
CCIT Report 412

Hierarchical Mesh Decomposition

Sagi Katz and Ayellet Tal
Department of Electrical Engineering

Technion

Abstract

Cutting up a complex object into simpler sub-objects is a funda-
mental problem in various disciplines. In image processing, images
are segmented while in computational geometry, solid polyhedra
are decomposed. In recent years, in computer graphics, polyg-
onal meshes are decomposed into sub-meshes. In this paper we
propose a novel hierarchical mesh decomposition algorithm. Our
algorithm not only computes the meaningful components but also
avoids over-segmentation and jaggy boundaries between compo-
nents. We also demonstrate the utility of the algorithm in two ap-
plications: control-skeleton extraction and metamorphosis.

Keywords: Mesh decomposition, mesh segmentation, deforma-
tion, metamorphosis

1 Introduction

A hard problem might become easier if only the objects at
hand could be cut up into smaller and easier to handle sub-
objects. In computational geometry, solid convex decomposition,
and in particular tetrahelization, has been exhaustively investigated,
e.g., [Chazelle 1984; Bajaj and Dey 1992; Ruppert and Seidel
1992; Aronov and Sharir 1994; Chazelle and Palios 1994]. Sim-
ilarly, in image processing, image segmentation has been consid-
ered a fundamental problem, which is a necessary pre-processing
step for many higher-level computer vision algorithms [Wu and
Leahy 1993; Sharon et al. 2000; Shi and Malik 2000; Gdalyahu
et al. 2001]. The last few years have witnessed a growing interest in
mesh decomposition for computer graphics applications [Chazelle
et al. 1997; Gregory et al. 1999; Mangan and Whitaker 1999; Li
et al. 2001; Shlafman et al. 2002].

In metamorphosis [Gregory et al. 1999; Zockler et al. 2000;
Shlafman et al. 2002], mesh decomposition is used for establishing
a correspondence. Compression [Karni and Gotsman 2000] and
simplification [Zuckerberger et al. 2002] use decomposition for im-
proving their compression rate. In 3D shape retrieval, a decomposi-
tion graph serves as a non-rigid invariant signature and decomposi-
tion must be applied automatically to large databases [Zuckerberger
et al. 2002]. In collision detection, decomposition facilitates the
computation of bounding-volume hierarchies [Li et al. 2001]. We
believe that the spectrum of applications which will benefit from
mesh decomposition will grow even more in the future. Other po-
tential applications include modification of objects, modeling by
parts and texture mapping by parts.

Several approaches have been discussed in the past for decom-
posing meshes. In [Chazelle and Palios 1992; Chazelle et al. 1997]
a convex decomposition scheme is proposed, where a patch is called
convex if it lies entirely on the boundary of its convex hull. Convex
decompositions are important for applications such as collision de-
tection. However, small concavities in the objects result with over-
segmentation, which might pose a problem for other applications
(i.e., metamorphosis). In [Mangan and Whitaker 1999] a water-
shed decomposition is described. In this case, a post-processing

Figure 1: Decomposition of a dino-pet

step resolves over-segmentation. One problem with the algorithm
is the dependency on the exact triangulation of the model. Further-
more, the meaningful components, even planar ones, might get un-
desirably partitioned. In [Li et al. 2001], skeletonization and space
sweep are used. Nice-looking results are achieved with this algo-
rithm. However, smoothing effects might cause the disappearance
of features for which it is impossible to get a decomposition. More-
over, the skeleton must be a tree, and thus loops and open meshes
might pose a problem. In [Shlafman et al. 2002] a

�
-means based

clustering algorithm is proposed. The meaningful components of
the objects are found. However, the boundaries between the patches
are often jagged and not always correct.

In this paper we propose a new algorithm for decomposing
meshes. Our work is related to that of [Shlafman et al. 2002], but
it improves upon it in several aspects: our algorithm is hierarchi-
cal, handles arbitrary meshes (regardless of their connectivity), and
avoids over-segmentation and jaggy boundaries. We elaborate be-
low.

