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Abstract 

Vector-Quantization (VQ) is an effective and widely known method for low-bit-rate 

communication of speech and image signals. A common assumption in the design of VQ-based 

communication systems is that the compressed digital information is transmitted through a 

perfect channel. Under this assumption, quantization distortion is the only factor in output signal 

fidelity. Moreover, the assignment of channel symbols to the VQ reconstruction vectors is of no 

importance. However, under physical channels, errors may be present, causing degradation in 

overall system performance. In such a case, the effect of channel errors on the coding system 

performance depends on the index assignment of the reconstruction vectors. The index 

assignment problem is a special case of the Quadrature Assignment Problem and is known to be 

NP-complete. For a VQ with N reconstruction vectors there are !N  possible assignments, 

meaning that an exhaustive search over all possible assignments is practically impossible. To 

help the VQ designer, we present in this paper lower and upper bounds on the performance of 

VQ systems under channel errors, over all possible assignments. These bounds are based on 

eigenvalue arguments and perform better than general bounds for the Quadrature Assignment 

Problem.  A related expression for the average performance is also given and discussed. Special 

cases and numerical examples are given in which the bounds and average performance are 

compared with index assignments obtained by a well-known index-switching algorithm.  

Index Terms: Vector-quantization, index assignment, channel coding, performance bounds 
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I. Introduction 

Vector Quantization (VQ) is a method for mapping signals into digital sequences. A typical VQ-

based communication system is shown in Fig. 1.  

A discrete-time source emits signal samples over an infinite (or densely finite) alphabet. These 

samples should be sent to the destination with the highest possible fidelity. The VQ encoder 

translates source output vectors into channel digital sequences. The VQ decoder’s goal is to 

reconstruct source samples from this digital information. Since the analog information cannot be 

perfectly represented by the digital information some quantization distortion must be tolerated. 

In each channel transmission the VQ encodes a K-dimensional vector of source samples - ( )tx  

into a reconstruction vector index ( )ty , where the discrete variable t represents the time instant 

or a channel-use counter. The index is taken from a finite alphabet, ( ) { }1,,1,0 −∈ Nty … , where 

N  is the number of reconstruction vectors (hence the number of possible channel symbols). 

The Index Assignment (IA) is represented in Fig. 1 by a permutation operator: 

( ) { } ( ) { }1,,1,01,,1,0: −∈→−∈Π NtzNty ……  (1) 

The number of possible permutations, !N , increases very fast with N.  E.g., for a VQ with just 4-

bits index representation ( 16=N  indices) there are 16 2 1013!≈ ⋅  possible permutations. For 

typical values of N , examination of all possible permutations is therefore impractical. The 

channel index ( ) ( ){ }tytz Π=  is sent through the channel. 

For memoryless channels, the channel output ( )tẑ  is a random mapping of its input ( )tz , 

characterized by the channel probability matrix H , defined by:  
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{ } ( ) ( ){ }itzjtzH ij === ˆProb  (2) 

Throughout, we assume that H  is symmetric (i.e., we consider memoryless channels with a 

symmetric transition matrix). 

For the special case of the Binary-Symmetric-Channel (BSC): 

{ } ( ) ( ){ } ( )( ) ( )jidLjid
ij

HH qqitzjtzH ,, 1ˆProb −−====  (3) 

where L is the number of bits ( LN 2= ) per channel use, q is the Bit-Error-Rate (BER) and 

( )jidH ,  is the Hamming distance between the binary representations of i and  j. 

At the receiver, after inverse-permutation, the VQ decoder converts the channel output symbols 

into one of N possible reconstruction vectors. The decoder’s output ( )tx̂  is, hopefully, “close” to 

the original input. The term “close” will be defined by a distortion measure, ( )xxd ˆ, , between the 

input and the output of the VQ system. 

Knowledge of the source statistics ( )xp  or the availability of a representing training sequence is 

assumed. The performance of the overall system is measured in terms of the average distortion 

( )[ ]xxdE ˆ, . 

In “classic” discussions of VQ applications, the channel is assumed to be noiseless ( IH = , 

where I  is the unity matrix) [1], so that no errors occur during transmission and ( ) ( )tyty ˆ=  for 

every t. This assumption is based upon using a channel encoder-decoder pair to correct channel 

errors, causing the distortion due to channel-errors to be negligible. The permutation Π  has no 

effect in this case. 
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Upon knowledge of the source statistics, Lloyd’s algorithm  [1] may be used to design the VQ. In 

practice, a training sequence is used and the LBG algorithm [1] is implemented. Both methods 

are iterative and alternately apply the nearest-neighbor condition and the centroid condition. 

In some applications, channel coding is not utilized due to its complexity or because of bit-rate 

constraints. In case of a channel error event, a wrong reconstruction vector is selected at the 

decoder. The distortion due to channel errors can be significant and affects the design of the VQ 

system [2-16]. 

