

Selection of Paths in HDR

Dror Rawitz, Adrian Segall

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

THE ANDREW & ERNA VITERBI FACULTY OF ELECTRICAL ENGINEERING

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 3200003, ISRAEL

CCIT Report #919

February 2018

Electronics
Computers

Communications

Selection of Paths in HDR

Dror Rawitz∗ Adrian Segall†

February 5, 2018

Abstract

In this report we consider the problem of Path Selection in HDR, a Hysteresis Driven Routing
Protocol for EnHANTS - networks with Energy Harvesting units. HDR requires selection of
two non-necessarily disjoint paths for each source. The paths are alternately used by the source
to transmit data. Path selection in HDR leads to the problem of 2-splittable flow in graphs,
that has been previously treated in the literature. In this report we model our problem as a
2-splittable flow problem, show that in general it is NP-Hard and provide algorithms for Fair
Path Selection under the assumption of a uniform network.

1 Introduction and Model

Consider a wireless network, where one or more sources transmit data to a single collection point,
referred to as the sink. The network consists of energy harvesting nodes, referred to as relaying
nodes. Since we are interested in transmission limited by the harvested energy, the wireless links
are assumed to be have unlimited data transmission capacities.

The Harvesting Rates of the relaying nodes are possibly time varying and unknown. They
limit the packet transmission rate from the sources to the sink. As we are interested in selecting
routes that allow maximum transmission over the network, the sources and the sink should not
limit data transmission. Thus, we assume energy-unlimited sources and sink. In addition, the
sink is assumed to be land based and to possess a powerful transmitter, used in order to transmit
control messages that are heard directly by all sources and by all relaying nodes. Moreover, the
sink is assumed to have a processor that is able to run the routing algorithm and to send commands
for its implementation. The considered network is referred to in [MGS+15] as EnHANTs (Energy
Harvesting Networked Tags).

Given the limited amount of energy at the relaying nodes, classical routing algorithms, like
AODV [PR99] and DSR [JMB01] and their later versions, are not applicable. Much simpler al-
gorithms need to be developed. In HDR [Seg15], [ELSY17], [LS] it has been proposed to employ
for each source two fixed Routing Paths to the sink and to split traffic between the two. HDR
employs alternately the two paths, that are preferably, but not necessarily, disjoint. Nodes that

∗School of Engineering, Bar Ilan University, Ramat Gan, Israel, dror.rawitz@biu.ac.il. Supported in part by the
Israel Science Foundation (grant no. 497/14).

†Viterbi Dept. of Electrical Engineering, Technion, Haifa, Israel, segall@ee.technion.ac.il.

1

lesley
CCIT Report #919 February 2018

are common to the two Routing Paths are referred to as Common-Nodes. The non-Common node
with minimum energy on each Routing Path is referred to as the Critical Node.

The nodes on the inactive path that are not Common-Nodes harvest energy, thus their energy
level goes up. The nodes on the active path, including the Common-Nodes, both harvest and spend
energy, the latter on data packet transmissions. In normal operation, the spending rate is higher
than the harvesting rate, thus their energy level goes down. The algorithm switches from one
Routing Path to the other when the energy in the critical node of the inactive path exceeds by a
certain hysteresis threshold the energy in the critical node of the active path. The algorithm also
dictates that the sink provides feedback to the sources to adjust their rate according to the current
energy situation in the corresponding two paths. In certain cases, the two Routing Paths coincide.
HDR is designed to work in this case as well, but obviously there are only input adjustments, with
no hysteresis switching.

Relaying a data packet is the main energy consumption action of a relaying node. The other
energy consuming actions are transmitting and receiving control packets and overhearing over
the wireless channel headers of packets not intended for the node itself. Since control packets and
headers of data packets are assumed to be second order, we neglect them for the purpose of selecting
Routing Paths, which is the subject of this work. The simulation of the system activity does take
those into account. Obviously, packet transmission over each path in the HDR algorithm is time-
varying even for fixed input and harvesting rates, depending on which Routing Path is active at
any given time. However we consider here only averages over time.

Let c′(v) denote for node v the average harvesting rate normalized to the energy required to relay
a single packet. System stability requires that the time-average packet relaying rate over each node
v is less than or equal to c′(v). Therefore, c′(v) can be viewed as the ”capacity” of relaying node v.
Thus our problem reduces to the problem of selecting, for each source, two paths, in a network with
node capacities c′(v) and infinite link capacities, such that the data flow rate through each node v
does not exceed c′(v). The links are assumed to have infinite capacity since we are interested in
energy limitations and not limitations due to transmission capacity of the links.

The purpose of this report is to select the Routing Paths. Since Routing Paths must be selected
a priori, before operating the network, we need a simple criterion. The criterion employed here is
to seek Routing Paths that provide Maximum Total Throughput, with the additional requirement
of fairness among sources. Moreover, if there is a choice, we prefer that the two Routing Paths
for each source are as disjoint as possible.

This is motivated as follows. For a given network with given fixed source data rates and given
paths, the optimal splitting can be found by solving (in MATLAB say) a nonlinear optimization
problem whose goal is to maximize the sum of the log of the inputs, given the flow constraints
dictated by the node capacities. Since the maximum of the product of several variables whose
sum is fixed is achieved when the variables are equal, the solution of this optimization provides
fairness among sources. Simulations reported in [ELSY17], as well as later simulations, indicate
that the HDR algorithm provides splitting fractions close to the optimal obtained from the above
optimization problem. Thus it makes sense to seek Routing Paths and a splitting requirement that
provide maximum fair throughput. In addition, simulations show that the more the paths are
disjoint, the better performance is obtained (see Section 7 for a simple example).

