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Abstract

New lower bounds on the error probability of block codes with maximum likelihood decoding
are proposed. The bounds are obtained by applying a new lower bound on the probability of
a union of events, derived by improving on de Caen’s lower bound. The new bound includes
an arbitrary function to be optimized in order to achieve the tightest results. Since the optimal
choice of this function is known, but leads to a trivial and useless identity, we find several useful
approximations for it, each resulting in a new lower bound.

For the Additive White Gaussian Noise (AWGN) channel and the Binary Symmetric Channel
(BSC), the optimal choice of the optimization function is stated and several approximations are
proposed. When the bounds are further specialized to linear codes, the only knowledge on the
code used is its weight enumeration. The results are shown to be tighter than the latest bounds
in the current literature, such as those by Seguin and by Keren and Litsyn. Moreover, for the
BSC, the new bounds widen the range of rates for which the union bound analysis applies, thus

improving on the bound to the error exponent compared the de Caen-based bounds.

Indez terms - Probability of error, maximum likelihood decoding, probability of a union, lower

bound, Gaussian channel, binary symmetric channel, union bound analysis, error exponent.

1 Introduction

Consider the classical coded communication model of transmitting one of M equally likely signals
over a communication channel. The error probability of the optimal maximum likelihood decoder is
often complicated to evaluate. Thus, to estimate the performance of a given signal set, lower and
upper bound on the decoding error probability are required.

Numerous bounds on the error probability of maximum likelihood decoding, based on a wide
variety of techniques, can be found in the current literature. We briefly review the ones most related to

this paper. Although we mainly refer to the AWGN channel and the BSC, most bounds are applicable
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to a wider range of channel models. The most common upper bound on the error probability is the
well-known union bound. This bound is tight, hence widely used, at low levels of noise. At high levels
of noise, the union bound is loose and tighter bounds are required. The best known upper bound for
finite block length and high levels of noise is due to Poltyrev [1]. Let ¢ be a decoding error event and
A be an arbitrary subset of the possible channel outputs (or, equivalently, noise vectors), Poltyrev’s

bound is based on the following inequality
P(e) < P(e, A) + P(A%), (1)

where A€ is the complement of A. For example, to bound the error probability over the BSC, Poltyrev
chose the set A to be the set of all binary words of weight higher than some threshold m, which was
later optimized to yield the tightest bound. The value of P(e,.4) was bounded by the union bound.
For the AWGN channel, Poltyrev elaborated on previous techniques used by Hughes [2] and Berlekamp
[3]. In this case, A was chosen to be a circular cone of half-angle 8, whose central line passes through
the origin and the transmitted codeword.

For asymptotically infinite block length, define the error exponent (also know as the reliability
function) of a channel, E(R), as

—log P,
E(R) = lij{{njup Z 08 NRE) NN’R(E)
o0

where Pn g(e) is the minimum value of P(g) over all codes of a given block length N and rate R.
Hereafter, the base of the logarithm is 2. Although Poltyrev’s bound is tight for finite block length,
the best known lower bound on the error exponent (upper bound on the error probability) is due
to Gallager. In [4], Gallager derived a lower bound on the error exponent by methods of random
coding. For low rates, since the average low-rate code is bad, the bound was tightened by methods
of expurgation.

As for lower bounds on the error probability, the best known bound for high levels of noise is the
sphere packing bound [5]. Roughly speaking, the sphere packing bound states that the probability
of error is greater than that of a perfect code [6]. For the AWGN channel, for example, the sphere
packing bound is derived by noting that the error probability of any code whose codewords lie on
a given sphere must be greater than the error probability of a code with the same rate and whose
codewords are uniformly distributed over that sphere. Asymptotically in N, the sphere packing
bound coincides with the random coding bound [4] for rates higher than a certain critical rate, R.,
thus yielding the exact error exponent for these rates. For rates lower than R., several bounds were
offered. The two codewords bound considers the error caused by a pair of closest codewords. Together
with an upper bounds on the minimum distance of a code, such as the bound derived by McEliece,
Rodemich, Rumsey and Welch for binary codes [7, pp. 559], bounds tighter than the sphere packing
bound can be derived for low rates [8]. For intermediate rates, the straight line bound by Shannon,
Gallager and Berlekamp [9], connecting any low rate bound to the sphere packing bound, can be used.
The latest upper bound on the error exponent of the BSC was derived by Litsyn [10]. The essence
of his technique is in a new bound on the distance distribution of codes, and not an improvement
of the McEliece-Rodemich-Rumsey-Welch bound, as might have been expected. The latest upper
bound on the error exponent of the AWGN was derived by Burnashev [11]. Burnashev showed that



by extending the range in which the union bound analysis applies, together with a bound on the
distance distribution of codes, the bound on the error exponent can be tightened. We note here that
for random codes, random linear codes and typical codes from these ensembles the error exponent is
known exactly [12].

For finite block length and low levels of noise, the currently best known lower bounds on the error
probability are due to Seguin [13] (AWGN) and Keren and Litsyn [14]' (BSC). While the preceding
bounds discussed herein mainly use geometrical arguments in order to evaluate the error probability,
Seguin’s and Keren and Litsyn’s bounds use an alternative approach. The idea is analogous to the
union bound technique: to view the probability of error as a probability of a union of events, and use
known bound on this probability. When this method is used, the basic events, whose probabilities are
to be evaluated directly, are usually the error events when only two or three codewords are involved,
hence their evaluation is simple. As a bound on the probability of a union, both Seguin and Keren
and Litsyn used a recent lower bound by de Caen [15]. Their techniques will be discussed later in this
paper. In [16], Kuai, Alajaji and Takahara drive upper and lower bounds using the same method.
Their work includes a bound by the same authors on the probability of a union [17], together with
simple algorithms for Kounias’ bound [18] and Hunter’s bound [19]. However, Kuai, Alajaji and
Takahara consider uncoded communication and nonuniform signaling.

In this paper, we derive a new bound on the probability of a union and apply it to derive lower
bounds on the error probability of block codes. In Section 2, the new bound on the probability of
a union is proposed. In Section 3, this bound is applied to lower bound the error probability over
the AWGN channel. The resulting bounds are specialized for Binary Phase Shift Keying (BPSK)
modulation of linear codes. In this case, the only knowledge on the code required is its weight
enumeration. Numerical analysis results show significant enhancement in performance compared to
known bounds in the literature. To the authors’ knowledge, for medium and high values of the Signal
to Noise Ratio (SNR) the bounds are shown to yield the tightest results currently available. Section
3 also includes a derivation of a new bound based on Kounias’ lower bound on the probability of
a union. The resulting bound is very simple and performs well for every SNR (superior to Seguin’s
bound). Section 4 includes analogous derivations for the BSC. Numerical analysis shows enhancement
in performance compared to Keren and Litsyn’s bound, though in this case the improvement is milder.
However, in Section 5, the bounds on the error exponent resulting from the bounds in the preceding
sections are discussed. It is shown that the new bounds may be exponentially tighter than the de

Caen-based bounds. Section 7 includes a short discussion and suggestions for future work.

2 A New Lower Bound on the Probability of a Union of
Events

In this section, we derive a new lower bound on the probability of a union of events. We mainly
follow the method used by de Caen in [15], however, the new bound includes a function that can be

optimized to yield tighter bounds. This bound will stand at the basis of our analysis tools.

LA more detailed paper (unpublished) is also available [6].



Let {A;}icz be any finite set of events in a probability space (£, F, P). For each x € Q, define
deg(w)éHi €T:x €A}
The new lower bound is given by the following theorem.

Theorem 2.1 Let {A;};cz be any finite set of events in a probability space (0, F, P). The probability
of the union P (U;ezA;) is lower bounded by
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where m;(z) > 0 is any real function on Q such that the sums on the right hand side (r.h.s.) of (2)

converge. Equality in (2) is achieved when

1
deg(z

mi(z) = m*(z) = 3 Viez- (3)

Proof . We first consider the case where (2 is finite. Using a simple counting argument, we have

P(UAl) IPIELLN ()

i€l €L z€A;

Let m;(z) > 0 be any real function on Q. From the Cauchy-Schwarz inequality, it follows that
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provided that the sums in (5) converge. Therefore, from (4) and (5),
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Note that m;(x) may be different for each i in the sum over all i € Z. However, in order to achieve
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equality in (5) we should define
1

deg(z)’
For a general probability space, as noted in [15] and [17], since there are only finitely many A;’s,

m;(z) = Viez.

the number of Boolean atoms defined by the A;’s unions and intersections is also finite. Thus, the
general space can be reduced to a finite probability space. In this case, the sums in (2) are replaced

by the corresponding Lebesgue integrals. |

We shall refer to the choice of m;(z) = 1 as the trivial choice of m;(z). By choosing the trivial

P ( ) = e1 E jetT F’(AZ ﬁAj)
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choice for m;(z), we have




which is de Caen’s bound [15]. Thus, de Caen’s bound is a special case of the bound suggested in
Theorem 2.1. In this context, note that a recent improvement of de Caen’s bound was given in [17],
by Kuai, Alajaji and Takahara. However, one can show ([20]) that both de Caen’s bound and Kuai,
Alajaji and Takahara’s bound are derived by solving the same minimization problem. While the latter
is obtained by applying a stronger method than the first, it improves on de Caen’s bound by at most
9/8.