In the literature two main approaches are proposed to improve the performance of vector 

quantizers under channel errors. The first method allows modification of the partition regions and 

their corresponding codevectors. In the presence of channel errors, and given the transmitted 

symbol, the received symbol is a random variable. It is suggested to redesign the VQ by 

modifying the distortion measure to take all possible output vectors into consideration. This 

modification results in a weighted-nearest-neighbor and weighted-centroid conditions 

[7],[8],[10],[27]. These conditions are specific to every channel condition. Hence, a VQ designed 

for a noisy channel should, in principle, monitor channel conditions, and apply a different 

partition and a different set of codevectors for each possible BER. Other drawbacks of this 

approach are the large memory consumption and extensive design effort. A simple suboptimal 

method is suggested in [4], where a linear mapping is used for the modification of the partition 

regions.  

The second approach tries to reduce channel distortion by using better index assignments. The 

search for the optimal index assignment is a special case of the Quadratic-Assignment Problem 

(QAP) and is known to be NP-Complete [9]. 
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Several suboptimal methods are suggested in the literature. In [11], [12] an iterative algorithm is 

proposed. After selecting an initial assignment, the algorithm searches for a better assignment by 

exchanging indices of codevectors, and keeping the new assignment if it performs better than its 

predecessor. This algorithm can only offer a local minimum. A more sophisticated algorithm is 

examined in [8], where Simulated Annealing (SA) is used to search for an optimal index 

assignment. The method of SA involves some ad-hoc arguments to define system “temperature” 

and “cooling” procedures. Moreover, the method of SA has a very slow convergence rate, and 

cannot assure global optimum during a limited design period. A sub-optimal quadratic placement 

algorithm [18] is used in [19] for obtaining an efficient VQ index assignment. Implementation of 

a search approach for quadratic assignment problems, known as Tabu, is examined in [20]. The 

Tabu search explores the entire set of possible index assignments by a sequence of moves.  

Keeping visited assignments in a dedicated memory prevents cycling. Similar to the SA, the Tabu 

search has a slow convergence rate and cannot assure a global optimum. 

For the special case of a uniform scalar quantizer and a uniform source under the binary 

symmetric channel (BSC), it is shown in [25] that the natural binary code (NBC) assignment is 

an optimal assignment. Later approaches, using eigenvalue arguments, [3], [6] have reached the 

same conclusion. The NBC is also optimal for the 4-bit uniform scalar quantizer using a (4,7) 

Hamming error control code, under the BSC channel [3]. 

The difficulty in obtaining good assignments validates our development of performance bounds. 

These bounds and a related expression for the average performance over all possible index 

assignments may benefit the VQ designer in estimating the performance of a given assignment. 

Given a VQ structure, upper and lower bounds on the “assignment gain” benefit the VQ designer 
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searching for an efficient assignment. The evaluation of the average performance, over all index 

assignments, can also help in revealing how well a given assignment performs. 

The remainder of the paper is organized as follows. In section II, the distortion due to channel 

errors is defined. The optimization of the channel distortion over all possible index assignments 

is discussed. In section III, bounds on the performance of a given VQ system under a given 

symmetric and memoryless channel, over all possible index assignments, are obtained. The 

bounds are shown to provide better performance than more general QAP bounds. A related 

expression for the average performance over all index assignments is presented in section IV.  

Special cases and numerical results, obtained in simulations, are presented and discussed in 

section V, while conclusions are given in section VI.  
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II. Channel Distortion 

A vector quantization system is characterized by a set of codevectors and a corresponding 

partition of the signal space R  of all possible input vectors - x . This space is partitioned into N 

regions, iR , 1,,1,0 −= Ni … . These regions cover the whole signal space and are nonoverlapping: 

∅=∩

=∪

ji

ii

RR

RR
 (4) 

Each partition region Ri  has a corresponding reconstruction (or representation) vector - 
i

φ . For 

the special case of centroid quantizers: ( ) ( )∫∫ ⋅⋅⋅=
ii RR

i
xdxpxdxpxφ . 

The encoder accumulates a K-dimensional vector of source samples x . The symbol ( ) ity =  is 

emitted if iRx∈ . The corresponding channel symbol, ( ) ( )itz Π= , is transmitted through the 

channel. The channel’s output is a random mapping of this transmission. Upon receiving the 

channel symbol ( ) jtz =ˆ  the decoder emits the reconstruction vector that corresponds to the index 

( )j1−Π . 