Previous algorithms produce “flat” decompositions. As a con-
sequence, should the number of components be refined, the whole
decomposition has to be calculated from scratch. Moreover, com-
ponents which belong to a refined decomposition need not neces-
sarily be contained in components of a coarser decomposition. A
main deviation of our algorithm from previous ones is being hier-
archical.

Another deviation of the current algorithm is the way bound-
aries between components are handled. Previously, the focus has
been on generating either meaningful components or components
which comply with certain geometric properties. The boundaries
between the components, however, were a by-product of the pro-
cess. As a result, the boundaries were often too jagged [Chazelle
et al. 1997; Mangan and Whitaker 1999; Shlafman et al. 2002] or
too straight [Li et al. 2001] in a way that did not always fit the
model. The current algorithm aims at avoiding jagginess, by specif-
ically handling the boundaries.

Finally, the algorithm avoids over-segmentation and decomposes
the objects into meaningful components, as illustrated in Figure 1

1

gitta
CCIT Report 412 January 2003

CCIT Report 412

(a) object (b) skeleton (c) deformed skeleton (d) deformed object

Figure 2: Deformation of a dino-pet

where the dino-pet is decomposed into its organs. (Each patch is
colored differently.)

To demonstrate the usefulness of the algorithm, we present
two applications. First, we show that decomposition gives rise
to an automatic, general (i.e., meshes need neither be closed nor�

-manifolds), fast, and simple algorithm for extracting control-
skeletons [Gagvani et al. 1998; Teichmann and Teller 1998; Bloo-
menthal and Lim 1999; Wade and Parent 2002]. Since skeleton
extraction is done automatically, skeletal animations can be created
by novice users (Figure 2). It is also possible to apply the algorithm
on large databases and use the skeletons for applications such as
matching and retrieval. Second, we demonstrate the use of our al-
gorithm for generating metamorphosis sequences. Decomposition
is used as an aid in establishing a correspondence between meshes.
A detailed correspondence for each component pair is then con-
structed. Since the boundaries between corresponding components
are maintained, decomposition guarantees that features do not bleed
into different features.

The rest of this paper is structured as follows. Section 2 describes
the problem and outlines our hierarchical decomposition algorithm.
Section 3 discusses the details of the algorithm for the binary case,
whereas Section 4 describes the extension to the � -way case. Sec-
tion 5 presents the applications. Finally, Section 6 concludes and
discusses future directions.

2 Overview

This section begins with a few notations and then provides an out-
line of our algorithm. Let � be an arbitrary mesh (i.e., it need not
be triangulated, closed or a

�
-manifold).

Definition 2.1 k-way Decomposition: �������	�
���������� is a decom-
position of ������� (i) ��������������� , ������� , (ii) ��� , ��� is con-
nected, (iii) � �"!#%$ ���&�'��� $ �'� , � � and �)(are face-wise disjoint
and (iv) * �,+�� ��� # � .

Definition 2.2 Binary Decomposition: is a ��- way decomposition
with � # �

.

Definition 2.3 Patch: Given � � ��� � ���.����� , a k-way decomposi-
tion of � , each ��� is called a patch of � .

The algorithm works top-down. Each node in the hierarchy tree
is associated with a mesh of a particular patch and the root is as-
sociated with the whole input object. At each node, the algorithm
determines a suitable number of patches � , and computes a � -way
decomposition of this node. If the input object consists of multiple

connected components, the algorithm is applied to each component
separately. The examples in this paper contain a single connected
component, which is the more challenging case.

A key idea of our algorithm is to first find the meaningful compo-
nents, while keeping the boundaries between the components fuzzy.
Then, the algorithm focuses on the small fuzzy areas and finds exact
boundaries which go along the features of the object.

