CCIT Report #410 December 2002

Scheduling Real-Time Constant Bit Rate Flows
over a TDMA Channel

Nir Naaman and Raphael Rom

Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000, Israel
{mnir@tx, rom@ee}.technion.ac.il

December 17, 2002

Abstract

We consider a scheduling problem in which real-time Constant Bit Rate (CBR) flows must
be scheduled over a TDMA channel. Scheduling is performed by a central scheduler which is
responsible for all bandwidth allocations. Each flow has QoS requirements that include bit
rate, delay, and delay jitter. In order to provide the requested QoS a flow must get fixed
size bandwidth allocations at periodic intervals. Our model of the problem is derived from
a scheduling problem that appears in centralized access networks such as CATV, broadband
wireless access, and passive optical networks. In these networks real-time CBR flows are used
to deliver voice and other real-time applications that generate fixed size data packets on a
periodic basis.

The scheduling problem is analyzed in both its offline and online settings. We focus on the
case where grant intervals are an integer multiple of each other. In this case the scheduling
problem can be modelled as a variant of bin packing where bin sizes can be modified in a
constrained manner. We show that deciding whether a set of CBR flows can be scheduled
is NP-complete whenever there are two or more different grant intervals. Several scheduling
algorithms are suggested and their performance is investigated. We relate the performance of
the algorithms to parameters such as grant sizes and tolerated jitter, and derive conditions
under which our scheduling algorithms are optimal.
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1 Introduction

We examine a scheduling problem which is present in several networks with a Time Division
Multiple Access (TDMA) Medium Access Control (MAC) protocol. In particular we refer to the
class of centralized broadcast networks, examples of which are data over cable networks, passive
optical networks, and Broadband Wireless Access networks such 802.16 (fixed wireless MAN),
satellite and 3G cellular networks. In centralized broadcast networks a central station, called the
Headend or hub, is connected to all other station in the network by a broadcast channel. The
central station is responsible for allocating bandwidth to all other stations in the network. Tt
allocates the available bandwidth by assigning time slots to different stations. Each station is
allowed to transmit only in the time slots that have been assigned to it by the central station.
The scheduling problem is that of performing the bandwidth allocation to the different stations
in the best possible way.

This paper considers the problem of allocating bandwidth to flows with Quality of Service
(QoS) requirements. In particular we examine the task of scheduling Constant Bit Rate (CBR)
real-time flows. A CBR flow has both bandwidth and timing requirements; it must get periodic
bandwidth allocations so as to ensure delivering the guaranteed Quality of Service. Each flow
is characterized by three parameters: grant size, grant interval, and grant jitter. The flow must
get a grant (an allocation) equal to its grant size every grant interval time units. The grant
jitter specifies the tolerated delay of the actual grant from the nominal grant time (more details
in Section 2). CBR flows are used by many applications for the transmission of voice and non
compressed video.

We study both offline and online versions of the scheduling problem. In the offline version
the entire set of flows is known to the scheduler before the schedule begins, while in the online
version flows are established over time and each new flow must either be scheduled or rejected.
In both cases the goal is normally to maximize the channel utilization, or to schedule as many
flows as possible. The general scheduling problem, where flows may have arbitrary grant sizes
and intervals, is complex. We therefore analyze the problem in stages by considering increasingly
more complex cases. In Section 4 we study the case of a single grant interval. In this case the
answer to most of the scheduling problems we present is easy. In Section 5 we consider the case
where there are two different grant intervals, assuming these intervals are an integer multiple of
each other. We show that in this case the problem of deciding whether a given set of flows has a
legal schedule is NP-complete. We analyze the scheduling problem by converting it to a variant
of bin packing in which bin sizes can be modified in a constrained manner. The complexity of
the problem is analyzed as a function of the tolerated jitter and conditions that ensure a legal
schedule exists for a given set of flows are derived. In Section 6 we present several approximation
algorithm for the problem and investigate their performance. Section 7 extends the analysis to
cases where there are flows with more than two related grant intervals, while Section 8 addresses
the problem when grant intervals are not related. In Section 9 we study the online scheduling
problem.

As we mentioned, the scheduling problem we study is present in many communication net-
works. Our model of the problem and the terminology we use are derived from data over cable
networks. In particular we refer to Data-Over-Cable Service Interface Specification (DOCSIS)
[1]. The standard is published by CableLabs [2] and is the leading standard for data over cable
networks. In the next subsection we present an overview of scheduling CBR flows as defined by
the DOCSIS standard. We omit many details which are not directly relevant to our scheduling
problem, see [1] for the complete description.



1.1 Scheduling CBR Flows in Data over Cable Networks

Data over cable has emerged as one of the leading technologies for delivering broadband services
over the local loop. The existing infrastructure of Hybrid-Fiber-Coax (HFC), used by most modern
CATYV networks, enables cable operators to provide bi-directional high bandwidth data channels,
at relatively low cost. Initially cable operators offered only best effort type of service by sharing
the available bandwidth equally among all subscribers. In recent years, however, cable operators
have been looking for ways to provide additional services such as telephony and video. Since
these new services cannot rely on best effort type of service, a mechanism for supporting different
Quality of Service requirements has been devised. In this paper we consider the mechanism used
for supporting flow with Constant Bit Rate type of service. The main application of CBR flows
is the delivery of voice over the CATV media. Cable operators intend to use CBR flows to offer
Voice over IP (VoIP) services that would compete with telephony services offered by telephone
companies (see e.g., [3], [4] and [5] for more details).

CATYV networks are characterized by a tree-and-branch topology. The Headend or Cable
Modem Termination System (CMTS), at the root of the tree, controls all traffic in the network.
Subscribers of data services use a Cable Modem (CM) to connect to the CMTS. The available
bandwidth is divided into channels. Downstream channels (CMTS to CMs) are used only by
the CMTS. Upstream channels (CMs to CMTS) are shared by many subscribers (typically 500 to
2000). To share an upstream channel a TDMA MAC protocol with dynamic bandwidth allocation
is implemented. As the downstream is used only by the Headend no MAC protocol is needed.

DOCSIS based networks transfer Internet Protocol (IP) datagrams between the CMTS and
the CMs. The CMTS is responsible for the scheduling of all transmissions in the upstream.
Scheduling is done by dividing the upstream, in time, into a sequence of numbered mini-slots.
A mini-slot is the unit of granularity for upstream transmission; transmitting a datagram may
require one or more mini-slots. The CMTS and a CM establish a service flow between them; a
service flow describes the type of connection between the CMTS and the CM and is identified by a
service identifier (SID). A CM can support multiple active service flows simultaneously. In order to
support different QoS demands DOCSIS defines several types of service flows. The main services
are Unsolicited Grant Service (UGS) intended for CBR flows, Real-Time Polling Service (rtPS)
intended for Variable Bit Rate (VBR) flows, Non-Real-Time Polling Service (nrtPS) intended for
non real-time VBR flows, and Best Effort service. We are interested in the Unsolicited Grant
Service which is designed to support real-time service flows that generate fixed size data packets
on a periodic basis. Today, the main application of UGS flows is the delivery of VoIP packet
telephony calls. When a user wishes to make a new VolP call the CM tries to establish a UGS
service flow with the CMTS. The CMTS decides whether to accept or reject the call; if the call
is accepted the CMTS must allocate a fixed number of mini-slots to the CM at periodic intervals
(see [5] for exact description). An active UGS service flow is characterize by three parameters:
grant size (number of bytes to be allocated in each grant), grant interval (the delay between
successive grants), and a tolerated grant jitter. Each flow may have a different set of parameters
depending on factors such as the type of CODEC (Coder-Decoder) used, the bandwidth and
buffering requirements of the application, and the number of active sessions (grants per interval)
supported by the flow. The scheduling algorithm at the CMTS must allocate the available mini-
slots to the different service flows while ensuring that each service flow is scheduled according to
its specifications.



2 Problem Definition and Notations

We consider the problem of scheduling a set F' = {f,..., f,} of CBR flows over a slotted TDMA
channel. A slot is the basic time unit in the system. Each flow f; € F' is characterized by three
parameters

e Grant Size - S(i) - the number of slots that must be allocated to the flow in each grant.

e Grant Interval - I(i) - the nominal time between every two grants to f;. The Grant Interval
is expressed in units of slots.

e Grant Jitter - J(7) - also referred to as the tolerated jitter, this value defines the tolerated
delay from the nominal grant time until the actual grant time. The Grant Jitter is expressed
in units of slots.

Scheduling Rules: Each flow f; is associated with a time reference which we denote by ¢ (7).
The time reference is assigned to the flow by the scheduling algorithm and defines the nominal
grant times of the flow; the k* nominal grant time of flow f; is t3(i) = t1(i) + (k — 1) I(4).
Flow f; must get an allocation of S(i) consecutive slots in each grant. The actual grant time
must not precede the nominal grant time and must not exceed it by more than the grant jitter.
To state it formally, let 74(i) be the actual time of the k' grant of f;, then it must satisfy
te(i) < (1) <t (i) + J(3).

We define the actual jitter of the k' grant of f; as ji (i) = 75 (i) —tx (i), where (i) and 75 (%) are
the nominal and actual times of the k' grant of flow f;, respectively. To maintain a legal schedule
of f; the actual jitter of each grant must not exceed the grant jitter, i.e., 0 < jx(i) < J(i), Vk.

Our objective is to schedule the flows such that the timing requirements of all the flows are
maintained. We call a schedule that achieves this goal a legal schedule. We call a set of flows
for which a legal schedule exists a feasible set. Figure 1 presents an example of a legal schedule.

1)

J() ,12_0, S0
(I I 7 ) N
grant 1 | grant 2 ‘ grant 3 | ‘ grant 4 ‘
0 X0) 13(0) (%) t5(i)

Figure 1: Example of a legal schedule of flow f;.

The scheduling problem appears in several variations

e Offline setting - Before scheduling begins the entire set of flows is already known to the
scheduling algorithm and all flows are ready to be scheduled.

e Online setting - Flows are established over time; scheduling decisions are made without any
knowledge of future flows.

e Permanent flows - Flows with infinite duration, i.e., a flow that has been scheduled lasts
forever.



e Temporary flows - Each flow has a duration for which it must be scheduled. Once a flow
completes its duration it is removed. In the online problem the duration may be known or
unknown when the flow arrives.

We are interested in the following problems:

1. Feasible-Set - Given a set of flows F, is the set feasible, i.e., is there a legal schedule for
the set?

2. Legal-Schedule - Given a feasible set of flows, find a legal schedule for the set.

3. Optimal-Subset - Given a set of flows F', find an optimal feasible subset F/ C F. We
consider two optimization function: (1) maximize the number of flows in F’ and (2) maximize
the channel utilization, that is, maximize Wp = 3, S(4)/1(3).

4. Admission Control - Given a legal schedule of a set of flows, can we add an additional
flow f without violating the scheduling rules?

2.1 Notations

For a given set F' of n flows with K different values of grant intervals we denote by I} < Iy <
... < Ik the different grant intervals sorted in increasing order. We say that the grant intervals
are related if they are integer multiple of each other, that is, I; = m;-I;_; where m; is an integer
and 2 < j < K. We define K disjoint groups Fi,...,Fg such that F; = {f; € F: I(i) = I;}
where 1 < j < K, that is, group F}j contains all flows in F' with grant interval equal to I;.

For each group F; we define the following attributes:

e S, is the maximal grant size of flows in Fj.

e J; is the minimal grant jitter of flows in Fj.

o Wp, = ZfieFj S(i)/I(i) is the total bandwidth requirements of flows in Fj.
Similarly, for the entire set F' we define

o Spmae = max{S;} is the maximal grant size of all flows in F.

¢ Jyin = min{J;} is the minimal grant jitter of all flows in F.

e Wp =3 1cpS()/1(i) is the total bandwidth requirements of all flows in F.

2.2 Performance Evaluation of Algorithms

To evaluate the performance of the different algorithms we study we use competitive analysis.
In this type of analysis the performance of an algorithm is compared to the performance of an
optimal algorithm. For a given algorithm A and a set of input flows F', we denote by A(F') the
cost (according to the given metric) of algorithm A when it is applied to the set F. We denote
by OPT(F) the cost of an optimal algorithm. In order to provide a uniform definition for both
maximization and minimization problems we adopt a common notation [6] and define

(1)

RA(F) = max{ A(F) OPT(F)}

OPT(F)' ~A(F)



We define the worst case performance ratio of algorithm A, R4, as
Ry=inf{r > 1: Rs(F) < r for all sets F'} (2)
We define the asymptotic worst case performance ratio RY as

RY =inf{r > 1: for some N >0, Rs(F) < r for all F with OPT(F)> N} (3)



3 Related Work and Our Results

Our work is related to several fields of research that at first may seem different from one another.
The difference is due to the fact that each field considers different applications and hence defines
the scheduling problem in a different way. Our scheduling problem is very similar to problems
that have been studied in the context real-time scheduling of periodic tasks. Research in this
field has typically focused on single or multi processor scheduling and its applications are mainly
from operational research and control systems. We cover related work in this field in subsection
3.1. Another related field is that of perfectly-periodic schedules. Our scheduling problem actually
reduces to finding a perfectly-periodic schedule when the tolerated jitter of each flow is zero
(see subsection 3.2). Finally in subsection 3.3 we mention related work that has been done on
scheduling flows with QoS requirements in data networks and cable networks in particular.

3.1 Real-Time Scheduling of Periodic Tasks

There is a very reach literature on scheduling periodic real-time tasks (see e.g., surveys in [7], [8]
and [9]). In this framework a set of n periodic tasks is to be scheduled on a single processor or
multiple processors. Each task 7; is characterized by the 4-tuple (e;, p;, d;, r;) where e; > 0 is the
task’s execution time, p; > 0 is the task’s period, d; > 0 is the task’s deadline, and r; > 0 is the
task’s initial release time. Task 7; has a sequence of release times defined by r; x11 = 7 + kp;,
where k € ZT. The task must be scheduled periodically such that for every k the task is scheduled
for e; time units in the interval r; , <t < 7; ;, +d;. In some real time systems, in addition to timing
constraints, there are also other constraints such as precedence or exclusion relations among tasks
(see e.g, [10], [11]).

The relation between the above parameters and the parameters in our scheduling problem
is as follows: e; = S(i), pi = I(i), d; = J(i), and 7; = ¢;(¢). It is important to note that in
our problem it is up to the scheduling algorithm to determine the time reference of each flow
(t1(2)). This means that our problem corresponds to scheduling problems where release times are
not specified; such problems are harder than those where release times are specified. When we
consider scheduling flows on a single channel our work corresponds to the single processor case,
while scheduling in a multi channels network corresponds to the case of multi processors. Note
that in our scheduling rules we assume fragmentation is not allowed and hence each grant must
be over consecutive slots. This feature relates our work to non-preemptive scheduling. If we allow
fragmentation a preemptive model (that takes fragmentation overhead into account) should be
adopted.

Most of the algorithms that have been proposed for real time scheduling are priority based
algorithms. In such algorithms each task 7; is assigned a priority number by the algorithm.
Priorities may be either static (constant over time) or dynamic (change over time). Lower priority
numbers correspond to higher priorities. The algorithm selects to schedule the task with the
highest priority among all available tasks (i.e., tasks that have been released); ties are broken
arbitrarily. We list below four of the best known algorithms that have been considered for real
time scheduling.

e Harliest Deadline First (EDF) [12] - This is a dynamic priority algorithm. A task is assigned
a priority number equal to the time left before its deadline, that is, the priority number of a
task 7; at time ¢ is equal to d;(t) —t. As a consequence, the algorithm always schedules the
task with the nearest deadline. EDF is one of the most significant scheduling algorithms in
the field and has been the subject of many studies. The main reason is that EDF achieves
good performance and is actually optimal in many cases (for example when preemption is
allowed).
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e Least Laxity First (LLF) [13] - A dynamic priority algorithm in which the priority of task
7; at time ¢ is equal to d;(t) — ¢t — e;(t). Thus LLF is similar to EDF but it also takes into
account the execution time of the tasks.

e Rate Monotonic (RM) [14] - This is a simple static-priority scheduling algorithm in which
priorities are equal to the periods of the associated tasks. Hence, the RM rule is to selects
to schedule the (available) task with the shortest period.

e Deadline Monotonic (DM) [15] - This is also a static priority algorithm. DM uses the
deadline span of each task for its priority. Thus the next task to schedule is the task with
the smallest deadline span.

Most studies of real time scheduling assume that tasks can be preempted. Under this assump-
tion Liu and Layland showed that the EDF algorithm is optimal in the sense that it produces a
legal schedule for any schedulable set [12]. The subject of non-preemptive real time scheduling
received less attention. Jeffay et al. considered non-preemptive scheduling on a single processor
when the deadline of each task is equal to its period [16]. They presented necessary and suffi-
cient conditions for a set of periodic or sporadic tasks to be schedulable for all values of release
times. Furthermore, they showed that when these conditions are met the non-preemptive EDF
algorithms is optimal. However, they proved that deciding whether a set of periodic tasks with
specific release times is schedulable, is strongly NP hard. Improvements to the non-preemptive
EDF algorithm for specified release times (where EDF is not optimal) have since been proposed
(see e.g., [17], [18] and a survey in [19]). Several special cases of non-preemptive real-time schedul-
ing have been studied. For equal size tasks it has been shown in [20] that when periods and release
times are an integer multiple of the task size the non-preemptive EDF algorithm can schedule any
set of tasks with bandwidth requirement that does not exceed unity. Dolev and Keizelman [21]
studied the performance of the EDF and LLF algorithms for several cases of online scheduling of
non periodic real time tasks. They derived several results that relate the performance ratio of the
algorithms to the minimum and maximum task size.

The common assumption in most studies of real time scheduling has been that the deadline
of a task is equal to its period (in our terminology J(i) = I(i)). The problem of general deadlines
received less attention. Most of the works that have been published consider the problem of jitter
control in scheduling periodic preemptive tasks (see e.g., [22], [23]). For non-preemptive tasks
Di-Natale and Stankovic considered the case of scheduling periodic tasks with precedence and
exclusion constraints [24]. They presented a general method, based on simulation annealing, of
producing feasible schedules while minimizing the total jitter of all tasks. Another simulation
annealing algorithm for scheduling tasks with jitter constraints (in addition to communication,
precedence, and exclusion constraints) has been presented in [25]. We consider simulation an-
nealing, as well as exhaustive search techniques, inappropriate for our scheduling problem due to
their running time complexity.

3.2 Perfectly-Periodic Schedules

The common framework of perfectly-periodic schedules is that of n clients that share a single
resource by means of time multiplexing. Each client 7 is characterized by its period F;, and its
request size R;. A schedule is called perfectly-periodic if each client 4 is scheduled for R; time slots
exactly every P; time slots. A perfectly-periodic schedule can be described in a very compact way;
for each client it is sufficient to describe only an offset and a period. This fact renders perfectly-
periodic schedules desirable in several applications. For example, in the context of broadcast disks
[26] a perfectly-periodic schedule can dramatically reduce the power consumptions of clients.
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Obviously not every set of clients admits a perfectly-periodic schedule. Bar-Noy et al. con-
sidered the problem of scheduling clients with different periods but equal (unit) request sizes;
they showed that deciding whether a given set of clients admits a perfectly-periodic schedule is
NP-hard [27]. Patt-Shamir et al. presented a tree based method of constructing perfectly-periodic
schedules for unit size requests [28], [29]. In order for this method to work the different periods
of the clients must be represented in a tree structure. They gave necessary conditions that a set
must satisfy in order to have a tree representation; however, they showed that, as the results in
[27] imply, not every schedulable set of periods can be represented by a tree.

Approximation algorithms for perfectly-periodic schedules take two approaches. The first
approach aims at minimizing the average waiting time of a client; it relaxes the demand for the
schedule to be perfectly-periodic and allows the intervals between allocations to vary (see e.g.,
[26], [30]). The second approach demands that the schedule remain perfectly-periodic but allows
the actual periods to vary from the requested periods. In this approach the goal is to modify the
requested periods by as little as possible (see e.g., [28], [29]).

The common assumption of nearly all works on perfectly-periodic schedules is that each request
is for one time slot, i.e., R; = 1. This assumption does not hold in our scheduling problem where
requests (grant) may have arbitrary sizes. The case of arbitrary size requests has been studied
by Patt-Shamir et al. in [31]. They considered the case where the periods are a power of two
(times a common constant) and presented an algorithm that produces a perfectly-periodic schedule
whenever the bandwidth demand does not exceed a certain limit. In Section 7 we derive similar
results but under less restrictive assumptions.