The essence of the bound in Theorem 2.1 is the ability to choose an appropriate function m;(z).
To define a proper strategy for choosing m;(z), first note that any constant multiplier of m;(z) factors
out in (2). Hence, m;(x) should only define an essence of behavior, and not necessarily exact values.
When seeking such a behavior, we remember that the optimal value of m;(x) is 1/deg(x). While the
function deg(z) is complex to evaluate, usually requires more than the available information on the
sets {A;}iez, and leads to a trivial identity in (2), its behavior possesses the guidelines for choosing
a competent family of approximations. By requiring that any such family of approximations includes
the trivial choice of m;(z), and optimizing the bound over this family, one can assure that the resulting
bound is always at least as tight as de Caen’s bound.

It is clear that the bound given in Theorem 2.1 does not depend only on the P(A4;)’s and
P(A; N Aj)’s. However, a proper choice of the function m;(z) may still yield the same computa-
tional tractability, while improving on de Caen’s bound, achieved by choosing m;(z) = 1. When the
computational tractability is of less importance, m;(z) may be chosen to be constant on subsets of
the A;’s, yielding more accurate results. Thus, the chosen family of approximations should also reflect

the tradeoff between tractability and tightness of the bound.

3 The Additive White Gaussian Noise Channel

We consider the case of uniform signaling over an AWGN channel and maximum likelihood decod-
ing. The transmitted signal is one of M equiprobable signals sg,s1,...,s)—1 of length K. If sg is
transmitted, the received signal is r = sy +n, where n is a vector of K independent Gaussian random
variables with zero mean and variance % (i.e., the double sided spectral density of the noise is %)
The maximum likelihood decoder chooses the closest of the M signals to r, in the Euclidean sense.

Thus, the probability of error given that sy was sent is
P(glso) = P (Uizogoilso) ,
where
A
eoi={r € R : [lr —s;|| < [|r —soll} (6)
2

and || - || is the Euclidean norm.

In order to use the bound in Theorem 2.1, choose Z = {1,..., M — 1} and A; = £¢;. Referring to

2Note the strict inequality in (6), a consequence of the assumption that ties are solved in favor of the correct signal.
Generally speaking, this assumption is essential when lower bounds on the error probability are discussed. When a

continuous probability space is at hand it is of less importance.



(2), the computation of the bound requires the evaluation of the following integrals:

/ p(rs0)m(x[so)dr, (7)

€0i
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where
_K 1
p(r|so) = (TNy) ™2 exp {—FHI‘ — S()||2}. 9)
0

Note that since m;(-) was any function to be optimized, we may choose it to be independent of i,
as the optimal value given in (3) suggests. For the trivial choice of m(r|sg), i.e., m(r|sp) = 1, the
integrals in (7) and (8) are simply the pairwise error probability and triplets error probability. In this
case, the resulting bound is the bound given by Seguin in [13, eq. (13)] for any signal set.

However, the essence of the new bound is the ability to choose a proper, non trivial, m(r|sg). The
optimal value of m(r|sg) was given in Theorem 2.1,

1

m (r|SO) = d@g(l‘|50),

where deg(r|sg) is the number of signals which are closer to r than sp, i.e.,
deg(r|so) = [{i : [lr — sil| < [lr — soll}- (10)

The evaluation of deg(r|sg) is usually very complex and, in many practical cases, infeasible when
only the distance spectrum of the code is to be used. Moreover, m(r|sg) should be mathematically
endurable so the integrals in (7) and (8) can be easily computed. Nevertheless, we will see that
suitable approximations can be found.

A first approximation is derived directly from (10). Since deg(r|sp) is the number of signals in the
interior of a sphere of radius ||r — sp|| centered at r, one might suggest that the larger the volume of
the sphere, the higher deg(r|sg) is. Namely, deg(r|sp) is monotonically increasing in ||r — sq||. Thus,
m(r|sp) might be chosen as

m(r|so) = exp {—allso — r[*}, (11)

where a > 0 is a parameter to be optimized in order to achieve the tightest bound. An exponential
behavior was chosen to facilitate the computation of (7) and (8). A drawback of this approximation
however, is that it is implicitly based on the infeasible assumption that the signals are uniformly dis-
tributed in RX . Nevertheless, this choice does improve on the trivial choice of m(r|sp), corresponding
to a = 0, as we will see in Section 6.

Fortunately, for equal-energy signals, a more realistic approximation can be derived in a similar

fashion. Since for all i, ||s;|| = ||so|| = V'E, we have
deg(r|so) = [{i: (si,r) > (so,x)}| = [{i : Ori <Oro}]. (12)

where (-, -) is the standard dot product and

Hmé cos™! { {si, ) } , 0< 6y <.
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Assuming the signals are uniformly distributed on the surface of a sphere of radius vE centered at the
origin, equation (12) implies that deg(r|sg) is monotonically increasing with respect to the absolute

value of the angle between r and so. Thus, m(r|sg) might be chosen as

m(r|so) = exp {a(so, )}, (13)

where, again, a > 0 is a parameter to be optimized. Clearly, when BPSK modulation of a binary code
is used, which is the case drawing our main attention, the signals are of equal energy. However, as
noted in [5], equal-energy signals are worth considering anyhow. The assumption that the signals are
uniformly distributed on the surface of the sphere cannot, of course, be justified in general. However,
it is important to note that since this assumption is at the basis of the sphere packing bound [5,
Section 3], which is asymptotically tight for rates higher than R., we know that good codes of high
rate do have approximately uniform distribution of codewords on the surface of the sphere.

Both suggestions for m(r|sg), defined in (11) and (13), are members of a wider family, characterized

by three parameters, a,b and c,
m(r|sg) = exp {— (a||r||2 + b(r,sp) + c||so||2) } (14)

Although more suggestions for m(r|sg) can be given, we choose to focus on (14). The following
proposition introduces the new bound on the error probability for any signal set, using this suggestion.

The simpler suggestions discussed earlier easily follow.

Proposition 3.1 Let sg,s1,...,8p-1 be a set of M signals of dimension K for an AWGN channel

with spectral density % The conditional probability of error of a maximum likelihood decoder is lower
bounded by
K- 9
P(elso) > e(B'—28)|Isol? Ng Z Q° (k(a,si, Ng)) : (15)
B V NONél i=1 Z;‘i}l ‘II(pij7Ii(alaSiaN(Sl)aK'(alasjaNél))
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with the understanding that U(1,z,2) = Q(z). The constants N}, N}, a, &', 8 and ' are given by
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and a > —ﬁ, b, and c are arbitrary constants.



Proof . We apply the lower bound on the probability of a union given in (2), using equations (7),
(8), (9) and (14). Equation (15) easily follows after computing the integrals (7) and (8). Since the

computation of these integrals is rather cumbersome, it is included in Appendix A. O

Clearly, choosing a = b = ¢ = 0 results in Seguin’s bound [13, eq. (13)]. Hence, for the optimal
choice of a, b and ¢ the bound in (15) is at least as tight as Seguin’s. In this context, it is clear that
the asymptotic tightness of Seguin’s bound as E, /Ny — oo remains intact. To restrict ourselves to
simpler bounds, when only one parameter can be optimized, we may choose a = ¢ = a/, b = —2d/,
which results in the norm bound (i.e., using (11)), or a = ¢ = 0, b = —a', which results in the dot

product bound (i.e., using (13)).

3.1 New Lower Bounds for Linear Codes

The bound given in Proposition 3.1 requires two nested summations over the entire signal set. Thus,
it is of very little use for large codes. Analogously to Seguin’s derivations, we specialize this bound
for linear codes and BPSK modulation. In this case, the resulting bound depends on the code only
through its weight enumeration, and is, thus, much easier to evaluate.