To find fuzzy components, we relax the condition that every face
should belong to exactly one patch, and allow fuzzy membership.
In essence, this is equivalent to assigning each face a probability of
belonging to each patch. The algorithm consists of four stages:

1. Assigning distances to all pairs of faces in the mesh.
2. After computing an initial decomposition, assigning each face

a probability of belonging to each patch.
3. Computing a fuzzy decomposition by refining the probability

values using an iterative clustering scheme.
4. Constructing the exact boundaries between components, thus

transforming the fuzzy decomposition into the final one.

For instance, we wish to partition the objects in Figure 3 into
two components. After computing distances, each polygon is as-
signed a probability of belonging to the patches. In Figure 3(a), the
greener the polygon, the higher its probability of belonging to the
back (or upper) patch. Conversely, the bluer the polygon, the higher
its probability of belonging to the front (or lower) patch. The fuzzy
decomposition is shown in Figure 3(b), where the fuzzy region is
drawn in red. Figure 3(c) illustrates the final binary decomposition,
after the exact boundaries are found.

(a) probabilities (b) fuzzy decomposition (c) decomposition

Figure 3: Binary decomposition

2

CCIT Report 412

Note that an alternative approach is find cuts in the whole model,
as done in computer vision, rather than on constrained regions. One
such cut is the minimal cut. The drawback of minimal cuts is that
they tend to favor small sets of isolated nodes since the weight of
the cut increases with the number of edges [Wu and Leahy 1993].
Our goal, however, is to find “meaningful components”. Another
option is to use normalized cuts [Shi and Malik 2000], which is
an NP-complete problem. We experimented with approximation
techniques adopted from image processing. The results varied. For
some objects, good decompositions were produced while for other
objects, the meaningful components were not found or the bound-
aries between them were step-wise. Our approach solves these
problems. One possible explanation is that since, unlike images,
mesh objects are given wholly, obtaining the components is rela-
tively easy. Furthermore, clearly finding good cuts in small regions
is an easier problem than finding them in the whole object.

3 Algorithm – the binary case

This section describes each stage of the algorithm for the binary
case (i.e., each node in the hierarchy is decomposed into two sub-
meshes). An extension to the ��- way case is presented in the next
section.

3.1 Distance function

The probability that a face belongs to a certain patch depends on
its distance from other faces in this patch. The underlying assump-
tion is that distant faces, both in terms of their geodesic distance
and of their angular distance, are less likely to belong to the same
patch than faces which are close together. Given �
� and � (, two
adjacent faces and � � (, the angle between their normals, we define
their angular distance to be����� � ���
	��� � (�� #�� � � -�������� � (�� �
When ��# � , convex and concave edges are treated equally. Since a
concave feature makes a better candidate for a boundary, we check
for convexity prior to computing distances. A small positive � is
used for convex edges and ��# � is used for concave edges.

The distance between � � and ��(is then defined as follows. Let��� � ����� ��!"� be the average geodesic distance between the centers
of mass of all the adjacent faces in the object, and ��� � � �#��� � ���
	$�
be the average angular distance between the faces.

� ���
	�� � ����� (� #&%(' ��� �)!�� � ����� (���� � ����� �)!"� * � � - % � ' �#��� � �+�
	
���� (���� � � �#��� � ���
	$� � (1)

The first term is affected by the geodesic distance whereas the sec-
ond term is affected by the angular distance. Note that the latter is
zero when the faces are coplanar. The denominator reduces effects
that may appear for similar objects having different sampling rates.