3.3 Scheduling Flows with QoS Requirements in Data Networks

Many scheduling algorithms have been designed for network elements, such as switches and
routers, with the goal of providing end to end guarantees on bit rate and delay for each flow
(see [32] for a survey). The general framework is that of NV sessions that arrive into a switch with
a single output link. Each session 7 has a required bit rate r; and possibly a maximum delay
bound D;. Packets arriving from a session are stored in a queue reserved for that session and
are served in a First Come First Served (FCFS) manner. The scheduler at the switch should
decide which session to serve at each time. The most widely implemented scheduling algorithms
in network switches are based on either Weighted Fair Queueing (WFQ) or Round Robin (RR).
Weighted Fair Queueing algorithms aim to approximate the theoretical fluid model of General
Processor Sharing (GPS) introduced by Parekh [33]. Parekh proposed a packet by packet version
of GPS known as PGPS which is in fact a weighted version of a Fair Queueing algorithm proposed
by Demers et al. [34]. Since then many other algorithms have been proposed in order to emulate
the behavior of GPS in a better way (for example, algorithm WF2?Q [35] has improved fairness
properties) or reduce the complexity of implementing the algorithm (see e.g., [36], [37]). Round
Robin (RR) has been proposed by Nagel as a simple way of allocating bandwidth [38]. Variants
of RR that have been proposed as scheduling algorithms in network elements include Weighted
Round Robin (WRR) [39], Deficit Round Robin (DRR) [40], and Elastic Round Robin (ERR)
[41]. Another class of scheduling algorithms that received much attention are algorithms based
on the Earliest Deadline First (EDF) rule (see e.g., [42] [43]). For a single link, and when the
traffic is leaky-bucket controlled, it has been shown that the non-preemptive EDF algorithm is
optimal (among all non-preemptive policies) in a sense that it can satisfy the largest set of delay
requirements [44] [45].

Although WFQ, DRR and EDF algorithms provide bounds on the maximum queueing delay a
packet may experience, they have several limitations that renders them (at least in their original
version) impractical for our scheduling problem. The main drawback of these algorithms is that
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they do not take into account the periodic nature of the traffic and therefore cannot reserve a grant
for a packet that has not been created yet. In other words, the algorithms only guarantee the
delay a packet may experience from the time it has been created, which in our problem translates
into guarantees on the jitter only. In addition the algorithms provide no efficient way of setting
the time reference of each flow, which is a key issue in our problem. Even if we decide to use
one of the algorithms (by translating delay bounds to jitter bounds), there are still several issues
that should be addressed. The bounds on the delay that WFQ and RR algorithms guarantee
can be improved only by increasing the bandwidth reserved for the flow. This property implies
that supporting low bandwidth flows with tight delay (or jitter in our case) requirements can be
problematic. This last problem has been addressed recently in several studies [46] [47].

Finally we mention work that has been done on scheduling flows with QoS requirements in
DOCSIS compliant cable networks. Bandwidth allocation for non real-time applications has been
considered in [48, 49, 50]. Simulations of simple scheduling algorithms for CBR flows have been
presented in [51, 52]. A two phase algorithm for allocating mini-slots for real-time flows in a
DOCSIS network has been presented in [53]. This algorithm, however, does not guarantee the
QoS requirements of all the flows it schedules; rather, it assumes that some packets may be
lost due to QoS violation. Several works suggest to solve the problem of scheduling CBR flows
simply by giving these flows higher priority (e.g., [50, 54]); our results indicate that this alone
cannot ensure the QoS requirements of the flows. Scheduling of Variable Bit Rate MPEG video in
DOCSIS networks has been considered in [55, 56]. The problem of assigning upstream channels to
cable telephony and moving calls from one channel to another, under the assumption that all calls
(CBR flows) have the same parameters, is analyzed in [57]. Previous papers on QoS scheduling
for DOCSIS networks provided simulation results only. Our work, to the best of our knowledge,
is the first to present an analytic analysis of the problem of scheduling CBR flows in data over
cable networks.

3.4 Our Results

In this subsection we summarize the subjects we covered in this study and present some of the
results we obtained. The general scheduling problem is complex. We therefore focus on several
interesting special cases. We start with the simplest case where all the flows have the same grant
interval and progress to more complex settings.

3.4.1 Single Grant interval

In Section 4 we assume that all the flows have the same grant interval but each flow may have
a different grant size. In this case the Feasible-Set and Legal-Schedule problems are trivial. The
Optimal-Subset problem is solved by a polynomial algorithm when the goal is to maximize the
number of scheduled flows but is NP-hard when the goal is to maximize channel utilization.

3.4.2 Two Related Grant Intervals

In Sections 5 and 6 we consider the case of two related grant intervals, i.e, intervals which are

an integer multiple of each other. We show that in this case the Feasible-Set problem is already

NP-complete.

Theorem 1: The Feasible-Set problem with two different grant intervals is strongly NP-complete.
We observe that in the case of related grant intervals the scheduling problem can be modelled

as a variant of bin packing where bin sizes can be modified in a constrained manner. Based on

this observation we develop several scheduling algorithms and investigate their performance. For
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two of the algorithms, LS — LB and NF'J, we derive sufficient and necessary conditions under
which the algorithms produce a legal schedule.

Theorem 4: Let F be a set of n flows with two grant intervals I = mIy. Denote by So the
mazimal grant size of flows in Fy and by Jy the minimal grant jitter of flows in Fy. Suppose F
satisfies the following two properties:

S(i
2. 55 < J+1

then F is a Feasible-Set. Furthermore, both algorithms LS — LB and NFJ always find a legal
schedule for all flows in F.

3.4.3 Several Related Grant Intervals

In Section 7 we extend the analysis to the case where there are K > 2 related grant intervals.
We introduce a new scheduling algorithm called F'F'J — K and a variant of this algorithm which
we call PP — FF. The PP — FF algorithm is used for constructing perfectly-periodic schedules,
i.e., with zero jitter. We prove the following property of the algorithm.

Theorem &: Let F' be a set of flows with K related grant intervals such that I; = mj; I; 1 where m;
18 a positive integer for all 2 < j < K. Denote by Spaz the mazimal grant size of flows in F, and
by Wi = 3 1. cp S(4)/1(i) the total bandwidth requirements of flows in F. Algorithm PP — FF
always produces a perfectly-periodic schedule for a subset of flows F' C F such that the channel
utilization of the schedule satisfies

S(Z) . Sma:c 1
= — > - X
n E ) mln{WF, 1 I,
fi€F’

Furthermore, no other algorithm can guarantee to produce a perfectly-periodic schedule with a
higher channel utilization, i.e., with n > 1 — S%f*l

For the case of non zero jitter we derive necessary and sufficient conditions for the FFJ — K
algorithm to produce a legal schedule.
Theorem 6: Let F' be a set of flows with K related grant intervals such that I; = m;I; 1 where
mj is a positive integer for all 2 < j < K. Denote by Spax the mazimal grant size of flows in
F\ Fy and by Jpn the minimal grant jitter of flows in F'\ Fx. Algorithm FFJ — K produces a
legal schedule for all flows in F whenever F satisfies the following two conditions:

S(i
L Wr=Yergn <1

2. JZ(K_l) Sma:z:_l)

Furthermore, no other algorithm can guarantee to produce a legal schedule of all flows in F', unless
F satisfies both conditions 1 and 2.

3.4.4 Unrelated Grant Intervals

In Section 8 we consider the general case where grant intervals are not necessarily related. To
exploit the advantages of related grant intervals we propose to round the original set of intervals
into a set of related intervals. We consider the consequences of rounding for different types
of application and analyze the effects of rounding on the performance of scheduling algorithms
designed for related grant intervals.
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3.4.5 Online Scheduling

In Section 9 we investigate the online version of the scheduling problem where flows are established
(and possibly end) over time. We demonstrate the importance of the tolerated jitter in online
scheduling and present three algorithms designed for three different categories of tolerated jitter.
In the first category the tolerated jitter should satisfy .J; > I;; in this case an offline algorithm
can be easily modified to serve as an online algorithm. The second category is when J; > I;; for
this category we develop an algorithm called OLL which has the following property.

Theorem 8: Let F be a set of flows with K related grant intervals which are powers of 2 times I.
Denote by Spmaz the mazimum grant size in F' and require that grant jitters in F satisfy J; > 0,
J; > min{ly, (K—1)Smaz, (257 =1)Smas}, Vi > 2. When algorithm Online Least Loaded (OLL)
is used to online schedule the set F' the channel utilization achieved satisfies

0> min{WF’ 1 KSmas =1 | K(K — 1)Smam}

I 2Ik

The third category we consider is that of zero jitter. We present a modification of OLL that
produces schedules with zero jitter.

We present simulation results of the different algorithms and compare their worst case perfor-
mance bounds to their average behavior.

3.4.6 Multi Channel Scheduling

In Section 10 we extend the analysis to consider multi channels. Since scheduling flows with two
grant intervals is NP-hard even when a single channel is used, we restrict our attention to the case
of uniform calls, i.e., when all the calls have the same values of I, § and J. Scheduling uniform
flows on a single channel is trivial, we show that with multiple channels the problem becomes
NP-hard.
Theorem 9: Deciding if a given set of uniform flows, can be scheduled on multiple channels is
strongly NP-complete.

We concentrate on the online version of the problem and consider the possibility to switch
flows from one channel to another. We define several scheduling algorithms and investigate their
performance under several settings.
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4 Scheduling Flows with a Single Grant Interval

We assume that all the flows have the same grant interval but may have different grant sizes. We
denote by I; the grant interval and by F' the set of all flows. In this case we can easily answer
most scheduling problems.

1. Feasible-Set - A legal schedule exists if and only if the sum of grant sizes of all the flows
is no more than the grant interval, i.e., if 37, p S(i) < I1. Practically all we have to check
is that the bandwidth requirement of all the flows does not exceed 1.

2. Legal-Schedule - A legal schedule for a feasible set is obtained by ordering the flows one
after the other in a single interval and repeating this sequence in all the following intervals.
The initial order of the flows is not important.

3. Optimal-Subset - The Optimal-Subset problem has a simple solution when the goal is to
maximize the number of flows in the feasible subset. We sort the flows in increasing order
of their grant sizes and keep adding flows to the subset as long as the sum of grant sizes in
the subset does not exceed I;.

In the case where the goal is to maximize the channel utilization, Optimal-Subset is identical
to the subset-sum problem. The subset-sum problem is NP-hard but can be solved in pseudo
polynomial time [58]. There are also many approximation algorithms for subset-sum (see
e.g., [59, 60, 61]).

Online scheduling in the case of a single grant interval is fairly simple. In the case of permanent
flows the online algorithm is identical to the offline algorithm. Implementing admission control
is simple, a new flow with grant size S(i) can be admitted if and only if the channel utilization
when the flow arrives does not exceeds 1 — S(i)/I;. The case of temporary flows is a little more
complicated since, due to the departure of flows, the currently scheduled flow may not occupy
consecutive slots. In order to admit a new flow the algorithm may have to change the locations
of admitted flows (using the tolerated jitter) within the basic interval. More details about the
online problem are given in Section 9.
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5 Scheduling Flows with Two Related Grant Intervals

In this section we consider the offline version of the scheduling problem with two related grant
intervals satisfying Is = mo - I, where mo is an integer. We denote by X1 = ZfiEFl S(7) the total
size of all grants in F} and similarly by 3o the size of all grants in F5. We denote by n; and no
the number of flows in F; and Fb, respectively.

In order to produce a legal schedule it is sufficient to find a legal allocation of the flows over
an interval of length Is. Once we find such an allocation, we can repeat it over and over to get
a legal schedule (see Figure 2). We are therefore concerned with the allocations over a single
interval of length I5 which we call the basic interval. In the basic interval each flow in F}| must be
scheduled (in a legal manner) mgy times, while each flow in Fy must be scheduled once. To find
a legal schedule we first group all flow in F; and allocate them at the beginning of msy periodic
intervals of length I;. Once the flows in F} have been scheduled the free slots in the basic interval
consists of mo gaps which are left between successive allocations of flows in Fy; the size of each
gap is I — X;. Our task is to allocate the flows in F5 in those gaps to form a legal schedule. An
example of an allocation of flows in F; and Fy over two basic intervals is shown in Figure 2.

. L=41, #

I

2,

3 4 516 7 3 4 516 7
b 0

<«—  Basic Interval k¥ ———<+«— Basic Interval &+1 ——M

[ ] Allocations of flows from F

[ ] Allocations of flows from F,

Figure 2: Example of a legal schedule of flows in F; and F5 over two basic intervals.

The problem of scheduling flows in F5 brings to mind packing problems such as bin packing
or multiple knapsack. Both problems have been widely researched and investigated (see [62] and
[63] for comprehensive surveys). We concentrate on the bin packing problem. In the classical
one-dimensional bin packing problem, we are given a list of items L = (a1, as, ..., a,), each with a
size s(a;) € (0,1] and are asked to pack them into a minimum number of unit capacity bins. In
our current scheduling problem there are my bins of size B = I} — X1, and ny items. Each item
corresponds to a flow in Fy and its size is the flow’s grant size. The goal is to pack the items
into the bins in a way that results in a legal schedule. The variant of bin packing we face in the
scheduling problem has several important characteristics which make it different from classical
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bin packing

e The sizes of the bins may be modified in a constrained manner. This is due to the grant
jitter of flows in Fj that permits us to move them forward in time by as many slots as their
grant jitter allows.

e Some items may be bigger than the bin size. Such items may still be packed by increasing
the sizes of some of the bins.

e There is a fixed number of bins.

5.1 Changing Bin Sizes

The main difference between the scheduling problem and classical bin packing is the ability to
change bin sizes. Initially all mo bins have the same size; we call this size the nominal bin size
and denote it by B. If the jitter of all flows in Fj is J it means that bins of sizes in the range
B — J to B+ J can be created. Clearly the total free space does not change so the total sizes of
all bins must remain a constant equal to moB. Figure 3 presents an example of how we can get
bins of sizes 2 to 6 from bins of nominal size B = 4, when the jitter is J = 2. Suppose we want
to change the size of bin number k. If we want to increase the bin’s size, we move the group of
flows in F in the next bin (number k£ + 1) forward in time. If we want to decrease the bin’s size,
we move the flows in F} in bin number k forward in time. Note that it is not allowed to move
the flows in F} to a time which is earlier than the nominal allocation time. The displacement of
flows in Fj is by at most J which means the maximum bin size we can create is B + J and the
minimum bin size is B—J. It is important to note that the sizes of the bins are strongly dependent
since increasing the size of one bin results in decreasing the size of the next bin. Because of this
dependency there are some sequences of bin sizes which are not feasible, i.e., there is no way to
produce them. Take for example the five bins shown in Figure 3 and assume J = 3. It is easy to
verify that the sequence {By = 7,By = 5,B3 = 5, By = 2, B5; = 1} is not legal since it violates
the jitter constraint. Note that it is possible to obtain a legal sequence from the same set of bin
sizes by ordering the bins; for example the sequence {By = 7,By, = 1,B3 = 5,By =5, B; = 2} is
legal. There are, however, sets of bin sizes that are not feasible under any order; in our example
it is easy to see that the set {6,6,6,1,1} is not feasible. We conclude that while it is possible to
create any bin size in the range B — J to B + J, it may be impossible to create certain sequences
of bin sizes even if the bins are all in that range.

We use two basic approaches for changing bin sizes. In the first approach, which we call state
dependent, the algorithm assumes that the bins are ordered in a certain way and this order does
not change. The fixed bin order enables the algorithm to calculate the possible sizes each bin may
have and thus enables it to decide whether to pack a given item or discard it. As a result the
algorithm can make sure that during the packing process it is always left with a legal schedule.
The second approach is called state independent because the algorithm does not maintain the
state of the bins that determines the possible bin sizes. Instead, scheduling is divided into two
stages. In the first stage the algorithm packs the items while assuming the size of each bin can
change by a given constant. In the second stage the algorithm tries to order the bins that were
created in the first stage so as to produce a legal schedule. In the next subsections we discuss
some of the properties of each approach.

5.2 State Independent Algorithms

State independent algorithms attempt to solve the scheduling problem in two stages. In the first
stage the algorithm packs the flows in F5 into mo bins. The algorithm is allowed to change bin
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Figure 3: Example of changing bin sizes. Initially all bins are of size 4 (a). We move the flows in
F; within the jitter limits to create bins of sizes 2-6 (b). We can now schedule flows in F5 in the
new bins (c)

sizes and when doing so the algorithm is constrained only by the tolerated jitter of flows in Fi;
the question of schedule feasibility is ignored. We call this stage Bin Packing with Jitter. In the
second stage the algorithm attempts to produce a legal schedule by ordering the bins that were
created in the first stage. We call the second stage Bin Ordering with Jitter. We now investigate
each of the stages separately.

5.2.1 State Independent: Bin Packing with Jitter

The problem we consider is a variant of bin packing where the sizes of the bins may be modified
in a constrained manner. Let us first present the decision version of the problem.

Bin Packing with Jitter (BPJ):
INSTANCE: A set of m bins By, ..., By,, a nominal bin size B, a list L = {ay,...,a,} of n items,
each with a size s(ay) € ZT, 1 < k < n, and a tolerated jitter J € Z7.
QUESTION: Is there a legal packing for the list of items, i.e., such that the size of each bin B;
satisfies B — J < s(B;) < B+ J, the sum of sizes of all m bins is Y., s(B;) = m B, and the total
size of the items packed in each bin does not exceed its size -, g s(ax) < s(B;), 1 <i <m.

Our first step is to determine the complexity of the problem.

Claim 5.1 Bin Packing with Jitter is NP-complete in the strong sense.
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Proof: We show a transformation form 3-PARTITION (defined below) to a restricted version

of Bin Packing with Jitter. 3-PARTITION is known to be NP-complete in the strong sense [58].
3-PARTITION:

INSTANCE: A finite set A of n = 3k integers ay,as,...,a, and a bound C € ZT such that

Cld<a;j<C/2forj=1,..,nand 337 a; =kC.

QUESTION: Can A be partitioned into k disjoint subsets Si, ..., Sk such that Zjesi a; = C for

i=1,...,k7

Consider an arbitrary given instance of 3-PARTITION with a bound C and a set of n = 3k
elements A = {a1, a9, ..., a,}. For a given jitter J we construct the following instance of BPJ: let
the nominal bin size be B = C' + J and let m = 2k. The list of items contains n + k items; the
first n items are the items in A and we add k£ more items of size B + J.

In order to pack all items of size B + J there must be k£ bins of size B + J. As a result the
sizes of the remaining k£ bins must be B — J. After placing the items of size B + J in bins of
size B 4+ J we face the problem of packing the items in A into k bins of size B — J = C. This is
exactly the 3-PARTITION problem which means that the answer to BPJ is "yes” if and only if
the answer to 3-PARTITION is "yes”. |

An immediate corollary of the intractability of BPJ is the following.

Theorem 1 The Feasible-Set problem with two different grant intervals is strongly NP-complete.

Proof: Feasible-Set is at least as hard as bin packing with jitter since any legal solution of
Feasible-Set is also legal for BPJ, but a legal solution of BPJ is not necessarily a legal solution
for Feasible-Set. u

5.2.2 State Independent: Bin Ordering with Jitter

Bin ordering is performed after a bin packing algorithm produced a set of variable size bins. The
task of a bin ordering algorithm is to order the bins in a way that produces a legal schedule. To
define a legal schedule, recall that the actual jitter of a grant is the difference between the actual
and nominal times of the grant. In a legal schedule the actual jitter of flows in F}, after ordering
any number of bins, must not exceed the tolerated jitter; when scheduling the last bin the actual
jitter must be zero. We assume there are m bins, the nominal bin size is B and the tolerated
jitter of flows in F} is J. Let us define the problem in a formal way.

Bin Ordering with Jitter (BOJ):
INSTANCE: A nominal bin size B, a set @) of m bins, each with a size s(B;) € Z7, 1 <i<m
and a tolerated jitter J € Z 7.
QUESTION: Is there a legal schedule for the set of bins, i.e., such that after ordering any number
k < m — 1 of bins the actual jitter is at most J and after ordering all m bins the actual jitter is
zero? Note that the actual jitter cannot be less than zero. Hence when ordering the k¥ bin, its
size may be increased to make the sum of sizes of the first k£ bins equal to kB.

Example: Suppose the nominal bin size is B = 10 and the tolerated jitter is J = 5. We are given
a set of m = 5 bins with the following sizes: Q = {15,13,8,8,6}. Note that here, as well as in
the sequel, we identify a bin by its size and not its sequence number; this is done to simplify the
notation and should cause no ambiguity. We can produce a legal schedule by scheduling the bins
as follows: {15,8,8,13,6}. The actual jitter during the schedule is {5,3,1,4,0}. The only other
legal schedule in this example is {15,6,13,8,8}.

Our first goal is to determine the complexity of Bin Ordering with Jitter.
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Claim 5.2 Bin Ordering with Jitter is NP-complete in the strong sense.