Assume that a binary (N, K) linear code C is used. s; is obtained by replacing the zeroes and
ones in ¢; with /Ex and —/Ey respectively? (BPSK modulation). The energy per bit in this case is
E, = N—E” Denote by w(c) the Hamming weight of the codeword ¢ and by B = {By, By, ..., By} the
weight enumeration of the code, i.e., B; is the number of codewords of Hamming weight i. Assuming

co is the all-zero codeword, we have

Isoll*> = NEn,
laso —si||? = (a—1)’NEN + d4aEnw(c;).
Hence,
a?Enw(c;)
Q (k(a,si, Ng)) = Q ( W) (21)
and
a?Enw(c;) [a?Enw(cy)
v (pij7 n(ala Si, N(;,)a H(ala Sj, N(I)I)) =y (pija \/ N(I)’/2 ’ N(I)’/2 = ) (22)
where
__ w(eicy)
Pij = —F——r-
w(ei)w(c;)

The expressions in (21) and (22) can be substituted into (15) directly. However, p;; does not depend
solely on the code’s weight enumeration. In [13], Seguin proved that ¥(p,z,y) is monotonically

increasing in p. Thus, to derive a bound which depends only on the weight enumeration of the code,

3Note that the signals in this case are of length N and dimension K. Signals of length K are achieved by the
Gram-Schmidt procedure and the projection of the signals on the new base. The computation of the signals’ energy

and distance spectrum is, however, clearer when the original signals are treated.



pi;j should be upper bounded in terms of the weight enumeration alone. Denote by d the minimum

distance of the code, for s; # s;, an upper bound on p;;, derived in [13], is given by

pij < o(i,]) mln{” ’/ Cj cl+wcj)c)d}. (23)

All this said, substitute (23) into (22), and the result, together with (21), into (15). Since the resulting

summands depend on the code only through the weight enumeration, the summation can be carried
out on the possible codewords weights. Finally, when linear codes are used on a binary-input output-
symmetric channel with maximum likelihood decoding, the probability of error is independent of the
codeword sent (see [21, pp. 86]). Hence, we assume the all-zero codeword was sent, P(e|sg) = P(¢),

and we have

K
P(e) > exp{(5' — 26)NEn} (%)
0
BiQ2 ( a]iff/l\éi)

’ Z 2 ; 2 ; 2 ; 2 ; 12 5
70 Q (o) + (B = D (o /5B /5B ) + 0 B (00 /5 558

(24)

)

a, o, B,6',Nj and N{ are as defined in (20), and a > —

where

5 N , b, and c are arbitrary constants.

3.2 Lower Bounds Depending Only on a Subset of the Code

The bound given in (24) requires the complete weight enumeration of the code. When the weight
enumeration is not known completely, or when (24) is too complex to evaluate, a simpler, yet very
efficient, bound can be offered. Clearly, the error probability of a given code C, P¢(e), satisfies
Pc(e) > Pe«(€), where C* is any subset of the code C. Hence, any lower bound on Pe«(¢) is a lower
bound on FPe(g). This technique is widely used when lower bounds for low rates are discussed (see,
for example, [21, pp. 174]). When the code C is linear, C* is not necessarily linear. Nevertheless, we
have
Pc(e) = Pe(e|eo) > Pes(g|co).
As in [14], we choose
C* =Ci2{c e C:wl(c) =d} U{c).

Thus, we may substitute By = 1 and B; = 0 for every i # d in (24). The resulting lower bound is

given in the following corollary.

Corollary 3.2 Let C be a binary (N, K) linear code used over the AWGN channel with BPSK mod-

ulation. The probability of error of a mazimum likelihood decoder is lower bounded by

exp{(B' — 2B)NEy} < \/—N(’—N_)K B:* ((/2FR)
P(e) >
@ (Vo) + (Ba= )% (3.t 55




where a, o, B, 8, N} and N{ are as defined in (20), and a > —2170, b, and ¢ are arbitrary constants.

3.3 Kounias’ Bound

We apply Kounias’ lower bound [18] to derive a new lower bound, analogously to the preceding
derivations in this section. Although Kounias’ bound was used by Kuai, Alajaji and Takahara in [16]
to derive a lower bound for the AWGN channel, no specialization of the bound for linear codes was
done. In this section, in addition to the straightforward specialization for linear codes, we further
simplify the bound by using only the sub-code Cj. In this case, the customarily-tedious optimization
required in Kounias’ bound is direct and can be done analytically. The resulting bound is very simple
to evaluate and performs better than Seguin’s bound (yet, inferior to (26)) for every value of Ep/Np.

Under the notations of Section 2, Kounias’ bound is given by
€T - ieJ 1,J€T i<

Refereing to our problem, utilization of this bound yields

||SO_Si||> < llso — sl IISo—SjH)
Pl | )eos > E —_— ) - E U { pij, ; (27
foilso | 2 maxe 9. Q( 2Ny P AN, V2N, (27)

i#0 ieJ INISNRAY]

where M = {0,1,..., M —1}.* To specialize the bound for linear codes, note that the r.h.s. of (27) is
a decreasing function of ¥, therefore, we can use g;; as in (24), resulting in a bound depending only
on the weight enumeration. Yet, this bound is still tedious to evaluate for large codes, even when the
stepwise algorithm suggested in [16] is used. Thus, we choose to limit the search to subsets of the

sub-code Cj;. In this case, we have

9Exd\ b(b—1) (1 [2Exd [2End
p(E) Z 1%%2}1(&1 {bQ ( NO ) - 9 v (57 NO ) NO )} (28)

Since the r.h.s. of (28) is a concave (N) function of b, and its second derivative with respect to b is

constant, the maximum is achieved by comparing the first derivative to zero and taking the closest

integer value to the result, provided that it is in the range {1,2,...,Bs}. Thus, the maximum is

[2End
1 Q ( No )
-+ ) Bd )
2 vl [2Exnd [2End
(2’ Ny No )
where [z] is closest integer to x. Consequently, we have

2ENnd b*(b* —1 1 2End  |2End
p(E)Zb*Q< w )— v )\I!<§,\/ SR > (29)

4Note that the fact that Kounias’ bound allows us to use any subset 7 C M \ {0} is insignificant since when lower

achieved with

b* = min

bounds on the error probability are considered, this step is straightforward (refer to Section 3.2). Hence, in this case

Kounias’ bound is equivalent to the well known Bonferroni’s inclusion-exclusion lower bound ([22]).
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4 The Binary Symmetric Channel

Analogously to the previous section, in this section, we apply the bound in Theorem 2.1 to derive new
lower bounds for maximum likelihood decoding over the BSC. For the sake of simplicity, we consider
only linear codes. Bounds for any block code can be derived in a similar fashion.

In this case, the transmitted codeword is one of M = 2K equiprobable binary codewords cq, ¢1, ..., Cpr—1
of length N. Denote by p the channel crossover probability. Assuming ¢y was sent, let x = ¢y + e
be the received word, where e is the binary error vector. The maximum likelihood decoder chooses
the closest of the M codewords to x in the Hamming sense, i.e., i = argmin; dg(c;,x). Thus, the

probability of error given that cy was sent is
P(e|eg) = P (Uizocoilco) , (30)

where
c0i = {x € GF2)N : w(x + ¢;) < w(x)}, (31)

assuming ¢y is the all-zero codeword.

Our goal is to lower bound the error probability in (30). Again, when the code used is a binary
(N, K) linear code C, we wish to express the bound in terms of the code’s weight enumeration and the
channel crossover probability alone. Since the method developed in Section 3 is general, and can be
used in any case where the error probability admits a union form, we focus only on channel-specific

derivations. We have,
p(x|eg) = p¥ ™) (1 — p)N ) (32)

and

deg(x|co) = [{c; € C,i Z0: w(x +¢;) < w(x)}. (33)

In the computation of (2), we encounter the summations over X € €g; and x € €o; N €pj. The
summands are p(x|co)m;(x) and p(x|co)m?(x), respectively. While the dependence of p(x|cy) on x
is only through w(x), m;(x) is a function to be optimized and hence might, in general, be chosen to
be different for each x. To avoid a tedious evaluation of the considered sums, we prefer to reduce the

degrees of freedom in choosing m;(x) by the restriction
mi(x) =ni(w(x)),  m:Z" R

Clearly, since deg(x|co) is not likely to depend only on w(x) when non-trivial codes are discussed, we
may assume that the optimal value for m;(x) cannot be achieved by any function n;. Nevertheless,
we will discover that the function 7; may still be chosen to yield tighter bounds than the one achieved

with the trivial choice of m;(x). To conclude, according to (2), we have

P(e) > ]ZM: (Xxees; P (1 = p)N =4I, (w(x)))

i=1 Z]Ail ersoimsoj pw(x)(l - p)N—w(x)n? (’IU(X))

; (34)

where 7; : ZT + R is any function to be optimized. In the proceeding subsection, we suggest several
possibilities for n; in the spirit of (3), namely, we seek approximations for deg(x|co). For the time

being, we evaluate (34) for any n; whose dependence on x is only through w(x).
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We start by calculating the sum over x € go;. Define the set N = {1,2,... N}, and for every
M C N and x € GF(2)N define x4 to be the sub-word (x(my1),...,x(mr)) of x. Let the support
of ¢; be the set S; = {j : ¢;(j) = 1}. Hence, xs; is the sub-word of x consisting of x in the places ¢;
equals 1. Referring to (31), a word x € GF(2)" satisfies x € go; if under ¢;’s support it has more 1’s

than 0’s. The number of 1’s or 0’s out of ¢;’s support is irrelevant. Thus

w(c;)

X € gg; iff w(xsi)>{ 5

|+1

Accordingly,

-Pnum('w(cl))é Z pw(X)(]- - p)N_w(X)nl(w(X))

XEE0;

-y Ni( N (VT rN ). (69

m
1= Lw(C)J+1 m=0

To avoid cumbersome notations, the notation for Ppym(w(c;)) does not reflect its dependence on p
and the parameter N. On the more technical side, note that choosing a non-trivial 7; prevents us
from using the binomial formula to evaluate the inner sum and thus increases the computational
complexity. For the codes tested in this work, this tradeoff was worthwhile.

The evaluation of the sum in the denominator is carried out in the same fashion. In this case,

X € eoiNeoj iff w(xs;) > {#J +1  and  w(xs;) > {—w(;J)J +1.