Since one normally does not know in advance the pattern of the energy harvesting rates, the
selection of the Routing Paths will be done assuming a uniform network, namely all relaying nodes

2

have the same fixed Harvesting Rate. Normalizing to the energy spent by a Relaying Node to relay
a data packet, we can view the scenario as a flow graph, where all nodes, except for the source and
sink nodes, have the same node capacity. We take this node capacity as our unit of flow, namely
c′(v) = 1 for all relaying nodes v.

1.1 Related Work

Baier, Köler, and Skutella [BKS05] (see also [Bai03]) and Koch and Spenke [KS06] considered the
k-splittable Flow problem which is a variant of Node 2-Splittable Flow (defined below) in
which the capacities are on the edges and there is only one source s. In this problem the goal is
to find a maximum flow from s to t that has a decomposition into k flow paths. Baier, Köler, and
Skutella [BKS05] proved that k-splittable Flow in directed graphs is NP-hard for any constant
k ≥ 2. They also show that it is NP-hard to approximate the 2-splittable Flow problem in
directed graphs within a ratio strictly less than 3/2. Later, Koch and Spenke [KS06] extended the
NP-hardness result to undirected graphs and also showed that it is NP-hard to approximate the
k-splittable Flow problem within a ratio better than 6/5 for any constant k ≥ 2.

2 Preliminaries

2.1 The Problems

Here we formalize our model and the considered problems. Consider a network N ′ = (G′, c′, S, t),
where G′ = (V ′, E′) is an undirected graph, c′ : V ′ → N is a capacity function on the nodes of
G′, S = {s1, . . . , sk} ⊆ V ′ is a set of k source nodes, and t ∈ V ′ is the sink. We refer to a node
v′ ∈ S∪{t} as a terminal node and to a node v′ ∈ V ′ \(S∪{t}) as a relaying node. We assume that
the capacity of relaying nodes is finite and that the capacity of terminal nodes is infinite, namely
that c′(v′) < ∞ , for all v′ ∈ V ′ \ (S ∪ {t}) and c′(v′) = ∞, for all v′ ∈ S ∪ {t}.

We assume that the sources and the sink are not directly connected, i.e., that (si, t) 6∈ E′

for every i. The case of unit capacities is the case where c′(v′) = 1, for every relaying node
v′ ∈ V ′ \ (S ∪ {t}).

A flow path in this network is a pair (P ′, f ′), where P ′ is a set of nodes along a simple path in
G′ from some source si to the sink and f ′ ∈ R. A 2-splittable flow F ′ consists of two flow paths
(P ′

i,1, f
′
i,1) and (P ′

i,2, f
′
i,2), for each source si, where P ′

i,1 and P ′
i,2 are paths from si to t. Note that

it may be the case that P ′
i,1 = P ′

i,2. A 2-splittable flow F ′ is feasible if
∑

i

∑

j:v′∈P ′
i,j

f ′
i,j ≤ c′(v′),

for every v′ ∈ V ′. The value f ′(F ′) of a 2-splittable flow F ′ is the total amount of flow that enters
t, that is f ′(F ′) ,

∑k
i=1(f

′
i,1 + f ′

i,2). A 2-splittable flow F is optimal if f ′(F ′) is maximal among
all 2-splittable flows.

Given a network N ′ and a 2-splittable flow F ′, define the fairness factor of F ′ as

ρ(F ′) ,
mini(f

′
i,1 + f ′

i,2)

maxi(f ′
i,1 + f ′

i,2)
.

Notice that ρ(F ′) ≤ 1. A 2-splittable flow F ′ achieving ρ(F ′) = 1 is referred to as fair. We define
the fairness of an instance N ′ as

ρ(N ′) , max
{

ρ(F ′) : f ′(F ′) is maximal
}

.

3

With the above definitions, we define several problems. The goal in the Node 2-Splittable
Flow problem is to compute a maximum value 2-splittable flow, i.e., to find a 2-splittable flow
F ′ that maximizes f ′(F ′). The goal in Fair 2-Splittable Flow is to find a 2-splittable flow
that maximizes ρ among the set of maximum value 2-splittable flows. The Edge 2-Splittable
Flow problem is another variant of those problems in which the capacity function is on the edges,
and the feasibility constraints are:

∑

i

∑

j:e′∈E(P ′
i,j)

f ′
i,j ≤ c′(e′), for every e′ ∈ E, where E(P ′

i,j) are

the edges along the path P ′
i,j . All those problems may be defined in a straightforward matter for

directed networks.

3 Hardness for General Capacities

In this section we show that Node 2-Splittable Flow is NP-hard and that it is NP-hard to
approximate it within a factor of 1.5. It follows that even the feasibility question of Fair 2-
Splittable Flow is NP-hard.

Our hardness results rely on the following reduction by Koch and Spenke [KS06].

Lemma 1 (Koch and Spenke [KS06]). Given a a 3CNF formula ϕ, there is a polynomial time
algorithm that constructs an instance of Edge 2-Splittable Flow with one source (k = 1)
which satisfies the following properties:

1. ϕ ∈ 3SAT implies that the optimal 2-splittable flow has value 3.

2. ϕ 6∈ 3SAT implies that the optimal 2-splittable flow has value 2.