Proof: We show a transformation form 3-PARTITION (defined in subsection 5.2.1) to a re-
stricted version of Bin Ordering with Jitter. 3-PARTITION is known to be NP-complete in the
strong sense [58].

Consider an arbitrary given instance of 3-PARTITION with a bound C' and a set of n = 3k
elements A = {ay,a9,...,a,}. We construct the following instance of Bin Ordering with Jitter:
let the nominal bin size be B = C'+ 1 and let the tolerated jitter be J = C. We define m =n+k
bins. The sizes of the first n bins are constructed from the elements in A such that s(B;) = B+a;,
1 <i<n. We add k more bins of unit size, s(By11) = ... = $(Bp4) = 1.

We now show that the two problems are equivalent. By definition the set A can be partitioned
into k subsets Si,...,S; of size C if and only if the answer to 3-PARTITION is ”yes”. For
any ”yes” instance of 3-PARTITION we construct a legal schedule for Bin Ordering with Jitter
by performing the following k iterations. In the first iteration we schedule three bins that were
constructed from the elements in S7; the actual jitter at this point of the scheduleis j = C' = B—1.
We can therefore schedule By, 1, which is of unit size, to make the actual jitter zero. We proceed
in a similar way; in iteration ¢, 1 < ¢ < k we schedule three bins that were constructed from the
elements in S; and then schedule B,,;;, which is of unit size, to make the actual jitter zero. At
the end of iteration & we have a legal schedule since all the bins have been scheduled and the
actual jitter is zero. Now consider the case where the answer to 3-PARTITION is "no”. Since
the sum of sizes of all the bins is exactly mB, a legal schedule can have no unused slots. Bins
of unit size can, therefore, only be scheduled when the actual jitter is B — 1 which means that
during a legal schedule there must be k points where the actual jitter is B — 1. Since the answer
to 3-PARTITION is "no” there could be no such k subset and the answer to Bin Ordering with
Jitter is therefore also "no”.

We showed that for any instance of 3-PARTITION we can construct an instance of Bin Or-
dering with Jitter for which the ”yes” and "no” instances are identical. We conclude that Bin
Ordering with Jitter is at least as hard as 3-PARTITION. |

In our proof the tolerated jitter is J = B — 1. We can construct a similar proof using other
values of tolerated jitter. If J = B — x we simply set B = C + = and choose n bins of size
s(Bj) = B + a; plus k bins of size z. Note however that in our example J = C so when J is very
small the 3-PARTITION problem can be solved easily, simply because the elements in A have a
limited range of values.

5.2.3 Relation between Bin Packing and Legal Schedules

When we presented BPJ we allowed the bins to take any size in the range B — J to B + J. It is
important to note that finding a legal solution to BPJ does not mean a legal schedule exists. As
an example for a legal packing that does not have a legal schedule take B =10, J =3 and m =5
bins with the following sizes: {12,12,12,7,7}. The packing is legal since the sizes of the bins are
in the range B — J =7 to B+ J = 13. However, it is easy to verify that there is no way we can
order the bins to obtain a legal schedule.

In many cases we expect more than one possible solution to BPJ. It is therefore interesting to
check whether there is a reason to prefer one solution over the others. Obviously if a the solution
to BPJ consists of bins of size B only, it would be our preferred solution since in this case the
Bin Ordering stage is not needed. What about other solutions? Is it better, for example, to
select a solution where the maximum bin violation is minimal, or a solution where the number of
violations is minimal, or maybe a solution with the most balanced number of bins with overflow
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compared to bins with underflow. While it is hard to give a clear answer to this question, the
following theorem identifies a set of solutions for which we know a legal schedule exists. The
theorem indicates that a good optimization function for BPJ is to try to minimize the difference
between the largest bin and the smallest bin.

Theorem 2 Given a nominal bin size B and a tolerated jitter J, let the set of m bins QQ =
{By,.... B} be some legal solution of BPJ in which Y ;"  s(B;) = m B. Denote the difference
between the largest bin and the smallest bin by A = maxp,cq{s(B;)} — ming,cqo{s(B;)}. The
following properties hold:

1. If A< J+1 alegal schedule exists.

2. If A > J+1 alegal schedule may not exist.
Proof: We begin by proving the first property.

Case I: A< J+1

Assume by contradiction that an optimal bin ordering algorithm cannot find a legal schedule
for a certain set of bins with A < J + 1. Consider the operation of the optimal algorithm as a
sequential process of ordering bins. In order for the optimal algorithm to fail there must be a
point where one or more slots are left unused. Let us assume that the first time this situation
happens is when the k' bin is ordered, that is Zle s(Bj) < kB. Assume that after ordering
k — 1 bins the actual jitter is 7, 0 < j < J, the size of the smallest bin which is larger than B
is B+ 2, 1 <z < J and the size of the smallest bin is B —y, 1 < y < .J. Ordering the k* bin
results in an unused slot only if the following two conditions are met:

1. j+ B+ x> B+ J+1 - otherwise a bin of size B + z can be ordered without wasting any
slots.

2. 7+ B—y < B —1 - otherwise a bin of size B — y can be ordered without wasting any slots.

It follows from the above conditions that 5 + 2« > J 4+ 1 and 5 < y — 1, which means that
xz+1y > J+ 2. However, this is clearly a contradiction since we assume A < J + 1 but by
definition A > (B+z) — (B—y) =z +y.

Case 2: A>J+1

To show that if A > J + 1 we cannot guarantee that a legal schedule exists, consider the
following example. The nominal bin size is B = 10, there are m = 5 bins with sizes {12,12,12,7,7}
and the jitter is J = 3. In this example A = J + 2 = 5 and there is no legal schedule for the set
of bins. |

From Theorem 2 it is clear that the bin packing stage should try to minimize A. If we can
find a packing with A < J+1 we know a legal schedule exists. Furthermore, we show in the next
section that in this case the Bin Ordering stage can be solved in polynomial time.

5.3 State Dependent Algorithms

Assume there are m bins. A state dependent algorithm maintains a state for each of them. A
bin’s state is made of two components: the free space in the bin, and the actual jitter of flows in
F (the displacement from the nominal time) in the bin. The algorithm maintains a legal schedule
at all times. It uses the states of the bins to check if a given flow can be inserted into a certain
bin without violating the scheduling rules. The states are updated after each flow is inserted.
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We define bin B; as starting from nominal time #; ; and ending at nominal time #;. We denote
by C(i) the free space in bin B; and by d(i) the displacement from #; (the actual jitter) of flows
in Fy in B;. The pair (C(7), d(i)) describes the state of bin B;. In the initial state C(i) = B
and d(i) = 0 for all 1 <4 < m. When the algorithm packs an items into a bin the free space in
that bin decreases. At some stage the algorithm may decide to pack an item in a bin that does
not have enough free space to contain the item. In this case the algorithm tries to increase the
size of that bin. We make a reasonable assumption that the algorithm does not increase the size
of a bin unless it must do so in order to pack an item. Increasing the size of bin B; by s results
in increasing the displacement in the next bin d(i + 1) by s. Note that as a result the state of
bins Bjy; to B;, may also change. When the algorithm decides to insert an item of size s into
bin B; it runs the INSERT procedure which is described below. If the item can be inserted, the
procedure updates the state of all bins and returns SUCCESS. Otherwise the procedure returns
FAIL and does not change the state of the bins.

Procedure INSERT (s, i,m)
/* Insert an item of size s into bin B; */

/* m is the number of bins to consider */
IF (s < C(4)) { /* item fits in B; */

C(i) = C(i) — s;
RETURN(SUCCESS);
}
ELSE {
IF i==m RETURN(FAIL); /* the size of B,, cannot be increased */
displace = s — C(1); /* necessary displacement of flows in the next bin */
temp_C(i) = 0;
FOR (k=1+1tom) {
temp_d(k) = d(k) + displace; /* use temporary states /*
IF ( temp_d(k) > J ) RETURN(FAIL); /* jitter violation /*

IF ( displace < C(k) ) {
/* bin By has enough free space for the required displacement */
temp_C(k) = C(k) — displace;
FOR (n=1i+1to k) { /* update state /*
d(n) = temp_d(n);
C(n) = temp_C(n);
}

RETURN(SUCCESS);
}
ELSEIF ( k == m ) RETURN(FAIL); /* last bin /*
ELSE {
displace = displace — C(k); /* displacement for next bin /*
temp_C(k) = 0;

In some cases an algorithm may decide to remove an item from a certain bin. In this case the
algorithm uses the REMOVE procedure that updates the states of the bins. We assume the call
to REMOVE is legal, that is, an item of size s exists in bin B;. If B; has some free space (which
means that the size of B; was not increased) then removing an item simply results in increasing
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the free space in B;. However, in some case removing an item from bin B; may change the states
of all bins B; to B,,.

Procedure REMOVE(s,i,m)
/* Removes an item of size s from bin B; */
/* m is the number of bins */

IF (i==mor C(i) >00or s ==0) { /* last update */
C(i) =C(i) + s;
RETURN;
}
ELSE {
C(i) = max{s —d(i + 1), 0} /* update free space in B; */

displace = min{s, d(i + 1)}
d(i+1) =d(i + 1) — displace

/* update displacement in B */
REMOVE(displace, i + 1)

The main advantage of using a state dependent algorithm is that it always produces a legal
schedule. Maintaining the state is simple and requires at most O(m) operations per item. It is
easy to create a state dependent version of most standard bin packing algorithms. For example,
we can use the First Fit algorithm [64] which goes over the bins starting from B; and packs an
item in the first bin in which it fits. If the algorithm cannot pack the item in any of the bins the
item is discarded. The main disadvantage of state dependent algorithms is that they make no
effort to order the bins and can therefore perform poorly in some cases. Consider for example the
following list of item sizes L = {8,8,6,6,6,6} with B = 10, J = 2, and m = 4. Any algorithm
that packs the items of size 8 in bins other than Bs and B; will fail to pack the whole list.
This however is the case for most standard bin packing algorithms such as Next-Fit, First-Fit or
Best-Fit.

Finally we note that, as we shall see in the sequel, state dependent algorithms are the preferred
choice when there are more than two grant intervals. State independent algorithms are problem-
atic when there are more than two grant intervals since they assume that the only constraint on
the order of the bins is the tolerated jitter; however, when there are more than two grant intervals
there are additional constraints on the order of the bins.
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6 Approximation Algorithms for Two Related Grant Intervals

In this section we describe several approximation algorithms for scheduling flows with two related
grant intervals. We evaluate the performance of an algorithm as the ratio between the total size
of items the algorithm packs and the total size of items an optimal algorithm can pack. For a
given list L of n items and algorithm A, let A(L) be the total size of items from L that algorithm
A packs in m bins, let OPT (L) denote the total size of items from L an optimal algorithm can
pack. We now define the performance ratio of A using equations (1)-(3). If the goal is to pack the
maximum number of items the definition of the performance ratio remains the same; we simply
let A(L) and OPT(L) represent the number of packed items.

Bin packing problems (in contrast to knapsack problems) assume that all items must be packed
and there is no effort to optimize the selection of a feasible subset. As a result the performance
of any bin packing algorithm is going to be primarily effected by the subset selection. We make
the following assumption to avoid the effect of item selection:

Compact List Assumption: For a scheduling problem with m bins and nominal bin size B, the
sum of sizes of all items is no more than the sum of sizes of all bins, that is Y ;" s(a;) < m B.

6.1 State Independent Scheduling Algorithms

A state independent scheduling algorithm can be constructed by combining two algorithms. In
the first stage we run a bin packing with jitter approximation algorithm. In the second stage we
try to produce a legal schedule by running a bin ordering with jitter approximation algorithm.
If the bin ordering algorithm fails to schedule all the bins, we may also add a third stage in
order to improve the schedule, i.e., to maximize the total sum of items in the schedule. In this
stage we keep discarding items from the list and then attempt to schedule the new set of items.
We repeat the process until the best schedule is found. Since we know that when A < J +1 a
perfect-schedule can always be found, one possible rule for discarding items may be to discard
the smallest item that results in decreasing A. The basic template for such a state independent
scheduling algorithm is the following:

Template for a State Independent Algorithm

1. Bin Packing: Use a BPJ approximation algorithm to pack the flows into bins.
2. Bin Ordering: Use a BOJ approximation algorithm to order the bins.

3. Improve: Repeat until the new order does not provide an improved schedule

(a) Discard the smallest item that results in decreasing A.

(b) Run the BOJ algorithm on the new set of bins.

In the next subsections we describe several algorithms for BPJ and BOP.

6.1.1 Approximation Algorithms for Bin Packing with Jitter

We showed that the decision version of Bin Packing with Jitter is NP-complete. We now define
an optimization version of the problem. The optimization function is either to maximize the total
size of the packed items or to maximize the number of packed items.

INSTANCE: A set of m bins, a nominal bin size B, a list L = {a1, ..., a,} of n items, each with a
size s(ay) € ZT, 1 < k < n and a tolerated jitter J € Z™.
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GOAL: Find a set L' C L with the maximum total size of items ) ., s(a) (or maximum number
of items) such that L’ has a legal packing, i.e., the size of each bin B; (1 < i < m) satisfies
B —J < s(B;) < B+ J, and the total sizes of all bins satisfies Y ;" | s(B;) < m B.

Remark: We define the size of a bin to be the maximum between the bin’s content (sum of
packed items) and B — J.

The first algorithm we present for BPJ is a modification of the well known List Scheduling
(LS) algorithm. The LS algorithm was presented by Graham in 1966 [65] as an algorithm for
scheduling jobs on m identical parallel machines, with the goal of minimizing the makespan.
The LS rule is to assign the next job to the least loaded machine; in the case of BPJ this rule
corresponds to assigning the next item to the minimal-content bin. To apply LS to BPJ the only
modification we introduce is enforcing the constraint on bin sizes. We note that LS is an online
algorithm; the offline version of the algorithm is usually referred to as the Largest Processing
Time (LPT) algorithm [66]. The LPT algorithm first sorts the jobs in decreasing order and then
applies the LS algorithm on the sorted list.

Algorithm LS

1. Go over the items according to their order in the list.

2. Assign an item to the minimal-content bin provided that after the assignment the following
two conditions are met
e The content of the bin is no more than B + J.

e The sum of all bin sizes is no more than m B.
3. Discard the item otherwise.

Note that the LS algorithm does not consider the nominal bin size in its packing decisions. The
algorithm places the first m items in m different bins and may therefore perform poorly in some
cases. To provide more efficient algorithms we combine LS with a standard bin packing algorithm.
The algorithm starts by packing the items into bins of size B as in standard bin packing. When
an item does not fit in any of the bins it is assigned according to the LS algorithm. As an example
we present the combination of Best Fit Decreasing (BF D) with LS.

Algorithm BFDpg
1. Order the items according to decreasing order of their sizes.
2. Try to assign each item according to the following rules:

e If the item can be packed in one of the bins without increasing its size to more than
B, assign the item according to the BF rule.

e Otherwise, assign the item to the minimal-content bin provided that after the assign-
ment

— The content of the bin is no more than B + J.
— The sum of all bin sizes is no more than m B.

3. If the item cannot be assigned according to the above rules, discard it.
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Instead of analyzing each algorithm we presented separately, we derive a more general result
that relates the tolerated jitter in the problem to the performance of an algorithm for BPJ. Denote
by A; an algorithm capable of changing a bin’s size by at most J > 0 units. We are interested
to find the improvement an optimal algorithm can achieve by changing bin sizes. To that end
we define OPTj (the optimal algorithm that uses only bins of size B) to be the algorithm we
analyze and OPTy to be the optimal algorithm. We define the performance ratio R3py, in the
conventional way using equations (1)-(3). It is easy to show that when items may be larger than
B the performance ratio is not bounded. Take for example a list of items of size B + 1, OPTj
cannot pack any item while OPT) can pack some of the items (up to m — 1) by increasing the
size of several bins. It is therefore more appropriate to consider the case where every item fits in a
nominal bin. The following theorem relates J to the maximum improvement in the performance
of an algorithm.

Theorem 3 For the problem of BPJ with item sizes bounded by B and tolerated jitter J < B,
the asymptotic worst case performance ratio of OPTy is Rgypy, = 2};“11.

Proof: To prove the upper bound we show that the ratio between the number of bins required
by OPTy and OPTj to pack any list L is no more than %

Claim 6.1 If OPT; packs a list L in m bins, OPTy can pack L in follm bins.

Proof: We start with the packing of OPT; and create a packing that uses only bins of size B
by replacing every bin which is bigger than B by two bins of size B. The content of the original
bin is split between the two bins. Note that this is always possible since the size of the original
bin is at most B + J < 2B and it does not contain any item of size bigger than B. Since the
total size of all bins must be mB, the number of large bins OPT; can use is at most 55 +1 m (for
every J bins larger than B one bin must be smaller than B). The number of bins in the packing
we created is at most m + J%_lm = 2J“m the number of bins required by OPTy can only be

J+1
smaller. ]

The upper bound of Theorem 3 follows from Claim 6.1. Out of the follm bins we pick m

bins with the highest content. The total content of the bins in OPT} is at most % times the
total content of the bins in O PTy.

We now prove the lower bound. Assume the bin size is an odd number B = 2b—1. We choose
a list with n = 2m items of size b. OPT, can pack only one item per bin so the total content in
m bins is OPTy(L) = m - b. OPT; packs the items in the following way: The first J bins are of
size B + 1 and contain two items, bin J 4 1 is of size B — J and contains one item. The rest of
the bins repeat this pattern. The total content of OPT} is therefore

1 2J +1
m-b= m

Theorem 3 tells us that, when every item fits in a bin, the improvement we can get by using
the jitter to modify bin sizes is by at most a factor of 2. This is reasonable since we know that
the optimal packing is guaranteed to fill the bins to at least half of their capacity. Note that while
the maximum ratio between OPTy and OPT} is given in Theorem 3, it is easy to show that for
any value of J < B, there exist a list L for which OPT;(L) = OPTy(L); a list where all items
are of size B is one trivial example.
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6.1.2 Approximation Algorithms for Bin Ordering with Jitter

Since Bin Ordering with Jitter is NP-complete we are interested in approximation algorithms for
the problem. Let us first define the optimization version of the problem.

INSTANCE: A nominal bin size B, a tolerated jitter J € ZT and a set () of m bins, each with a
size B—J <s(Bj)) <B+J,1<i<m.

GOAL: Find a set Q' C @ such that Q' has a legal schedule in m bins of nominal size B and @’
has the maximum sum of bin sizes.

We call a legal schedule of all m bins a perfect-schedule.

Our first approximation algorithm is called Largest Bin (LB). The algorithm always tries to
schedule the largest possible bin without violating the jitter constrain. The second algorithm is
called Minimize Actual Jitter (M AJ) and it tries to minimize the actual jitter in each step. For
both algorithms @ is the list of m bins the algorithm must order. We add a bin B4+ of size
$(Bm+1) = (—1) which serves as an indicator; if By, is scheduled by the algorithm it means
that the algorithm cannot find a perfect-schedule for the set Q.

Algorithm Largest Bin (LB)
jo=0; P=0; Q={Bi,...,Bni1}; perfect=YES;
FORi=1tom
IF i <m P; + largest bin By € @ that satisfies s(Bg) + ji—1 < B + J;
IF i ==m P, < largest bin By € Q that satisfies s(By) + j;—1 < B;
IF 5(P) == (~1)
perfect=NO;
Ji = 0;
ELSE
Q<+ Q— B
P+« P+ P;
Ji = maz{s(P;) + ji—1 — B, 0};
IF perfect==YES RETURN(The bins in P provide a perfect-schedule);
ELSE RETURN(No perfect-schedule was found. Bins in P provide an approximation.);

Example: For B = 10 and J = 5 consider a set of m = 7 bins with the following sizes:
Q = {15,13,13,8,8,7,6}. The LB algorithm finds the following perfect-schedule for the set:
{15,8,8,13,7,13,6}.

Claim 6.2 When algorithm Largest Bin terminates, the bins in P provide a legal schedule. The
legal schedule in P may not be optimal.

Proof: In each iteration i the algorithm makes sure that the actual jitter j; of the bins in P does
not exceed J. Therefore scheduling the bins according to the order in which they were entered to
P, provides a legal schedule.

To show that the legal schedule in P may not be optimal we present an example that holds
for any J > 3 and B > J + 1. Take m = 6 bins of sizes Q = {B+J, B+ |3] + 1, B +
[%] ,B—1,B—J, B— J}. Algorithm Largest Bin schedules the bins in P as follows: LB =
{B+J,B—1,B—J B+ L%J + 1, B— J}. The remaining bin, of size B + [%], does not fit and
the algorithm fails to produce a perfect-schedule. However, there is a perfect-schedule to the set,
OPT ={B+J,B—J, B+|2]|+1, B—1, B+[4]., B~ J}. For example, for B =10 and J =3
we choose the set @) = {13,12,12,9,7,7} and for J = 4 the set Q = {14,13,12,9,6,6}. |
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Claim 6.3 If A < J+ 1 and >}, s(Bi) < mB, algorithm Largest Bin produces a perfect-
schedule.

