - respective values of ¢ coefficient.

[ iRl VA
"] ol V\/

Figure 9: Nonlinear complex diffusion process applied to a ramp-type soft
edge (0 = 7/30, k = 0.07). Left - real values of denoised signal at times
0.25,1, 2.5, from top to bottom, respectively. Middle - respective imaginary
values, right - respective real values of c.

4 Regularized Shock Filters

Most of the research concerning the application of partial differential equa-
tions in the fields of computer vision and image processing focused on parabolic
(diffusion-type) equations. In [18] Osher and Rudin proposed a hyperbolic
equation called shock filter that can serve as a stable deblurring algorithm
approximating deconvolution.

4.1 Problem Statement

The formulation of the shock filter equation is:
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Figure 10: Nonlinear diffusion of an apple image: Top: left - image cor-
rupted by white Gaussian noise (SNR=13dB), right - image denoised by
Perona-Malik process (k = 3,time = 2.5). Bottom: image denoised by com-
plex nonlinear scheme (0 = 7/30, k = 2, time = 2.5), left - real part, right
- imaginary part. One can see that the apple is better denoised in the com-
plex scheme, where staircasing effects appear in the P-M process. Trying
to increase the P-M threshold in order to avoid staircasing causes the whole
apple to get diffused with the background. Another observation is that the
complex scheme denoises faster (due to its implicit time dependency).

where F' should satisfy F'(0) = 0, and F(s)sign(s) > 0. Note: the above

equation and all other evolutionary equations in this section have initial

conditions I(z,0) = Iy(z) and Neumann boundary conditions (2 = 0 where

on
n is the direction perpendicular to the boundary).

Choosing F'(s) = sign(s) yields the classical shock filter equation:

It - _Slgn(lxx)|lx|a (18)
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generalized in the 2D case to:
Iy = —sign(l,,) V1], (19)

where 7 is the direction of the gradient.
The 1D process (Eq. 18) is approximated by the following discrete
scheme:
I = 1 — At|DI![sign(D?*I"), (20)
where
DI =m(A I A_I")/h,
DALY = (AAZIT) /2,

m(z,y) is the minmod function:

. [ sign(z) min([z], [y[); if zy >0,
m(z,y) = { 0 otherwise,

(21)

and Ay = +(u;+1 —u;) . The CFL condition in the 1D case is At < 0.5h.
The shock filter main properties are:

e Shocks develop at inflection points (zero crossings of second derivative).

e Local extrema remain unchanged in time. No new local extrema are
created. The scheme is total-variation-preserving (TVP).

e The steady state (weak) solution is piecewise constant (with disconti-
nuities at the inflection points of Iy).

e The process approximates deconvolution.

Most rigorous analysis and proofs of these properties were based on the dis-
crete scheme (Eq. 20).

As noted already in the original paper, any noise in the blurred signal
will also be enhanced. As a matter of fact this process is extremely sensitive
to noise. Theoretically, in the continuous domain, any white noise added
to the signal may add an infinite number of inflection points, disrupting
the process completely. Discretization may help somewhat, but in general
the same sensitivity to noise occurs. This is illustrated by comparison of the
processing of a noiseless and a noisy sine wave signals (Fig. (11)). Whereas in
the case of a noiseless signal the shock filter well enhances the edges, turning
a sine wave into a square-wave signal, in the noisy case - the shock filter
does not enhance the edges at all, and the primary result of the processing
is noise amplification, although only a very low level of white Gaussian noise
was added to the input signal (SNR=40dB).
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Figure 11: Noiseless sine wave signal (top left) and the steady state of its pro-
cessing by a shock filter (top right), compared with the processing of a noisy
signal, generated by adding low level of white Gaussian noise- SNR=40dB
(bottom left). The steady state of the processed noisy signal does not depict
any enhancement and the only result is noise amplification (bottom right).

4.2 Previous Related Studies

The noise sensitivity problem is critical and, unless properly solved, will con-
tinue to hinder most practical applications of shock filters. Previous studies
addressing this issue came up with several possible solutions. The common
approach to increase robustness ([1, 5, 15, 23]), is to convolve the signal’s
second derivative with a lowpass filter, such as a Gaussian:

Iy = —sign(Gy, * L) |1, (22)

where (G, is a Gaussian of standard deviation o.