Thus, when ¢; # c;, we have

>

S P )N w(x)

XE€eoiNen;,i#]

ﬁden(cia cj)

w(eic;) w(ei)—w(eic;) w(ej)—w(eic;) N—w(e;)—w(c;)+w(eic;)

-y 3 >y T (w(clz'cj)> (w(Ci) - w(cicj)>

m
=0 m:Lw(;i)J+1fl n—= LW(C J+1 1 k=0

_ (’U}(Cj) _nw(ciCj)> <N —w(c;) — U];(Cj) + w(cicj)>pl+m+n+k(1 )Nl me kg2 oy k)
(36)
where the first sum in (36) is over the intersection of ¢;’s and c;’s supports - S;;, the second is over
S;\Sij, the third is over S;\S;; and the forth is over N'\S;\S;. When ¢; = ¢;, Pden(cl, ¢;) = Pyen(c;),
where Pjen(c;) is defined just as Ppum(ci), only with n;(-) raised to the power of two.
Clearly, Pyen(c;, c;) does not depend on c; and c; solely through w(c;) and w(c;) since it includes
the expression w(c;c;). Thus, its evaluation requires more than the weight enumeration of the code.

Recall dealing with an equivalent problem in the AWGN channel, it is clear that to remove the obstacle

in specializing the bound to linear codes, the following proposition comes in handy.

Proposition 4.1 Py, (c;, c;) is monotonically increasing in w(c;c;) for any w(c;c;) < min {w(c;) — 1, w(e;) — 1},

w(c;), w(cy) and n; : ZT — RY.

Referring to (33), it is clear that the demand for positive 7; is not restricting. The proof of Proposition

4.1 is given in Appendix B.1. To utilize Proposition 4.1, define

wlerey) 2 min w(en), u(ey), | ML=

2

12



Since
w(c;) +w(c;) —du(c, c;)
2 b

w(cicj) =

it is clear that w(c;c;) < wW(cic;). Thus,

ﬁden(ciacj) S Pden(’u}(Ci),UJ(Cj))

w(czch) w(cz)zw(czc]-) w(cj)i(cicj) N—w(ci)—wz(cj)-i-w(cicj) w(cic))\ (wle;) — Teie;)
[ m

m= #5111 = 50 |41 £

_ <w(c]~) ~ E(Cﬂj)) (N — w(ei) —w(e;) +w(cicy)

; . >pl+m+n+k(1_p)N I-m—n—k 2(l+m+n+k)

(37)

with the understanding that (}) = 0 when k > n. Now it is possible to derive a bound using only the
code’s weight enumeration. Thus, the new lower bound on the error probability of a linear code C on

the BSC is given by

By Py (1)

num

N
; Pyen(n) + (Bp, — 1) Pgen(n,n) + Zm Lmn By Pien(n,m)’

(38)

where Ppym(n), Pien(n) and Pgen(n,m) include the function 7;, which can be optimized to yield the
tightest bound.

4.1 Approximations to deg(x|cy)

We seek a function 7;, of the form
1

ni(w(x)) = Toaw() (39)
where g;/g(w(x)) is any approximation of deg(x|co) whose dependence on x is only through w(x).
Referring to (33), deg(x|co) is the number of words with Hamming weight less than w(x) in the coset
C + x. Thus, we are interested in the weight enumeration of this coset when the only knowledge on x
is w(x). As a simple example, consider a 1-bit parity check code. Clearly, there are only two cosets
in this case. The first is the code itself, i.e., the set of all even-weight words. The second is the set
of all odd-weight words. Thus, given a received word x, its weight is sufficient to identify the correct
coset and deg(x|cg) is known exactly. However, the evaluation of the error probability for this code
is trivial in the first place. There are several codes whose cosets weight enumeration can be found in
the current literature. Yet, even for simple codes, the weight enumeration of C + x cannot, in general,
be evaluated using w(x) alone.

We include here two possible approximations to deg(x|co) using only the existing information on x
and the code’s weight enumeration. In the first approximation, we view deg(x|co) as |C|- P(w(x+c) <
w(x)), where P is the probability measurement inferred by a uniform distribution on the codewords
of C. Let x be fixed and let ¢ be a codeword chosen randomly with uniform distribution. Considering

w(x + ¢) as a random variable, by the Chernoff bound, we have

Plw(x + ¢) < w(x)) SE{e—a(w(x-i-c)—w(X))}’ (40)

13



where the expectation is over all possible codewords c, and a > 0 is an arbitrary parameter. Clearly,

E{cmetutront) o |C| L $ pmalutere)uix)
ceC
< Zefa Jw(x)—w(c)|—w(x))
|C| ceC
QW (x) IV

= T X B, (41)

where the inequality in (41) is since w(x + ¢) > |w(x) — w(c)|. The approximation for deg(x|co) is

therefore v
deg(w(x)) = ™) > BiemelwtI=il, (42)
i=0

where a > 0 is a parameter to be optimized.

The second approximation uses a different method. Clearly,

0 w(x) < [45H]
deg(x) = ¢ YW Bx | LL| <w(x) < N (43)
IC] -1 w(x) = N,

where BY is the number of words of weight i in the coset C + x. Thus, deg(x|co) is monotonically
increasing in w(x), with known values for w(x) = [%4*| and w(x) = N. By choosing a family of
monotone functions (concave or convex) passing through these points, we have the following approx-
imation

(e1- v (“2pl) weo > 122)

0 else,

deg(w(x)) = (44)

where a > 0 is a parameter to be optimized. This approximation is easier to evaluate than the
previous one since no summation is required. Moreover, only the size of the code, its length and its

minimum distance are used.

4.2 Lower Bounds Using the Sub-code C; and the Code’s Covering Radius

In this section, we consider two variations on the bound given in (38). These two variations will both
reduce the complexity of the bound as well as tighten it. Denote by t the covering radius of the code
C,

t= max mindg(f,c).
fEGF(2)N ceC

Namely, ¢ is the maximum number of errors that can be corrected. Clearly,
Pe(e) = Pe(e,w(x) <t) + P(w(x) > t).

As noted in [14], when lower bounds on the error probability are discussed, an upper bound M >t

can be used if ¢ is not known. Furthermore, as in Section 3.2, since

Pe(e,w(x) < M) > Pe: (e, w(x) < M),

14



where Cf = {c € C : w(c) = i} U{co}, we may compute the bound disregarding all codewords of
weight other than i. Although the numerical analysis shows that best results are achieved with ¢ = d,

we prefer this general form for later reference. Consequently, we have the following proposition.

Proposition 4.2 Let C be any linear code over GF(2) of length N and minimum distance d. Let B;

be the number of codewords of hamming weight i, d <i < N — [%] The decoding error probability on

a BSC with crossover probability p is lower bounded by

A Blpr%um(l)
== _ + Py, 45
Pden(i) + (Bz - ]-)Pden(i77:) M ( )

where

m

Pan®2 Y 3 () (V) (46)

P2 30 3 ()N, (47)

P2 Y Y ol S FEDTCUICUTCRINED
PR =N R (U m -+ k), (48)

N

nt Y (V)pa-p (19)

l=M+1

and n; : Z+ — R* is any function to be optimized.

Note that the demand ¢ < N — {%] is not restricting, since when i > N — [%] there is only one
codeword with weight i, and the sub-code C; is degenerated.

Proof . Based on the preceding discussion, substitute B,, = 0 for every n # ¢ in (38). To use the
covering radius of the code, evading high values of w(x), we may alter the expressions in (35) and
(37) to include only words x with weight smaller than M by changing the upper bound of the last
summation in each expression. Pjs is the probability of more than M bit errors. O
Note that when |£] +1—1 > [£] the sums over m and n in (48) are empty. Thus, the value of
Pyen(i,i) is unchanged if we sum over L%J +1- {%] <Il<i- [g] instead of 0 <[ < i — {%]

To choose a proper n;, we return to Section 4.1. Although the approximations therein refer to
the bound given in (38), i.e., when the whole code is used, we find them useful in (45) for two main
reasons. First, since 7; defines only an essence of behavior, the approximations in Section 4.1 may be
sufficient as are. Second, even if several variations are required, the methods suggested in Section 4.1
are still applicable. For example, in Section 6, where the bound given in Proposition 4.2 is utilized,
the following variation of (44) was used

deg(w(x)) = (50)
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Finally, we refer to the asymptotic tightness of the bounds presented in this section. Let UB(p)
be the union bound for the BSC, i.e.,

N
P(e) <UB(p)= Y BiP(i), (51)

i=1

where P(7) is the pairwise error probability given by

P 3 (f)plu .

I=£]+1

The following proposition states that the new bounds are tight for p — 0.

Proposition 4.3 Consider the bound in Proposition 4.2 when i = d. Then, for any function ng > 0
which is independent of p,
LBd(ndap)

lim ————= =1
ps0  UB(p)

Note that the condition on 74 is not restricting since 4 depends on the code rather than the channel.

Proposition 4.3 is proved in Appendix B.2.

5 Upper Bounds on the Error Exponent

In this section, we calculate the upper bound on the error exponent resulting from the bound given
in Proposition 4.2. We prove that a non trivial choice of 7; may result in a tighter bound on the
error exponent than the one resulting from a de Caen-based bound, and identify the optimal choice
of n;. It is important to mention, however, that only bounds for specific codes are discussed, and not
bounds on the error exponent of the BSC in general.