Proof: Clearly if ;" s(B;) > mB there can be no perfect-schedule, i.e., a legal schedule of all
m bins. The proof is similar to that of Theorem 2. Let us first assume (as in Theorem 2) that
Yoty s(Bi) = mB. Algorithm LB tries to maximize the actual jitter in each step. Assume that
after ordering k£ bins the actual jitter is j, the size of the smallest bin which is larger than B is
B+ z,1 <z <J, and the size of the smallest binis B—y, 1 <y <J. Sincez+y<A<J+1
the algorithm can always schedule a bin without leaving unused slots. As a result, for any £ < m
the sum of sizes of the first £ bins is at least kB. Since there are no unused slots the algorithm
schedules all m bins and produces a perfect-schedule.

To show that the claim holds when Y ;" s(B;) < mB, note that we can increase the sizes of
the bins until the sum of sizes is m B. The way in which we increase the sizes is not important
as long as we do not increase A (one way of doing it is to keep increasing the smallest bin by one
unit). We showed that algorithm LB can find a perfect-schedule to the modified set. To obtain
a perfect-schedule for the original set we use the same schedule; all we have to do is simply to
decrease the bin sizes to their original size. |

It is possible to design a similar algorithm which we call Minimize Actual Jitter. The algorithm
selects the next bin such that the violation of the bin capacity is minimal. If it is not possible to
fill a bin even by using the tolerated jitter the algorithm selects the largest bin. Recall that as in
LB we add an indicator bin of size s(Bj11) = —1.

Minimize Actual Jitter (MAJ)
jo=0; P=¢; Q={Bi,...Bnt1}; perfect=YES
FORi=1tom
Pyyer + smallest bin By € @ that satisfies B < s(By) + ji—1 < B+ J;
IF Pyyer 7& ¢ P; = Poyer;
ELSE P; + largest bin By € @) that satisfies s(By) + ji—1 < B;
IF 5(P;) == (~1)
SET perfect=NO;
Ji = 0;
ELSE
Q+—Q—P; P+« P+P;
Ji = maz{s(P;) + ji—1 — B, 0};
IF perfect==YES RETURN(The bins in P provide a perfect-schedule);
ELSE RETURN(No perfect-schedule was found. Bins in P provide an approximation.);

The main advantage of algorithm M A.J over LB is that it makes fewer changes to the schedule
of flows in F. Since the two algorithms produce different schedules, we can combine them to get
an improved algorithm. To do so, we simply run both algorithms and select the better solution.
For example, M AJ finds a perfect-schedule for the set of bins we presented in the proof of Claim
6.2, while LB does not. In that example, if J = 4 and the set is Q = {14,13,12,9,6,6} MAJ
produces the perfect-schedule M AJ = {12,9,13,6,14,6}. The opposite is also true, that is, there
are sets for which LB can find a perfect-schedule while M AJ fails. Take for example the set
Q = {13,11,8,8} with B =10 and J = 3. We can get a similar example for any J > 3 and B > 4
by choosing @ ={B+J, B+1, B—|%|, B—[4]}

As we expect, it is also possible to find a set for which a legal schedule exists but both LB and
MAJ fail. Take for example the set Q = {18,18,15,15,9,8,8,3,3,3} with B = 10 and J = 8.
LB produces the packing LB = {18,9,8,8,15,3,15, 3,18} and fails to pack a bin of size 3. MAJ
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produces the packing M AJ = {15,8,8,9,15,3,18,3,3} and fails to pack a bin of size 18. A legal
schedule is given by OPT = {18,3,9,18,3,15,8,8,15,3}

Finally, we note that other algorithms for bin ordering with jitter are possible. For example,
instead of trying to minimize the actual jitter as in M AJ, an algorithm may try to minimize A
in each step provided that no slots are wasted.

6.2 State Dependent Scheduling Algorithms

We can convert almost any standard bin packing algorithm into a state dependent scheduling
algorithm. The algorithm decides in which bin the item is to be packed but the item is not
packed if packing it violates the jitter constraint. If packing an item fails the algorithm may try
to pack it in a different bin or discard it. As an example consider the State Dependent First Fit
Decreasing (SD-FFD) algorithm

Algorithm SD-FFD
1. Order the items in decreasing order of their sizes.

2. For each item, go over the bins according to their order and pack the item into the first bin
in which it fits, increasing the bin’s size if necessary.

3. If the item does not fit in any of the bins discard it.

6.2.1 The Next Fit with Jitter Algorithm

We now introduce the Next Fit with Jitter (N F.J) algorithm which is a modification of the well-
known Next Fit (NF') algorithm. The NF algorithm keeps only one open bin and packs items,
according to their order, into the open bin. When an item does not fit in the open bin, the bin is
closed, a new bin is opened and the item is packed in the new bin. Like N F', algorithm N F'J is
an online, bounded space algorithm with O(n) running time. Since the algorithm uses only one
open bin it is very natural to design it as a state dependent algorithm. The state is maintained
only for the open bin but this ensures that scheduling the bins according to the order they were
closed provides a legal schedule.

In the following algorithm we denote by c¢(B;) and s(B;) the content and size of bin B;,
respectively. The value of j is the maximum amount by which the size of the next open bin can
be increased.
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Algorithm NFJ

1. Set i =1.  /* i holds the index of the open bin */

2. Set j=J.  /* j holds the increase to the size of the next bin /*
3. Open bin B; and modify its size to be s(B;) = B + j.

4. Pack items into B; until the next item does not fit in B;.

5. Set j = min{s(B;) — ¢(B;), J}.

6. Close B; and set its size to s(B;) = max{c(B;), B — J}.

7. Set i =i+ 1.

8. IFi==mset j=j—J. /* adjust j for the last bin */

9. ELSEIF i < m, return to step 3.

10. ELSE STOP.

We begin by analyzing the worst case performance of the NF'J algorithm. We show that,
similar to NF', the worst case performance ratio of NFJ is 2. Note however that this result
cannot be deduced from the analysis of N F since for NF'J we allow item sizes to be larger than
B.

Claim 6.4 The asymptotic worst case performance ratio of algorithm NFJ is Ry, ; = 2.

Proof: Let B, 1 < k < m — 1 be an arbitrary bin. When B} is opened its size is set to be
s(Bx) = B+ j > B. Assume the bin is closed when an item of size x does not fit in it. If
¢(By) < B the item is packed in By, and we have ¢(By) + ¢(Bgy1) > ¢(Bg) +x > s(Bg) > B.
If ¢(Bg) + = > 2B + J the item is packed in Byio leaving Bjyy1 empty. However, in this case
c(By) > B. It follows that the content of any two consecutive bins is at least B+ 1. We conclude
that the average bin content is at least B/2 which gives us the upper bound on the asymptotic
performance ratio.

We now show an example that proves the lower bound. In our example there are m = k + 1
bins of size B = 2b, the list of items L has 2k items of size b, and 2k items of size J + 1; the items
are ordered alternately L = {b, J +1,b,J +1,...b, J +1}. We choose B > 2k(.J + 1) which means
that all items of size J + 1 fit in one bin, hence OPT(L) = 2k (b+ J +1). Algorithm NF'J packs
two items in each bin, one of sizes b and one of size J+1, hence NF.J(L) = (k+1)(b+.J+1). The
ratio in this example is Ryp (L) = kQ—fl; the asymptotic worst case performance ratio is therefore
RYp; = 2. |

Note that in order to prove the lower bound we assumed that B > J. If this assumption
does not hold the performance of N F'.J improves as .J increases. In particular when all items are
smaller than B and J > B the asymptotic worst case performance ratio is 1.

6.2.2 Average Case Analysis of NF'J

To analyze the average case performance of NF'J we use a technique which we developed for
average case analysis of bounded space bin packing algorithms. The full description of this
technique can be found in [67, 68] and is omitted from this paper.
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We assume bins of equal size B and i.i.d. item sizes taken from some discrete probability
distribution H where h; = Pr(s(a) = 1), 1 <i < B. In the analysis of the N F" algorithm in [68]
we used the content of the open bin as the state of the Markov chain. In the case of NF'.J this
information alone is insufficient because each bin’s size may be modified, when it is opened or
closed. We must know both the content and the size of the open bin in order to calculate the
overhead when the bin is closed. The first approach is therefore to choose the pair of the content
and size of the open bin as the state of the Markov chain. In this case there are (B +.J) x (J+ 1)
states. It is possible to reduce the number of states by using the remaining space in the open
bin as the state of the Markov chain. If we do so, the size of the open bin is not required. We
denote by V; = s the state of the algorithm after ¢ items were packed. The possible values of the
remaining space s, are 0 < s < B — 1 (ignoring the special case of the first bin).

We first construct the transition matrix P. Assume the algorithm is in state N;—; = s and
the next item to be packed is of size 7, 1 <1 < B. We distinguish between two cases

1. 4 < s : In this case the item fits in the open bin. The next state is therefore N; = s — 1.

2. ¢ > s : In this case the item does not fit in the open bin, therefore a new bin is opened. The
size of the new bin can be at most B + J and its actual size depends on s. The new state
is therefore

e Ny=B+J—i, ifs>J.
e Ny =B+s—1, ifs<J.

We use the above rules to construct the transition matrix P. Once we have P we can calculate
the equilibrium probability vector II, where II; is the stationary probability that the Markov chain
is in state s. The next step is to calculate the overhead in each state, i.e., the number unused
units which are left in a bin that is closed when the algorithm is in some given state. Note that
overhead units are added only if the size of the next item is larger than the remaining space in
the open bin and only if the remaining space is larger than J. We therefore have

0 1<s or s<J
oh;(s) = (4)
s—J J<s<i

For item size distribution H with an average item size h, the average combined size of the
items Inpy(H) is calculated using the following expression:

B—-1 B
Inpy(H)=h+ Y T Y hi-ohi(s) (5)
s=0 i=1

The expected asymptotic performance ratio of N FJ is calculated from the ratio between Iy p;(H)
and Iopr(H). Where Iopr(H), the average combined size of items in the optimal packing, is

usually known in advance.
_ Inrs(H)
Iopr(H)

Let us consider a discrete uniform distribution, denoted by {B, B}, in which h; = %, vl <
1 < B. For this distribution we can calculate the average overhead in state s

Ryp,(H) (6)

B
OH(s) = Zhi - 0h;(s) = max {w, 0} (7)
=1
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Note that since s < B — 1 the total overhead is zero whenever J > B — 1 and as a result the
expected performance ratio is one. Figure 4 presents the asymptotic expected performance ratio
of the NF.J algorithm for the {B, B} distribution when the bin size is B = 50 and the jitter is in
the range 0 < J < B. As we expect the performance ratio is decreasing with J and approaches
1 as J gets closer to B. Figure 5 presents the performance ratio of NF'J for several values of
jitter and values of bin size in the range 1 < B < 100. We can see that the performance ratio is
increasing with B and decreasing with .J.

NF with Jitter for U=50
1.35 T T T

R (Performance Ratio)

5 10 15 20 25 30 35 40 45 50
J (Jitter size)

Figure 4: Asymptotic expected performance ratio of NFJ for distribution {B, B} for B = 50.

6.3 Legal Schedule when Sizes are Smaller than the Jitter

In this section we show that when the maximal grant size in F5, So, is no more than the minimal
grant jitter in Fy, Ji, we can always find a legal schedule. The property that Sy < Jj is common in
many real-time multimedia applications. We show that even simple algorithms are optimal under
the above assumption. We choose N F'J as a state dependent algorithm. For a state independent
algorithm we define an algorithm called LS — LB. The LS — LB algorithm is a combination of
the LS algorithm for BPJ and the LB algorithm for BOJ (the definitions of these algorithms
appear in subsection 6.1).

Theorem 4 Let F' be a set of n flows with two grant intervals Io = moIy. Denote by So the
maximal grant size of flows in Fy and by J1 the minimal grant jitter of flows in Fy. Suppose F
satisfies the following two properties:

S(i
1. WF:ZfieF%§1
2. S5 < J+1

then F is a feasible set. Furthermore, both algorithms LS — LB and NFJ always find a legal
schedule for all flows in F.
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Figure 5: Asymptotic expected performance ratio of NFJ for different values of J, for B = 100
and distribution {B, B}.

Proof: We start by scheduling the flows in F} over an interval of length Is creating ms bins
of size B. We then apply one of the algorithms to schedule the flows in F5. We consider each
algorithm separately.

The LS — LB Algorithm

The LS algorithm assigns each item to the bin with the minimal content; therefore, at any
stage of the packing the difference between the contents of any two bins is at most S. Since (due
to condition 1) }°; ., S(4) < mo B, LS does not discard any flows in F5. It follows that when
LS terminates all flows have been packed and the difference between the contents of the largest
and smallest bins satisfies A < Sy < J + 1. From Claim 6.3 it follows that applying algorithm
LB to the bins created by LS always produces a perfect-schedule.

The NFJ Algorithm

We show that whenever NF'J closes a bin, the bin does not contain unused space. Recall
that a bin is defined as the gap between two consecutive blocks of flows in Fy and that the actual
jitter when a bin is opened is the difference between the nominal and actual allocation times of
the block of flows in F; that starts the bin. When N F'J opens bin number k the actual jitter of
the bin may be in the range 0 < j; < J. The real bin size is s(By) = B — jj but the algorithm
modifies the size of the bin to be s(By) = B + J — j. Assume By is closed when the algorithm
tries to pack an item of size y but the item does not fit since ¢(By)+y > B+J — ji. It follows that
the content of the bin satisfies ¢(By) > B+ J —y — ji. Since y < J + 1 we have ¢(By) > B — ji
which means that the content of the bin is at least the original bin size and the bin does not
contain free space.

The property of no wasted space holds for any bin which is closed by NF'J. The algorithm can
therefore schedule any set of flows with bandwidth requirements not exceeding unity. Condition
1 ensures that F' is such a set. |
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To see that condition 2 the Theorem is tight consider an example where Sy = J; + 2. We
choose a set F' consisting of one flow in F; with S(1) =2, I(1) = 10 and J(1) = 3, and eight flows
in Fy with S(i) =5, I(1) = 50 and J(i) = 3, for 2 <1 < 9. After allocating f; there are five bins
of size B = 8 to which the flows in F5 must be assigned. It is easy to verify that only seven flows
can be legally scheduled, hence F' is not a feasible set.
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7 Scheduling Flows with Several Related Grant Intervals

In this section we extend the analysis to the case where there are more than two related grant
intervals. We are given a set F' of n CBR flows; the flows are to be scheduled over a slotted
TDMA channel. The set F' is assumed to contain K different grant intervals which we denote by
I < I, < ... < Ig. The different grant intervals are an integer multiple of each other, that is,
they satisfy I; = m; - I;_y, for every 2 < j < K, where m; is a positive integer. Recall that each
flow f; is characterized by its grant size S(¢), grant interval I(7), and tolerated jitter J(i). The
flows are divided into K disjoint groups Fi,..., Fx according to their grant intervals such that
Fy ={fi: 1(i) = I;}.

Note that in order to produce a legal schedule it is sufficient to find a way to allocate the flows
over the longest interval, I, which we call the basic interval. Once we find a legal allocation over
the basic interval, we can repeat it over and over to get a legal schedule. Let us first apply the
technique we developed for K = 2 to the case of K = 3. We first allocate flows in F; thus creating
m = my - m3 bins, each of size Iy; the free space in all the bins is I; — 3. Flows in F, are then
allocated into these bins. In the next step we proceed to allocate flows in F3. The main difference
is that after the flows in F, have been allocated, different bins may have a different amount of
free space left in them. We therefore say that scheduling flows in F3 defines a variable size bin
packing problem (as opposed to uniform size bin packing in the case of K = 2). The problem is
basically the same for K > 3; after allocating flows in F; we should allocate flows in F}j; into
variable size bins.

Similar to the case of two intervals, bin sizes can be modified. However, when K > 3 each bin
may be bounded by a different set of flows which means that the constraints on modifying a bin’s
size can be different from bin to bin. It is also important to note that the order of the bins is
now important since they contain flows belonging to different groups (this was not a problem for
K = 2 since the bins contained only flows in Fy). For that reason, state independent algorithms
are less practical for K > 3. We therefore concentrate on state dependent algorithms. We further
restrict our attention to algorithms that pack the flows in increasing order of their grant intervals,
i.e., from F; to F. The advantage of packing flows in this order is that when the algorithm
schedules flows in group Fj it only needs to consider the first interval of length I;; the allocations
in subsequent intervals are then simply duplicated from the first interval.

A state dependent algorithm uses some heuristic that defines in which bin a new flow is to
be packed. Examples for heuristics the algorithm may use are Next-Fit, First-Fit, Best-Fit, and
Worst-Fit. The algorithm may choose to apply the same heuristic to all the groups, or change the
heuristic from group to group. In addition the algorithm must define the rules for changing bin
sizes. It can choose, for example, to change a bin’s size whenever doing so enables packing the
next flow, or only when the flow does not fit in the free space of any other bin. The combination
of different packing heuristics with different rules for changing bin sizes defines a large number
of possible state dependent algorithms. The algorithm we present here is based on the First-Fit
heuristic. It is easy to design similar algorithms based on other heuristics (e.g., Best-Fit) or other
rules of changing bin sizes (e.g., pack a flow in the first bin to which it would fit by changing the
bin’s size).

7.1 Algorithm First-Fit with Jitter for K Intervals - FF'J - K

FFJ— K is an offline state dependent approximation algorithm. The algorithm divides the basic
interval of length I'x into m = Ix /I bins of size I;. Recall that for a state dependent algorithm
we denote by C(i) the free space in bin B; and by d(i) the displacement (or actual jitter) of the
flows in bin B;. The pair (C(i), d(i)) describes the state of bin B;. In the initial state C'(i) = B
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and d(i) = 0 for all 1 <4 < m. Algorithm FFJ — K first constructs a list L in which the flows
are sorted according to increasing order of grant intervals; the order among flows with the same
grant interval is not important. F'F'J — K now goes over all the flows in L and tries to schedule
them one by one. The algorithm uses the INSERT procedure (defined in subsection 5.3) to insert
a flow into a given bin while maintaining the bins states. The procedure returns SUCCESS if the
flow was inserted or FAIL if the flow cannot be inserted (even by increasing the bin’s size). When
a flow f(7) is inserted into a bin it is allocated the first S(7) free (consecutive) slots in that bin.

Algorithm FFJ - K

¢ Divide the basic interval into Ix /I bins of size I.

e Construct a list L in which all the flows are sorted according to increasing order of grant
intervals. The order among flows with the same grant interval is not important.

e Go over all the flows in L and try to schedule them one by one. For a given flow f; with
grant interval /(i) and grant size S(i) perform the following steps

1. Consider the first n; = I(4)/I; bins, i.e., the bins in the first interval of length I(3).

2. If f; fits in the free space of one of the first n; bins, insert it in the first bin in which
it fits, i.e., select bin By such that k¥ = min{k’ < n; : C(k') > S(i)} and execute
procedure INSERT(S(i), k, n;).

3. If the flow does not fit in any of the bins, try to insert it in the first bin with free space
to which it can be inserted by increasing the bin’s size, i.e., insert the flow in a bin By
such that k¥ = min{k’ <n; : C(k') >0 and INSERT(S(i), k, n;)==SUCCESS}.

4. If the flow has been inserted in one of the first n; bins, insert the flow into the bins in

all I /I(i) subsequent intervals of length I(7), i.e., suppose the flow has been inserted
in bin By, execute INSERT(S(7), k+j - I(i)/11, n;) for all 1 < j < Ix/I(i) — 1.

5. If the flow has not been inserted in one of the first n; bins, discard it.

Note that the algorithm may not be able to insert a given flow f; in one of the first n; bins
(steps 2 and 3). However, if the flow has been inserted in one of the first n; bins, the INSERT
operations in step 4 cannot fail. The reason is that all subsequent intervals of length I(i) are
identical to the first interval into which the flow has been successfully inserted.

The FFJ — K algorithm can be implemented to run in O(n - m) time, where m = Ig/I; is
the number of bins. Assuming m < n is fixed, F'F'J — K has linear running time.

7.2 Producing perfectly-periodic Schedules

In this subsection we consider the construction of perfectly-periodic schedules; such schedules
correspond to the case where J,,;;, = 0 which means that all the flows must be scheduled exactly
in their nominal grant times. We define an algorithm called Perfectly-Periodic First-Fit (PP—FF')
which is identical to algorithm FFJ — K except for step 3 which is removed. We first show that
PP — FF indeed produces a perfectly-periodic schedule.