This is generally not sufficient to overcome the noise problem: convolving
the signal with a Gaussian of moderate width, does not cancel in many
cases the inflection points produced by the noise; Their magnitude becomes
considerably lower, but there is still a change of sign at these points, which
induces flow in opposite direction on each side of the inflection point. For
very wide (large scale) Gaussians, most inflection points produced by the
noise are diminished, but at a cost: the location of the signal’s inflection
points become less accurate. Moreover, the effective Gaussian’s width o is in
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many cases larger than the length of the signal, thus causing the boundary
conditions imposed on the process to strongly affect the solution. Lastly, from
a computational point of view, the convolution process in each iteration is
costly.

A more complex approach, is to address the issue as an enhancing-
denoising problem: smoother parts are denoised, whereas edges are enhanced
and sharpened. The main idea is to add some sort of anisotropic diffusion
term with an adaptive weight between the shock and the diffusion processes.
Alvarez and Mazorra were the first to couple shock and diffusion, proposing
an equation of the form [1]:

Iy = —sign(Go * Iy) V1| + clee, (23)

where ¢ is a positive constant and ¢ is the direction perpendicular to the
gradient VI. This equation, though, degenerates to (22) in the 1D case and
the diffusion part is lost.

A somewhat similar scheme, was proposed by Kornprobst et al. [15]:

Iy = oy (hr Ly + Iee) — (1 — hy)sign(Go * 1y, )|V, (24)

where h, = h,.(|Gs *VI|) = 1if |G5+*VI| < 7, and 0 otherwise. The original
scheme includes another fidelity term ay(I —I;)) that is omitted here (as such
a term can be added to any scheme).

The process proposed by Coulon and Arridge [5],

Iy = div(c¢VI) — (1 — ¢)%sign(G, * 1)) V1], (25)
where ¢ = exp(—%) , was originally used for classification, based on a

probabilistic framework. Eq. (25) is the adaptation of the original process
for direct processing of images.

The performance of these schemes will be later compared with that of the
process proposed by us.

4.3 The magnitude of the second derivative

To account for the magnitude of the second derivative controlling the flow,
we return to the original shock filter formulation of (17) and employ F(s) =
% arctan(as), where a is a parameter that controls the sharpness of the slope
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near zero. This 'soft-sign’ function is similar to the logistic function, widely
used in neural networks. With this F(s), Eq. (11) becomes:

2
I; = —=arctan(al,,)| .| + M. (26)
T

Consequently, the inflection points are not of equal weight any longer; re-
gions near edges, with large magnitude of the second derivative near the zero
crossing, are sharpened much faster than relatively smooth regions.

4.4 Incorporating time dependency into the process

Another desirable goal is to have an adaptive process behavior, wherein the
processing characteristics vary as a function of time in a controlled manner.
This can be accomplished by explicitly incorporating time into Perona-Malik-
type schemes [10], [19]. The basic idea is that processes controlled by the
gradient magnitude have large errors in estimating gradients at the initial
stages, where the signal is still very noisy. Therefore it is advantageous to
emphasize the noise filtering during the initial phase of the processing. In
[10] we presented two processes with continuous transition in time, beginning
with linear diffusion at time zero (primarily denoising), advancing towards
high nonlinearity (emphasizing edge-preserving properties).

Similar ideas can be applied here too. We would like to decrease the
shock effects of the process at the beginning (when estimating the signal’s
inflection points is difficult), allowing the diffusion process to smooth out the
noise. As the signal further evolves, false inflection points produced by the
noise are greatly reduced and the enhancing 'shock treatment’ predominates.
A simple way to induce this type of transition in processing properties is to
multiply the second derivative of the shock component by the time ¢:

2
I; = — = arctan(al,,t) | L] + A, (27)
T

This type of process will be implemented in a new complex PDE formu-
lation.