3. All edge capacities are either 1 or 2.

First, we present a reduction from Edge 2-Splittable Flow with k = 1 to Node 2-
Splittable Flow.

Theorem 1. It is NP-hard to approximate Node 2-Splittable Flow within a ratio of 1.5, for
any k ≥ 1, even if c′(v′) ∈ {1, 2, 3}, for every non-terminal node v′.

Proof. Given an instance N ′′ of Edge 2-Splittable Flow with k = 1, we construct a Node

2-Splittable Flow instance N ′. First, S′ = {s′1, s
′
2, . . . , s

′
k}, where s′1 = s, and t′ = t. In

addition, we split each edge e′′ = (v1,e′′ , v2,e′′) in N ′′ using a new vertex, denoted v′e, whose capacity
is c′(v′e) = c(e). Hence, V ′ = V ′′ ∪ {v′e : e ∈ E′} and E′ =

{

(v1,e′′ , v
′
e), (v

′
e, v2,e′′) : e

′′ ∈ E′′
}

. The
capacity of the original vertices is 3, namely, c′(v′′) = 3, for every v′′ ∈ V ′′. It is straightforward to
verify that there is a one to one correspondence between 2-splittable flows in N ′′ and in N ′. The
theorem follows from Lemma 1.

Since Node 2-Splittable Flow is NP-hard, it follows that even finding a solution to Fair

2-Splittable Flow is NP-hard.

Corollary 2. Finding a solution for Fair 2-Splittable Flow is NP-hard.

The problem remains NP-hard even if one is given the optimum.

4

Theorem 3. Given a Fair 2-Splittable Flow instance with the value of an optimal 2-splittable
flow, it is NP-hard to find an optimal 2-splittable flow F ′ that maximizes ρ(F ′).

Proof. The reduction from Theorem 1 implies that there is a polynomial time algorithm that given
a 3CNF formula ϕ constructs an instance of Node 2-Splittable Flow with k = 1 that satisfies
the following properties: (i) ϕ ∈ 3SAT implies that the optimum is 3, (ii) ϕ 6∈ 3SAT implies that
the optimum is 2, and (iii) all node capacities are either 1 or 2. We extend the above construction.
Denote the source and sink of the construction by s′1 and t′1. We add a second source s′2. We add a
new node u′ and two edges (s′2, u

′) and (u′, t1). We also add a new sink t and the edge (t′1, t). The
capacity of u is 4 and the capacity of t′1 is 6.

By the above properties, there exists a 2-splittable flow form s′1 to t′1 whose value is 2. Moreover,
the path from s′2 to t′1 can support four units of flow. Hence, the optimum is exactly 6. However,
it is NP-hard to decide whether there exists a flow F ′′ such that ρ(F ′′) = 1.

4 Node 2-Splittable Flow with Unit Capacities

In this section we show that Node 2-Splittable Flow with unit node capacities is solvable in
polynomial time. We do so by using a reduction to Edge 2-Splittable Flow in directed networks
with edge capacities of 1 or 2 units and employing known Maximum Flow results.

4.1 Using Maximum Flow

Before continuing, we invoke a couple of well known theorems for Maximum Flow in networks
with directed edges and edge capacities (see, e.g., [AMO93, CCPS98, KT05]).

Theorem 4 (Flow Integrality). Given a Maximum Flow instance, if capacities are integral, then
there exists an integral maximum flow. Furthermore, any augmenting path algorithm computes an
integral flow.

Theorem 5 (Flow Decomposition). Given a Maximum Flow instance, a flow f can be decom-
posed into the sum of at most O(|E|) flows, each of which is a path flow or a cycle flow. Moreover,
such a decomposition can be obtained in polynomial time. If f is integral, then the flow paths and
cycles carry integral flows.

Theorem 6 (Minimal s, t-cut). Given a Maximum Flow instance, there exists a minimum s, t-
cut (S, S̄) which is minimal with respect to set inclusion, namely such that S ⊆ S′ for any other
s, t-cut (S′, S̄′). Moveover, this cut can be found in polynomial time.

4.2 Reduction to Edge Capacities

Given an undirected network N ′ = (G′, c′, S, t) with unit node capacities, we construct a new di-
rected network with edge capacities N ′′ = (G′′, c, {s, S}, t) using standard techniques. The Network
N ′′ is constructed from N ′ as follows :

1. A dummy source node s is added. A directed edge (s, si) with capacity c(s, si) = 2 is added
from s to each source si ∈ S.

5

2. Each relaying node v′ ∈ V ′ \ (S ∪ {t}) is split into two nodes vin and vout, and is replaced by
a directed edge (vin, vout) whose capacity is c(vin, vout) = 1.

3. Each edge (si, v
′) where v′ ∈ V ′ \ (S ∪ {t}) is converted into a directed edge (si, vin) whose

capacity is ∞.

4. Each edge (v′, t) where v′ ∈ V ′ \ (S ∪ {t}) is converted into a directed edge (vout, t), whose
capacity is ∞.

5. Each edge (u′, v′) between two relaying nodes in N ′ is converted into two edges (uout, vin) and
(vout, uin), whose capacities are ∞.

Edges in the N ′′ that replace relaying nodes in N ′ are referred to as n-edges and their capacity
is 1. Edges in the N ′′ that replace edges in N ′ are referred to as e-edges and their capacity is
infinite. Observe that the construction of N ′′ can be done efficiently.

Lemma 2. Any minimum cut in N ′′ is composed of n-edges only.