Claim 7.1 A schedule produced by algorithm PP — FF is perfectly-periodic.
Proof: To prove the claim we must show that the time between every two grants of any flow

fi is exactly I(i). This property holds if the number of occupied slots is identical in all the bins
in which the flow is inserted. Assume f; € F; and the first bin it is inserted into (in step 2) is
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bin By where 1 < k < I;/I;. The flow is then inserted (step 4) in all other bins By satisfying
E=k+j-1(4)/1, where 1 < j < Ikg/I; —1. Now consider any other flow fj, that has been
inserted into bin By, before f;. Clearly, I(:) = mI(h), where m > 1 is an integer. Since f}, is also
inserted in any bin By» = k + j - I(h)/I;, f; must have been inserted in all the bins f; has been
inserted into. It follows that all the bins f; is inserted into contain exactly the same set of flows.
We conclude that whenever a new flow is scheduled all the bins to which it is inserted have the
same number of occupied slots, hence the interval between any two grants is identical. |

The following theorem establishes an important property of PP — F'F' in terms of the channel
utilization it achieves. We note that a similar result has been obtained by Patt-Shamir et al. in
[31], however the algorithm they presented is only suitable for grant intervals which are a power
of 2 (times a common constant).

Theorem 5 Let F' be a set of flows with K related grant intervals such that I; = mj I;_1 where
mj is a positive integer for all 2 < j < K. Denote by Sya, the mazimal grant size of flows
in F, and by Wi = 3. . S(i)/1(i) the total bandwidth requirements of flows in F. Algorithm
PP — FF always produces a perfectly-periodic schedule for a subset of flows F' C F such that the
channel utilization of the schedule satisfies

S(Z) . Sma:c 1
= — > _ .
i E 100) mln{WF, 1 I
fieF’

Furthermore, no other algorithm can guarantee to produce a perfectly-periodic schedule with a
higher channel utilization, i.e., with n > 1 — S%f_l

Proof: We show that PP — F'F never fails to schedule a flow when the channel utilization is less
than 1 — Sm‘;’” L Assume by contradiction the opposite and denote the first flow the algorithm
fails to schedule by fj- Since the algorithm failed to find a bin with enough free space to fit f;,
it follows that when f; is scheduled the free space in all the bins is at most S(j) — 1. However
%ﬁj)_l) >1- W’ a contradiction.
(Sm;ffl) it

this means that the channel utilization satisfies n >

Since PP — F'F does not discard any flow before the channel utilization reaches 1 —
can guarantee to achieve the channel utilization stated in the theorem.

We now show that no algorithm can guarantee to produce perfectly-periodic schedules with
channel utilization n > 1— Sm‘“” L. Consider a set F that has one flow in F; with I(1) = 25,4, —1
and S(1) = Spaz; in Fy there are Spaz — 1 flows, the grant interval is Iy = Sj,44 - I(1) and all
grant sizes are S(2) = ... = S(Smaz) = Smaz- The total bandwidth requirement is Wr = 1. It is
easy to verify that in this example there is no way to produce a perfectly-periodic schedule where
f1 is scheduled with one of the flows in F5, hence the maximum channel utilization an optimal

algorithm can achieve is n = S*Elf)w —1— S?’?}(ET)_l‘ -

An immediate corollary of Theorem 5 is that given a set F', algorithm PP — F'F' can produce
a perfectly-periodic schedule of all the flows in F' whenever Wr <1 — % It is important to
note that in most cases PP — F'F is expected to achieve a higher channel utilization than what
Theorem 5 guarantees.

Let us consider the meaning of Theorem 5 for practical applications. Consider a 1 Mbps link
that carries VoIP calls. VoIP packets are typically less than 200 Bytes so we expect Sy,q to be
about 1.6 msec while I; is typically 10 msec. In this example PP — F'F' can schedule any set of
flows (with related grant intervals) achieving channel utilization of n = 0.84. If the link’s speed
goes up to 10 Mbps PP — F'F achieves almost perfect utilization n = 0.984.
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7.3 Legal Schedule for Bounded Grant Sizes

In subsection 6.3 we analyzed the scheduling problem with two related grant intervals under the
assumption that grant sizes are bounded by a constant Sy,,,. We presented algorithms that find
a legal schedule for any feasible set of flows for which J; > Sy — 1. We now derive similar
results for the general case of K related grant intervals. We denote by S),q, the maximal grant
size of flows in F'\ F;, and by J,;, the minimal grant jitter of flows in F' \ Fx. We show that
if J > (K —1)(Smaz — 1) and Wr <1 (i.e., the bandwidth requirement of all the flows does not
exceed 1) algorithm FFJ — K can always construct a legal schedule of all flows in F'.

Theorem 6 Let F' be a set of flows with K related grant intervals such that I; = m;j I; 1 where
m; is a positive integer for all 2 < j < K. Denote by Spmax the mazimal grant size of flows in
F\ Fy and by Jpin the minimal grant jitter of flows in F \ Fg. Algorithm FFJ — K produces a
legal schedule for all flows in F whenever F satisfies the following two conditions:

L Wr=Y epgn <1
2. Jmln > (K - 1)(Sma:1: - 1)

Furthermore, no other algorithm can guarantee to produce a legal schedule of all flows in F', unless
F' satisfies both conditions 1 and 2.

Proof: The first condition is trivial and only ensures that the total bandwidth requirement does
not exceed the capacity of the channel. The jitter requirements are a consequence of the following
lemma.

Lemma 1 Denote by 7, 2 < j < K, the moment when FFJ — K is about to starts scheduling
flows in group F;. Consider the positions, over the basic interval, of the grants of all the flows that
have been scheduled before T; and compare them to their positions at time 7j1, then the difference
between the two positions for every flow is at most Spaz — 1.

Proof: The lemma considers the effects of scheduling a single group F; of flows; it is therefore
sufficient to consider only the first I;/I; bins in the basic interval. Consider the first flow in group
F; that is inserted in step 3 of algorithm FFJ — K and thus causes a displacement of flows in
Fi. Denote this flow by f, and assume it is inserted in bin By, where 1 < k < I;/I; — 1. Since
the size of f, is bounded by S, and the flow is inserted into a bin that has at least one unit of
free space, the maximum displacement f, can cause is Sy, — 1. Inserting f, into By may cause
a displacement in the grants to adjacent flows. Suppose the furthest grant from f, that has been
displaced when f, was inserted is in bin By, k <1 < I;/I;. We conclude that after f, is inserted
all the bins B; to B;_; are full. Therefore, FFJ — K would not try to insert any subsequent
flows into these bins. It follows that although some subsequent flow f, € F; may also cause a
displacement to flows in F, the set of grants which are displaced by f; is completely different
from the set of grants displaced by f,. To summaries, during the scheduling of flows in F; by
FFJ — K each grant to a flow that has already been scheduled is displaced (from its position at
7;) at most once and the displacement is by at most Sy,q, — 1. |

The proof of the theorem immediately follows from Lemma 1. Each time a new group of flows is
scheduled, the displacement of grants to flows in F} from their nominal grant times may increase
by at most Sy,q; — 1. There are K — 1 such groups (Fy ... Fi), hence the maximum displacement
of flows in F} is (K — 1)(Smaz — 1). Since by condition 2 the tolerated jitter Jy,;, allows such a
displacement, and since by condition 1 Wy <1, FFJ — K can schedule all the flows in F'
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To see why no other algorithm can guarantee to produce a legal schedule of all flows in F,
unless F' satisfies both conditions 1 and 2, consider the following example. There are K grant
intervals satisfying I1 = 2 and I; = (Syap +1) - Ij—1, V2 < j < K. There is only one flow in each
group Fi, ..., Fg with the following grant sizes: the size of the flow in F} is S(1) = 1, the size of
all the rest of the flows is S(2) = ... = S(K) = Spaz- Figure 6 shows an instance of the example
with K = 3. It is easy to verify that Wr < 1 for all values of S,,,,; and K. However, there is no
way to legally schedule all the flows unless J > (K — 1)(Spqezr — 1). [ |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|1 |2 |3 |4 |5 |6 [7 |8 [9 |10|ll|12|13|14|15|16‘17|18‘19|20|21|22|23|24|25‘26|27‘28|29‘30|31|32‘

(@)

Figure 6: Worst case example of constructing a schedule by algorithm FFJ — K for Sy, = 3 and
K = 3. Steps (a), (b) and (c) show the schedule after f1, fo, and f3 are scheduled, respectively.
The required jitter is Jp,n > 4; the displacement of grant number 6 of f; is indicated by arrows.

Based on the proof of Theorem 6 we can actually give a more precise definition of the jitter
requirements of algorithm FFJ — K.

Corollary 7.1 Denote by Sj the mazimum grant size in group Fj, and by J; the minimum grant
Jitter in group F;. Algorithm FFJ — K can produce a legal schedule for any set F' with Wr <1
if and only if the values of grant jitter satisfy

K
Ji> > (Sp—1), VI<j<K-1 (8)
n=j+1
Proof: It follows from Lemma 1 that whenever F'F'J — K schedules a new group F; the dis-
placement of grants of flows in any group that has already been scheduled (i.e., F; ... F;_;) may
increase by at most S; — 1. Hence the displacement (actual jitter) of a flow in Fj is never more
than the grant jitter specified in (8). The example given in the proof of Theorem 6 shows that
the requirements of the corollary are tight (see Figure 6 for an example). |

7.4 Optimizing the Subset selection

Theorems 5 and 6 specify conditions under which algorithms PP — F'F and FFJ — K produce
a schedule of all flows in a given set. However, the algorithms may perform poorly when they
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are applied to sets for which these conditions do not hold. In fact, the worst case performance
ratio of the algorithms, as we originally presented them, is not bounded; this fact is demonstrated
by the following simple example. Consider the case of two flows withe intervals I(1) = I; and
1(2) = Iy = mg-I;, and sizes S(1) = 1 and S(2) = I —my. Since PP—FF and FFJ— K schedule
flows according to increasing grant intervals they only schedule f; achieving channel utilization
of n = 1/I;. An optimal algorithm schedules fy achieving channel utilization of n = (I; — 1)/I;.
The performance ratio in this case is R = I1 — 1 which can be arbitrarily large. As we could see
from the above example the reason for the poor performance of the algorithms is that they make
no attempt to optimize the subset of flows they schedule.

In order to improve the worst case performance ratio of the algorithms a preliminary stage
of choosing an optimized subset of flows is required. The problem of choosing an optimal subset
F' C F requiring only that Wr < 1 is NP-hard (the problem is equivalent to the subset sum
problem). We are therefore interested in a simple heuristic that would improve the performance
of the algorithm without increasing its complexity. For PP — F'F' the goal is to select a subset
with bandwidth requirements not exceeding unity such that S,4, is minimized and I (i.e., the
shortest grant interval in the subset) is maximized. For F'F'J — K the goal is to select a subset of
flows with maximum bandwidth requirements such that the conditions in (8) are satisfied.

Denote by Wp; the bandwidth requirement of all flows in group Fj. In order to guarantee
that the worst case performance ratio is bounded by K the simple heuristic of scheduling the
flows in the group with the highest bandwidth requirement is sufficient. Unfortunately, there
is no way to guarantee that any algorithm can achieve a channel utilization n > Wg/K. This
is demonstrated by the following example. Consider K flows such that for 1 < j7 < K, grant
intervals are I(j) = K7, sizes are S(j) = K7~!, and the tolerated jitter is J(j) = I(j). In this
example Wr = 1 and the bandwidth requirement of each flow is Wy, = Wp /K. It is easy to
verify that no two flows can be scheduled together, hence the maximum channel utilization any
algorithm can achieve is n = 1/K.

7.5 Other Scheduling Algorithms

It is possible to define algorithms which are similar to F'F'J— K but use different packing heuristics.
For example algorithms BFJ — K and WFJ — K would use the best-fit and worst-fit rules,
respectively, when selecting the bin in which to insert a new flow. The FF'J — K algorithm can
be implemented to run in O(m - n) time (the INSERT procedure requires O(m) operations). If
we allow a slightly higher complexity of O(m - nlogn) we may define the First-Fit Decreasing
with Jitter (FFDJ — K) algorithm. The only difference is that FF'D.J — K sorts the flows within
each group according to decreasing grant sizes. From a worst case perspective FFD.J — K has
the same properties of F/F'J — K. This is evident since the worst case examples we presented for
FFJ — K also hold for FFDJ — K. However, we expect FFDJ — K to perform better than
FFJ — K on average since sorting is known to help in bin packing problems.

The N FJ algorithm, which we presented in subsection 6.2.1, has O(n) running time and the
same worst case performance guarantees as F'FJ — K for K = 2. However, extending NF'J to
run in (strict) linear time for K > 3, while maintaining the same properties of F'F'J — K, is not
straightforward. The problem is that the algorithm must know which bins contain free space
whenever it starts packing a new group. To maintain linear running time the algorithm should
therefore use some kind of indexing information to indicate which bin should be the next bin to
be opened.
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8 Unrelated Grant Intervals

So far we considered only the case of related grant intervals. Although we expect to find related
grant intervals in many applications, in the general case the different grant intervals are not
necessarily integer multiples of each other. In this case the scheduling problem becomes more
complex. The higher complexity can be demonstrated by considering the case of unit grant sizes
and zero jitter (i.e., S(i) = 1,.J(i) = 0,Vi). This problem is easily solved if grant sizes are related
(for example by using PP — F'F') but is NP-hard in the case of unrelated grant intervals [27].

From our point of view the main problem is that for unrelated grant intervals it is impractical
to model the scheduling problem as a bin packing problem since the different grant intervals do
not overlap. As a result, the algorithms we presented previously cannot be applied to a set of
unrelated grant intervals.

We present two approaches for handling unrelated grant intervals. The first approach is to
round the requested set of unrelated grant intervals to a set of related grant intervals. The second
approach is to maintain the original grant intervals and try to schedule them the best we can.

8.1 Rounding of Unrelated Grant Intervals

The rounding process is used to transform a set of unrelated grant intervals to a set of related
grant intervals. The motivation for rounding is to keep the scheduling problem simpler and to
be able to use the algorithms we developed for related grant intervals; these algorithms are more
efficient and of lower complexity compared to algorithms for unrelated grant intervals. For a
given flow f; with parameters S(i), I(i), J(i) we denote the parameters of the rounded flow f; by
S(i), 1(i), J(i). In order to change the original grant intervals by as little as possible we round
them to be powers of 2 (or powers of 2 times some constant).

The rounding rules depend on the application. Ideally the parameters of a new flow should
be negotiated (between the application and the scheduler) during flow setup. This way the
application is informed of the available values for grant intervals and may choose the grant size
and tolerated grant jitter accordingly. Unfortunately, some applications may not be able to
perform this kind of negotiation. In such cases the scheduler must determine the new set of
parameters based on the requested parameters and the type of application (in case it is known).
We distinguish between two kinds of applications.

1. Applications with fixed packet size - These applications expect to receive packets of spe-
cific format and of fixed size. As a result the scheduler has no flexibility in changing the
requested grant size and must therefore set S(i) = S(i). As a typical example consider
applications, such as broadcast disks [26], which are used to deliver messages to clients in
periodic intervals.

2. Applications with flexible packet size - These applications can handle packets of different
sizes. As a result the scheduler may modify the grant size when modifying the grant interval.
Packets usually carry a fixed size component (such as headers) which is duplicated in every
packet regardless of its size. In order to maintain the application’s requested data rate,
when the scheduler decides to modify the grant size it must take into account packets for-
mat. Application with flexible packet size include most applications that deliver multimedia
(voice, video or data) streams over higher layer protocols such as TCP or UDP.
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Ezample: Consider a VoIP application with a voice codec that produces a CBR output data
stream of 64 kbps. The data is packetized at 15 ms intervals, thus producing 120 bytes of payload
each 15 ms. Each voice packet must also carry the RTP, UDP, and IP protocol headers which
account for an extra 40 bytes; we ignore any other overheads, such as the link layer overhead, in
this example. Assume each slot is 0.1 ms and carries 10 bytes. The parameters the application
is likely to request for such a flow f; are S(i) = 16, I(i) = 150. Suppose the scheduler decides
to use only intervals of 5, 10, 20, and 40 ms; it therefore rounds the requested grant interval to
10 ms, i.e., f(z) = 100. The value of 5’(2) depends on the type of the application. A fixed packet
size application would use S(i) = S(i) = 16. If the application supports flexible packet sizes the
scheduler should maintain a data rate of 64 kbps. It can therefore use 120 bytes packets (80 bytes
payload + 40 bytes headers) every 10 ms, hence S(i) = 12. In this example the ability to change
the grant size provided a 25% reduction in the bandwidth requirement of the rounded flow.

We now analyze the effects of rounding on the bandwidth requirements of the flows for the
two types of applications we mentioned. The performance of the scheduling algorithms are then
easily deduced. Assume the bandwidth requirements of all flows increase by a factor of z due to
rounding, i.e., Wr = 2Wg. Let A be an algorithm designed for related grant intervals. Suppose
A guarantees that its channel utilization is at least 1 when it is applied to rounded sets. When A
is used to schedule unrelated sets the channel utilization it achieves is at least n/x.

8.1.1 Applications with Fixed Packet Size

We distinguish between two cases. If the application requests fixed size packets but has no
bandwidth requirements, we may round up the grant interval to the power of 2 if the tolerated
jitter allows it. If the application has bandwidth requirements, we always round the grant interval
down to the nearest power of 2. The reason is that, even if the jitter allows rounding to the nearest
higher power of 2, we would still have to use S(i) = 25(i) in order to satisfy the required data rate.
For applications with no bandwidth requirements rounding is performed as follows (logarithms
are base 2)

1(i) = 2UosIOHONL s §(i) = S(i); J(i) = J — max{I(i) — I(i), 0} 9)
For applications with bandwidth requirements rounding is to the lower power of 2
I(i) =2loe @l 8(i) = S(i); J(@i)=J (10)

Rounding in the case of fixed size packets increases (or decrease) the bandwidth requirements
of a flows by a factor of I(i)/I(i). In the worst case the increase is by a factor of 2 — %
Assuming uniform distribution of requested intervals in the range [I(i) + 1, 2I(i)] (and zero jitter)
the average increase is by a factor of 1.5. The above results mean that the performance of an
algorithm designed for related flows may drop by at most 50% when the algorithm is used for
scheduling unrelated flows. If grant intervals are uniformly distributed the performance drops by
33%. In practice we can expect an even smaller decrease in performance since a large portion of

the intervals would not need rounding.
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8.1.2 Applications with Flexible Packet Size

In the case of flexible packet size we choose to round the grant interval to the nearest lower
or upper power of 2 depending on the tolerated jitter. Rounding to a higher grant interval is
desirable as it results in less overhead. We assume each packet contains h slots of overhead which
the requested grant size already includes. Rounding is performed as follows.

[(i) = 2UosO+I@)] . §(j) = [% + h-‘ . J6) = J — max{I(i) — I(i), 0} (1)

In the case of flexible packet size rounding the grant interval toward the upper power of 2
will (in most cases) reduce the bandwidth requirements of a flow. If rounding is toward the lower
power of 2 the bandwidth requirements of the flow increases. The factor by which the bandwidth
requirements increase is

SW/IG) _ (SG) =M+ (h+DIG) | bt

S@)/1(i) — S(i)I(3) RI0)
As we can see the increase in the bandwidth requirements depends on the ratio h/S(i). For
multimedia applications running over IP this ratio is typically around 0.3 but drops to about
0.1 when header suppression is used. Assuming h/S(i) = 0.1 the performance of an algorithm
designed for related intervals may drop by at most 9% when it is used for scheduling flows with
unrelated intervals. The above result indicates that rounding is a very good option for applications
with flexible packet size.

8.1.3 Buffer Considerations

When rounding the grant interval of a flow the delay between every two packets is bound to
change. In order to compensate for this change some kind of packet buffering is required at both
the sending and receiving sides. Fortunately, if we follow the rounding rules we presented earlier
the buffering requirements are minimal. In particular, since the difference between the requested
and rounded grant intervals is by at most a factor of two, a buffer capable of holding two packets
of the original size is enough. In addition the receiving side should delay the delivery of the
first packet to the application by one grant interval. Since buffers are maintained by almost all
application the buffer requirements imposed due to rounding are insignificant. Figure 7 present
an example of a voice application with a CODEC that produces packets of 3 slots every 15 ms and
thus requests I(i) = 15, S(i) = 3. The scheduler rounds the application’s request to I(i) = 10,
S(i) = 2. We can see that in this case a buffer of S(i) at both sides is sufficient. The receiver delays
the delivery of the first packet to the application by I(4); after this initial delay the application is
delivered packets according to the original request of the application, i.e., a packet of size S(i) = 3
every I(i) = 15 ms.

8.2 Algorithms for Scheduling Unrelated Grant Intervals

We now explore the possibility of scheduling flows with unrelated grant intervals without rounding.
In order to produce a legal schedule we must now find a legal allocation of the flows over a basic
interval whose length equals the least common denominator (LCD) of all grant intervals. This
basic interval can then be repeated to produce a legal schedule.