The distance definition is extended to non-adjacent faces in a
Hausdorff manner, as described in Equation 2. The distance be-
tween faces which belong to different connected components is de-
fined to be , .� ���
	�� � ����� (� # -/.10243�5+ 27678 2+9 � � �+�
	
� � ����� �� * � ���
	�� � (��� ��4� (2)

3.2 Assigning probabilities to faces

Assume that we are given two fuzzy patches
�

and : , each rep-
resented by one of its faces, ;=<?>A@ and ;�DC , respectively.
Our goal is to assign each face � � its probability > C � � �+� of be-
longing to patch : . Let � 276 # � ����	
� � ���$;� @ � and E 276 #

� ���
	�� � � �4;�DCF� . We define >DC�� � � � (and equivalently >A@G� � � �)
as follows:

> C � � ��� # � 276� 276 * E 276 # (3)

#
� ���
	�� � ���4;� @ �� ���
	�� � ���$;=<?> @ � * � ���
	�� � ���$;=<?> C � �

It can be easily verified that the function complies with the fol-
lowing desirable constraints.

�H� � � 276GI E 276 �J> C � � ��� ILK � M
� � � � 276GN E 276 �J> C � � ��� NLK � MO � � � 276 # E 276 �J> C � � ��� # K � MP �Q>AC�� � � � # � -R>S@G� � � �

The first and the second constraints suggest that if a face is closer
to patch

�
than to : , the probability of belonging to

�
is larger than

the probability of belonging to : , and vice-versa. The third con-
straint suggests that a face which is equally distant from

�
and :

is as likely to belong to one as to the other. The last constraint
guarantees symmetry. Finally, as expected, >TCU�V;�DCW� # � ,> C �V;� @ � # K and for all other faces KXI > C � ��� I � .

3.3 Generating a fuzzy decomposition

One way to obtain a decomposition is to apply a
�

-means [Duda
and Hart 1973] clustering scheme [Shlafman et al. 2002]. Our goal,
however, is to construct a fuzzy decomposition, thus we use fuzzy
clustering.

Let Y be a face representing a patch and let � be a face. The goal
of our algorithm is to cluster the faces into patches by minimizing
the following functionZ #\[^]_[2 Y�`)�)E � E.��a �	7bc� �edXY � 	7f�gh�iYc�4� ' � ����	
� � �Yc� � (4)

During an initialization phase, a subset of � representatives j	 ,
is chosen. In the binary case, the initial pair of representatives;� @ and ;=<?> C is chosen such that the distance between them
is the largest possible. Then, the algorithm iterates on the following
steps.

1. Compute the probabilities of faces to belong to each patch, as
described in Equation 3.

2. Re-compute the set of representatives j lk , minimizing the
function in Equation 4.

3. If j� is different from j k , set j��mnj k and go back to 1.

Choosing the set of new representatives (i.e., Step 2) is done by
using the following formulas:

;� @ #�-/.10 2 [276 � � -o> C � � ���4� ' � ����	
� � � � ���
;� C #�-/.p0 2 [276 > C � � ��� ' � ����	
� � ��� ��� �

Next, if the probability of a face for belonging to a patch exceeds
a certain value, it is assigned to the patch. There are, however, faces
which are almost as likely to belong to one patch as to the other. In
this case, the face is considered fuzzy, In the binary case, the mesh
is decomposed into three patches

�
, : and q , where q contains

all the faces which are (almost) as likely to belong to
�

as to : .

3

CCIT Report 412

This is done by partitioning the faces as follows and is illustrated in
Figure 3(b) where q is the red region.� #�� � ��� > C � � �+� ILK � M -����

: #�� � � � >DCU� � � � NLK � M * ���q #	� � ��� K � M -
� �L> C � � ��� � K � M * ���
A practical problem which arises in this step is the dependence

of the probability values on the specific representative of the patch.
One way to overcome this problem is to re-define � 276 and E 276 using
averages distances as described below. Empirically, this definition
improves the results and expedites convergence.� 276 # ��� � 2+9�� @ � � ����	
� � � ��� (�4�

E 276 # ��� � 2+9�� C � � ���
	�� � ����� (�4�
3.4 Generating the final decomposition

In the previous stage the meaningful components were found but
not the exact boundary between them. The goal of the current stage
is to construct this boundary within region q . Once the boundary is
determined, the faces of q are assigned to either patch

�
or patch: .