The overall distortion of the VQ-based communication system is: 

( )[ ] { } ( ) ( ) xdxpxdHxxdED
N

i

N

j R
jij

T
T

i

⋅⋅⋅⋅== ∑∑ ∫
−

=

−

=

1

0

1

0
,ˆ, φππ  (5) 

In (5) the permutation is represented by a permutation matrix - π , whose entries are 0’s and 1’s 

and the sum of elements in each of its rows and columns is 1. The permutation matrix is self-

orthogonal, i.e., IT =ππ .  
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For the perfect channel, IH = , the permutation matrix π  is of no importance, and the only 

factor affecting system performance is the quantization distortion: 

( )[ ] ( ) ( ) xdxpxdxxdED
N

i R
iIHIHT

i

⋅⋅== ∑ ∫
−

=
==

1

0
,ˆ, φ  (6) 

In the following analysis, two distortion terms, the quantization distortion QD  and the channel 

distortion CD , are defined by: 

( ) ( )

{ } ( ) { }

{ } ,

,

,

1

0

1

0

1

0

T

T
ji

N

j
ij

T
N

i
iC

N

i R
iQ

HPDtrace

DHPtracedHpD

xdxpxdD
i

ππ

ππφφππ

φ

⋅⋅⋅⋅=

=⋅⋅⋅⋅=⋅⋅⋅=

⋅⋅=

∑∑

∑ ∫
−

=

−

=

−

=

 (7) 

where pi  is the probability of iRx∈ : 

( ) xdxpp
iR

i ⋅= ∫  (8) 

The matrix P  in (7) is a diagonal matrix, which contains these probabilities, i.e., 

{ }110 ,,, −= NpppdiagP … , and the entries of the matrix D  are the distances between all possible 

pairs of reconstruction vectors: ( )
jiij dD φφ= , . 

It is shown in [8], [10] that for the squared Euclidean distance measure and centroid quantizers, 

the overall distortion is the sum of the quantization and channel distortions: CQT DDD += . This 

result is also applicable for quantizers with a large number of codevectors ( ∞→N ) [27]. 

For the special case of a uniform scalar quantizer with a quantization step h and a uniform 

source, the codevectors are the scalars ( ) hNii ⋅−=φ 2 ; distances are ( ) ( )22, jihd ji −⋅=φφ , and 
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the probabilities are 1,,1,0,1 −== NiNpi … . In this case, and transmission over a binary 

symmetric channel, it is shown in [25] that the natural binary code (NBC) assignment, 

corresponding here to π = I , is an optimal assignment. Using eigenvalue arguments, later 

approaches [3], [6] have obtained the same result. 

 

III. Performance bounds  

Minimization of channel distortion, as defined in (7), over all possible index assignments (or 

permutation matrices - π ) is known to be a special case of the QAP – quadratic assignment 

problem [7].  The complexity of the QAP is known to be NP-complete and therefore obtaining 

optimal assignments may not be feasible. 

A simple bound of the QAP is given in [22], under theorem 2.1:  

( ) ( ) { } ( ) ( )∑∑
−

=

−

=
− ⋅⋅≤⋅⋅⋅⋅=≤⋅⋅

1

0

1

0

N

i
ii

T
C

N

i
iNi HPDHPDtraceDHPD λλππλλ  (9) 

where ( )Mλ  is a vector containing the eigenvalues of the matrix M, in non-decreasing order. 

Note that the main diagonal of the matrix DP  is all zeros and the sum of its eigenvalues is 

therefore zero. Now, the lower bound is the inner product between the eigenvalues of DP , 

ordered from the most negative to the most positive and the eigenvalues of H, ordered in non-

increasing order. The lower bound is therefore zero (if all the eigenvalues of H have the same 

value), or negative, thus not providing new information.  

In this section we introduce lower and upper bounds on the channel distortion CD , under 

memoryless channels with a symmetric transition matrix, over all possible assignments (or 

permutation matrices - π ).  The derivation of the bounds is related to the QAP projection 
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technique presented in [22]. Nevertheless, by using some special properties of the matrices 

involved in the index assignment problem we gain tighter bounds. 

As in [5], [16], we define a symmetric matrix D̂  as: 

TT DPDPD +=ˆ , (10) 

So that by using the symmetry property of the channel matrix, H , the channel distortion 

becomes:  

{ }ππ DHtraceD T
C

ˆ
2
1

=  (11) 

The bounding technique is based on eigenvalues arguments. Instead of optimizing over the 

(discrete) family of matrices covering all possible assignments π , we optimize over a wider 

(continuous) family.  Moreover, special properties of the channel transition matrix Q are used to 

obtain upper and lower bounds that are tighter than known bounds [9][15]. 

A fundamental step in this optimization procedure is to replace the matrix D̂ , defined in (10), by  

another symmetric matrix D~ , such that the all-ones vector [ ]T1111 "=  is its eigenvector, 

while CD  is just changed by a known constant. This goal is achieved by the following procedure: 
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First, we denote a matrix of the form shown in (12) as a “column structured” matrix:  

columnth 

1

00100
00100
00100
00100
00100
00100
00100

−↑

⋅=





























=

i

eC T
ii """

 (12) 

where [ ]00100 ""=T
ie  and the 1 is located at the i-th location. Recalling that H  

represents probabilities, the sum of elements in any of its rows is one, so the vector 1 is an 

eigenvector of H : 11 =⋅H . The same argument is valid for the i-th column of the matrix iC : 

ii CCH =⋅ , 1,,1,0 −= Ni … . 