When designing an algorithm for scheduling unrelated grant intervals we cannot use a bin
packing algorithm and therefore a new approach must be taken. Ome possible solution is to
schedule the flows one by one, deciding for each flow whether or not it can be scheduled. To
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Figure 7: Example of buffers content when the scheduler rounds the application’s request for
I(i) =15, S(i) = 3 to I(i) = 10, S(i) = 2. A buffer of S(7) at both sides is sufficient in this case.

do so we construct an array of length I, where I equals the least common denominator of all
grant intervals of the flows that we want to schedule. Each array cell represents a slot and can be
assigned to at most one flow.

We now describe a general framework for a scheduling algorithm that uses an array of alloca-
tions. Basically the scheduling algorithm decides in which order to schedule the flows and in what
way to allocate each flow in the array. When a new flow fj is scheduled the algorithm performs
the following operations:

1.

Select a time reference ¢o(k) for the flow. The time reference may take any value 1 < ¢o(k) <
1.

Set allocation number n = 0.

Try allocating S(k) consecutive array cells to fx, starting from any cell in the range to(k) +
nI(k) to to(k) +nI(k) + J(k), all operations are module I. At this stage it is possible to
change the allocations of other flows provided that their timing requirements are maintained.

If the allocation succeeded set n =n + 1.
Otherwise discard fy, clear all allocation that were already made for f;, and move on to
handle the next flow.

If n =1/I(j) then fi has been successfully scheduled.
Otherwise go back to step 3.

The above description provides guidelines for constructing a scheduling algorithm. We now
present one such algorithm in more details.
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Algorithm Shortest Interval First
The algorithm schedules the flows according to increasing order of their grant intervals I(k). It
tries to schedule each flow fj performing the following steps:

1.

Scan the array from cell one and select a time reference #¢(k) in the first position where
there are S(k) free cells.

Set allocation number n = 0.

If there are S(k) consecutive free array cells in the range to(k)+n I(k) to to(k)+n I(k)+J(k)
(operations are module I), allocate S(k) consecutive array cells to fi starting from the lower
index cell possible.

Otherwise try to create a sequence of S(k) consecutive free array cells by moving some of
the flows according to their tolerated jitter.

If the allocation was successful set n =n + 1.
Otherwise discard f and restore the array to its structure before allocating f.

If n=1/I(j) then flow fj has been successfully scheduled.
Otherwise go back to step 3.

The simplest algorithm can ignore the jitter of all other flows and use the jitter of the current
flow only. A more complex algorithm can try to use the jitter of other flows. In this case we
must save more information on each allocation. If we find out that we can allocate the flow in
the current array we accept the flow, otherwise the flow is rejected. When a flow is removed we
delete its allocations from the array.
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9 Online Scheduling Algorithms

In the online version of the scheduling problem flows arrive (established) one after another and
the algorithm must either schedule an arriving flow or reject it. We assume the algorithm has
no knowledge about the arrival of future flows. The objective of the scheduling algorithm is
to maximize the channel utilization. We distinguish between two types of flows depending on
their duration: permanent flows that have an infinite duration, and temporary flows that may
terminate over time. We analyze the problem assuming permanent flows and then explain how
the results change in the case of temporary flows. The algorithms we develop are suitable for
both permanent and temporary flows.

We first show that in the online problem the performance ratio of any deterministic algorithm
is not bounded. Let us consider a simple example where all the flows have the same grant interval,
I;. The algorithm is first given flows of size 1, if the algorithm accepts a flow the next flow to
arrive is of size I;. The performance ratio in this example is I;. To avoid this problem one may
suggest the following rule: an algorithm must not reject a flow if it can be accepted. As this
rule applies to both our algorithm and the optimal algorithm, it solves the problem of online
scheduling over a single interval. Unfortunately, the above rule is not enough even in the case of
two related grant intervals, as we demonstrate in the following claim.

Claim 9.1 For two grant intervals Is = mo - I1 and zero tolerated jitter, the worst case perfor-
mance ratio of any deterministic online algorithm is at least R4 > I4.

Proof: To show that the performance ratio of any deterministic algorithm cannot be less than
I, consider the following example. The first mo flows that arrive are in F5 and have a size of
one. If the algorithm allocates all these flows in consecutive slots we choose the next flow to be in
Fy and of size I1 — 1. The algorithm must reject the flow hence its utilization is ’7—22 An optimal
algorithm can accept all the flows and achieve a utilization of 1. The performance ratio in this
case is Ry = 7% = I;. If the algorithm allocates the first mo flows in non consecutive slots we
choose a flow in Fy and of size Iy — mg. The flow must be rejected by the algorithm and the

performance ratio is again R4 = I3. |

The reason for the unbounded performance ratio in the above examples is the large grant
sizes of the flows which are rejected by the algorithm. In fact, if we enforce the rule that an
online algorithm must not reject a flow if it can be accepted, an optimal online algorithm may
also perform poorly. As an example consider a problem with zero tolerated jitter where the first
flow to arrive is in Fg and its grant size is larger than [; /2. The next two flows are in F} and
have grant size of I /2 each; these flows must be rejected by any algorithm. In this example the
ratio between the performance of the optimal online algorithm and an optimal offline algorithm
is 2[[(/[1.

In order to provide meaningful results we study the online problem under the (realistic) as-
sumption that grant sizes are bounded and are typically much smaller than any grant interval.
We assume there are K related grant intervals I} < Ir < ... < Ik, that is, I; = m; - I;_4, for
every 2 < j < K, where m; is a positive integer. We denote by S; the maximum grant size of all
flows with grant interval I;. We define Sy, = max{S;} and assume that Sy,q, < I. Similarly
J; denotes the minimal grant jitter of all flows with grant interval I; and Jy,;, = min{J;}.

The tolerated jitter plays an important role in the design of an online scheduling algorithm.
The scheduling algorithms we develop become more efficient the larger the tolerated jitter is. We
identify three categories of tolerated jitter: large, small, and zero jitter. The algorithms for each
category along with their performance analysis are presented in the following subsections.
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9.1 Online Algorithms for Large Tolerated Jitter

The category of large tolerated jitter includes problems where the flows to be scheduled satisfy
the following
Ji2L, 2<j<K (12)

The advantage of a large tolerated jitter is that it enables the use of offline algorithms for
the online scheduling problem. Whenever a new flow is established we let the offline algorithm
construct a new schedule, and start using the new schedule at the next basic interval. The new
schedule is not accepted if accepting a new flow results in rejecting a previously accepted flow.
The main obstacle we face is that during the transition from one offline schedule to another, the
jitter of the flows may increase. The online algorithm should therefore check that a new schedule
does not violate the tolerated jitter of any admitted flow.

Let A be an offline algorithm for scheduling flows with related grant intervals. We construct
an algorithm OA, which is an online version of A, in the following way. Denote by F, the set of
flows that OA is currently scheduling; before the schedule begins F,. = (). Algorithm OA operates
as follows

e When a new flow f; is established

1. Use the offline algorithm A to construct a schedule for the flows in F, + f;.
2. Discard flow f; if one of the following holds for the new schedule.

— Not all the flows have been scheduled.
— One of the flows becomes jittered by more than its tolerated jitter.

3. Otherwise, set F, = F. + f; and start using the new schedule at the beginning of the
next basic interval.

e When a flow f; ends, set F, = F, — f;.

9.1.1 Algorithm Online Perfectly-Periodic First-Fit

We now choose algorithm PP — FF (introduced in Subsection 7.2) as an offline algorithm and
explore the jitter and performance guarantees of the Online Perfectly-Periodic First-Fit (OPP —
FF) algorithm. Recall that PP — F'F schedules flows according to increasing order of grant
intervals and is able to maintain zero jitter. The jitter requirements of OPP — F'F are only due
to the fact that it should be able to schedule flows in any given order.

Theorem 7 Let F' be a set of flows with K related grant intervals such that Ju > 0 and J; >
I;, 2 < j < K. Assume that algorithm OPP — FF is used to online schedule flows in F. Denote
by F(t) the set of flows that have arrived until time t, and by n(t) the channel utilization of the
algorithm at time t. The schedule produced by OPP — FF satisfies

. Sma:c - 1
n(t) > mln{WF(t)a 1— T} .

Proof: According to Theorem 5 the offline algorithm (PP — F'F) can schedule any subset of
flows in F' achieving the above channel utilization. To prove the theorem it remains to show that
the jitter requirements of all the flows are maintained. Let us first consider a flow in Fj, j > 2.
To schedule the flow PP — FF must insert it in one of the bins in the first I; interval. If the time
reference of the flow is fixed to the beginning of the basic interval, the jitter of the first grant
could not be more than I;. Since subsequent grants are exactly I; apart their jitter is the same.
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Now consider a flow in F;. Here zero jitter is maintained since flows in other groups do not effect
the locations of grants to flows in F; (PP — F'F does not change bin sizes). To maintain zero
jitter it is therefore sufficient for the algorithm to keep the order of the flows in F} according to
the order they arrived (this rule is also useful for other groups). [ |

Algorithm OPP — FF has good performance when the tolerated jitter of the flows satisfies
J;j > I;. When the tolerated jitter decreases the performance of the algorithm is expected to
degrade. For example if the first flow has I(1) = I; and J(1) = 0, it prevents the algorithm
from accepting new flows with grant interval smaller than I;. There are ways to improve the
performance of the algorithm for problems in which J; < I;. One immediate improvement is
to allocate flows in F; at the end (i.e., the last free slots) of each bin; this way both flows in
Fy and F, are not jittered. As we mentioned, accepting a new flow with grant interval I; may
only increase the jitter of flows with grant interval larger than I;. To reduce this jitter we may
artificially insert flows from each group into F.. The artificial flows reserve slots for flows that
are expected to arrive in the future. When a new flow arrives it may simply take the place of an
artificial flow in its group and hence cause no jitter to other flows.

A drawback of algorithm OPP — F'F is its running-time complexity. Whenever a new flow
arrives PP — F'F is invoked so the complexity of scheduling each new flow is O(n - m), where n is
the number of admitted flows and m is the number of bins. Note that in practice, when a flow in
Fj arrives PP — F'F should only reschedule flows with grant interval larger than I;; the positions
of all other flows is not affected by the new flow.

9.2 Online Algorithms for Small Tolerated Jitter

We say that a set of flows belongs to the category of small tolerated jitter if J; < I;. The small
tolerated jitter may render online versions of offline algorithms inefficient. We therefore develop a
new algorithm, called Online Least-Loaded (OLL), for the problem. The main difference between
OLL and the offline algorithms we presented earlier is that OLL schedules the flows according to
the order they arrive, whereas the offline algorithms schedule flows according to increasing grant
intervals.

9.2.1 Algorithm Online Least-loaded - OLL

OLL is based on the least loaded rule, that is, the algorithm prefers to insert a flow into the bin
with the least number of occupied slots. We assume that the algorithm knows the value of Ij
before scheduling begins. We also assume that the algorithm knows the size of Ik (the largest
interval); this assumption, however, is not essential as the value of Ix can change dynamically
during the schedule. As in our previously described algorithms, OLL schedules flows over the
basic interval Ik ; the basic interval is repeated over and over to define a legal schedule. The basic
interval is divided into bins of length I;; bins are numbered 1 to Ix/I;. We define the level of
bin By, to be the number of occupied slots in bin number k¥ and denote it by I(By). When OLL
inserts a flow f; into a bin the flow is allocated the first free S(i) slots in the bin. The exception
to this rule is when f; € F; in which case the flow is allocated at the end of the bin, i.e., in the
last S(i) free slots; as will be shown, this ensures that flows in F; are not jittered. OLL schedules
the flows according to the order they arrive. When a new flow f; arrives the algorithm performs
the following steps.
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Algorithm OLL

1. Choose the least loaded bin among the bins in the first I(7) interval (ties broken in favor of
lower index). Assume the chosen bin is Bj.

2. If f; can be scheduled starting from Bj, that is, the level of every bin B where ¥ =
kE+nlI(i)/I, (n=0,...,Ig/I(i) — 1), satisfies [(By) + S(i) < I, then insert f; into every
bin Bk"

3. Otherwise (the flow could not be inserted into one of the bins) discard f;.

OLL requires O(m) operations to schedule each flow, where m = I /I; is the number of bins.
In this respect it has an advantage over online algorithms which are based on offline algorithms,
such as OPP — F'F, that require O(n-m) operations per flows, where n is the number of admitted
flows. We now analyze the performance of OLL in terms of the channel utilization it achieves.

9.2.2 Performance Analysis of Algorithm OLL

To simplify the presentation we analyze the performance of algorithm OLL when it is applied
to sets with K related grant intervals which are powers of 2 times Iy, i.e., I; = 2711, for every
2 < 57 < K. The analysis for general related grant intervals is almost identical and yields the
same final result. The following theorem provides guarantees on the channel utilization that OLL
achieves.

Theorem 8 Let F be a set of flows with K related grant intervals which are powers of 2 times I.

Denote by Spmaz the mazimum grant size in F' and require that grant jitters in F satisfy J; > 0,
J; > min{ly, (K—1)Snaz. (2K —1)Spae}, Vi > 2. When algorithm Online Least Loaded (OLL)
is used to online schedule the set F' the channel utilization achieved satisfies

KSper—1 K(K — 1)Smam}
_|_

(13)

>min Wg, 1 —
n_mln{ £ I 21

Proof: We first prove two claims that state important properties of algorithm OLL.

Claim 9.2 Let By, be any bin in the first I; interval (1 <j < K —1), i.e, 1 <k <27 and let
By be the corresponding bin in the following I; interval, i.e., k' = k + 2=, The levels of bins
By, and By at every stage of the schedule by OLL satisfy 1 — Spae < U(By) —l(Bg') < Smaz-

Proof: We first prove that [(By) — [(Bg) < Spmaz- The proof is by induction on the number
of flows OLL scheduled. The property is valid before the first flow is scheduled since both bins
are empty. Assume it remains valid after f; 1 is scheduled and consider the next flow f;. We
distinguish between two cases depending on whether (i) is smaller or larger than I;; we show
that in both cases after scheduling f; the level of By cannot exceed the level of By by more than

Smax .

1. I(i) < I; - In this case, if f; is inserted into By, it is also inserted into Bjs. Hence, there is
no change in the difference between the levels of By and By:.

2. I(i) > I; - In this case OLL chooses the least loaded bin from an interval that includes
both By and By. By the induction assumption we know that before f; is scheduled I(By) —
I(Bg) < Spaz- Clearly the property may be broken only if OLL decides to insert f;
into Bx. However, OLL would make this decision only if the levels of By and By satisfy
I(Bg) < I(By). Hence, after f; is scheduled we have [(By) < I(By) + S(i) and, since
S('L) < Smama Z(Bk) - Z(Bk’) < Sma:n-
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The proof that [(By) —I(B) < Smaxz — 1 is similar. Flows with grant interval less or equal I; do
not create a difference between the levels of By, and By,. A flow with grant interval larger than I;
is inserted into By only if [(By/) < I(By) which means that after scheduling f; the levels of the
bins must satisfy [(By) < I(Bg) + S(i) < I(Bg) + Smaz- [ ]

Claim 9.3 Let B}’f and Blk be the bins with the highest and lowest levels in the first interval of
length I, (2 < k < K), respectively. Throughout the schedule, algorithm OLL maintains the levels
of the bins such that [(BF) — 1(BF) < (k — 1)Smaz-

Proof: The proof is by induction on % (recall that in an interval I, there are 2¥~1 bins).

Base k = 2 - The interval Is contains only two bins. Flows with grant interval I; are inserted into
both bins and hence do not create a difference in their levels. When OLL schedules a flows with
grant interval I; > I, it considers the levels of both bins in I5; the algorithm inserts the flow into
the bin with the lower level. As a result the difference that flows with grant interval I; > I> may
create in the levels of B,QL and Bl2 is at most Syaz-

Step - Assume the claim holds for k£ — 1, that is, l(B}lf_l) - l(B,]’i_l) < (k—2)Sn4z- We must show
that Z(Blli) - l(Blk) < (k - 1)Sma:n-

Let us first consider the contribution of flows with grant interval I; > I to the difference
[(BF) —1(BF). A flow in this category is inserted by OLL into the least loaded bin among bins in
I;. Hence, if the flow is inserted into one of the bins in the first I} interval, this bin is necessarily
BF. Tt follows that after inserting a flow in this category either the difference {(BF) — I(BF)
decreases, or (if it increases) is at most Sp,qz-

Now consider the contribution of flows with grant intervals smaller than ;. A flow with
grant interval I; < Ij_; must be inserted in one of the bins in the first interval of length I;_;.
Furthermore, when a flow is inserted in bin number z (1 < z < 2¥~2) in the first interval of
length Ij,_q, it is also inserted in bin number y = x + I;_1/I; in the following interval of length
I;_1. Hence, bins number z and y contain exactly the same set of flows with grant intervals
I; < I _4. It follows that the contribution of flows with grant intervals smaller than I to the
difference I(B) — I(BF) cannot exceed l(B}Ii*l) - l(Blk*I). Using the induction assumption we
assert that the difference in the levels of B}’f and Blk due to flows with grant interval I; < I}, is at
most (k — 2)Snaz-

To summarize, all the flows with grant interval I; > I combined may contribute at most
Smaz to the difference in the levels of B}’f and Blk while flows with grant interval I; < I} may add
another (k — 2)Sy,4, to this difference. Therefore, the total difference in the levels of B;’f and Blk
cannot exceed (k — 1)Spqz- [ |

We now go back to proving the theorem. Note that when the first flow is rejected by OLL the
level of at least one of the bins must be larger than Iy — Sy, (otherwise the flow can be inserted
in all bins and is not rejected). According to Claim 9.3 the levels of of all other bins at this point
is more than Iy — K S,,4,. We conclude that, when the first flow is rejected, the total number of
occupied slots in the entire I interval, which we denote by C'x, must satisfy

IK(KSma:c - 1)
I

CK > IK - + (K - 2)Sma:v (14)
We can use Claim 9.2 to get a better lower bound on Ck. According to the claim the difference
between the levels of two corresponding bins cannot be more than S, (recall that two bins
corresponds when one bin is the k** bin in the first I ; interval and the other bin is the k" bin in
the subsequent I; interval). We know that the level of one of the bins is larger than Iy — Spyay;
denote this bin by B,. The level of the bin that corresponds to B, must be more than Iy — 25,44
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The level of the bin that corresponds to that bin must be more than Iy — 35,4., and so on until
the level of the K" corresponding bin must be more than I} — K.Sp,4,. We can therefore update
the lower bound on Ck to be

K

I
CK 2 Z(Il_nSmam+1)+(I_Il(_K)(Il_KSmax+1) (15)
n=1
I K(K —-1)S8
— I—K(Il—KSma:c‘i‘l)‘f‘w
1

The total number of slots is I, hence the channel utilization when the first flow is rejected is at
least what the theorem guarantees
Ck KSmaz — 1 n K(K —1)Snaz

.
n I — I 21

(16)

Let us now consider the jitter requirements of OLL. Note that the jitter caused by OLL is
only due to the different levels of the bins that a flow is inserted into. This difference is clearly no
more than the bin size I;; furthermore, Claim 9.3 tells us that it is not more than (K — 1)Sy4s-
For flows with large grant intervals the required jitter is even lower. A flow with grant interval
I; is inserted into 2K=J corresponding bins. According to Claim 9.2 the difference in the levels
of these bins is no more than (2577 —1)S,,,,. For example, flows in Fg are scheduled without
jitter. OLL also maintains zero jitter for flows in F} by allocating a new flow in F} at the end
of each bin, just before previously inserted flows in Fy. Since each flow in F} is inserted in all
the bins, the number of slots occupied by flows in Fj is equal in all bins, hence a flow in Fj is
allocated in the same position in all the bins and is thus not jittered. |

Note that Claims 9.2 and 9.3 remain valid for general related grant intervals, i.e., when I; =
m;lj_1. As a result, Theorem 8 holds for any set of related grant intervals. The claims are based
on the property that flows with grant interval I; do not create a difference of more than S,q, in
the levels of bins in the I; interval. This property does not depend on the relations between grant
intervals. The only modification we need in the proof of the theorem is that in Claim 9.2 the level
of a bin in the first I; interval should now be compared to the levels of the corresponding bins in
the next m; 1 — 1 intervals of length I;.