We first introduce the required notations. Let {Cn} be any sequence of codes, each of which is of
length N and minimum distance dy. For every dy < i < N, denote by §; the ratio % Let BN be
the number of codewords of weight i in each code. We consider only sequences of codes for which the
limits im0 7 log BY and limy o0 dWN exists, and denote their values by Egi and d4, respectively.

Let F(N) and G(N) be any two functions. If
lim —log F(N) < lim — log G(N)
Ngnoo N 8 - Ngnoo N 8

we write 1 log F(N) < 4 log G(N), namely, F(N) is exponentially smaller than G(N).

To calculate the upper bound on the error exponent resulting from the bound in Proposition 4.2
and analyze the results, we substitute M = N in equations (45) to (49), i.e., assume no knowledge
on the covering radius is available. This assumption only weakens the bound, mainly at high values

of p. Thus, for any dy < i < N — [4X], the following bound is considered

BNP2 (i)
P > i * num
(5) - Pden(i) + (BzN - 1)Pden(7:7i),

(52)

where Ppym (1), Pen(i) and Pge,(i,1) were defined in Section 4.
For easy reference and facile understanding of this section, we briefly introduce the outline of the

analysis and summarize the main results. Consider the bound in (52). We wish to calculate the
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resulting bound on the error exponent, and to identify the optimal choice of the function 7;. Clearly,
since the denominator of the r.h.s. of (52) is a sum of two expressions, the exponential behavior of
the bound in (52) depends on which expression dominates. In the first part of the analysis, whose
results are given by Proposition 5.1, we show that this observation translates to a condition on the
code, which determines the value of the new bound on the error exponent in each case.

In the second part of the analysis, whose results are given by Corollary 5.2 and the discussion
following it, we analyze the condition on the code and the resulting bound on the error exponent
when this condition is satisfied. It is shown therein, that if the difference between the triplets error
exponent and the pairwise error exponent is not too small (i.e., the rate of the code is not too large),

the condition on the code is satisfied, and the resulting bound on the error exponent is given by

1 .
— 57 log P(e) X —dilog /Ap(1 — p) — B,

for any §; < 0; <1 — %6d. Namely, one can use the union bound to derive a valid lower bound on
the error probability. In this case, we say that the union bound analysis applies, namely, the union
bound is exponentially tight.

This far, we have not considered the choice of the function n;. Our main result, given by Proposition
5.3, is that while it can be easily proved that when the condition on the code is satisfied, the trivial
7; is optimal, this is not the case when it is not satisfied. In this case, a non trivial n; can extend the
range of rates for which the union bound analysis applies, thus achieving a tighter bound on the error
exponent. The optimal value of 7;, the range of rates for which the union bound analysis applies and
a quantification of the improvement over the bound with trivial n; are given in Proposition 5.3 and

the discussion which follows.
5.1 Analysis
We start with several definitions. For t = §; N, define

1
Si(5y — 1
Ei(6) = A}l_fgo N log s, v (t)- (53)

Since 7;(t) is any function to be optimized, we may reduce the set of possible functions to assure that
the limit in (53) exists. For 7;() = 1, we have E%(6;) = 0. Analogously to the previous sections, we
denote this case as the trivial choice of Egi (6¢). For any 64 and §4 < 6; < 1— %5d, define the following

regions in [0, 1]2 and [0, 1]4, respectively

Dlz{(6l,5m)€[0,1]262 S(Slg&l,()gémgl—&} (54)

2
and

Dy = {(al,am,an,ak) €[0,1]": 10 —da) <& <0 — %, % — 5 <6 < B2,

Let H (x) be the binary entropy function

H (z) = —zlog (z) — (1 — z)log (1 — z).
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Define

1>

Efl (617 5map)

_GH (%) — (- 6)H (15_’”&) (6 + 6)log (%) “log(l—p)  (56)

and

5; A e 0y _@ Om _@ On
B30 81,0)2 = (= 00/ () = S () = S (2

— (]_ — (5, - (Sd/2)H (ﬁ) + ((5[ + (Sm + 5n + 5k)10g (%) - lOg (]. —p). (57)

Under these definitions, we have the following proposition.

Proposition 5.1 Let {Cn} be a sequence of codes for the BSC. Let p be the crossover probability of the
channel. Then, for any éq < §; < 1—%5(1, and for any piecewise continuous function Egi :[0,1] = RT,

we have
_ L log P(g) < 2min {E‘ji (81, 6m,p) + B (8 + 6 )} — B
N - Dl 1 yVYmo n m B
- min {Efi (81, Gmy p) + 2% (31 + 6m)} (58)
if
Ej; < min {Egi (81 s Gras 81s D) + 2B (81 + 6 + 6 + 5k)}
—min { Ef*(31,6m,p) + 255/ (61 + 0n) }  (59)

and

1 : d; 43
— v log P(e) < 2mgin {E1 (61, 0m,p) + Epi (6 + 5m)}
— min { B3 (81, 6m, 60, 05, ) + 25 (81 + O + 00 + 1)} (60)
otherwise.

The condition in (59) is a condition on the code’s parameter® ESi (hereafter referred to as the condition
on the code). The essence of Proposition 5.1, is the fact that the new bound on the error exponent is
given by one of two different expressions, corresponding to the cases where condition (59) is satisfied
or not. The complete proof of Proposition 5.1 is given in Appendix C.1.

We first analyze the case where the sequence of codes satisfies condition (59). From Appendix
C.1, it is clear that minp, Efi (01, 0m, p) is the error exponent for the pairwise error probability, while

minp, Egi (61, Om, On, Ok, ») is the error exponent for triplets. Hence, we expect to have
r%in Egl (617 5m7 6na 5kap) > r%in Efl (617 5map)a
2 1

which means that the set of possible functions Egi for which the r.h.s. of (59) is nonnegative is not
empty (it includes at least the trivial choice). In such a case, condition (59) is not trivial, and the

following corollary is constructive.

5We will see later that this is the condition for applying the union bound analysis. As noted in [11], this condition

can be referred to as a condition on the code’s parameter E%’, or a condition on the code’s rate, R.
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Corollary 5.2 Let §;, 6q < §; < 1 — %5,1, be fized. Let S, be a set of functions Egi :[0,1] » R,
indezxed by n, which includes the trivial choice. Suppose that {Cn} is a sequence of codes for which
condition (59) is satisfied for every value of p € P, for some P C (0, %), and for every choice of
E,‘;i € S,. Then, for every p € P, the trivial choice of E;;i minimizes the upper bound in (58) over all

choices of E,‘;i € S,, and we have

1 )
N log P(e) < —d;log \/4p(1 — p) — E%. (61)

Proof . When condition (59) is satisfied and Egi (0¢) =0, we have
1 . ; :
— 7 08 P(e) X min B (81, 6m, p) = B (62)
Subtracting the r.h.s. of (62) from the r.h.s. of (58), we have
2 min {E‘Si (I,m,p) + E%(l + m)} — E% — min {E‘Si (I,m,p) + 2E% (I + m)}
Dy 1 ) ) n B Dy 1 ) ) n
— <min E‘fi (I,m,p) — E%)
D1
— i 3 di
= min {2}51 (I,m,p) +2E% (1 + m)}
— ( min {E‘si(l m,p) + 2E% (1 +m)} +min B (I,m,p) ) >0
Dl 1 ) ) n Dl 1 ) ) -

for any E;; € S,. Thus, when condition (59) is satisfied, E;; (6¢) = 0 is the optimal choice and (62)

is the resulting bound. Finally, it is easy to show that

B (6:/2,p(1 = &;),p)

= —d;log/4p(1 - p),

and (61) immediately follows. O

min Efi (61,0m,p)
D1

At this point, several remarks are in order. The bound
1
N log P(e) < r%in E% (81, 0m,p) = —6;log\/4p(1 — p)
1

is the well known two codewords bound, where —log\/ém is the Bhattacharyya distance for
the BSC (see, for example, [21, pp. 88 ]). However, the bound in (61) implies that, under certain
conditions, when there are exponentially many codewords of weight i, the exponent Eg" can be
subtracted, yielding a tighter upper bound. This is to say that a union bound analysis results in
a valid upper bound on the error exponent (a lower bound on the error probability). Thus, by
optimizing the bound on §;, i.e., choosing the correct sub-code, the union bound analysis gives the

true error exponent for the code®. The fact that union bound analysis yields the true error exponent

6The union bound, given by P(g|co) < Z]uvzl By P(cowlco), has only polynomially many summands. Merely one of
them determines the exponential behavior. Consequently, if we calculate a lower bound on the error probability using
this sub-code, and find out that the union bound analysis applies, this is the true exponential behavior. In this context,

it is clear that if our choice of Egi yields the true error exponent, no other Egi is required.
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for random codes is well known [23]. In [12], Barg and Forney used this argument to derive the exact
error exponents for typical codes from Shannon’s random code ensemble as well as typical codes from
a random linear code ensemble. Yet, the bound in (61) is valid for any given code, as long as condition
(59) is satisfied.

Thus far, the results given by Proposition 5.1 were analyzed only as long as the condition on the
code is satisfied. The main statement in Corollary 5.2 is that the union bound analysis applies in

this case. However, note that the r.h.s. of (59) includes the function E%

' » which can be optimized.