We now construct a symmetric matrix ( )T
ii CC +α , where α  is a scalar, denoted here as a cross 

structured matrix. It is simple to show that, regardless of the permutation matrix π , adding a 

cross structured matrix to the matrix D̂  changes the expression in (11) just by the addition of the 

scalar α: 

( )[ ]{ } { } απππαπ +=++ DHtraceCCDHtrace T
i

T
i

T ˆ
2
1ˆ

2
1  (13) 

Let is  denote the sum of the elements in the i-th row of the matrix D̂  

∑
−

=

=
1

0

ˆ
N

j
iji Ds , (14) 

and let k denote any one of the indices of lines having the largest sum (i.e., 

1,,1,0 −=≥ Niss ik … ).  



 
G. Ben-David and D. Malah, “Bounds on the Performance of Vector-Quantizers under Channel Errors”, REV. 1, Jan. 03, 2003 

12

In order to achieve the desired property 11~
0ω=⋅D , for some ω0, all rows of D~  must have the 

same sum of entries. Let us examine the effect of adding the “cross structured” matrix 

( )T
ii CC +α  to a general matrix M  of size N N× . The sum of elements in all rows except for the 

i-th row is increased by α, while the sum of elements in the i-th row is increased by ( ) α⋅+1N .  

Therefore, we define the matrix D~  to be  

( )∑
−

=

++=
1

0

ˆ~ N

i

T
iii CCDD α , (15) 

where,  

( ) Nss iki −=α . (16) 

Having ik ss ≥  by the selection of k, the scalars iα  are all non-negative. By adding N-1 cross 

structured matrices (if ki ss =  it is the zero matrix) we get that D~  is a symmetric matrix with all 

its rows having the same sum of elements, and with the desired property 11~
0ω=⋅D . We shall 

refer to D~  as the weighted distance matrix. The channel distortion can now be written as: 

{ } SDHtraceD T
C −= ππ ~

2
1  (17) 

where  

∑
−

=

=
1

0

N

i
iS α . (18) 

At this point, it is interesting to note that both the channel matrix H  and the weighted distance 

matrix D~  are symmetric, have nonnegative entries, and have the vector [ ]T1111 "=  as an 

eigenvector. Moreover, because of the symmetry property, all eigenvalues of both matrices are 

real.  
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Next, we use the following theorem adopted from [21 Section 15.7]. 

Theorem:  Given a symmetric matrix M with nonnegative-entries having the property 

11 ⋅=⋅ βM , the eigenvalue β  (known as the Perron-Frobenius eigenvalue) is positive and is the 

largest eigenvalue of M  in absolute value (there may be negative eigenvalues, but smaller in 

absolute value). 

Corollary: The eigenvalue 1 of the matrix H  and the eigenvalue ω0 0>  of the matrix D~ , both 

corresponding to the eigenvector 1, are each the largest eigenvalue in absolute value of the 

corresponding matrix.  

Next, we use eigenvalue arguments to obtain bounds the channel distortion. We perform a unitary 

diagonalization on both matrices: 

IWWWWD

IVVVVH
TT

TT

=⋅⋅Ω⋅=

=⋅⋅Λ⋅=

,~
,

 (19) 

Without loss of generality, we sort the eigenvalues (and corresponding eigenvectors) in Λ  and Ω  

in decreasing order. Substituting (19) into (17): 

{ }

{ }

{ }

,
2
1
2
1
2
1
2
1

2
1

0

1

0
S

Strace

SVWWVtrace

SWWVVtraceD

ij

N

i

N

j
ji

T

TTT

TTT
C

−=

=−ΛΨΩΨ=

=−ΩΛ=

=−Ω⋅Λ=

∑∑
−

=

−

=

ψωλ

ππ

ππ

 (20) 

where we define 1,,1,0,, −=Ω=Λ= Niiiiiii …ωλ  and the matrix Ψ  is defined as WV TTπ=Ψ . 

The matrix Ψ  is also unitary since IVWWV TTTT =π⋅π=ΨΨ .  



 
G. Ben-David and D. Malah, “Bounds on the Performance of Vector-Quantizers under Channel Errors”, REV. 1, Jan. 03, 2003 

14

For the special case of an L bit binary word transmitted trough a binary-symmetric-channel, the 

eigenvalues 1,,1,0, −= Nii …λ , are calculated in [6]. There are 1+L  distinct 

eigenvalues, ( ) Lmq m ,...,1,0,21 =− , each with multiplicity 







m
L

, where q is the bit-error-rate. 

Observe that since the first column of both V  and W is 11
00 N

wv == , the sum of elements in 

the remaining columns of both matrices is zero. The structure of Ψ =V WT Tπ  is therefore:  



















=Ψ

0
?

0
001

#

"

 (21) 

where the question mark represents unknown entries.  