4.5 Complex Shock Filters

From (27) and (10) we derive the complex shock filter formulation for small
0:
2 I
I = —— arctan(aIm(a))|[m| + Ay (28)
T
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Figure 12: Noisy sine wave signal processed by several algorithms. From
top, left: signal with additive white Gaussian noise (SNR=5dB), right: ideal
steady state shock result; left: steady state of original shock filter Eq. (18),
right: steady state of Eq. (22) - Gaussian convolved derivative, o = 100;
left: evolution of Eq. (24) - Kornprobst et al. («a, = 1,a, = 0.5,7 =
0.04,0 = 30,6 = 5), right: evolution of Eq. (25) - Coulon-Arridge (k =
0.0, = 1,0 = 30,6 = 5); bottom: evolution of Eq. (28) - complex shock
filter (our proposed scheme), left: real values, right: imaginary values, (|]\| =
0.5,a = 5). All evolution graphs depict 3 time points along the evolution:
300 (dotted), 3,000 (dashed) and 30,000 (solid) iteration.
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where A = re?is a complex scalar. Equation (28) is implemented by the
same discrete approximations (except that all computations are complex);
the CFL condition in 1D is At < 0.5h%<%2,

Generalization of the complex shock filter to 2D yields:
2 I -
Ii=—= arctan(alm(é))Wﬂ + Ay + Mg, (29)
T

where ) is a real scalar.

The complex filter is an elegant way to avoid the need for convolving
the signal in each iteration and still get smoothed estimations. The time
dependency of the process is inherent, without the need to explicitly use
the evolution time t. Moreover, the imaginary value receives feedback— it is
smoothed by the diffusion and enhanced at sharp transitions by the shock
and, thus, can better control the process than a simple second derivative.

To illustrate the advantages afforded by the processing with the complex
shock filter, its performance in processing of noisy sine wave signals is com-
pared with those of the shock filters described earlier (Fig. 12). The original
shock filter (Eq. (18)) and the one with Gaussian-convolved second derivative
(Eq. (22)) are clearly not suitable for this task. The process of Kornprobst
et al. (Eq. (24)) performs relatively well but the minimum and maximum of
the signal decay quite fast and the deblurring is not so profound. Moreover
there are 5 parameters that need to be adjusted and from our experience the
performance of the process is quite sensitive to a few of them (especially to
7). The process of Coulon and Arridge (Eq. (25)) behaves somewhat better
in this 1D example; it produces shock structures but is strongly affected by
the boundary conditions and tends to move the shocks towards the center.
Our complex shock filter scheme (Eq. (28)) seems to produce the best result,
compared to the ideal result shown at the top right. The scheme is stable in
time, decays slowly and well preserves the location of the shocks. Another
advantage of our scheme is that we basically have only two parameters: |A|
and a (in the 1D case, three in 2D). Note that as the process is normalized,
it is not affected by the exact value of # as long as it is small. In all our
experiments we took 6 = 0.01. At the bottom right we can see the imaginary
value of the complex process (the scale is 100 times smaller). One can see
that the zero crossings are at the inflection points and that the energy of the
imaginary value energy grows with time, thus enabling good preservation of
the shocks.
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Figure 13: Top row (from left): Original tools image, Gaussian blurred (o =
2) with added white Gaussian noise (SNR=15dB), ideal shock response (of
blurred image without the noise); middle row: evolutions of Eq. (23) -
Alvarez-Mazorra (0 = 10), Eq. (24) - Kornprobst et al. (o, = 0.2, =
0.1,7=0.2,0 = 10,6 = 1), Eq. (25) - Coulon-Arridge (k = 5,a = 1,0 =
10,6 = 1); bottom: evolution of Eq. (28) - complex process, left: real values,
middle: imaginary values (JA| = 0.1,A = 0.5,a = 0.5), right: grey level
values generated along a horizontal line in the course of complex evolution of
the process (thin line 1 iteration; bold line 100 iterations). All of the image
evolution results are presented for 100 iterations (dt=0.1).
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In Fig. 13 a blurred and noisy tools image is processed. In the case
of two dimensional signals, only the scheme of Kornprobst et at. and our
complex scheme produce acceptable results at this levels of noise (Fig. 13).
Processing with the complex process results, however, in sharper edges and
is closer to the shock process, as can be observed in a comparison to an ideal
shock response to a blurred image without noise (top-right image of Fig. 13).
The combined enhancement-denoising properties of the complex scheme are
highlighted by the display of one horizontal line of the image (bottom right
of Fig. 13).