Proof: Follows from the facts that: (i) there are no direct edges between the sources in N ′ and
the sink and (ii) the capacity of the e-edges is infinite. ✷

Denote by M the set composed of the outgoing nodes (vout) of the edges in some minimum cut
in N ′′. Such an s, t-cut can be computed in polyomial time (see Theorem 6). In the sequel it will
be convenient to consider the subnetwork of N ′′ between the dummy source s and M .

Let N denote the directed network N = (G, c, {s, S},M), where G is the subgraph of G′′ before
and including M . A flow path in N is a pair (P, f), where P is a set of nodes along a simple path
in G from s to some node in M and f ∈ R

+.

A 2-valid flow F in N is a set of flow paths in N such that there are at most two flows that
traverse each source node si. A 2-valid flow is said to be feasible if it satisfies the edge capacities in
N . Since all edges in M have unit capacity, a feasible 2-valid flow has all flows less than or equal
to 1.

Lemma 3. Consider a feasible 2-valid flow F in N . Let N ′′ be the network that has induced N .
The flow paths in N can be continued all the way to the sink so that the resulting flow in N ′′ is
feasible.

Proof: The minimum cut M corresponds to a Maximum Flow in N ′′. The cut edges correspond-
ing to M were saturated in this Maximum Flow problem in N ′′, namely all those edges carried a
flow of 1. Feasibility of F includes the requirement that the capacity requirement is satisfied in
the edges of M , namely the flow on all edges is at most 1. Thus continuation of the flows of F
according to the original Maximum Flow maintains feasibility of the resulting flow in N ′′. ✷

Similarly to the definition of 2-valid flows in N , we define 2-valid flows in N ′′. A 2-valid flow F ′′

in N ′′ is a set of flow paths in N ′′ from s to t, such that there are at most two flows that traverse
each source node si. A 2-valid flow is said to be feasible if it satisfies the edge capacities in N ′′.

Lemma 4. There is a one-to-one correspondence between feasible 2-splittable flows F ′ in N ′ and
feasible 2-valid flows F ′′ in N ′′.

6

Proof: First, a feasible 2-splittable flow F ′ inN ′ can be transformed in a straightforward manner
into a feasible 2-valid flow F ′′ in N ′′. Specifically, a path P ′ = 〈si, v

′
1, . . . , v

′
ℓ, t〉 in N ′ is transformed

into the path P ′′ = 〈s, si, v1,in, v1,out, . . . , vℓ,in, vℓ,out, t〉 in N ′′. To see that F ′′ is feasible, notice that
the flow through (vin, vout) is at most c′(v) = c(vin, vout) = 1. Moreover any flow through a path
in N ′′ is at most 1 and each source si in N ′′ is traversed by at most two paths, thus the total flow
over each edge (s, si) is at most 2.

Similarly, a feasible 2-valid flow F ′′ in N ′′ can be transformed into a feasible 2-splittable flow
F ′ in N ′. Since the only outgoing edge from a node vin is to vout, a path P ′′ in N ′′ must have
the structure 〈s, si, v1,in, v1,out, . . . , vℓ,in, vℓ,out, t〉. Thus it can be replaced by P ′ = 〈si, v

′
1, . . . , v

′
ℓ, t〉,

in N ′. The resulting flow F ′ is feasible, since the capacity constraint of an edge (vin, vout) in N ′′

ensures that the capacity constraint of v is satisfied in N ′. ✷

In the following sections, we proceed as follows. Starting with a network of type N ′ with unit
node capacities, we derive the network of type N ′′ with 1,2 and ∞ edge capacities. A minimum
cut in N ′′ induces the associated subnetwork of type N . We find a feasible maximal 2-valid flow
in N , determine its fairness and invoke Lemma 3 to construct a feasible 2-valid flow in N ′′. The
corresponding flow in N ′ (according to Lemma 4) provides the Routing Paths in N ′. We use the
notation P ′ ∝ P to show that the Routing Path P ′ in N ′ is obtained in this way from the flow
path P in N .

In order to reduce the clutter in Figures (see e.g. Fig. 4), we depict networks of type N (and
not N ′ or N ′′), with the following further simplifications: (i) the dummy source is not depicted;
(ii) the n-edges of N are depicted as nodes; (iii) the e-edges of N are depicted as the corresponding
undirected edges of the original N ′ .

4.3 Node 2-Splittable Flow for Unit Capacities

Consider a network with unit node capacities N ′, its equivalent network with edge capacities N ′′

and let F denote the value of maximal flow in N ′′.

Observation 5. 0 ≤ F ≤ 2k, where k denotes as before the number of sources.

Proof. The capacity of the cut around s is 2k.

Theorem 7. Node 2-Splittable Flow with unit capacities can be solved in polynomial time.

Proof. Since capacities in N ′′ are integral, there exists a maximum flow F that is also integral,
and such a flow can be found in polynomial time. Moreover, a decomposition of this flow into
disjoint paths, each carrying an integral amount of flow, can be computed in polynomial time (see
Section 4.1.) The edge capacities of N ′′ are 1, 2 or ∞, and therefore the decomposition consists
of at most 2k paths, whose flow value is either 1 or 2. Moreover, since c(s, si) = 2 for every si, and
all other capacities are 1, the flow decomposition induces a 2-splittable flow in the corresponding
N ′.

7

5 Fair 2-Splittable Flow

In this section we study the problem of Fair 2-Splittable Flow and give algorithms for con-
structing optimal Routing Paths in networks with unit node capacities.