In order to obtain upper and lower bounds over all possible index assignments, we relax the 

constraint that the matrix Ψ  in (20) equals to V WT Tπ  for some permutation matrix - π .  This 

method is known as an orthogonal relaxation of symmetric QAP [22]. The relaxation is done in 

two steps. In the first step we replace the discrete family of matrices Ψ  by the continuous family 

of unitary matrices having a general structure as in (21). In the second step we replace the unitary 

requirement by a more relaxed condition. We merely demand that the sum of squares of the 

elements in each row and column is 1.  We shall show that the second relaxation still results in a 

unitary matrix and hence does not degrade the tightness of the bounds. 

In order to obtain the extreme values of the relaxed problem, we state the following optimization 

problem, using the property that the sum of squares of the elements in each row and column of a 

unitary matrix (Ψ  in this case, with elements ijψ ) is equal to 1: 
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∑

∑

∑∑

−

=

−

=

−

=

−

=ΨΨ

−==

−==










1

1

2

1

1

2

2
1

1

1

1

1,,2,1,1

1,,2,1,1  subject to

max/min

N

j
ij

N

i
ij

ij

N

i

N

j
ji

Ni

Nj

…

…

ψ

ψ

ψωλ

 (22) 

Note that the first row (i=0) and the first column (j=0) are independent of the permutation and 

were omitted from the optimization problem. We denote the solutions for the 

minimum/maximum problems by maxmin /ΨΨ , respectively. The solution of the optimization 

problems is given in [22] : 























±

±
±

=Ψ

⋅∑
−

=
−

010
0

1
100

0001
 : toingCorrespond

 :  valueMinimum

min

1

1

$
#

"

N

i
iNi ωλ

 























±
±

±
=Ψ

⋅∑
−

=

100
10

010
0001

 : toingCorrespond

 :  valueMaximum

max

1

1

%#

"

N

i
ii ωλ

 

(23) 

Note that the matrices minΨ  and maxΨ  are unitary. This implies that the second relaxation did not 

worsen bounds tightness.  
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Applying these solutions to (20), the bounds on the channel distortion, over all possible index 

assignments, are therefore: 

∑∑
−

=

−

=
− ⋅+−≤≤⋅+−

1

1
00

1

1
00 2

1
2
1

2
1

2
1 N

i
iiC

N

i
iNi SDS ωλωλωλωλ  (24) 

Another representation of the bounds may be obtained by using the fact that 10 =λ  and, as may be 

seen from (15) and (16),  ksS +=0ω : 

∑∑
−

=

−

=
− ⋅+⋅⋅≤≤⋅+⋅⋅

1

1

1

1 2
11ˆ1

2
1

2
11ˆ1

2
1 N

i
ii

T
C

N

i
iNi

T D
N

DD
N

ωλωλ  (25) 

The first part of both inequalities is independent of the channel. The second part depends on the 

differences between both channel and weighted distance matrix eigenvalues. 

In conclusion, in order to find the desired bounds, given the channel transition matrix - H, the VQ 

distance matrix – D, and the a-priori probabilities matrix – P, one should carry out the following 

steps: 

1. From D and P, Calculate the scalars 1,,1,0, −= Nisi … , using (14), 

1,,1,0, −= Nii …α  (16), S  (18), and the weighted distance matrix, D~ , using (19). 

2. Calculate the eigenvalues of the channel matrix H  ( 1,,1,0, −= Nii …λ ), and 

those of the weighted distance matrix D~  ( 1,,1,0, −= Nii …ω ).  

3. Calculate the upper and lower bounds using (24) or (25), where in the latter also 

(10) needs to be applied. 

The upper and lower bounds in (24), (25), were obtained by using 2N  constrains on the sum of 

squares of elements in each row and column of the unitary matrix Ψ =V WT Tπ . It is possible to 

add further linear constraints, thus achieving tighter upper and lower bounds, as we show below.  
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In general, an unknown entry of the matrix Ψ  is an inner product of two vectors:  

( ) 1,,2,1,,, −== Njiwv jiij …πψ  (26) 

where vi  is the i-th column of the matrix V and w j  is the j-th column of the matrix W, as defined 

in (19).  

As shown in [22], the largest (smallest) value of the inner product is achieved by ordering the 

entries of the vector vi  in the same (reverse) order as the entries of w j . We denote these largest 

and smallest values by L
ijψ  and S

ijψ  respectively. Recalling that both W and V are unitary (the 

sum of squares of elements in each column is 1), and using the Cauchy-Schwarz inequality, it is 

clear that ( ) ( ) 1,0 22
≤≤ L

ij
S
ij ψψ . Using this argument, we can restate the optimization problem of 

(22) as:  

 

( ) ( ){ } 1,,2,1,,,max0

1,,2,1,1

1,,2,1,1  subject to

max/min

222

1

1

2

1

1

2

2
1

1

1

1

−=≤≤

−==

−==










∑

∑

∑∑

−

=

−

=

−

=

−

=ΨΨ

Nji
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The optimization problem in (27) can be solved numerically using linear programming 

techniques. The lower and upper bounds obtained by solving (27) are tighter than the analytical 

bounds in (24), (25). However, in our numerical examples, the difference between the two sets of 

bounds was very small, hence only the analytical bounds in (24), (25), are further considered in 

this paper. 
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IV. Average Performance over all Index Assignments 

Having found lower and upper bounds on the channel distortion, it is also useful to obtain the 

average value of the channel distortion over all possible index assignments. The average value 

can help in ranking a given assignment. 