We formulate our problem as a graph partitioning problem. Con-
sider the graph � # ��j �$<?� , the dual graph of the mesh, where
every face of the mesh is a vertex in this graph and two vertices are
joined by an arc if and only if their corresponding faces are adja-
cent. We also consider the set of vertices of patches

�
and : , j�@

and j C respectively. Our goal is to partition j into two subsets
of vertices j @ k and j C k , such that the disassociation between j @ k
and j C k is minimized. We are essentially looking for a constrained
minimum cut in � , requiring that:� �H� j # j @ k * j C k� � � j @ k� j C k #��� O � j�@�� j @ k � j�C ��j C k
� P � �#� � � g 	���q�� 	
��j @ k �$j C k �4� # [� ����� k 8 ������� k

� ����� � � is minimal.

We denote the dual graph of q by � � # ��j!� �4<�� � and the set
of all vertices in j @ whose corresponding faces in

�
share an edge

with faces in q by j �c@ (resp., j �(C). We now construct an undi-
rected flow network graph �#" # ��j$" �$<$" � adding two new vertices
� and % , as follows (Figure 6).

j " # j � * j �c@ * j �hC * � � �&%#�< " # <'� * � � � � � � � � � d j!�(@(� * � �)% � � � � � � d j!�hC*� *
* � � � (� � d j � � $ d j �c@ � * � � � (� �Wd j � � $ d j �(C � �

Figure 6: The flow network graph, where q is the red region

Next, the capacities of the edges need to be defined. There are
many ways to define capacities within this framework. The key

principle is that the minimum cut tends to pass through edges with
small capacities. We experimented with various capacity functions,
some which take only dihedral angles into account and others which
also take arc length into account. We found the following function
to produce good results. For two vertices � � and � (, let ��� (be
the angle between the normals of their dual faces. The capacityq � YA� ��� $ � is defined as follows (where the average factor handles
precision problems):

q � YA� ��� $ � #
+ �

�-, �/.10 2 643-5)687 6p9�9:<; 0 6 �/.10 2 643-5 9 if � � !# � and $!# %=�
, else

(5)

A boundary between the components can now be found by ap-
plying a maximum flow (minimum cut) algorithm from � to %
(e.g., Ford-Fulkerson [Cormen et al. 2001]). By the definition ofq � YA� ��� $ � , the cut tends to pass through highly concave edges.

3.5 Stopping conditions

Each node in the hierarchy is recursively decomposed until at least
one of the following conditions is met: (a) the distance between the
representatives is smaller than a given threshold; (b) the difference
between the maximal dihedral angle and the minimal dihedral angle
is smaller than a threshold, so that patches having a fairly constant
curvature will not be decomposed; (c) the ratio between the average
distance in the patch and that of the overall object does not exceed
a threshold. Since the average distance captures both the size (i.e.,
the geodesic distance) and the angular information, further decom-
position is unnecessary when both are small relative to the original
object.

Figure 4 demonstrates results of a hierarchical binary decompo-
sition. Note how the different organs are progressively extracted.

4 Algorithm – the k-way case

A ��- way decomposition is a generalization of the binary case.
There are, however, three issues which require explanation. The
first issue is the determination of the number of patches a node in
the hierarchy should be decomposed into. The second issue is the
assignment of probabilities. The third issue is the extraction of the
fuzzy area. We discuss these issues below.

In the binary case, each patch is decomposed into two patches
until a stopping condition is met. The initial representatives are
chosen as the two faces which are farthest apart. In the ��- way case,
the representatives are chosen iteratively. The first representative is
assigned to be the face having the minimum sum of distances from
all other faces. Then, representatives are added, each in turn, so
as to maximize their minimum distance from previously assigned
representatives.

The remaining question is how many representatives to add. We
look at the following function which is the minimum distance of
the �/>�? representative from previously assigned representatives:

� � � � #A@ � � � 5+ "� � ���
	��V;�� � ;� �V�4� �
Obviously, this function decreases as we add more representatives.
Empirical experiments show that after assigning representatives to
all the major parts of an object, adding one more representative will
cause a large decrease of � . This observation aids in determining
the number of components � . We compute the first derivative of �
and choose its maximum. See Figure 5.