Consider a network with unit node capacities N ′, its equivalent network with edge capacities
N ′′ and let F denote the value of maximal flow in N ′′. Recall that M denotes the set of outgoing
nodes (vout) of the edges in a minimum cut and N is the subnetwork of N ′′ between s and M .
Since all edges in the cut have capacity 1, F is also the number of edges in the cut.

We shall need here an additional type of network. For a given source si, let N̂i be the network
N after the removal of all sources except si. The network N̂i is a variant of N in which the there is
only one edge with capacity 2 exiting s. Henceforth, we assume that the maximum flow in each N̂i

is at least 1, since otherwise there is no path from si to M and thus no path from si to the sink.
Let f̂i denote the maximum flow in N̂i, from si to M .

5.1 F = 1 and F = 2

Theorem 8. If F = 1, there exists a fair 2-splittable flow in N ′ that can be computed in polynomial
time. The Routing Paths in N ′ will be deducted from the flow paths in N .

Proof. F = 1 implies f̂i = 1 for all si. Let (P̂i, 1) be a flow path in N̂i.

The two routing paths P ′
i,1 and P ′

i,2 in N ′ are identical and are selected as P ′
i,1 = P ′

i,2 ∝ P̂i.

The flow values on these paths are selected f ′
i,1 = f ′

i,2 =
1
2k . The resulting flow F ′ in N ′ is feasible,

since the total load on a node is at most 2k · 1
2k = 1. Moreover, since f ′(F ′) = 1, F ′ is optimal.

Finally, the fairness factor is ρ(F ′) = 1.

Theorem 9. If F = 2, it can be decided in polynomial time if a fair 2-splittable flow exists. If
it exists, such a flow can be found in polynomial time. The Routing Paths in N ′ will be deducted
from the flow paths in N .

Proof. In the network N ′′ corresponding to N ′, change the capacity of the edges exiting s to 2/k.
Invoke an algorithm for Maximum Flow on this network. Since all capacities are multiples of 1/k,
the computed maximum flow can be viewed as consisting of multiples of 1/k. (If k is even, then
it consists of multiples of 2/k.) Hence, the resulting Maximum Flow in N ′′ induces a 2-splittable
flow F ′ in N ′ , where each of the paths has a value of 1/k. Since ρ(F ′) = 1 and f ′(F ′) = 2, it is
optimal and fair.

The flow F ′ may result in only one path from some sources to the sink, with flow 2/k. As said
in Section 1, we would like to split flows from sources into two paths. Next we define an algorithm
for selecting such paths. Let v1, v2 be the nodes of M in N ′′. Since F = 2, the flow f̂i = 1 or 2 for
all si ∈ S. The sources with f̂i = 1 can be of three types:

a) f̂i = 1 via v1 only, like s1 or s2 in Fig. 1

b) f̂i = 1 via v2 only, like s5 in Fig. 1

c) f̂i = 1 via either v1 or v2, like s4 in Fig. 1

8

2s

1s

3

1v

2v
4s

3s

5s

2

4

1

5

6

(1)

1P

(1)

2P

(1)

3P

(2)

3P

(2)

5P

Figure 1: F = 2

Recall that to simplify the Figure, we draw it as described in the last paragraph of Section 4.2.

Let

• S1 be the set of sources si for which f̂i = 1 via v1 and denote the corresponding path to v1
by P

(1)
i

• S2 be the set of sources si for which f̂i = 1 via v2 and denote the corresponding path to v2
by P

(2)
i

• Sb be the set of sources si for which f̂i = 2 and denote the corresponding (disjoint) paths to

v1 by P
(b1)
i and to v2 by P

(b2)
i .

Sources of type c) above are added to the smaller of the sets S1, S2, up to equal size. The
remaining sources of type c), if any, are added in equal parts to the two sets. The size of the
resulting sets will be denoted by k1, k2, kb respectively. With these definitions we can design an
easy algorithm for splitting traffic.

Theorem 10. Suppose F = 2 and k ≥ 2.

Then:

a) if |k2 − k1| ≤ kb , then maximum throughput f(F ′) = 2 and fairness ρ(F ′) = 1 can be
achieved.

b) if k2 > k1 + kb, then fairness cannot be achieved. Maximum throughput f(F ′) = 2 can be
achieved with fairness factor ρ(F ′) = (k1 + kb)/k2

c) Similarly, if k1 > k2 + kb

9

Proof. Note that each path of type P
(1)
i is disjoint of all paths of type P

(2)
i . Thus the total flow

through any network node is less than or equal to the total flow via v1 and less than or equal to
the total flow via v2.

In case a), we show that maximum throughput f(F ′) = 2 and fairness factor ρ(F ′) = 1 are
achieved with the following Routing Paths and associated flows:

• for i ∈ S1, set P
′
i,1 = P ′

i,2 ∝ P
(1)
i with flow f ′

i = 2/k

• for i ∈ S2, set P
′
i,1 = P ′

i,2 ∝ P
(2)
i with flow f ′

i = 2/k

• for i ∈ Sb, set P ′
i,1 ∝ P

(b1)
i and P ′

i,2 ∝ P
(b2)
i with flows f ′

i,1 = (k2 − k1 + kb)/(k · kb) and
f ′
i,2 = (k1 − k2 + kb)/(k · kb) respectively.

With this selection, the flow in N ′ for each source is f ′
i = 2/k for all si ∈ S.