From (20), this average value is given by:  
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where the permutation is denoted by π  and ( ) jkki wv π, are the elements of the matrices V and W, 

respectively. It may be shown that the ensemble average is:  
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Note that the average value in (29) corresponds to a matrix Ψ  with the following structure: 

1
1 where

0

0
0

0001

−
±=























=Ψ
NCD β

βββ

βββ
βββ

#%###

"
"

 (30) 

The matrix 
CDΨ  in (30) is not unitary and therefore does not correspond to any valid 

permutation.  

Comparing 
CDΨ  in (30) with the structure of the matrices minΨ  and maxΨ  that correspond to the 

lower and upper bounds (23), respectively, one observes that the performance of a specific 
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permutation corresponds to the geometric relations among the columns of the matrix V and the 

columns of the matrix WTπ . A permutation that aligns the column of the matrix V with the 

columns of the matrix WTπ , in direct (reverse) order, results in “poor” (“good”) performance. A 

permutation that does not align the two sets of columns will typically results in “average” 

performance. This geometric interpretation can help in obtaining future sub-optimal index 

assignment algorithms. A sub-optimal algorithm may be based on a permutation matrix π  in 

WV TTπ=Ψ  that approximates minΨ  in (23). 
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V. Special Cases and Simulation Results 

In this section we examine several special cases and compare the lower and upper bounds with 

the average distortion over all index assignment, as well as with the distortion of assignments that 

were obtained in simulations. We used the well known index-switching algorithm [11], [12] to 

obtain “good” and “poor” index assignments (IA). According to this algorithm, after selecting an 

initial assignment, indices of codevectors are randomly exchanged. When searching for a good 

(poor) assignment, the new assignment is kept if it performs better (worse) than its predecessor. 

 
A. Special Cases 

 
1. Uniform scalar quantizer and a uniform source under the BSC  

We obtain here the bounds in (24) for the case of a uniform scalar quantizer and a uniform source 

operating under the binary symmetric channel. The distance between two consecutive levels of 

an L -bit ( N L= 2  levels) quantizer is assumed to be N2 . The resulting upper and lower bounds, 

from (24), are:  

( )( ) ( )( ) ( )[ ]L
C q

N
NNDq

N
NN 211

3
1122

3
112

22 −−
+−

≤≤
+−

, (31) 

where q is the bit error rate. It is interesting to see that for small values of q, the ratio between the 

upper and lower bounds is L . 

The lower bound coincides with the performance of the Natural Binary Code, which is an optimal 

assignment for this case, as shown in [25] and demonstrated in [3],[6]. The worst index 

assignment for this case is given in [26], resulting in a channel distortion given by:  

( ) ( )( ) ( )[ ]1
2

1 211
3

11221 −− −−
+−

+−= LL
WIA q

N
NNqqD  (32) 
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A numerical comparison between the performance of the worst index assignment and the upper 

bound (30) reveals that the upper bound is 0.25dB higher for a 4-bit quantizer and only 0.13dB 

higher for an 8-bit quantizer. 

Using (28) for this case, the average distortion over all index assignments is: 

( ) ( )[ ]L
C q

N
ND −−
+

= 11
3

12  (33) 

For small values of the bit error rate, 0→q , the ensemble average approaches zero linearly with 

q.  

( ) 0  as  
3

12
→

+
≈ qq

N
NLDC  (34) 

This expression agrees with an asymptotic result given in [8]. 
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2. Maximum entropy vector quantizers under the BSC  

For the special case of a maximum entropy quantizer with a quadratic distance measure and the 

BSC, an asymptotic lower bound is given in [15]: 

04 1

0
→≥ ∑

−

=

qas
N
qD

N

n
n

T
nC φφ  (35) 

where  nφ  is the representation vector of the n-th partition region. We define 

[ ]110 −= NY φφφ " . We also assume, without loss of generality, that 0
1

0
=∑

−

=

N

n
nφ .  

To compare (35) with the proposed lower bound, we note first that the channel matrix 

eigenvalues, 1,,1,0, −= Nii …λ , calculated for 0→q , are Lmmq ,...,1,0,21 =− , with 

multiplicity 







m
L

. We represent these eigenvalues by 1,,1,0,21 −=−= Niqmii …λ , such that 

Lmmmmm NLL ===== −+ 1110 ,,2,1,,1,0 …… .  Note that the eigenvalues are sorted in 

descending order. 