The second issue is the assignment of probabilities. For a repre-
sentative, the probability of belonging to its own patch is defined to
be � . Otherwise, for a face � � , the probability >] 9 � � ��� of belonging

4

CCIT Report 412

(a) first level (b) second level (c) third level

Figure 4: Hierarchical binary decompositions of a dove and an inner part of a human ear

(a) object (b) function � (c) first derivative of �
Figure 5: Determining optimal �

5

CCIT Report 412

(a) first level (b) second level

(c)third level (d) fourth level

Figure 7: Hierarchical k-way decomposition of a dino-pet

(a) first level

(b) second level

(c) third level

Figure 8: Hierarchical k-way decomposition of a cheetah

(a) alien (b) shuttle

(c) mechanical part (d) heart

(e) fishing rod mechanics (f) camel

Figure 9: Decompositions of various objects

to patch Y (is defined as:

>] 9 � � ��� # �� ��� > � 276+8 ����� �
] 9
	�	

�� �� ��� > � 27678 ����� �
]
� 	�	 �

It can be easily verified that this function is an extension of the
binary case. Moreover, >] 9 � � � � complies with the following con-
straints: (1) K �\> � � ��� Y (� � � , (2) the sum of the probabilities is
� , and (3) as the distance of a face from a representative increases,
the probability to belong to this patch decreases.

The third issue is the extraction of the fuzzy areas once the com-
ponents have been found. We consider each pair of neighboring
components and proceed similarly to the binary case.

Figures 7–8 demonstrate a few levels of hierarchical k-way de-
compositions. Figure 9 shows decompositions of various levels.

5 Applications

We demonstrate our algorithm with two applications. First, we pro-
pose a new algorithm for control-skeleton extraction. Second, we
illustrate the use of our algorithm for metamorphosis.

5.1 Control Skeleton extraction

Control skeletons are beneficial for various applications, including
matching, metamorphosis and computer animation. As opposed

6

CCIT Report 412

(a) object (b) skeleton (c) deformed skeleton (d) deformed object

Figure 10: Deformations of various objects

to previous algorithms which are based on medial surface extrac-
tion [Gagvani et al. 1998; Teichmann and Teller 1998; Bloomen-
thal and Lim 1999; Wade and Parent 2002] and sometimes also on
voxelization [Wade and Parent 2002], mesh decomposition gives
rise to a novel control-skeleton extraction algorithm. The key idea
is to calculate the joints directly from the hierarchical structure of
mesh decomposition, without any user intervention. The algorithm
is general (i.e., the models need not be closed or 2-manifolds), fully
automatic, simple and fast. It is thus beneficial for applications re-
quiring automation as well as for novice users of applications where
user-intervention is acceptable or desirable. The latter is demon-
strated in Figure 10, where skeletons were used for animating oth-
erwise static objects.

The algorithm starts by decomposing the given model. It is es-
sential that features which depend on the position of another feature
become its descendants in the hierarchy. For instance, the elbow
joint of a humanoid object should be a descendant of the shoulder
joint, so that a shoulder motion will cause an elbow motion. A
simple way to achieve it is to guarantee that the decomposition of
every node in the hierarchy consists of a central patch connected to
all other patches.

To force this star-shaped decomposition structure, the decompo-
sition algorithm is slightly modified. We consider the central patch
to be the one which contains the first assigned representative. After
decomposing a given patch, the algorithm verifies that the decom-
position is star-shaped. If not, a patch which is not adjacent to the
central patch is merged with a neighboring patch with which it has
the smallest average angle between their normals along the cut.