The most important result of this section, as we will see below, is that by choosing a non trivial
E;;i, the range of rates for which the union bound analysis applies can be widened. To see this, the
minimization minp, Egi (61, 6m, On, Ok, p) should be discussed.

Using the Karush-Kuhn-Tucker conditions ([24]), one can show” that

r%in Egl (6l7 6m7 67L7 6k7p) = Egl (6l2 5 677127 67L2 3 6/62 7p)7
2
where

Oms = 0;/2—0u,,
Ony, = 0;/2—01,,

)
6](22 = p<1_6l_§d>a

and d;, is the only root (with respect to d;) of the following cubic equation

= ; (63)

such that (0., 0ms,0n,,0k,) € Da2. Since this solution is rather cumbersome to analyze, we handle
here only the special case where d; = dq4, namely, the sub-code C} is used. In this case, equation (63)
has a simple solution and our course of action and choice of E;;i becomes clearer. The general case is

analogous, and yields similar results. We return to it at the end of this section.

When §; = 04, (63) simplifies to
3
o1 _1-p
%d — 0 p’

yielding the following solution to the minimization of Egd (01, 0m, On, Ok, ) Over Dy

=
+

g
©
|
NS¢
|
N‘p?‘
W W
~
i
&

_ 0
Oma = % — b, =

1_{_311'%1) I-p
304 5 3 Y5
% = (N‘7>’ Ons =5 =0 = 17

"The complete derivations can be found in [25]
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Define C(E2,p) as
A
C(E%d 7p):E(ls3d - (Egd (612 ) 6m27 5n2 ) 6162 7p) - Efd (511 ) 6m1 7p))

and M (p) as

A .
M(p): min Egd (6l7 6m7 6n7 5k7p) - Egd (51276m276n27 5k27p)7
DQﬂDé

where D5 = {(;, 0, 0n, k) € [0, 1]4 201+ O + 0p + 0k < Oy + Opny - All this said, the following is

the main proposition in this section.

Proposition 5.3 For any 0 < C(E%d,p) < M(p), the optimal choice of Egd is given by

C(EY,p) 6 > 6, + Om,

Eyi(6:) =
else,

(64)

and we have

1
N log P(¢) < —d4log/4p(1 — p) — E%. (65)

Observe that the requirement C(E%d,p) < 0 is simply the condition on the code (i.e., equation (59)),
with the trivial Egd. Thus, by using a de Caen-based bound, one can only show that the union
bound analysis applies when C (E};d, p) < 0. However, since it can be easily proved that M (p) > 0 for
any 0 < p < %, Proposition 5.3 states that by choosing a non trivial Egd, the union bound analysis
can be shown to apply in a wider range, C(Egd,p) < M(p). Furthermore, in Appendix C.2, where
Proposition 5.3 is proved, we show that when 0 < C(Egd,p) < M(p), the union bound analysis
tightens the bound on the error exponent, with respect to the bound with the trivial Egd, by exactly
o (E};d, p). When C (Egd ,p) > M (p), and the new bound does not result in union bound analysis, E;;d
as defined in (64) can still tighten the bound with respect to the trivial Egd, this time by as much as
M (p), regardless of C (Egd, D).

We give here only an intuitive explanation for Proposition 5.3. The complete proof can be found
in Appendix C.2. We wish to prove that the union bound analysis, namely, the bound in (58) with
the trivial E;;d, may be applicable even when C(E%d,p) > 0. Observe that the r.h.s. of (59) is the
difference between two minimization problems. Suppose that there exists a function Egd, such that
the result of the minimization over D, is increased with respect to the trivial E,‘;d, while the result of
the minimization over D; is unchanged. If this is possible, the value of the r.h.s. of (59) is increased,
thus the range in which the union bound analysis apply is widened. The bound in (58) is the same
as it was with the trivial E;;d, since the proposed Egd does not change the result of the minimization
over D;. To see that such an EJ¢ does exist, observe that both ES? and EY are convex functions,
and their minimization points satisfy &, + m, + 0y + 0k, > 01, + 0, for every 0 < p < 1. Thus, the
step function suggested in (64) can change the result of the minimization over Dy without changing
the result of the minimization over D;. The threshold value M (p) is due to the fact that the proposed
step function cannot unlimitedly increase the result of the minimization over D». For more intuition

on the choice of E%

54, remember that for any received word x, the optimal value of n; is 1/deg(x).

Since deg(x) is a non decreasing function of w(x), and the size of any coset is 2V when R # 0 we

expect deg(x) to grow exponentially with N, at least when w(x) = N (in this case the exponent is
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exactly R). Thus, for a reasonable choice of 7;, there exist d;, < 1 such that for any d; > d;, we have
E%(6;) > 0 and E2(6;) = 0 otherwise. It is clear that the function EJ? suggested in (64) answers to
this restraint.

To conclude this discussion, we return to the general case of the sub-code C}. As explained earlier,
the equations required here are cubic, with cumbersome coefficients. Yet, a closed form solution for
these equations exists, and is easily handled using Matlab’s symbolic toolbox. We can follow the
derivations above (and the proof in Appendix C.2) step by step and find out that the inequality
01y + Oy + Ony + 01y > 0;/24+ p(1—6;) is still valid, hence Proposition 5.3 stands solid for any sub-code
C*

7, not necessarily Cj. Thus, to derive the tightest bound on the error exponent, one can optimize

the bound over all possible sub-codes, as long as the union bound analysis applies. For example, in
[12] Barg and Forney compute the error exponent for random and typical codes. Their derivations
are based on the fact that union bound analysis applies for these codes, i.e., optimization on the
sub-code is implicitly used. However, even when only the sub-code C} is used, the new bounds given
in this work may be interesting. For example, consider the recently discovered family of binary linear
codes with exponentially many minimum distance codewords [26]. For these codes, the union bound
analysis allows us to subtract the rate of the minimum distance codewords from the two codewords
bound, resulting in a tighter bound on the error exponent. Widening the range of the union bound
analysis is, in this case, beneficial.

As for the AWGN channel and the bound derived in Section 3, we may follow the steps in this
section directly, though, it is important to note, we do not seek the optimal optimization function,
only the optimal value of the parameters. The results, thus, are not as sharp as these for the BSC.
Yet, it is possible to show that the new bound on the error probability given in Corollary 3.2 results

in a tighter bound on the error exponent than the de Caen-based analogue [25].

6 Results

In this section, several examples with well known codes are given and the results of the numerical

analysis are shown.

6.1 AWGN channel

Before the numerical results for the lower bounds are introduced, we address several computational
issues. First, the definition of Q(-) as given in (16) requires an integration over an infinite set. Instead,

an alternative form by Craig® [28] was used

1 [/ x> 9
= — —— )d > ().
Qx) W/O exp( 2sm29> >

8also appearing in [27], with a simpler proof.

22



As for ¥(-,-,-), an expression given by Simon and Divsalar in [29] was used

1 [m/2—tan" (y/x) 1—p2 2?2 1 - psin26
o _1 v - \dd
(P ,y) %/0 T psin 20 exp{ 2 (1—p2)sin20}

1 tan~! (y/z) 1— p2 y2 1-— pSin 20
Vi=p p — = Ydh
0

o 1—psi112(9eX _7(1—p2)sin29

+

We compare the new lower bounds for linear codes, presented in Section 3, with several known
bounds in the current literature. For the sake of simplicity, only three new bounds are discussed. The
first is the norm bound - whole code, i.e., the bound given in (24) with a = ¢ = @' and b = —2a'.
The second is the dot product bound - sub-code C}, i.e., the bound given in (26) with a = ¢ = 0 and
b = —a’'. The third bound is Kounias’ lower bound as given in (29). The new bounds are compared
to Seguin’s lower bound [13], Shannon’s lower bound [5] and Poltyrev’s upper bound [1]°. The results
for the codes BCH(63,24) and Golay(23,12) are given in Figures 1 and 2, respectively. For the sake
of clarity, Figure 2 does not include Kounias’ bound. It is only slightly superior to Seguin’s.

It is clear that the new bounds perform better than Seguin’s for any value of E;/Ny. This can be
seen both for the bound using the whole code (as in Seguin’s bound) and for the bound using only
the sub-code Cj. To the authors’ knowledge, for high values of E;/Ny, where the new bounds are
superior to Shannon’s lower bound, they establish the best know results in the current literature.

Consider the limiting cases of f,—g — oo and f,—g — 0. While non-trivial values of the parameters
a, b and c yield strictly tighter bounds for intermediate values of %a it is not so in these cases. When
f,—z — 00, Seguin’s bound is optimal ([13, Section 5]), in the sense that the ratio with the union bound
tends to unity. Therefore, no non-trivial values of the parameters a, b and ¢ yield tighter results.
Note that, however, the rate of convergence may be faster with non-trivial parameters. This is also

Ep

the case when N 0, though to see this, unwieldy limit computations are required. The behavior

in these limiting cases is evident in the graphs, although the case where f,—z — 0 is most apparent

when % < —3dB, a range not included in the presented graphs.