In this case the weighted distance matrix (15) is 
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where k  is selected such that i
T
ik

T
k φφφφ ≥  . 
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One may verify that the term S for (36) is given by ∑
−

=

−=
1

0

22
N

i
i

T
ik

T
k N

S φφφφ . The first eigenvalue 

of D~  (corresponding to the eigenvector 11
0 N

w = ) is k
T
k φφω 40 = , and the sum of the 

eigenvalues of D~  (sum of elements on the main diagonal) equals to 2S.  The remaining N-1 

eigenvectors are orthogonal to 1 and since YY T  is positive semidefinite they are all negative. 

Moreover, the sum of these remaining N-1 eigenvalues is therefore: ∑
−

=

− 1

0

4 N

i
i

T
iN
φφ . 

The corresponding lower bound is (as 0→q ): 
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Since 1,,2,1,1 −=≥ Nimi … , 
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Since the r.h.s. of (38) is the bound in (35), the proposed lower bound is never lower (and hence 

better) than the one in [15]. 

As a synthetic example, we consider the following set of codevectors:  
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The asymptotic lower bound according to [15] is qDC 48≥ . The distance matrix in this example:  
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32D  (40) 



 
G. Ben-David and D. Malah, “Bounds on the Performance of Vector-Quantizers under Channel Errors”, REV. 1, Jan. 03, 2003 

24

Since every channel error results in the same distortion, the channel distortion is independent of 

the index assignment.  The first step in calculating the lower and upper bounds is the evaluation 

of the weighted distance matrix, D~ . Fortunately, the sum of elements in all rows of D  is the same 

and therefore DPDDPD ⋅=+= 5.0~ . The Perron-Frobenius eigenvalue of D  is 96 and the 

corresponding eigenvector is 1.  The remaining eigenvectors of D  are orthogonal to the vector 1 

and their corresponding eigenvalue are all equal to (-32). The proposed lower and upper bounds 

obtained by substituting these eigenvalues into (24) coincide, resulting in qDC 64=  (as 

compared with qDC 48≥  from [15]). 

 

B. Simulation results 

1. A 3-bit PDF optimized quantizer and a Gaussian source under the BSC 

For 3-bit quantizers there are 8! = 40,320 possible assignments so that an exhaustive search is 

possible. We consider a 3-bit PDF-optimized scalar quantizer [24, Ch. 4], for a Gaussian source 

and a BSC. The bounds obtained from (23) are shown in Fig. 2.  

It can be seen that the slope of the lines is roughly 10dB/decade, i.e., reducing the bit error rate 

by a factor of 10 results in a 10dB lower distortion. The channel distortion is approximately 

proportional to the bit error rate. The upper bound is about 0.3dB higher than channel distortion 

due to the worst possible index assignment. The lower bound is 0.8dB lower than the distortion 

for the best assignment (found here by exhaustive search).  
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2. A 4-bit uniform quantizer and a uniform source using a (7,4) Hamming error-correcting-

code under the BSC 

Consider a 4-bit uniform scalar quantizer and a uniform source. The digital information is sent 

through a BSC utilizing a (7,4) Hamming Error Correcting Code [23]. The channel matrix H is 

different from the BSC case. We examine a single entry of the channel transition matrix H  in 

this case.  Assume the encoder needs to transmit the index i . The corresponding Hamming 

codeword ( )ic  (7 bits) is sent through the BSC. Each Hamming-code decoder output ( )jc  is a 

result of one of 8 possible BSC outputs (Hamming-code decoder input). These are the Hamming 

codeword ( )jc  and its Hamming-1 distance neighbors. Each entry of H  is therefore a sum of 8 

probabilities: 

{ } { }
( ){ }

( )( )
∑

≤

=

==

1,

,

ted  transmit  codewordreceived  Prob

ted  transmitIndex  Quantizer  received  Index  Quantizer Prob

jckd

ji

H

ick

ijH
 (41) 

The bounds are shown in Fig. 3. 

It can be seen that the slope of the graphs is 20dB/decade, i.e., reducing the bit error rate by a 

factor of 10 results in a 20dB lower distortion. The channel distortion is approximately 

proportional to the square of the bit error rate. The upper bound is about 0.5dB away from the 

worst random assignment (out of 610  index assignments) found in simulations. The proposed 

lower bound coincides with the performance of the NBC and it can be shown, using the same 

technique presented in [3], that the NBC is also optimal for this case.  The ratio between the 

upper and lower bounds is approximately 3.6dB, compared with 6dB for the BSC without 

channel protection. The implementation of the channel protection brought the bounds closer 

together, decreasing the effect of index assignment.  
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3. Two-dimensional PDF-optimized vector quantizer for a Gauss-Markov source under the 

BSC 

We examine here a set of two-dimensional vector quantizers, designed for a Gauss-Markov 

source, with correlation ρ = 0 5. , and different sizes. The vector quantizers were designed using 

the well-known LBG algorithm [1],[24]. The digital information is sent through a BSC.  