5 Concluding remarks and discussion

Generalization of the linear and nonlinear scale spaces to the complex do-
main, by combining the diffusion equation with the simplified Schrodinger
equation, further enhances the theoretical framework of the diffusion-type
PDE approach to image processing. The fundamental solution of the lin-
ear complex diffusion indicates that there exists a stable process over the
wide range of the angular orientation of the complex diffusion coefficient,
0 € (—%.%), that restricts the real value of the coefficient to be positive. [Is-
sues related to aspects of inverse diffusion in image processing, i.e. negative
real-valued diffusion coefficient, are dealt with elsewhere [11].]

In the case of small 6, two observations concerning the properties of the
real and imaginary components of the complex diffusion process are relevant
with regard to the application of this process in image processing: The real
function is effectively decoupled from the imaginary one, and behaves like
a real linear diffusion process, whereas the imaginary part approximates a
smoothed second derivative of the real part, and can therefore well serve as
an edge detector. In other words, the single complex diffusion process gen-
erates simultaneously an approximation of both the Gaussian and Laplacian
pyramids [3] (at discrete set of temporal sampling points), i.e. the scale-
space.

Although the nonlinear scheme remains to be further analyzed and better
understood, nonlinear complex diffusion-type processes can be derived from
the properties of the complex linear diffusion, and applied in image processing
and enhancement. Such are the two nonlinear complex schemes developed
for denoising of ramp edges and for regularization of shock filters. In the first
scheme, the nonlinear complex diffusion process avoids the staircasing effect
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that is characteristic of the P-M process [19] and of the regularized version
of the P-M process proposed by Catte et al. [4]. (See Figures 8, 9 and 10).
The second proposed scheme, presents a complex shock filter that overcomes
problems inherent in the enhancement of noisy signals and images by the
shock filters [18] and its various variants [1, 5, 15, 23]. The complex scheme
sharpens signals and images similarly to the ideal shock response, even under
noisy conditions that either minimize or eliminate the shock effect in the case
of application of one of the variants of the shock scheme. Under such noisy
conditions, the original Osher-Rudin shock filter does not enhance the signal
at all and even even further degrades it (insofar as the SNR condition is
concerned, see Fig. 11).

Generalization of the linear and nonlinear scale spaces by combining the
diffusion equation with the Schrodinger equation, lends itself to interesting
wider range of schemes, appropriate for superresolution and enhancement of
fully textured images, by proper selection and local adaptation of the po-
tential, introduced into the generalized scheme by the Schrodinger equation.
The conflicting requirements of sharpening (i.e. edge enhancement) and fil-
tering (i.e. noise reduction) are in this and other related studies (e.g. [19],
[11]) simultaneously accomplished by invoking the smoothness assumption,
i.e. a pixel is assumed to belong to either a smooth area or an edge. (This
does not have to be an all-or none decision and, in fact as in this study
too the diffusion coefficient or other processing parameters are a function of
the gradient). This assumption, that is generally valid over a wide range of
loci distributed over natural images, is violated over highly textured areas.
The latter are consequently either smoothed, eliminating important features
characteristic of natural images, or give rise to erroneous edges as a result
of the sharpening properties of the process. The potential component of the
Schrodinger equation add the extra dependent variable that can take care of
fine periodic structures, characteristic of various textures, since it imposes
periodic constraints on the solution. However, in such an implementation
the potential has to be locally adopted to the the various texture properties
distributed over the image. This extra facet of the the generalized complex
scheme is currently under investigation.
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APPENDIX

A Properties of the fundamental solution

We analyze the fundamental solution (9) to the problem stated in (4). The
kernel can be separated to its real and imaginary parts. As the initial con-
dition Iy is real valued in this study, the real part of I(z;t) is affected only
by the real kernel and the imaginary part of I(z;t) is affected only by the
imaginary kernel:

I(z;t) = Ig +ilp = Iox h = Iy * hp +ilo * by, (30)

where h = hR+Zh1 (We get IR = [0 *hR, [[ = [0 *h[)

The nature of the complex kernel do not change through the evolution,
the kernel is basically rescaled according the the time ¢ (or to o). Therefore
we can analyze a few characteristics of the kernel as a function of o for
different values of 6. In the following sections we give some of the major
characteristics of the real and imaginary kernels. An important result is
that the approximation for small 6 of the real part to a Gaussian and of the
imaginary part to its second derivative, scaled by time is of the order O(6?).