6.2 BSC

We compare the new lower bound given in Proposition 4.2 with several known bounds in the current
literature, when the code used is BCH(63,24). Figure 3 includes the new bound with 7 = d and the
approximation (50). The new bound with the trivial choice of 7; is not plotted since the results are
very similar to Keren and Litsyn’s. For reference, three bounds are plotted: Poltyrev’s upper bound
[1], Keren and Litsyn’s lower bound [14] and the sphere packing lower bound. Referring to Keren and
Litsyn’s bound [14], the bound presented in [14] is based on the same techniques, namely, de Caen’s
bound [15], the subset C}; is used and words with weight higher than the covering radius are considered
erroneous. However, even when 7;(w) = 1, the bound in Proposition 4.2 is not identical to [14]. The

major difference is the fact that in [14], the set {x € GF(2)N : 3; w(x + ¢;) < w(x),w(x) < t} is

9As noted in [30], the upper bound given in [1] does not take into account a subset of the space (the lower half of
the cone) when upper bounding the error probability. Indeed, this part has negligible probability, yet, it is necessary
to obtain a rigorous bound. However, following the derivations in [30], it is easy to verify the validity of the bound for

the codes tested in this work.
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Figure 1: Bounds on the decoding error probability of BCH(63,24), AWGN channel. The new lower
bounds norm - whole code, dot product - sub-code C; and Kounias’ are shown. For reference, Poltyrev’s

upper bound and Shannon’s and Seguin’s lower bounds are given.

partitioned to constant weight subsets and de Caen’s bound is employed to each subset separately.
This partition simplifies several computations and instead of Proposition 4.1 a more ad hoc approach
can be used. However, in this way, the usage of Theorem 2.1 instead of de Caen’s bound is burdensome.
It is also important to note that the bound in [14] is easier to evaluate since the summations required
are simpler.

The new bound is at least as good as Keren and Litsyn’s bound for every value of p. The
improvement is obvious for high values of p, however, for lower, and more realistic values of p,
where Keren and Litsyn’s bound is superior to the sphere packing bound, the improvement is scarce.
Nevertheless, it is clear that a non trivial choice of the optimizing function 7; yields better results.

Finally, we compare the new bound on the error exponent derived in Section 5 with the de Caen-
based analogue. As a simple example, we use the codes derived by Ashikhmin Barg and Vladut, [26].
Since this family of codes has exponentially many minimum distance codewords, it can be used as an
example for the bound in Proposition 5.3, namely, when the sub-code Cj is used. Figure 4 includes
the results. The two upmost curves are the discussed bound, with trivial E,‘;d above and non trivial

E;;d below. The horizontal line is the value of Egd. The lowermost curve is the condition on the code
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Figure 2: Bounds on the decoding error probability of Golay(23,12), AWGN channel. The new lower
bounds norm - whole code and dot product - sub-code C}; are shown. For reference, Poltyrev’s upper

bound and Shannon’s and Seguin’s lower bounds are given.

for this case. It is clear that for values of p for which the condition is not satisfied, non trivial E%
tightens the bound. It is also clear that the improvement is achieved by continuing the usage of union
bound analysis, until a certain threshold is exceeded. From this point on, the union bound analysis

does not apply, yet the bound with non trivial E;;d is still tighter.

7 Discussion

In this paper, new lower bounds on the error probability of a given block code were derived. In the
first part of the paper, a new lower bound on the probability of a union of events was introduced. As
explained therein, the bound improves on de Caen’s inequality by having the ability to optimize the
result over a wide family of functions. Moreover, the optimal function is known, though not always
mathematically endurable, thus may act as a guiding light in the optimization process. This lower
bound was used as a framework for deriving the new bounds on the error probability. It was shown
that these bounds are tighter than the best known bounds in the current literature for finite block

length and low values of noise. Hence, the new bound on the probability of a union gives a powerful
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Figure 3: Bounds on the decoding error probability of BCH(63,24), M = 15, BSC. The new bound,
based on the approximation given in (44) is given. For reference, Poltyrev’s upper bound, Keren and

Litsyn’s lower bound and the sphere packing lower bound are given.

framework for deriving lower bounds on the error probability.

As for future work, note that the bounds on the error exponent, derived in Section 5, are applicable
only for specific codes, with known distance distribution. To derive upper bound on the reliability
function of the BSC, the conditions for union bound analysis given in this paper can be used, together
with known or new bounds on the distance distribution of binary (or binary linear) codes. In this
case, future work may refer to the bounds and techniques appearing in the works of Litsyn [10] and
Burnashev [11]. Finally, we note that since the new bound on the probability of a union suggests
a framework for deriving bounds on the error probability, new bounds can be derived for different
channel models. Moreover, the proposed bounds may be improved by seeking new families of functions

for optimization.
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Figure 4: Bounds on the error exponent, BSC, ABV codes and the sub-code C;. The two upmost
curves are the discussed bound, with trivial Egd above and non trivial Egd below. The horizontal line

is the value of Egd. The lowermost curve is the condition on the code.

A Computation of the Integrals Required for Proposition 3.1

We first compute the integral

| pteisoymriso)is

i

where £¢;, p(r|so) and m(r|sg) were defined in (6), (9) and (14) respectively. We have

/ p(r|so)m(r|so)dr
€04
:/ (ﬂ'N())_%eXp
€04

r—’H

1
Fllr - So||2} exp { —(allr]l* + b(r,s0) + cllsol|*) }dr

1
exp {_F [[r — aso||2}dr
0

P ({r e RX . lr —si|| < |lr —so||}jr =0+ aso)

= exp {—Blsoll’}

N——
w|w
—
- —~
3
=
I
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Wl

= exp {—Blsoll’}

N——

w|w

(R,s0 —si) _ (o= 1?[lsoll” — llaso —sill”

Vb s — Sz” V2Ngllso — sl

/N 7N N

sl 2lE Fl=

N——

= exp {—Blsoll’}
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where N{, @ and j are defined by

Ny = ——— a# ——
0

NSy

;o () -(h-4)

m+a

n is a K-dimensional vector of i.i.d. N/ (0, %) random variables and we assume Nj > 0, i.e., a > —m

Finally, since
(R, sg —s;)

v/ Bllso = il

xe bR %)

is an A (0,1) random variable, we have

| pteisoymiso)a

i

— exp {Bsoll*} (%)

X

0 llaso — sil|* — (o = 1)][sol|?
V2Ngllso — sl

where Q(+) is the error function defined in (16).

As for the integral in (8), analogously to the preceding derivations, we have

[ plelsaym?(clso)ar
€0iMNeoy
Nél % m—E 1 ’ 2
exp {—'[lsol”} (mNg) ™2 exp{ —— llr — &sol|” pdr
€0iMNeoj NO

K
NI = .
exp {~ 3ol }( ) P({re RS : v —si| <l — sollllt — 81| < Ir — soll} | = & + a'so)

)

<

V2Ng llso = sill o V2Ng llso = sl

= exp {—A[lsol| }@_)

where now

2 U 2 2 U 2 i 2 2 i 2
< « 1 So ' So S; « 1 So ' So S

No 1
N/ = 0 - 66
0 TT2av,  “7 3Ny (66)

i S
of = [F—+r ), (67)
2a + Vo

ﬂ/

1
VO_‘_QG’

we assuming Nj§' > 0,i.e.,a > — 2N , hiis a K-dimensional vector of i.i.d. N (0, —20—) random variables

and
(n,s9 —s;)

V52 llso = sill

is an A'(0,1) random variable. It is easy to verify that

X”A

<Si — Sp, S]' — S0>
lIsi = solllls; — soll

E{X{X]} = = Pij
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where p;; was defined in (18). Consequently,

K
2

/ plxlso)m” (xlso)dr = exp {~Fllso|I*} (N>

- [ pi; lla'so — sil” = (o' = 1)?[Iso[* [lo'so — s[> — (o’ — 1)*[|s0”
R ) )
V/2Ng'[lso — sl V/2Ng'[[so = sl

where ¥(-,-,-) is the bivariate normal distribution defined in (17).

B Proofs of Propositions 4.1 and 4.3

B.1 Proof of Proposition 4.1

The proof is as follows. We examine a simpler expression than ﬁden(ci, c;), in which the sum is only

over words X € go; Neoj, i # j with constant weight w(x) = u, i.e.,

wcch) w(c;)—w(cicj) w(cj)—w(eicj)

P enonn Z 5 5 <w(c;cj)> <w(ci) —mw(cicg-)>

me(C)J_Hl [w(CJll

, (w(cy') - w(cicj)> (N —w(ci) —w(c;) +wleic;)

n u—Il—m-—-n

)p“(l —p)N i (u).  (68)

Since ]Bden(ci,cj) =3 ]Bden(ci,cj,u), if ]Bden(ci,cj,u) is monotonically increasing in w(c;c;) the
proposition is proved. Observe that p*(1—p)~N ~“n;(u) > 0 does not affect the behavior of Pden(cl, cj,u)
as a function of w(c;c;). Hence, it is enough to prove that Pen(ci, cj,u)/(p*(1—p)N~¥n;(u)) is mono-
tonic in w(c;c;). This expression is, however, simply the number of words in a sub set of GF(2)N
which we denote by Vj;(u,w), where w = w(c;c;). To examine the behavior of |V;;(u, w)| as a function
of w, we assume that one codeword is fixed, without loss of generality c;, and instead of c; introduce
a dummy codeword c;:, satisfying w(c; ) = w(c;) and w(c;cj ) = w + 1. Thus, the only difference in
(68) is w(cic;r) instead of w(cicy). Let Vi (u, w) = GF(2)N \ Vi (u,w). We wish to prove that

[Vije (u, w + 1] = [Vij (u, w)| = Vi (w, w + 1) O V5 (w, w)| = |Vij (u, w) OV (w0 +1)] 20

for any w, u, w(c;) and w(c;).