We point out that the lower bound of Theorem 8 on the channel utilization achieved by OLL
is tight only in certain cases. In order for the bound to be tight (or almost tight) we must have
either 1 = KSpqx > 1, or IT1 > KSp,0:- In other cases the worst case channel utilization is
higher and depends on the exact values of I, K, and Sy,q;- As a worst case example for which
the bound is (almost) tight consider K = 3 and I} = 3Sy,4,- First we have five flows in F3 with
the following grant sizes: 2, 2, 1, 1, and Sy,qz; next a flow in Fy with size S, arrives. The levels
of bins By, By, B3, and Byg are now Sp,az + 2, 2, 254z + 1, and 1, respectively. A new flow in Fy
with grant size Sy, is now rejected. The channel utilization achieved by OLL in the example is
n = 0.25+1/25,4; while the bound of Theorem 8 is > 0.25 + 1/3S,,,4,. We also point out that
in this example an optimal algorithm can accept two additional flows in F} with grant size Sz
achieving utilization of 0.92. This indicates that a good estimation to the worst case performance
ratio of OLL can be obtained simply by taking the inverse of the lower bound on the channel
utilization in Theorem 8 (the performance ratio is always lower than this estimation).

9.3 Online Algorithms for Zero Tolerated Jitter

Zero tolerated jitter means that the schedule should be perfectly-periodic. One way to achieve
perfect periodicity is to reserve fixed locations for the flows in each group. A simple (yet not
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efficient) way to do so is to assign a fixed number of slots to each group in every bin (interval
of length I1). When a new flow is established the algorithm tries to schedule it in the slots that
have been assigned to the flow’s group. More sophisticated algorithms may allow the reservations
to change dynamically. This way, when the locations reserved for a certain group have all been
used, the algorithm assigns new slots to that group (from a shared pool or on the expense of a
different group). Using fixed reservations algorithms may work well if the expected number of
flows and the flows’ parameters are known to the algorithm in advance. However, such algorithms
may perform poorly if the actual set of flows is considerably different from the expected set of
flows.

We use a different approach and slightly modify algorithm OLL in order to produce perfectly-
periodic schedules. We call the modified algorithm Perfectly-Periodic OLL (PP — OLL). Recall
that OLL groups all allocation in a bin into a consecutive block at the beginning of the bin;
when a flow is inserted into a bin its grant size is allocated at the end of this block. Since the
levels of the different bins into which the same flow is inserted can be different, the flow may be
jittered. To avoid this jitter PP — OLL schedules a flow f; in the following way. The bins into
which to insert the flow are chosen exactly as in OLL. After the bins are selected the algorithm
scans them to learn what is the highest position of an occupied slot in these bins (slots allocated
for flows in F; are ignored in this process). Assume the highest position was found to be p. If
there are S(i) free slots between slot p + 1 and the beginning of slots occupied by flows in Fj the
flow is accepted, otherwise it is rejected. If f; is accepted it is allocated S(i) (free) consecutive
slots starting from position p + 1 in each bin f; should be inserted into. Since every flow that
is scheduled by PP — OLL is placed in exactly the same position in all the bins that the flow
occupies, the flow is not jittered.

We chose to present PP — OLL in a very simple form. A more sophisticated version of the
algorithm would search for other position into which a flow can be inserted and not give up after
the first attempt. The best option in terms of performance is to go from the first slot to the last
slot and consider every one of them as a starting position for inserting the flow. Unfortunately,
even in its most sophisticated version algorithm PP — OLL has a poor worst case performance.
We demonstrate this fact with the following example. There are K related grant intervals which
are a power of 2 times I;. We choose I} = 1S4 and Sy,q, > 1. The flows in the example are
either from Fx or Fy and they arrive in n iterations. In iteration number ¢ two flows in F with
grant size Spee — 1 + ¢ arrive and are followed by two flows in F, with grant size 1. Figure 8
presents the content of the first four bins after the first and second iteration in an example where
Smaz = 4 and n = 3. Note that a more sophisticated version of the algorithm would not help in
this example since it is impossible to allocate any of the flows in a lower indexed slot. After n
iterations a flow in F} with grant size Sy, arrives and must be rejected. The channel utilization
at this point is

n

1 ) 2n 20 Smazx = T
= 28, — - it AR 17
7 IK; (Smaa —i) + - < =+ (17)
2n Shaz n 1 1

= +
2K-1np Smaz 1 Smaz 2K—2 Smaz

Note that the channel utilization achieved by PP — OLL in this example depends only on K
and S,,q; and not on I;. In this example the channel utilization achieved by OLL is at least
1 — KSpmaz/Ii =1 — K/n. By choosing n, K and Sy,4, to be large, we guarantee a high channel
utilization for O LL while the channel utilization of PP — OLL, which does not depend on n, can
be arbitrarily low.

Surprisingly, despite the poor worst case performance of PP — OLL, our simulation results
(see subsection 9.4) indicate that on average its performance compares to that of OLL.
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Figure 8: Example of an online schedule by algorithm PP — OLL. The Content of the first four
bins is presented after the first iteration (a) and after the second iteration (b).

9.4 Expected Performance and Practical Implications

In the previous subsections we presented three online algorithms and provided lower bounds on
their worst case performance. Theorems 7 and 8 provide a tight lower bound on the channel
utilization achieved by algorithms OPP — FF and OLL, respectively. However, the examples
for which the lower bounds are tight require a particular set of sizes and arrival times which in
practice are not likely to occur. In order to evaluate the expected performance of the algorithms
we use simulation.

As an input to the algorithms we generate a random set of flows with grant intervals uni-
formly chosen from the set {I1,...,Ix} and, independently, grant sizes uniformly distributed in
{1,2,...,Smaz} (K and Spq, are parameters of the simulation). In all the simulations we present
here I; = 100 and I, = 2I;. Jitter constraints have been ignored in our simulations. We next
apply the algorithms to the same randomly generated set of flows. To provide fair comparison
with the worst case bounds, we stop the simulation when the first flow is rejected. It is there-
fore important to note that in practice the algorithms are expected to achieve a higher channel
utilization since they may still accept flows after the first flow is rejected.

Our first observation is that simulation results can vary considerably between different runs
of the simulation. This is illustrated in Figure 9 which shows the channel utilization achieved by
algorithm OLL in 50 different simulation runs. The parameters for the simulation were K = 10
and Syner = 0.511. The average channel utilization in this example is 0.5 and the standard
deviation is 0.18.

Our second observation is that there is a considerable difference between the worst case bounds
of Theorems 7 and 8 and the average channel utilization of the algorithms. This difference is
especially noticeable in the performance of OLL. Figure 10 shows the average channel utilization
of algorithms OPP—FF and OLL along with their worst case bounds for K = 5 and S;,4, < 0.515.
Each point on the curves is the average of 500 simulation runs.

Figure 11 presents the average channel utilization achieved by algorithms OPP — FF, OLL,
and PP — OLL for values of K = 5 and K = 10. Recall that for PP — OLL we showed that
there are examples in which the channel utilization achieved by the algorithm is arbitrarily small.
It is therefore interesting to observe that in our simulation there is no considerable difference in
the performance of OLL and PP — OLL. When S),,; < 0.2I; (which we consider typical) the
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Figure 9: Channel utilization achieved by algorithm OLL in 50 different simulation runs when
K =10 and S;,q, = 0.514.
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Figure 10: Average channel utilization achieved by algorithms OPP — FF and OLL compared
to their worst case bounds. Simulation results are for K = 5 and Sy,q: < 0.517.
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difference in the channel utilization of the two algorithm is about 15% when K = 5 and about 30%
when K = 10; when Sy,4, > 0.517 the two algorithms achieve almost the same channel utilization.
Another interesting observation is that the performance of algorithm OPP — FF is not effected
by the value of K. This is in agreement with the bound of Theorem 7 which is also independent
of K. As we expect, the performance of algorithm OLL decreases with K, a fact which is in
agreement with the bound of Theorem 8. Figure 12 presents the average channel utilization of
the three algorithms as a function of K when Sy, = 0.2I;. Note that the gap between the the
performance of OLL and PP — OLL increase as K increases.
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Figure 11: Average channel utilization achieved by algorithms OPP — FF, OLL, and PP — OLL
for values of K =5 and K = 10.

Channel Utilization

0.55+| —+ OPP-FF B
-6- OLL
—— PP-OLL

05 I I I I I I

Figure 12: Average channel utilization of algorithms OPP — FF, OLL and PP — OLL as a
function of K when S, = 0.217.
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9.4.1 Practical Implications

Let us now consider the practical implications of our results. For multimedia applications we may
expect K < 5; a value of K = 10 is certainly sufficient since it provides a range of three order of
magnitudes. Let us consider typical values of voice applications where K = 5, I; = 10 ms and
Smaz = 200 bytes. For a relatively slow link of 2 Mbps we have S;,q, = 0.8 ms, hence the lower
bound of Theorem 8 implies that the channel utilization achieved by OLL is at least n > 0.6.
The largest possible jitter is that of flows in F5 and is no more than (K — 1)S,4, = 3.2 ms which
is acceptable. From our simulation results we may conclude that in practice the average channel
utilization OLL can achieve in this setting is around 0.9. If the tolerated jitter allows the use of
OPP — FF the channel utilization is guaranteed to be at least 0.92.

One way to improve the performance of online scheduling is to allow a tolerated jitter that
enables the use of OPP — F'F (or any other version of an offline algorithm). Another possibility
is to decrease the value of Sy,4;. This can be done by changing the parameters of flows with large
grant sizes, such that they are assigned smaller grant sizes at shorter intervals. The process is
similar to the rounding procedure described in Section 8. In particular the process may incur
a waste of bandwidth due the fixed size overhead in each packet. Another way to reduce Siaz
is to break large grant sizes into smaller grants such that the original flow is split into several
sub flows (without violating jitter constraints). This method requires capabilities of splitting and
reassembly and is expected to be beneficial only when the tolerated jitter is large.

9.5 Online Scheduling of Temporary Flows

The analysis we presented in the previous subsections considered permanent calls, i.e., calls with
infinite duration. We now discuss the realistic case of temporary flows, that is, flows with a finite
duration.

Defining a metric by which to evaluate the performance of an algorithm in the case of tem-
porary flows is not as obvious as in the case of permanent flows. The reason is that the channel
utilization is no longer monotonic increasing (non decreasing) in time. Simply comparing the
channel utilization of a scheduling algorithm to that of an optimal algorithm at any point in time
we choose does not provide meaningful results since the worst case performance ratio is likely
to be unbounded. As an example, consider the time when one of the flow has been rejected by
the scheduling algorithm but is accepted by an optimal algorithm; we now let all other flows end
which results in an unbounded performance ratio. To overcome the problem we adopt a method,
which is commonly used in analyzing scheduling problems (see e.g., [69], [66]), according to which
the performance of an algorithm is taken to be the maximum channel utilization it achieves during
the schedule.

Let us first consider the OPP — F'F algorithm. The algorithm is suitable for handling tempo-
rary flows. When a flow f; ends, it is removed from the set F.; when the next flow is established
the new schedule created by OPP — FF does not include f;. We know that the algorithm does
not reject a flow unless the channel utilization is more than 1 — (Sp,q; — 1)/I1 and this property
remains true for temporary flows. The only modification in the behavior of the algorithm is that
it no longer maintains zero jitter for flows in F;. The reason is that after a flow in F) ends,
the new schedule created by OPP — F'F will shift the remaining flows in F} forward in time. To
conclude, Theorem 7 remains valid for temporary flows with a modification requiring that J; > Iy
(as opposed to J; = 0 in the original theorem).

The situation is somewhat different for the OLL algorithm. Theorem 8 provides a lower
bound on the channel utilization the algorithm is guaranteed to achieve before the first flow
is rejected. This bound remains valid in the case of temporary flows. However, since OLL
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does not reconstruct the whole schedule whenever a new flow arrives (as OPP — FF does), the
algorithm cannot guarantee that the same property holds when subsequent flows are rejected. In
order to handle temporary flows OLL should group the grants of currently scheduled flows into
a consecutive block of allocations. In order to reduce the jitter the algorithm may perform the
operation of grouping flows only when a bin fills up. As a result of the need to group flows together
the algorithm does no longer maintain the jitter properties of the permanent flows case. Theorem
8 should therefore be modified to require J; > I for 1 < j < K (recall that in the original
theorem J; > (K — 1)S),4, was sufficient). By using a more sophisticated insert procedure we
can probably reduce the jitter requirements by allocating new flows in the free spaces which are
left when flows end.

Algorithm PP — OLL has no performance guarantees even in the case of permanent flows.
However, our simulation results indicate that in practice the algorithm is expected to perform
reasonably. The algorithm as we presented it is not expected to maintain this performance in the
case of temporary flows. The reason is that it only tries to insert a flow in the highest position
which is available in all the bins the flow must be inserted into. In order to be able to reuse
the slots that are freed when flows terminate, the algorithm must consider more positions from
which to start scheduling a new flow. Note that even if the algorithm considers all I; positions
the complexity of inserting a flow is only O(m - I;) where m is the number of bins.
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10 Scheduling CBR Flows over Multiple Channels

We counsider the problem of scheduling CBR flows in networks with multiple channels. Our model
of the problem is based on DOCSIS compliant cable networks where, in order to increase the overall
bandwidth and improve noise immunity, each modem can access multiple upstream channels
[1, 57]. In the general scheduling problem each flow is characterized by three parameters: grant
interval I, grant size S, and grant jitter J. According to Theorem 1 the problem of scheduling
flows with two or more different grant intervals is NP-hard even if the flows are to be scheduled
on a single channel. We therefore restrict our attention to the case of uniform flows, i.e., when
all the flows have the same values of I, S and J. The primary application we consider is packet
telephony, hence we refer to such flows as calls.

In the case of uniform calls scheduling on a single channel is trivial. We divide the time axis
of each upstream channel into frames of length I. Each call requires an allocation of a time-slot
of length S in each frame. A call is accepted if there is a free time-slot in the frame (it can
be assigned to any free time-slot) and is blocked otherwise. Note that in order to describe a
schedule it is sufficient to describe the assignment of the calls in a single frame in each channel.
What makes the scheduling problem interesting is the fact that each modem may establish several
calls concurrently but all the calls of the same modem must be scheduled on a single upstream
channel. This restriction is a result of the need to reduce hardware and scheduling complexities.
The Headend can direct a modem to switch from one upstream channel to another, in which case
all the ongoing calls of the modem must be scheduled on the new channel.

We now summarize the characteristics of the network and the variables we are going to use in
our analysis.

e There are m identical channels.

In each channel there are U time-slots per frame; establishing a call requires one time-slot
per frame.

Each modem may have 0 < ¢ < ¢4, calls simultaneously. Unless otherwise stated we
assume Cpqrp = U.

All the calls of the same modem must be scheduled on the same channel.

It is possible to switch calls from one channel to another. When switching a call the tolerated
jitter must not be violated.

For a given list of calls L we denote by A(L) the number of calls that algorithm A accepts
from L and by OPT(L) the number of calls an optimal offline algorithm can accept. We define
the performance ratio of algorithm A using equations (1)-(3).

We concentrate on the online scheduling problem, as this is the nature of the problem. We
begin, however, with a short discussion on the offline problem.

10.1 Offline Problem

In the offline version of the problem the number of calls each modem has is known to the scheduling
algorithm and all the calls are established at the same time. Note that in the offline problem
channel switching is not required, hence jitter constraints are irrelevant and can be ignored. We
define the decision version of the scheduling problem as follows: given a list of calls L, can all the
calls in L be scheduled using m channels? In the case of a single channel the problem is trivial; a
schedule exists if and only if the number of calls in L is no more than U. When we consider more
than one channel the decision problem becomes NP-complete.
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Theorem 9 Deciding if a given set of uniform flows, can be scheduled on multiple channels is
strongly NP-complete.

Proof: We show a reduction from BIN PACKING (defined below) which is known to be strongly
NP-complete [58].

BIN PACKING:
INSTANCE: A finite set A of integers (items) ai, as, ..., an, a bin capacity B € ZT and a positive
integer k.
QUESTION: Can A be partitioned into & disjoint subsets (bins) S, ..., S such that Zjesi a; <B
fori=1,....k7

As the scheduling problem is almost identical to bin packing, the reduction is straightforward.
We construct a scheduling problem with m = k channels, U = B time-slots per channel, and
n modems. We denote by M; the number of calls of modem ¢ and choose an instance in which
M; = a;, 1 <1 < n. For any "yes” instance of BIN PACKING we create a legal schedule as
follows. If item a; is packed in S; then all the calls of modem i are scheduled over channel j.
Recall that in a legal schedule all the calls of a modem must be scheduled over the same channel.
Hence, for any ”yes” instance of the scheduling problem we can create a valid bin packing by
placing item a; in S iff the calls of modem ¢ are scheduled over channel j. Thus, the answer to
the scheduling problem is “yes” iff the answer to BIN PACKING is “yes”. |

We model the scheduling problem as a variant of bin packing. The channels correspond to the
bins; there are m bins each of size U. The modems correspond to the items; the size of an item
is the number of calls the modem has. Since we consider the offline problem the tolerated jitter
has no effect. The goal is to schedule (pack) as many calls as possible. The scheduling problem is
different from classical bin packing since it allows to pack part of an item (which means that only
part of the calls the modem requested were accepted). As an example consider the F'F algorithm
with m = 2, U = 10 and a list of items L = {1,1,9,9}. In bin packing two items of size 1 are
packed in the first bin and one item of size 9 in the second bin; the last item is discarded. The

performance ratio is Rpp(L) = %. In the scheduling problem the last item may be partially
packed in the first bin, i.e., 8 out of 9 calls are assigned to the first channel. The performance

ratio is therefore much better Rpp(L) = 2J.

We now consider the Next-Fit (N F') algorithm for the offline scheduling problem and estimate
its performance.

NF Algorithm: We present two variants of NF for the problem. In both variants the
algorithm keeps only one open bin and once a bin is closed it is not used again.

1. The algorithm keeps one open bin and packs items into the open bin until the next item
does not fit; the open bin is then closed and the item is packed in a new bin. After all bins
have been closed the algorithm stops. As a worst case example we choose a list of 2m items
arranged in the following way L = {¥,1,..., Z,1}. We have NF = m(¥ + 1), OPT = mU,

PRI RN
Ryr(D) = #%.

2. The algorithm packs items into the open bin until the bin is full. The last item to be packed
in each bin may be partially packed. The algorithm then moves to the next bin. As a worst
case example we choose m = 2U — 1 and the following list L = {1,1,...,1,U} x U, i.e., the
list is made of U sets of U — 1 items of size 1 followed by one item of size U. In this example
A=U? OPT = (2U - 1)U, RyF(L) = &L,

Standard results of bin packing tell us that the performance ratio of NF is not more than 2
[62]. The above examples therefore prove that the asymptotic worst case performance ratio of
NF in both cases is Ryp = 2.
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10.2 Online Problem

We now consider the online version of the scheduling problem where calls are established over
time. We distinguish between the case of permanent calls in which calls do not terminate (i.e.,
have infinite duration) and the case of temporary calls where calls may terminate over time.
Since the offline problem is NP-hard we concentrate on approximation algorithms. A scheduling
algorithm must provide an answer to the following questions:

e When the first call of a modem is established

— In what channel to allocate the call?

— In which time-slot in the selected channel to allocate the call?
e When a new call is added to an active modem, in what time-slot should the call be allocated?
e In case a modem is to be switched to a different channel

— To which channel should the modem be switched?

— In what time-slots in the selected channel to allocate the calls of the modems such that
the jitter constraint of all the ongoing calls is not violated?

In this work we consider three algorithms. The algorithms specify the channel selection rules;
in all three algorithm a new call is scheduled in the first available time-slot in the selected channel.

1. First Fit (FF) - Channels are numbered 1,...,m. The first call of a modem is scheduled
on the first available channel. Subsequent calls are scheduled on the channel the modem is
currently occupying. If the channel is full all the calls of the modem are switched to the
first channel that can accommodate them. If there is no such channel the call is blocked.

2. Best Fit (BF) or Most Loaded - The first call of a modem is scheduled on the most loaded
channel, i.e., the channel with the largest number of calls, (ties broken by lower index).
Subsequent calls are scheduled on the channel the modem is currently occupying. If the
channel is full all the calls of the modem are switched to the most loaded channel that can
accommodate them. If there is no such channel the call is blocked.

3. Worst Fit (WF) or Least Loaded - The first call of a modem is scheduled on the least
loaded channel (ties broken by lower index). Subsequent calls are scheduled on the channel
the modem is currently occupying. If the channel is full all the calls of the modem are
switched to the least loaded channel that can accommodate them. Otherwise the call is
blocked.

10.2.1 Permanent Calls with no Jitter Constraint

In this subsection we assume J = I which means that there is no jitter constraint when switching
calls from one channel to another. We first provide an upper bound on the performance ratio of
any deterministic online algorithm.