To show the above, it is sufficient to prove that for si ∈ Sb, holds f ′
i = 2/k and that the flow

through v1 and through v2 is 1 . We have

k2 − k1 + kb
k · kb

+
k1 − k2 + kb

k · kb
= 2/k

and

k1 ·
2

k
+ kb ·

k2 − k1 + kb
k · kb

= k2 ·
2

k
+ kb ·

k1 − k2 + kb
k · kb

= 1

In case b), k2 > k1+kb, , fairness cannot be achieved since any flow sent by sources in Sb via v2
will disadvantage nodes in S2. Maximum throughput is achieved with the following Routing Paths
and associated flows:

• for si ∈ S1
⋃

Sb, set P ′
i,1 = P ′

i,2 ∝ P
(1)
i with flow f ′

i = 1/(k1 + kb)

• for si ∈ S2, set P
′
i,1 = P ′

i,2 ∝ P
(2)
i with flow f ′

i = 1/k2

The total throughput is f(F ′) = 2 and the fairness factor is ρ(F ′) = (k1 + kb)/k2.

Similarly for c).

5.2 Other Configurations

a) F = 2k: we have 2k disjoint paths from the sources to the sink, 2 from each source, each with
flow 1. Those will provide the Routing Paths with corresponding flows fi = 2 for all si for a
total flow of f(F) = 2k and fairness factor ρ(F) = 1.

b) F = k: The direct paths provide the optimum fair flows with fi = 1 (see Fig. 2). Adjustments
can be considered as in Section 7.

10

2s

1s

1v

2v

3s
3v

Figure 2: F = k

1s

2s

3s

5v

4v

3v

2v

1v

Figure 3: F = (k + 2)

c) F ≥ (k + 2) : for example, F = 5, k = 3. The fair flows would be f1 = f2 = f3 = 5/3.
However, this is un-achievable with 2 paths from each source, as follows. For any source si
holds fi,1 ≤ 1 and thus for a flow from si of 5/3, its second path must carry fi,2 ≥ 2/3. In
order to have maximal total flow, the cut must be saturated, thus there must be another
path, say Pj,1, with flow fj,1 ≤ 1/3, that traverses the same cut edge as Pi,2 . For a total flow
of 5/3 from sj , its second path must carry fj,2 ≥ 4/3, which is a contradiction, since no path
can carry more than 1 unit.

We can easily get f1 = 2, f2 = f3 = 1.5 (Fig. 3) , thus 1 > ρ(N) ≥ 2/3.

d) 3 ≤ F ≤ (k − 1) : for example F = 3, k = 7. The fair flow would be fi = 3/7. There are
networks where this cannot be achieved with 2 paths from each source. For example in Fig.
4, if the flow traversing each of the sources s1, · · · , s6 is 3/7, there is no way to get a flow of
3/7 traversing source s7 with only two paths. Maximum total flow (non-fair) can be achieved
if we send 2/5 via each of the sources s1, s2, s3, s4, s7 and 1/2 from each of the sources s5, s6.

11

1
s

2
s

3
s

4
s

5
s

6
s

7
s

1
v

2
v

3
v

Figure 4: F = 3, k = 7

Thus 1 > ρ(N) ≥ 4/5.

6 Fair 2-Splittable Flow when F = k + 1

Consider a network with unit node capacities N ′, its equivalent network with edge capacities N ′′

and let F denote the value of maximal flow in N ′′. Recall that M denotes the set of outgoing nodes
(vout) of the edges in a minimum cut and N is the subnetwork of N ′′ between s and M . Since all
edges in the cut have capacity 1, F is also the number of edges in the cut.

Consider the case when the size of the minimum cut F is one larger than the number of sources
k. Since finding optimal fair routes for this case employs graph theoretic concepts and results in an
especially interesting algorithm, we devote the present section to this type of configurations. With
F = k + 1, a fair 2-splittable flow needs to give to each source a total flow of (k + 1)/k. We start
with several preliminary observations and results.

A set of k̂ < k sources is said to be isolated if the minimum cut of N ′′ with all other sources
removed is of size k̂. A Fair flow assignment is possible only if there are no isolated sets of sources.
This is because if there is an isolated set of sources Ŝ, the maximal flow of F = k + 1 in N ′′ from
the dummy source s cannot give a flow of fi = (k + 1)/k to all i ∈ Ŝ. A simple test to negate
existence of isolated sets of sources is given by the following:

Lemma 6. In N ′′, set c(s, si) = 2 and the capacity of all other edges exiting s to 1. Find the
maximal flow from s to t. Repeat this separately for each source si ∈ S. If in all cases the maximal
flow is k + 1, there are no isolated sets of sources.

Proof. If there is an isolated set of sources, when selecting the link with capacity 2 as the link to
any of those sources, we will get a maximal flow of k or less.

12

Corollary 11. If there are no isolated sets of sources, then for any source si ∈ S holds f̂i ≥ 2,
namely there are at least 2 paths from i to the sink.