In section A.3 we give a detailed calculation of the constant dictated by
the initial conditions.

A.1 Properties of hp

hr(z;t) = Agy(z;t) cos a(x;t). (31)
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A.1.1 Operator norm

The norm (maximum amplification of the input signal) is bounded by:

| Thpllo < ||hrl1 see section A.4 (norm of a convolution operator)
= [ |hr(2)|dz
= [7 |Ags(z) cos afz)|dx
< AJ7 90 (x)|dw

A = (cos)~1/?
1+ 2+ 0(6).

(32)

A.1.2 Effectively positive kernels

One requirement of the linear scale-space is the non-creation of new local
extrema along the scale-space in 1D. Kernels obeying this requirement should
be positive. In 1D this is equivalent for the operator to be causal, (see
Lindeberg, Romeny, ”Linear scale-space”, in [21]).

As this kernel is not positive at all points, we would like to check how
close is it to a positive kernel. A first ”positivity criterion” can be to calculate
the smallest point o > 0 where hp is not positive, that is hp(zo) = 0. As
hr(0) > 0 and hp is symmetric, this means that hg(z) > 0 for all z €

(=g, x9).

hr(zg) = Ag,(xp)cosa(zy) =0

= cos a(zg) =0
xz2siné -
= almy) =15 -5 =73 (33)
T = /2(m+0)tr/sinf
= oy/(m+0)cotf (0% =2tr/cosh).
For example, for § = 1° = 35 we get xp = 13.40.

Trying to be more precise in measuring the relation between hyr and a
positive kernel we define a positivity measure —1 < P, < 1 of a kernel A as

follows:
S h(w)da
I ()|

We would like to determine the conditions for hg to be effectively positive,
thatis 1 —e < P, < 1.

P, (34)
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In order to give some bound on P, let us first find a point x; > 0 where
cosa(zry) = 0.5:

cos a(xy) : =
22 sin 6 -
alz)) = Trog=5F =
Ty = \/§(2ﬂ + 30)tr/ sin 6 (35)

= oy/(3r+0)cotd (0 =2tr/cosf).

For this bound we assume x; > o, so it is valid for 1.28,,; = 73° > 6 > 0.
We use the relations:

(x) — fxof go(z)dzr < fxolo 9o () cos a(z)dr < fxof 9o (z)dz
(as —1<cosa(z) <1, g,>0),

() % < %foa 9o (z)dz < %foxl go(x)dz < fom 9o(x) cos a(z)dz
(as cosa(z) > for all z € [0,21] , and 21 > o).

% hr(z)de

P = =5 (@)l
fﬁ& ‘g:g; zzzzg;m (symmetric kernel)

I3t go () cos a(m)d$+fz°f go () cos a(x)dx

Jo * 9o () cos a(@)|dat [T 190 (x) cos o) |de
fzof go (z) cos a(z)dx
1+$1—
fO go (x) cos a(z)dx
fzoi) lgo (z) cos a(z)|dz (36)
fgl go (z) cos a(z)dz
fzof go (z)dz

1+

N fg;l go () cos a(z)dx
fzoo go (z)dx (*)

1+111—

Jo Ogo- (z) cos a(z)dz

1-8 fml go(z)dx

1+8 f;f go(z)dx (**)
1-8®(—w1/0)

148%(—w1/0)

Y

where
O (z) :/_ Go—1(5)ds (37)

1-88(—11)
1+8%(—11)

™

Example (a): for = 1° = 5 we get x; = 110, and Py, >
1—2%1072,
Example (b): for P, > 0.99999, (e < 107°) we require 6 < 5°.
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Figure 14: Top: hg (full line) and g, (dashed line) as a function of . Bottom:
The difference function fr = hp — g,. 0 = 5.
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Figure 16: dg as a function of ¢, (# = 7/1000). Top: t € (0,10), bottom
t € (5,500).
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A.1.3 Distance between hyp and a Gaussian

Let us denote fr as the difference function between hrp and a Gaussian at
time ¢ (see Fig. 14):

fr(z;t) = hr(z;t) — g, (z;1t). (38)