Once the hierarchical k-way decomposition is computed, the de-
composition tree is traversed and a tree of joints is generated. At
each level of the hierarchy, joints between the central patch and its
adjacent patches are created. Each joint is positioned at the center
of mass of the boundary between the patches. Each node in the
tree of joints is associated with a list of faces. At first, the root

node is associated with the whole model. As the tree is traversed
downward, the relevant faces are transfered from a parent node to
its children.

In order to animate articulated objects, it is necessary to bind the
joints and pose the object. Each vertex � � of the mesh is assigned
a weight � � (indicating the extent to which it belongs to joint $.
The simplest approach is to let � � (be the percentage of faces that
belong to joint $ and adjacent to vertex � � . This guarantees that
a non-border vertex is bound only to the patch it resides on, that
each vertex corresponds to at least one joint and that

�
(� � (#

� . More advanced methods take also the cut’s angles into account.
Finally, to pose the object, a skeleton-subspace deformation method
is used [Lewis et al. 2000].

Objects are deformed by adjusting the joints’ angles of their
skeletons. To compute the modified vertex position we use the fol-
lowing equation [Weber n. d.]: b � # ����� �

(+�� ��� � (�� � (� (� � Here, 	
is the number of joints, � � (is the original vector position of � � rel-
ative to the coordinate system of joint $, and

� (is the transforma-
tion matrix of joint $. Thus, a vertex which belongs to a single joint
has a constant position relative to this joint, while a vertex which
belongs to more than one joint is positioned between the locations
it would have, had it belonged entirely to each of the joints.

5.2 Metamorphosis

A general approach for finding a correspondence between meshes
is to construct their common embedding. The drawbacks of this
approach are the difficulty in obtaining detailed correspondences as
well as the requirement that the models be of genus zero. One way
to overcome these shortcomings is to decompose the models prior
to constructing common embeddings of their patch pairs [Gregory
et al. 1999; Zockler et al. 2000; Shlafman et al. 2002]. When mod-
els have the same meaningful components (i.e., 4-legged animals),
this approach gives rise to an automatic algorithm for finding a
coarse correspondence. Since the boundaries between correspond-

7

CCIT Report 412

Figure 11: Metamorphosis sequences

ing components are maintained throughout the morph sequence, de-
composition guarantees that features (i.e., organs) do not bleed into
different features. We implemented this approach using our decom-
position algorithm, and illustrate some results in Figure 11.

6 Conclusion

We have presented an algorithm for decomposing meshes into
meaningful components. The algorithm is hierarchical and it avoids
jaggy boundaries as well as over-segmentation. The main idea of
the algorithm is to first find the meaningful components of the mesh
and only then focus on generating the exact boundaries between
components. The latter is done by formulating the problem as a
constrained network flow problem. Furthermore, we successfully
demonstrated the algorithm in two applications – control skeleton
extraction and metamorphosis.

As future work, several enhancements can be easily added to
our algorithm. For instance, different distance functions and dif-
ferent capacity functions can be experimented with. Furthermore,
non-geometric features, such as color and texture, can be embed-
ded in the algorithm. It is also possible to apply simplification prior
to decomposition in the higher levels of the hierarchy, in order to
accelerate the algorithm. We are also looking at two applications:
compression and texture mapping. We believe that decomposition
will have more applications in computer graphics in the future.

Acknowledgments

This research was supported in part by the Israeli Ministry of Sci-
ence, Culture & Sports, Grant 01-01-01509. We would like to thank
Dan Hadari, Itai David, Shymon Shlafman and Dan Aliaga for their
great help.

References

ARONOV, B., AND SHARIR, M. 1994. Castles in the air revisited.
Disc. Comput. Geom 12, 119–150.

BAJAJ, C., AND DEY, T. 1992. Convex decompositions of poly-
hedra and robustness. SIAM J. Comput. 21, 339–364.

BLOOMENTHAL, J., AND LIM, C. 1999. Skeletal methods of
shape manipulation. In International Conference on Shape Mod-
eling and Applications, 44–49.