The results obtained are shown in Table 1. 

 

Performance ratios (dB) 

VQ 
index 
size 
(bits) 

No. of 
possible 
assignments 

Error 
correcting 
code 

bound L.
bound U.  Upper 

bound gap 
Lower 
bound gap bound L.

dist. Ave.  

4  13102 ⋅  - 3.6 0.6 0.6 2.0 
4 13102 ⋅  (7,4) 

Hamming 
2.0 0.3 0.2 0.7 

6 89101⋅  - 5.7 0.7 1.3 3.6 
8 506109 ⋅  - 7.2 0.9 2.0 4.8 

 

Table 1- Bounds characteristics for two-dimensional vector quantizers designed for a Gauss-

Markov source, with correlation ρ = 0 5. . 

 

It can be seen that the distance between upper and lower bounds increases with the complexity of 

the quantizer. The gap between the upper bound and the worst assignment found in simulations 

as well as the gap between the lower bound and the best assignment found in simulations (out of 

610  index assignments) also expand with VQ size.  
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Unfortunately, due to the huge amount of possible assignments and the sub-optimality of the 

index-switching algorithm, we cannot state at this point if these gaps are due to an inadequate 

index searching mechanism or as a result of insufficient bound tightness (or both). As seen 

earlier, the error-correcting code brought the bounds closer together. When an error-correcting 

code is applied, the relatively small ratio between the average distortion and the lower bound 

suggests that in this case one can resort to just choosing the best of several random assignments.  

 

4. Three-dimensional 8-bit PDF-optimized vector quantizer for quantizing images in the 

L*a*b* color space 

The L*a*b* color space was developed by the CIE [28] in order to better match color 

representation to human color perception. Pixel colors are organized in three components: An a-

chromatic (luminance) component L*, and two chromatic ones: a* and b*. Because color 

difference perception over the L*a*b* color space is approximately uniform, the Euclidean 

distance measure is considered to be an appropriate distance measure in this color space. The 

non-linear transformations between RGB and L*a*b* spaces can be found in [28]. We examine 

here an 8-bit, N=256, vector quantizer from [29]. The computed bounds are shown in Fig. 4.  

The upper bound is about 0.6dB higher than the channel distortion due to the worst index 

assignment obtained in the simulations (out of 610  index assignments). The lower bound is 1.5dB 

lower than the distortion for the best assignment obtained in simulations. The ratio between the 

upper and lower bounds is 8.8dB, suggesting that a significant performance gain can be achieved 

by a good index assignment. 
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VI - Conclusions 

In this paper we have presented upper and lower bounds (and a related expression for the average 

performance) of the distortion due to channel errors for vector quantizers operating under channel 

errors, over all possible index assignments. These bounds are based on a method known as a 

projection of the quadratic assignment problem. Special properties for the VQ index assignment 

were used to obtain bounds that are tighter than the projection bounds for the general QAP.  The 

bounds enable the VQ designer to estimate the gain that may be obtained by a search for an 

efficient index assignment. Together with the average performance, the designer may evaluate 

the performance of a given index assignment.   

Analytical and numerical examples were given for the Binary Symmetric Channel, with and 

without error correction. For 3 bits (8 levels) quantizers, the bounds were compared with the best 

and worst assignment and appear to be tight. For quantizers with 4 bits and more, the bounds 

were compared with “good” and “poor” assignments obtained in simulations using a sub-optimal 

index-switching algorithm.  

For low and intermediate size vector quantizers, under the binary symmetric channel, the bounds 

are reasonably close to the performance of the assignments found in simulations.  

For large size VQs, there exists a larger gap between the bounds and the simulation results. The 

huge number of possible index assignments and the sub-optimality of the index-switching 

algorithm leave the tightness issue of the proposed bounds to further study.  

Utilization of error correction decreases the gap between the lower and the upper bounds, and 

both bounds are tighter. This result agrees with the intuition that channel protection reduces the 

importance of index assignment.  
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Fig.1 – Vector-Quantization based communication system 
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Fig. 2 – Upper and lower bounds and the average channel-distortion, over all possible index 
assignments, for a 3-bit PDF-Optimized Scalar Quantizer and a Gaussian source under the BSC.  
The bounds are compared with the best and worst assignments. 
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Fig. 3 – Upper and lower bounds and the average channel-distortion, over all possible index 
assignments, of a 4-bit Uniform Scalar Quantizer and a uniform source under the BSC with a 
(7,4) Hamming Error-Correctng-Code.  The upper bound is compared with a “poor” assignment 
obtained by simulations. The lower bound coincides with the performance of the Natural Binary 
Code. 
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Fig. 4 – Upper and lower bounds and the average channel-distortion, over all possible index 
assignments, of an 8-bit L*a*b*-space Image Vector Quantizer under the BSC. The bounds are 
compared with “good” and “poor” assignments attained in simulations. 