We define the distance between hr and g, as the norm of the convolution
operator with kernel fg, that is:

d(hr,9s) = dr = || Tty |l (39)

First we will obtain the order of this distance as a function of theta:

drp = ||£{R||oo <\\fellh = [ Ihr(z) = go()|dx

I oo [Ags () cos ax) — go ()| da

2f0 |Acos(x24stl:10 _) - 1|ga( )

2f0 |ACOS(x2t;2n€ - g) - 1|go( ) )

2f0 | A cos( tane — g) 1|9, (z dx+2f°° |ACOS(%3L2H€ — Q) — 1|9, (z)dz
2f0 |Acos(”“° tane — g) 119y (z)dx +2(A + 1) f go(x)dx

s(& 2‘* ) — 1] fo go(x)dx + 4AP(—a/0)

(%5 ) — 1] + 4A®(—a/0)

2 MaX,e[o,q] [|A cos

ANVARVAN

]
2 2
an6 _ 8
2 2

2 maX,e(oq) [|A cos
(40
Let us choose a = \/no such that n > 1 and a(a) < 7 (therefore cos(a(z)) >
0 for any = € [0, a]). Recalling that tan® = 6 + O(#%) and A =1 + O(6?) we
get
max;efo o) [|A cos(*5? — &) — 1]]
= max { max,e[oq (Acos(%’“‘;‘e #) — 1), max,eo,q (Acos(”“' anb ) —1)}

b 9y) 1) (1 — mingep (A cos("” tand _ 8)))}

= max { ( max,e[o,q) (A cos(*5
= max{(A—1),(1- (A COS(L&“& -3}
=max {(A — 1), (l—Acos(’”ane -9}
=max{(4—1),(1 —Acos(n9+0(93)))
= max {0(92)7 (1—(14+0(0%)(1 — n?*#?
— 0(92)

}
/2+0(6M))}

(41)
The term ®(—a/o) = ®(—+/n) decays exponentially with the growth of n.

Therefore we conclude that
dr = O(0?) (42)
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The exact analytical expression of dg is a complicated function of 6 and
t. Therefore we show graphically a bound on dp as a function of 0 (Fig.
15) and its behavior as a function of time (Fig. 16) (to which we have no
analytical expression). Main results:

dp < 0.50%, V9 € (0, 1—7;), vt (43)

dr(te) > dp(t), Vi1 > to > 0,¥0 € (0, 110) (44)
The approximation error decreases in proportion to 62 (for small ¢) and
decreases monotonically with time.

A.1.4 Definite integral of hp

/OO hr(z;t)de =1 (45)

o0

for all 6, ¢ (follows directly from section A.3).

A.2 properties of h;
A.2.1 small theta approximation from fundamental solution

The second derivative of a Gaussian (in 1D) is

F20o(1) = FCe™ 2 where C = =L
= (- Cgme™ /) (46)
O:L‘ —a 7932/20 )
Small theta approximation of hj:
hy = Ag,(x;t) sma( t)
- \/01)56’0 - /20 ( g)
~ Ce /2% sin (ZTf — g) (Veos@ ~1 ,sinf ~0)
~ Co AT T (St R (5E-9) (4D
~ Ce /% (0352;2” ) (0% = 2tr/ cos 0 ~ 2tr)

2

lor: 0—40 67932/20 Otr
2
= %gg(x)Qtr.
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Figure 17: Top: h;/0 (full line) and 88—;29025 (dashed line) as a function of x.
Bottom: The difference function f7. 6 = .
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Figure 18: Top: d;, bottom d;/6? as a function of 0, (t = 1).
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A.2.2 Approximation error

We follow the same logic of the real part analysis. Let us denote f; as the
difference function between h;/f and a Gaussian’s 2nd derivative scaled by
time (see Fig. 17):

hi(z;t 0?
1(9 )— angg(x;t)t. (48)

We define the distance as the norm of the convolution operator with kernel

Ir:

fr(z;t) =

82

d(h1/97 @ga

t) = dr =Ty loo (49)

The analytical result follows the same arguments as in the real part sec-
tion and we get

dr = O(0%) (50)

The graphical results (Figs. 18, 19) lead also to similar characteristics:
dy < 0.50%, V8 € (0, 110), vt. (51)
di(to) > dr(ty), Yt >ty > 0,0 € (0, —). (52)

10
We can conclude that the approximation error decreases in proportion to 62
(for small ) and decreases monotonically with time.