CHAZELLE, B., AND PALIOS, L. 1992. Decomposing the bound-
ary of a nonconvex polyhedron. In SWAT, 364–375.

CHAZELLE, B., AND PALIOS, L. 1994. Decomposition algo-
rithms in geometry. In Algebraic Geometry and its Applications,
Springer-Verlag, C. C. Bajaj, Ed., Ed., 419–447.

CHAZELLE, B., DOBKIN, D., SHOURHURA, N., AND TAL, A.
1997. Strategies for polyhedral surface decomposition: An ex-
perimental study. Computational Geometry: Theory and Appli-
cations 7, 4-5, 327–342.

CHAZELLE, B. 1984. Convex partitions of polyhedra: a lower
bound and worst-case optimal algorithm. SIAM J. Comput. 13,
488–507.

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001.
Introduction to Algorithms. McGraw-Hill.

DUDA, R., AND HART, P. 1973. Pattern Classification and Scene
Analysis. New-York, Wiley.

GAGVANI, N., KENCHAMMANA-HOSEKOTE, D., AND SILVER,
D. 1998. Volume animation using the skeleton tree. In IEEE
Symposium on Volume Visualization, 47–53.

GDALYAHU, Y., WEINSHALL, D., AND WERMAN, M. 2001.
Self-organization in vision: stochastic clustering for image seg-
mentation, perceptual grouping, and image database organiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 23, 10, 1053–1074.

GREGORY, A., STATE, A., LIN, M., MANOCHA, D., AND LIV-
INGSTON, M. 1999. Interactive surface decomposition for poly-
hedral morphing. The Visual Computer 15, 453–470.

KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of
mesh geometry. In Proceedings of SIGGRAPH 2000, ACM SIG-
GRAPH, 279–286.

LEWIS, J., CORDNER, M., AND FONG, N. 2000. Pose space
deformations: A unified approach to shape. In Proceedings of
SIGGRAPH 2000, ACM SIGGRAPH, 165–172.

8

CCIT Report 412

LI, X., TOON, T., TAN, T., AND HUANG, Z. 2001. Decomposing
polygon meshes for interactive applications. In Proceedings of
the 2001 symposium on Interactive 3D graphics, 35–42.

MANGAN, A., AND WHITAKER, R. 1999. Partitioning 3D surface
meshes using watershed segmentation. IEEE Transactions on
Visualization and Computer Graphics 5, 4, 308–321.

RUPPERT, J., AND SEIDEL, R. 1992. On the difficulty of triangu-
lating three-dimensional non-convex polyhedra. Disc. Comput.
Geom 7, 227–253.

SHARON, E., BRANDT, A., AND BASRI, R. 2000. Fast multi-
scale image segmentation. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition, 70–77.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 8, 888–905.

SHLAFMAN, S., TAL, A., AND KATZ, S. 2002. Metamorphosis of
polyhedral surfaces using decomposition. In Eurographics 2002,
219–228.

TEICHMANN, M., AND TELLER, S. 1998. Assisted articulation of
closed polygonal models. In Conference abstracts and applica-
tions: SIGGRAPH, ACM SIGGRAPH, 14–21.

WADE, L., AND PARENT, R. 2002. Automated generation of con-
trol skeletons for use in animation. The Visual Computer 18, 2,
97–110.

WEBER, J. Run–Time Skin Deformation. Intel Architecture Labs,
www.intel.com.

WU, Z., AND LEAHY, R. 1993. An optinal graph theoretic ap-
proach to data clustering: Theory and its application to image
segmentation. PAMI 11, 1101–1113.

ZOCKLER, M., STALLING, D., AND HEGE, H.-C. 2000. Fast and
intuitive generation of geometric shape transitions. The Visual
Computer 16, 5, 241–253.

ZUCKERBERGER, E., TAL, A., AND SHLAFMAN, S. 2002. Poly-
hedral surface decomposition with applications. Computers &
Graphics 26, 5, 733–743.

9