Lemma 2 For the scheduling problem with permanent calls and no jitter constraint the perfor-

mance ratio of any deterministic online algorithm A satisfies Ry > % — ﬁ.
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Proof: Consider first a family of algorithms that do not reject a call if it can be accepted. We
choose U > 1 to be an even number and m = 3 channels. There are four modems M; — My
and each modem initially has U/2 calls. Regardless of the way the calls have been scheduled
we know that one of the channels is full with the calls of two different modems; without loss of
generality, let us assume it is channel 1 and the modems are M; and M. We now let one more
call arrive to M3. At this point we have the following configuration: M; and Ms occupy channel
1 while M3 and My occupy two different channels (see Fig. 13.a). We now let My and M, receive
U/2 more calls each. These calls are all blocked by the algorithm, hence A(L) = 2U + 1. An
optimal algorithm can accept OPT (L) = 3U calls (see Fig. 13.b). The ratio in this example is

RA(L) = 3 - -
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Figure 13: Schedules of algorithm A (a) and an optimal algorithm (b) for the above example.

To complete the proof consider the case where the algorithm may reject a call that could be
accepted. Suppose a call arrives to modem X and is rejected although it could be accepted. We
repeat sending calls to modem X until it accepts a call, in which case we continue as in the above
example, or until U calls have arrived to modem X. The calls that have been rejected could be
accepted by an optimal algorithm so the performance ratio can only degrade. ]

Theorem 10 For algorithm A € { Worst-Fit, Best-Fit, First-Fit} with no jitter constraint the
3

worst case performance ratio is Ra = 3.
Proof: Lemma 2 provides a lower bound on the performance ratio of the algorithms (when
U — o00). We now show that this is also the upper bound. To do so we evaluate the difference
between the number of calls algorithm A accepts and the number of calls an optimal algorithm
can accept. We assume A has scheduled several calls and consider the moment in which the first
call is blocked by A. Assume this call belongs to modem X; and the modem has z; ongoing calls
at that time. We recognize the following properties:

1. The channel containing the calls of modem X is full (otherwise the new call is accepted by
A). This channel must also contain at least one call belonging to a different modem (since
T < U)

2. The content of any other channel is at least U — z; (otherwise modem X; is switched to a
different channel and the new call is accepted).

3. An optimal algorithm can accept at most U — z1 more calls to modem X;.

We know that the channel modem X3 is occupying has calls of at least one more modem. Note
that by Property 2, if z; < % the content of all the channels is at least %, hence the performance
ratio is at most % We conclude that, in a worst case example, in addition to modem X; the
channel has one more modem that would have blocked calls. Assume the next modem to receive
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a call which is blocked is modem X5 and it has zo accepted calls. Clearly the same properties
we listed above must also hold for X5. Let x = min{z,z9}. The number of calls accepted by
algorithm A and an optimal algorithm satisfies

A(L) > U + (m — 1)(U — z)

(18)
OPT(L) < min{mU, U+ (m —1)(U —z) +2(U —z)}
The performance ratio satisfies the following:
R, < min{mU, U+ (m+1)(U — z)} (19)

- U+ (m—-1)U —x)

The maximum possible value of the expression in (19) is R4 = %; it is obtained when x = % and
m = 3. This provides the necessary upper bound on the performance ratio of the algorithms. W

Theorem 10 provides the worst case performance ratio of the algorithms we consider for certain
values of U and m. We can extend the example in Lemma 2 for any m = 3k (k an integer). In
other cases the performance ratio is slightly lower and depends on U.

10.2.2 Permanent Calls with no Jitter Constraint and no Channel Switching

To evaluate the benefits of channel switching we now analyze the scheduling problem under the
assumption that channel switching is not allowed, i.e., a modem is assigned a channel when the
first call is established and all subsequent calls must be assigned to that channel.

A worst case example for algorithms F'F' and BF is straightforward. The first U calls are for
different modems and they are all assigned to the first channel. In the next stage each modem
receive U — 1 additional calls. Since the channel is full and channel switching is not allowed all
the calls are blocked. We therefore have FF(L) = BF(L) = U and OPT = min{U?, mU}; the
performance ratio is Rpp = Rprp > min{m, U}. As we can see the performance ratio increases
with both U and m. When m < U the performance ratio is the worst possible (since at least one
channel is full before calls are blocked).

The W F algorithm performs better in the case where channel switching is not allowed. How-
ever, we now show that the performance ratio is monotonically increasing with U and therefore
tends to m as U increases. Consider the following example: in the first stage k£ - m calls for
different modems arrive; as a result each channel is assigned k calls. In the next stage U — k calls
of a single modem arrive and are allocated in the first channel; at this point the first channel is
full. We now have U —1 calls arriving to each modem in the first channel; since the channel is full
all these calls are blocked. The algorithm accepts WF'(L) = U + (m — 1)k calls while an optimal
algorithm can accept OPT'(L) = min{(k + 1)U + (m — 1)k, mU}. For simplicity we can choose
k =m and U > m? in which case the ratio is

mU (m — 1)m?
RWF_U—i—(m—l)m_m_U—i-(m—l)m (20)
As U increases the performance ratio converges to m.

From the above examples we conclude that channel switching considerably improves the worst
case performance ratio of the scheduling algorithms. When channel switching is disabled the
performance ratio is monotonically increasing with U and m; when channel switching is enabled
the performance ratio is constant.
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10.2.3 Temporary Calls with no Jitter Constraint

In this section we consider the case where calls begin and end over time. In addition to I,.5,J and
the call’s starting time, now each call also has a duration. The information about the duration of
a call is unknown to the algorithm when the call is established. We assume that a call that has
been accepted may not be interrupted.

Defining a way in which to evaluate the worst case performance of an algorithm for temporary
calls is problematic. Suppose we use our current definition and evaluate the performance by the
number of calls the algorithm accepts. In this case it is always possible to come up with an
example that leads to an unbounded performance ratio. Clearly calls which the algorithm does
not accept but are accepted by the optimal algorithm may end and new calls with the same
parameters may immediately begin; repeating this pattern result in increasing the performance
ratio hence the performance ratio tends to infinity. Note that the same applies if we evaluate the
performance of an algorithm by its call blocking probability, as is typically done in average case
analysis [57].

To overcome the problem we define, as we did in Section 9, the performance of an algorithm as
the maximum number of calls it schedules at some time during its execution. Using this definition
the worst case results for permanent calls are also valid for temporary calls. The reason is that
our bounds on the worst case performance ratio were all achieved by evaluating the number of
calls the algorithm schedules when the first call is blocked.

10.2.4 Permanent Calls with Jitter Windows

In this section we evaluate the use of jitter windows as a means for maintaining jitter constraint
when switching a modem from one channel to another. The use of jitter windows has been
proposed in [57]. According to this proposal a frame containing U time-slots is divided into W
windows such that the length of a window is less than the tolerated jitter of the calls, i.e., % < J.
Hence, a call can be moved freely within its jitter window without violating jitter constraints.
Jitter windows provide a simple way to ensure that when a modem is switched form one channel
to another the jitter constraint of every call is not violated. It is important to note, however,
that jitter windows add restrictions to the scheduling algorithm which are not imposed by the
scheduling rules.

For simplicity we assume that U is a multiple of W; hence each window can hold up to U/W
calls. A modem may use only one channel and within this channel it may have calls in different
jitter windows. When a modem is switched to a different channel each and every call in the
original channel must be allocated in the same jitter window in the new channel.

We first establish an upper bound on the worst case performance ratio of any algorithm that
allows channel switching.

Lemma 3 Let A be an algorithm that allows channel switching and uses jitter windows. If A
does not block calls unnecessarily the worst case performance ratio of A satisfies

Roa<W for every W > 2. (21)

Proof: We assume nothing about the way A schedules the calls. Our only assumption is that
when a modem tries to establish a call the call is accepted in two cases: 1) The current channel
the modem is occupying has a free time-slot, or 2) The call can be accepted if the modem is
switched to another channel.

Consider a call that arrives to modem X and is blocked by A. Suppose modem X has z
ongoing calls in jitter window W; at that time. We recognize the following properties:
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1. The channel containing the calls of modem X is full.
2. The content of W; in all the other channels is at least % — .
3. An optimal algorithm can accept at most U — z more calls to modem X.

Algorithm A may block calls of other modems in the channel modem X is occupying. We denote
by k£ the number of modems with blocked calls. Note that if a jitter window has two modems
with blocked calls the content of the same jitter window in any other channel is at least % It
follows that if there is more than one jitter window with two or more modems with blocked calls
in it, the performance ratio is less than W. We may therefore assume that one jitter window, say
Wi, has 1 <k < % modems with blocked calls and in 0 < kg < W — 1 other windows there is
one modem with blocked calls. As a result, the number of calls accepted by A and OPT satisfy

AL) > U+ (m = D)(H + k)

kW
(22)
OPT(L) < min{mU, A+ (k1 + ks — 1)U}

. . . __ OPT(L) . .
Simple analysis of the ratio Ry = 77> shows that the worst case performance ratio satisfies
R4 < W for any set of values of U, m, ki, and ko. It converges to W in two cases

1. k=1, ko=W -1, U — .
2. ki =%, k=0, U— .
The above result holds for any algorithm regardless of the way the calls are scheduled. |

Let us now consider the Worst-Fit, Best-Fit and First-Fit algorithms. We first define the
algorithms for the case of jitter windows.

Worst-Fit (Best-Fit) with Jitter Windows: The algorithm uses the least (most) loaded
rule. It assigns the first call of a modem to the least (most) loaded channel and within that
channel the call is assigned to the least (most) loaded jitter window. If a modem already has
an ongoing call a new call is assigned to the least (most) loaded jitter window in the channel
the modem is occupying. If that channel is full the algorithm tries to switch all the calls of the
modem to a different channel. If there are several channels that can accommodate the calls of
the modem, the least (most) loaded channel is selected.

First-Fit with Jitter Windows: The algorithm assigns the first call of a modem to the first
available channel and within that channel the call is assign to the first available jitter window. If
a modem already has an ongoing call a new call is assigned to the first available jitter window in
the channel the modem is occupying. If that channel is full the algorithm tries to switch all the
calls of the modem to a different channel. It examines the channel according to their order and
select the first that can accommodate the calls of the modem.

Theorem 11 For algorithm A € { Worst-Fit, Best-Fit, First-Fit} using jitter windows the worst
case performance ratio is Ra =W for every W > 2.

Proof: Lemma 3 provides an upper bound on the performance ratio of the algorithms. We
present an example for each algorithm that proves the lower bound.

Worst case example for Worst-Fit
We create a situation where the first channel is full such that each jitter window is fully occupied
(has % calls) by a different modem. In the rest of the channels there is one call belonging to
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a different modem in each window (see Figure 14). This situation is created if the first mW
calls belong to different modems and afterwards calls to the modems occupying the first channel
arrive one after the other until the channel is full. At this point we let each modem in the first
channel receive U — % more calls. All these calls are blocked by the algorithm since there is
no way to move the existing calls to the same jitter window in any other channel. The number
of calls that W F accepts is WF(L) = U + (m — 1)W while an optimal algorithm can accept
OPT(L) = min{mU, WU + (m —1)W}. We choose U > W (W +1) and m = W + 1 which means
that all the calls are accepted by an optimal algorithm. The performance ratio in this example is

WU+ (m-1)W <U—|—W)

Rwr = =W ——
YET U (m— )W U+ W?2

(23)

As U — oo the worst case performance ratio converges to Ryyrp = W.
Using Lemma 3 and the above example we can derive bounds on the performance ratio for
any set of values of U, m and W.

min{WU + (m — 1)W, mU}

< Rwp <W 24
U+t (m— D)W = wr s (24)
T
ws B M [
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Figure 14: Worst case example of algorithm W F for U = 30 and W = 5. Each modem My, ..., M5
now receive 14 more calls.

Worst case example for Best-Fit and First-Fit

We create a situation where the first channel is full and its first jitter window contains % calls
belonging to different modems. In the rest of the channels the first jitter window is full containing
% calls of the same modem (see Figure 15). At this point we let each modem in the first jitter
window of the first channel receive U — 1 more calls. All these calls are blocked by the algorithm
since there is no way to move the existing calls to the same jitter window in any other channel.
The number of calls that BF or FF accept is BF(L) = FF(L) = U+ (m— 1) while an optimal
algorithm can accept (U — 1)%2 additional calls, i.e., OPT(L) = U + (m — 1)& + (U - 1) .
We let the number of channels be m = % + 1 (we choose U for which m is an integer). The
performance ratio in this case is

Rpr = Rprp= (25)




As U — oo the worst case performance ratio converges to W.
Using Lemma 3 and the above example we can derive bounds on the performance ratio for

any set of values of U, m and W.
min{U + W +m — 2, mW}
W+m-—1

<Rpr=Rpr <W (26)

We now show how the above example is created. Denote by C' = % the number of time-slots
in a jitter window and let M = {M;, Ms, ..., Mc} be a set of C' different modems. We start with
channel 1 containing the following set of calls: in the first window there is one call for each modem
in M; the rest of the channel is full with the calls of modem Mj. Next modem M receives a call
so it is switched to channel 2. Now C — 2 calls arrive to M and fill the first window of channel
2. Next a call arrives to modem Mgy and is assigned to the first jitter window of channel 1;
the next call is also to Mcy1 and as a result the modem is switched to the first jitter window of
channel 3. We now let modem M1 receive C — 2 calls so the first jitter window of channel 3
is also full. The process continues until the first jitter window of all the channels is full. At this

stage we arrived to the situation assumed by the worst case example we presented. ]
Ws
W,
Wy M,
w,
I
|
|
|
1

channel 1 channel 2 channel 3 channel 4 channel 5 channel 6

Figure 15: Worst case example of algorithms BF and F'F for U = 20 and W = 5. Each modem
My, ..., My now receive 19 more calls.

10.3 Jitter Constraint without Using Jitter Windows

The use of jitter windows simplifies the scheduling algorithms. However, jitter windows add
restrictions which are not imposed by the scheduling rules and may therefore degrade the perfor-
mance of an algorithm. In this section we analyze the performance of our algorithms when jitter
windows are not used. To provide a comparison with the case where jitter windows are used we
define W = % We show that as U increases the worst case performance ratio of the algorithms
converges to W.

The example we present is suitable for all three algorithms. We create a situation in which
the first channel is full containing % calls of different modems (Mjy,..., M) and U — k calls of
modem Mj, 1. In each of the other channels there are % + k calls of a single modem. It is
easy to verify that this initial situation is possible in all three algorithms. In the next stage
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U — k calls arrive to each modem in the first channel, i.e., M, ..., My41. Since there is no way to
switch a modem from channel 1 without violating its jitter constraint all these calls are blocked.
The algorithm accepts A = U + (m — 1)(&- + k) calls while an optimal algorithm can accept

OPT = min{(k + 1)U + (m — 1)(& + k), mU}. If we choose k = /U (assuming it is an integer)
and m = VU + 1 the performance ratio is

(VU +1)U _WWU+1)

MUV (V) VU

(27)

As U increases the performance ratio converges to W.

10.4 Bounded Number of Calls per Modem

In this section we assume the number of simultaneous calls a modem may have is bounded. The
motivation for exploring the problem is that in practice each modem can only have a limited
number of simultaneous calls. We denote by ¢4, the maximum number of simultaneous calls
each modem may have.

We consider here the case of no jitter constraint and permanent calls. We construct a worst
case example in which the first channel is filled with calls of % different modems, each with z calls
(z < ¢nag is an optimization parameter). The content of the rest of the channels is U — z. we
now let each modem in the first channel receive ¢4, — x calls which are blocked by the algorithm.
The number of calls the algorithm accepts is A = U + (m — 1)(U — z) while an optimal algorithm
can accept OPT = U + (m — 1)(U — z) + (¢mas — 7). We choose the number of channels to be

U(Cmaz_fv)

m = —"5— 41 so OPT = mU. The performance ratio in this case is
Ry = mU _ U(cmaz — ) + 2° (28)
mU —(m—1)z 222+ U(Cmnaz — ) — Cmaz®
The maximum is found for
Cma:c\/ﬁ (29)

= —
\/U"‘ vV Cmax

Since £ must be an integer we can establish the following lower bound on the performance ratio

Cmax
Ry <1+ (30)
U = ¢maz + 2V/U Cmac

As we expect when U increases the performance ratio converges to 1 since each channel must
contain at least U — ¢nqq calls before the first call is blocked. When ¢4, = U we get the result
we obtained in subsection 10.2.1.
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11 Conclusions and Further Research

This work addressed the problem of scheduling CBR flows over a slotted TDMA channel. A CBR
flow is characterized by its grant size, grant interval, and grant jitter. We focused on the case
where grant intervals are an integer multiple of each other. In this setting the scheduling problem
can be modelled as a variant of bin packing where bin sizes can be modified in a constraint
manner. The general scheduling problem was proved to be NP-hard even when there are only
two different grant intervals. We developed several scheduling algorithms and investigated their
performance. In the offline problem when there are K related grant intervals and the tolerated
jitter of the flows satisfies Jyin > (K —1)(Spmae — 1) the FFJ — K algorithm provides an optimal
solution. If the schedule should be perfectly-periodic one can use the PP — F'F algorithm which
guarantees that the channel utilization is at least 1—S,,4,/I1. For the online problem we suggested
three algorithm; each algorithm is suitable for a different category of jitter requirements. Larger
tolerated jitter allows us to design more efficient online algorithms. When the tolerated jitter of
each flow is at least its grant size we can use an offline algorithm and match the performance
of algorithm PP — F'F. When the tolerated jitter is more restricted we can use algorithm OLL
which guarantees that the channel utilization is at least 1 — K.Sy,q./11.

We expect our algorithms to perform well when applied to scheduling flows of interactive
multimedia applications such as VoIP. The reason is that these applications use relatively small
packet sizes (hence S,q, < I1), and can tolerate jitter which is on the order of the grant interval.

There are several subjects that await further research. We provided analytic average case
analysis only for the NF'J algorithm. It is interesting to analyze the expected performance of
other algorithms we presented, in particular the online algorithms. This work is mainly concerned
with the case of a single channel. For multiple channels our analysis covers the case of identical
flows only. More results are needed for the problem of scheduling flows with different parameters
over multiple channels. Another interesting problem is that of scheduling real-time Variable Bit
Rate (VBR) flows. VBR flows have fixed grant interval but variable grant sizes. One way of
scheduling VBR flows is to treat them as CBR flows where the grant size of the CBR flow is taken
to be the maximum grant size of the VBR flow. However, this method may result in poor channel
utilization since there can be a considerable difference between the maximum and the average
grant size. VBR applications (such as compressed video) can typically tolerate a relatively large
jitter which gives hope that efficient algorithms can be developed for the problem.
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APPENDIX

A Effects of Jitter on the Scheduling Problem

In the previous sections we analyzed the scheduling problem by converting it into a variant of bin
packing in which bin sizes can be modified. In order to change a bin’s size we displace the grants
to the flows that determined the bin’s limit. The amount by which we can displace these grants
depends on the tolerated jitter of the flows. Let us define the effective jitter to be the maximum
allowed displacement of a group of flows, from their nominal grant times. In this section we
elaborate more on the effective jitter and how it effects the performance of scheduling algorithms.

A.1 Determining the Effective Jitter

Our goal is to determine the effective jitter for a group of flows which are allocated in one
consecutive block. The flows may different parameters of grant interval, grant size and grant
jitter. We know it is possible to move each flow forward in time up to its grant jitter. The
effective jitter for a group of flows in a single block, is the amount by which we can move the
entire block forward in time. Let us consider the case of two intervals. The flows in F| are
scheduled in blocks, i.e., over consecutive slots, creating fixed size bins. We want to know in
what way we can modify the bin sizes. There are two immediate bounds; the lower bound is the
minimal grant jitter among the flows in F; while the upper bound is the maximal grant jitter. If
all flows have the same jitter J then J is clearly the effective jitter. When flows have different
values of grant jitter, finding the effective jitter is more difficult. Consider the following example:
we have two flows in F; with the same grant size, S(1) = S(2) = 1, but different jitter J(1) = 4,
J(2) = 1. The grant interval is I = 5 so initially we have bins of size 3. We can clearly create
bins of size 4 by moving the two flows one slot forward in time. Can we create bins of sizes larger
than 47 Tt turns out that in this example the answer is positive, we show below how we can get
bins of sizes 5 and 1, so the effective jitter is 2.

(if2 [ [ [ [ [ J2fuf Juf2f [ [ Jif2] |

Note that in order to get an effective jitter which is larger than the minimum jitter in F}
we had to reorder the flows. In many cases it is not possible to increase the effective jitter. For
example if we take the previous example with S(1) = 2 the effective jitter is 1. As we can see,
determining the effective jitter is not always easy. For this reason we assumed throughout the
paper that the effective jitter equals the minimal grant jitter among all the flows in the group.
Although this assumption may be conservative in some cases, it simplifies the algorithms (and
the analysis) considerably. Using this assumption ensures that every block can be moved forward
in time by the effective jitter.
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