A.2.3 Definite integral of h;

/00 hi(x;t)de =0 (53)

o0

for all @, ¢ (follows directly from section A.3).

A.3 Constant of the fundamental solution

The basic fundamental solution is

7z2 cos® ;z2sinf

h(x;t) = Ke atr e aer
z2 -z2tang
Ke 22" 202 , (azzzl)
.22 tan @

2
|Kv|€i(’967292—72.9Z 202

Ko o)

(54)
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As the constant K is complex, there are two degrees of freedom: the
magnitude |K| and the phase . The initial condition dictates:

[zt — 0)dz =1,

(0)  Jiyyoe (it = 0)|dz — 0,  where € = ¢(t — 0) = 0. (55)
From (55.a) we require
(a.1) f_oooo hr(z;t — 0)dz =1 (56)

(a.lI) [ hi(z;t — 0)dz =0.

We will see that (55.0) is satisfied readily from the Gaussian properties.
First, let us find the definite integral of hg. We use the following definite
integral formula (taken from [20] p. 459, Eq. 16):

[0 emaatabetef 2sin | cos }2(px2 +qr +r)de =
VT a(b?—4ac)—(aq® —2bpg+4icp?
(a2+p72r)1/4 eXp [ 4(a®+p?)

J{sin | cos }[ arctan p p(q2—4pr)—(b2p—2abq+4a27~)]

4(a”+p?)
(57)
From (54) we write hp as
hg = |Kle 27 cos (P2l 4 o)
= |Kl|e ™" cos (pz? + ) (58)
where a = #, p=tnf
From (57) and (58) we get:
f hR dlL‘ ==
|K| f —4 cos (pr® + @)dx =
= | K | e cos [ arctan 2 + ] (59)
= |K] (Htaﬁ’i‘;)w cos (30 + )
= |K|v/2m cos fo cos (30 + ).
Similarly
f h[ dCC =
K| f_oo —0” sin (px? 4 )dx = (60)
= |K|V2m cos o sin (30 + o).
From (56.a.17) and (60) we get
1
=——0 61
(p 2 Y ( )
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from (56.a.7) and (59) we get

1

Kl=— - 62
K] V2w cosbo (62)
hence the constant K is
e i3
K=—u—— (63)

v/ 2w cos O '

Requirement (55.0) is retained due to the characteristics of the Gaussian
function. Let us choose € = /o. Therefore ¢(t) = (2tr/cos0)'/* —,_,, 0 for
any |f| < 5. And we get

oo @) =
f|$|>6 |\/(:10ng(x)€’a(x)|dx =
2 [N gola)da =

2 1
\/cosé’q)(_ﬁ) 700 0

(64)

In the concise writing of the fundamental solution (9) K is actually sep-
arated to 3 multiplicative parts in the expressions of A, g, and a. Therefore
C =1

A.4 Norm of a convolution operator

Let T} be the

Let f be a bounded function max(f) < M, (f € L*).
= hx f. We want to

convolution operator with the kernel h (h € L'): T} f
prove the relation

1Tl < [IR]lx- (65)

Let us first find a bound on ||}, f]|c. We use Young’s inequality

NS = bl < [1fllpllRllg (66)
felrgell, ri=plt4+qgt—-1 (1<pgqr<oco).

Setting p = 00,q = 1,7 = 0o we get

1Thflloe < 1 llso 1Al (67)
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To get some intuition of why this is true, we show step by step, the one-
dimensional case:

175 floo

IIh % flloo = max, |h * f|

max, | [* h(z —y) f(y)dy|

max, [*|h(z —y)f(y)|dy

max, [* |h(z —y)| max, (|f(y)|)dy
[1floo max,. [ [h(y)|dy

1 fllool Il

I VAR VAN

Recalling the definition of a norm of a linear operator

: T f || oo
|Th|lso = sup
iflzo 1 fllso
we let
1T fl] oo

fsup = argsup —
P l1£11£0 1/1]o

so that || 1%, fsupllco = ||Thllool| fsuplleo- Using the relation of (67) we get

[Tnllooll Feuplloo < NIAII2 1 Fouplloo-
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