Our Algorithm is based on the construction of Augmenting Paths in N . Because of the structure
of N , flows and Augmenting Paths have special properties:

Lemma 7.

a) Any augmenting path is of value 1.

b) A flow can reach a (vin, vout) n-edge (representing a node v in the original graph G′) only
at the vin end and if it does, it must traverse the n-edge.

c) An Augmenting Path can traverse only an empty forward edge or a backward edge with flow
1. In the former case, it adds a flow of 1 to the edge. In the latter, it empties the edge.

d) An Augmenting Path can enter an empty (vin, vout) edge only in the vin end, in which case
it must traverse the n-edge and must leave over some edge outgoing from vout.

e) Consider a (vin, vout) edge that carries flow. That flow is of size 1. Denote by (wout, vin)
the adjacent edge the flow comes from and by (vout, zin) the adjacent outgoing edge the flow
leaves over. An Augmenting Path may :

• reach the edge (vin, vout) at the vin end on an incoming edge other than (wout, vin), in
which case it must continue on the backward edge (vin, wout)

• reach the edge (vin, vout) at the vout end on the backward edge (zin, vout) and leave on an
outgoing edge from vout other than (vout, zin)

• reach the edge (vin, vout) in the vout end on the backward edge (zin, vout), continue on the
backward edge (vout, vin) and then continue on the backward edge (vin, wout)

Proof. All properties follow directly from the facts that all (vin, vout) edges have unit capacities
and except for (vin, vout), node vin has only incoming edges and vout has only outgoing edges.

Case e) above results in the Augmenting Path ”hijacking” the path of the flow it encounters
and ”transferring” the responsibility of continuing the Augmenting Path to the source traversed
by that flow (illustration in Fig. 5 and exemplified below). That source will be referred to as the
Hijacked Source.

The Hijacking process is illustrated in Fig. 5, where we use the shorthand L and R for vin
and vout respectively. The edges (L2, R2), (L3, R3), (L6, R6) are n-edges. We start with a flow of
1 on s2, L6, R6, L3, R3, L2, R2, n2. An Augmenting Path with flow = 1 arrives at R2, traverses
R2, L2, R3, L3, R6 and leaves. While traversing the backward edges, it cancels the flow on those
edges, thus we are left with a flow of 1 from s3 to n2 and a flow of 1 from s2 via L6, R6, the latter
continued on the Augmenting Path. Source s2 is the Hijacked Source.

As seen presently, not all types of Augmenting Paths can be used in our Algorithm. We shall
need Augmenting Paths with a special property, referred to as the Self-Hijacking property.

Definition: An Augmenting Path starting on edge (s, si) is said to be Self-Hijacking if either
does not Hijack any source or the last Hijacked Source is si itself.

13

2s

2n

2L
2R

3L
3R

6L

6R

3Augmenting Path - last hijacked s

2Continuation of Augmenting Path - last hijacked s

Figure 5: Highjack

6.1 Maximal Unfair Flow

In a graph N ′ with no isolated sets of sources, consider the corresponding networks N ′′ and N .
Find the maximal flow in N ′′ from s to the sink. Maximal flow in a graph with uniform capacities
of 1 and ∞ induces unity flows. Therefore in N there are k+1 paths from s to M , each with unity
flow. Two of those paths in N traverse some source, s1 say. All other paths traverse the other
sources s2, · · · , sk. Except for edge (s, s1) that is common to two paths, all k+1 paths are disjoint.

Denote the following:

• M1 is the set of the two nodes {v0, v1} in M reached by the two paths that traverse s1.

• P
(0)
1 , P

(1)
1 are the paths in N starting at s, traversing s1 and ending at M1.

• P
(1)
i is the path in N starting at s, traversing source si, i = 2, . . . , k and ending at M .

• V1 is the set of nodes along the paths P
(0)
1 and P

(1)
1 , not including the dummy source s.

We can obtain a maximum total flow, F = (k + 1), by selecting the Routing Paths P ′
i,1, P

′
i,2 in

N ′ as follows:

• P ′
1,1 ∝ P

(0)
1 ;P ′

1,2 ∝ P
(1)
1 with flows = 1, thus f1 = 2

• for i = 2, . . . , k, select P ′
i,1 ∝ P

(1)
i ; P ′

i,2 ∝ P
(1)
i (namely P ′

i,1 ≡ P ′
i,2) with flow = 1, thus fi = 1

However, this choice induces an unfair assignment, whose ρ = 1/2. To obtain a fair assignment,
we seek to find a second path, not necessarily disjoint from the paths selected above, for each of
the sources si, i = 2, . . . , k. The algorithm is specified in Section 6.2.

14

6.2 The Algorithm for selecting Routing Paths with fair assignment

In this subsection, we specify our Algorithm for selecting Routing Paths and prove that it provides
Maximal Fair Routing. We first find a feasible 2-valid flow in N that also provides fairness. The
selected Routing Paths are then obtained by the corresponding 2-splittable flow in N ′.

The algorithm for obtaining the feasible fair 2-valid flow in N is performed in k stages. At the
end of stage j, there are j sources with two paths to M and k − j sources with one path to M .
The configuration in Section 6.1 corresponds to the end of stage j = 1. At each stage, the sources
are renumbered, so that at the end of stage j, sources 1, . . . , j have 2 paths to M and sources
j + 1, . . . , k have one such path.

For each 1 ≤ j ≤ k, we denote:

• Mj is the set of cut edges reached by paths traversing sources si, i ≤ j

• Pi,1, Pi,2 are the selected paths in N traversing source si, i ≤ j

• Vj =
⋃

i≤j(Pi,1 ∪ Pi,2) (Recall that a path can be seen as a node set).