Consider the set Vijr (u,w + 1) N VS (u,w). To count the number of words in this set, we examine
the example in Figure 5. For the sake of simplicity, we group the 1’s of each codeword together.
Clearly, the size of the considered set is invariant under this permutation. Let x be a word in this

w(c’)J + 1, since x € g9;. However, in order

set. First, x must satisfy w(x) = u. Second, w(xs;) > |
for x to satisfy x € Vi (u, w + 1) but x ¢ V;;(u,w), only due to a shift of one bit (from w(c;c;) = w

to w(c;cjr) = w + 1), we must have

w(xs,) = {MJ and  w(xs,) = V’(cj)J +1.

2
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Figure 5: Example of ¢;, c;, ¢;; and x. The word x is divided to six parts, each one includes the

possible number of 1’s. The inequalities for m and I define the summation bounds in (69).

Therefore, xs,\s,, =0, x5,\s5; = 1 and w(xs, mg].,) = Lw(;f)J. Accordingly, we have

|I/;j' (u,w + 1) n V;;(’U/,’w”

() () (e (e ) e

i uU—m
m:Lw(;l)Jfl 2

To evaluate Vi;(u,w) NV (u,w + 1), note that now xs;\s,, = 1 and xs,\s; = 0. Thus,

|Vij (u, w) N Vi (u,w + 1))

(ci)—w—1

£ E )

o u—m—1
m=| 5 | —1+1

J'

Hence,

Vigr (u, w +1) 0 V5 (u, w)| = [Vij (u, w) N VG (w, w + 1)

Zj:() K ”()_)Jw—_ll><w(LL_)Jw—_ll><u—NL;(—w)(J)L‘()J):lw >]

an expression which is clearly non negative for any 0 < w < min {w(c;) — 1, w(c;) — 1}, w(e;), w(c;),

and u.

B.2 Proof of Proposition 4.3

The proof is as follows. First, taking M = N only weakens the bound, since (45) is a monotonic
decreasing function of M. We have

P(E) Z LB(p) - Pden(d) ?Bd — I)Pden(da d),

where p is the crossover probability of the channel appearing in the definitions of Pym(d), Pgen(d)
and Pye,(d,d). The proof is analogous to Seguin’s proof, as it appears in [13]. As an upper bound

we use the union bound given in (51). We have

UB(p) (S, BiP(0)) (Paen(d) + (B = 1) Paen(d, )
By

(S ) (e 5 03]

Phum
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Observe that both P (i) and Ppyum(d) go to 0 as p goes to 0, hence we may apply ’Hopital’s rule until
one of them is a non zero constant. Since the expression with the lowest power of p is the first to

yield a non zero constant after successive differentiations, we have

0 i>d
. P@) 1 .
B8 T = il =
o0 1< d,
thus,
N .
T I O R -
p—0 P Pnum(d) 7h’(|_§J + 1)

Using the same method we have

p—0 Py (d) 2
and
. Pden (d7 d)
lim ————> =0
230 Pram(d)
therefore,

o LBOP) _
p—0 UB(p)

C Proofs of Propositions 5.1 and 5.3

C.1 Proof of Proposition 5.1

The proof is as follows. We wish to determine the exponential rate (as N — oo) of the r.h.s. of (52).

First, consider Py (7). Remembering that

N ke
= oNH(%)
(3) =2,
we have

i _l N (N =0\ 14m _  \N—l-m,_. _
R N10g<<l>< o )p (1-p) ni(l+m) | =

_GH (ﬂ) (- sH ( i ) (G4 o (5) — (L — b1 — o (1= p) + E5 (51 + 6)

di 1-94;
= By (01, 6m.p) + BY (81 + Om)-

Thus, since the exponential rate is determined by the summand with the maximal exponent, we have

. 1 . . 5 d;
lim_ 108 Pauin (3) = min { B3 81,60,2) + B (5 + 6) }.

N —o00

Note that since E% (8;, 8, p) is continuous and E,‘;i (61 + 0., ) is piecewise continuous, for large enough
N the minimum can be taken over Dj, a continuous interval, ignoring the requirements for rational
values of ¢; and ,,,. The requirements for integer values in the summation bounds of (35) were also
relaxed for the same reason. The same applies for Py, (i) as well, thus, we have

. 1 . . , .
lim N log Pyen (i) = r%lln {Efl (61, 0m, ) + 2Eg’ (6 + 5m)}.

N—00
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As for Pyep(i,4), using the same arguments, we have

. 1 .. . , .
lim N log Pyen (i, i) = min {ES (61,0m, 0n, Ok, p) + 2E21 (01 + Om + 0 + 6k)}'

N —oc0

To conclude, observe that when considering the exponent of the sum Py, (i) + (B; — 1) Pyen(i,14),

we distinguish between two cases. The first is when

) 1 ) . 1 ..
lim N log Pyen (i) < J\}gnoo _Nl()g ((Bi = 1) Pyen(i, 1)),

N—o0

namely, when condition (59) is satisfied, Pyep(7) dominates (B; — 1) Pgen(i,4) and we have (58). The

second is when condition (59) is not satisfied, (B; — 1) Pgen (i, 4) dominates Pye, (i) and we have (60).

C.2 Proof of Proposition 5.3

The proof is as follows. First, we show that indeed M (p) > 0 for every 0 < p < % Observe that, for
every 0 < p < %, we have

6[2 + 6m2 + 671,2 + 6/@2 > 6[1 + 6m17 (70)

with equality in (70) only for p = 0, % Thus, by the convexity of Dy and the strict convexity of Egd,

we have

min Egd (6[, 6ma 67L7 6kap) > min Egd (6l7 6m: 6na 6kap) = Egd (6l236mg76n276k27p)-
'DZOD’Z Do

Note that the minimum over Dy N D) can be calculated'®using the Karush-Kuhn-Tucker conditions

([24)).

We may now consider the minimization problems in the r.h.s. of (59), where §; = dg, E;;d is as
defined in (64) and C(E¥,p) > 0. Since El* > 0, and E%4(8;, + 6m,) = 0, where (8,0, ) is the

minimizing point of Efd, it is clear that
min { B (01, 0, p) + 25 (61 + ) } = min BL* (81,6, ),
1 1

for every C (E%d ,p) > 0. Namely, the result of the minimization over D; is unchanged. However, when
considering the minimization of E3*(8;, 8,8, 0, p) + 2Egd (01 + Om + 6, + 1) over Dy, the value of
C(EY%,p) is important. Since 8y, + 6, + 0ny + Oty > 01, + sy, the step function EJ¢, defined in (64),
“lifts” Egd (01, Om, On, Ok, p) in a range which includes its minimizing point. For large enough C(E%d , D),

ie., C’(Egd ,p) > M (p), the new minimum must be at a new point, (&, 6,,',6,',6%') € DoND}, yielding
. 5d 54 — M 6d
r%12n {E2 (5176m7 5n76k7p) + 2En (51 +0m + 0 + 6k)} - ’DIQHF%%Q E2 (6l76m7 5n76k7p)
= Egd (612 ) 6m2 ) 6n27 6k27p) + M(p)
However, for smaller values of C(Egd,p), (015, Oy, Ony, Ok, ) Temains the minimizing point, yielding

r%in {Egd (6176m7 6n76k7p) + 2Egd (61 + 6m + 6n + 6k)} = Egd (61275m276n27 6k27p) + C(Egd,p).

This far, we have proved that when 0 < C(E%,p) < M(p), EX* as defined in (64) alters the

condition on the code in such a way that it is not repealed, and the union bound analysis apply. It
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remains to prove that this is the optimal choice when 0 < C (E};d,p) < M(p), and to quantify the
improvement over the bound with the trivial Egd for every C’(Egd,p) > 0. To see this, Subtract
the r.h.s. of (58) from the r.h.s. of (60). Requiring the result to be negative is no other than the
condition on the code (59). Namely, when the condition on the code is not satisfied, and (60) is valid,
the bound in (58) is tighter. Thus, in this case, the best choice of Egd can improve the error exponent
by no more than equalizing it to (58). Since this can be done by the E2 proposed in (64), we draw
the conclusion that it is the optimal choice. Another, more intuitive, explanation for this result is
obtained by noticing that no tighter lower bound on the error probability, calculated on a sub-code
Cj;, can be achieved, than the one which coincides with the union bound. The improvement over the
bound with the trivial Egd is simply the change in the value of the r.h.s. of (60) caused by our choice
of EJ?, which is C(E%,p) when 0 < C(E%,p) < M(p), and M (p) when C(E%,p) > M(p).
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