The Algorithm

a) The paths in N for s1 are as in Section 6.1, P1,1 = P
(0)
1 ;P1,2 = P

(1)
1 .

b) Send a flow of 1 on each of the paths P
(1)
i , i = 2, . . . , k as defined in Sec. 6.1.

c) Using the Algorithm in Section 6.3, find a Self-Hijacking Augmenting Path from some source
to V1. Renumber the sources so that the found source is s2. As shown in Section 6.3, the
construction of the Self-Hijacking Augmenting Path results in:

• 2 paths traversing s2, disjoint except for (s, s2), one terminating at a node in V1 and
one terminating at a node in M that is not in M1. Denote this cut node by v2 and
M2 = M1 ∪ {v2}.

• (k − 2) paths, one traversing each of si, i = 3, . . . , k and each terminating at one of the
nodes in M\M2.

Denote:

• The path that traverses si, i = 3, . . . , k by P
(2)
i .

• The path traversing s2 and ending in V1 by P
(2)
u and the one ending in the cut node v2

by P
(2)
m . Let w be the end node of P

(2)
u .

The selected paths in N that traverse s2 are selected as (⊔ denotes concatenation):

• P2,1 = P
(2)
u ⊔ the sub-path in V1 from w to M

• P2,2 = P
(2)
m

d) Proceed similarly for every j > 2: using the Algorithm in Section 6.3, find a Self-Hijacking
Augmenting Path traversing some source to Vj−1. Renumber sources such that this source is

sj . Denote the path that traverses si, i = (j+1), . . . , k by P
(j)
i . Denote the 2 resulting paths

15

2s

1s

w

0v

1v

2v

(2)

u
P

(2)

m
P

Figure 6: k = 2

traversing sj by P j
u and P j

m. Let vj denote the cut node that is the end of P j
m. Let w be the

end node of P j
u .

The selected paths in N that traverse sj are selected as:

• Pj,1 = P j
u ⊔ the sub-path in Vj−1 from w to M

• Pj,2 = P j
m

For future reference, we state a property in the following lemma, that follows directly from the
construction in the Algorithm:

Lemma 8. For every j ≤ k−1, cut node vj is reached only by selected paths Pj,2 and Pℓ,1, ℓ > j.

The construction is illustrated in Fig. 6, Fig. 7, Fig. 8 for 2,3 and 4 sources respectively.

Fig. 6 shows the construction for k = 2. Note that since we do not constrain the problem to

planar graphs, the end of P
(2)
u can be on either P1,1 or P1,2. The figure depicts the case when it is

on P1,2.

Fig. 7 shows the graph for k = 3. It assumes that it started with V2 of Fig. 6, namely the end

of P
(2)
u was on P1,2. It depicts all possible cases for P

(3)
u (all the dashed lines). For the sequel, we

take the case when the end of P
(3)
u is w(1).

Fig. 8 shows the graph for k = 4, assuming that it started with the choice for V3 as mentioned

above. It depicts several possibilities (not all) for P
(4)
u .

Theorem 12. -Fairness: Construct the Routing Paths as in the Algorithm above. There are
flows fi,1, fi,2, i = 1, . . . , k in the final configuration Vk that provide a Fair Maximum Flow F .
Those flows can be calculated explicitly or found algorithmically.

Proof. If a Fair Maximal Flow is achieved, the flows that traverse each source must be fi = (k+1)/k
and the flows through each node in M must be 1. The numbering of the sources and the cut nodes
is as defined in the Algorithm, namely in the order in which the selected paths have been found by
the Algorithm.

16

2s

1s

0v

1v

2v

3s

3v

(3)
w

(1)
w

(0)
w

(4)
w

(2)
w

Figure 7: k = 3

2s

1s

0v

1v

2v

3s

3v
4s

4v

(1)
w

(0)
w

(2)
w

(3)
w

Figure 8: k = 4

17

We start with the last found source sk (recall that there are k sources). We select fk,2 = 1,
which is always feasible. Thus fk,1 = 1/k. We proceed to assign flows backwards to sk−1, . . . , s1.
We show by induction that for all j < k, fair flows fj,1, fj,2 can be calculated from previously
assigned flows {fℓ,1, fℓ,2, ℓ ≥ j + 1} .

For any j < k, suppose we have already assigned fair flows to sj+1, ..., sk. We want to assign

fair flows to sj . Let f̂j denote the total flow that traverses sj+1, ..., sk minus the flow that enters
the cut nodes in M \Mj = {vj+1, ..., vk}. Then

f̂j =
k + 1

k
(k − j)− (k − j) =

k − j

k
≤ 1−

1

k

Note that f̂j is exactly the flow that traverses sj+1, ..., sk and enters v0, v1, ..., vj . Let
ˆ̂
fj denote

the flow that traverses sj+1, ..., sk and enters only vj . The flow
ˆ̂
fj can be determined from the

previously assigned flows {fℓ,1, fℓ,2, ℓ ≥ j + 1}. Obviously,
ˆ̂
fj ≤ f̂j . Thus 0 ≤

ˆ̂
fj ≤ 1 − 1/k. But

Lemma 8 implies that, in addition to
ˆ̂
fj , only fj,2 reaches vj , thus fj,2 = 1−

ˆ̂
fj . Therefore fj,2 can

be calculated from {fℓ,1, fℓ,2, ℓ ≥ j + 1} and has value 1/k ≤ fj,2 ≤ 1. Thus it is feasible and its
value is larger than or equal to 1/k. This allows fj,1 = (k + 1)/k − fj,2 to be fj,1 ≤ 1 and thus to
be feasible and fair.

We illustrate the above on several scenarios.

In Fig. 6, k = 2. The flows traversing each of the sources must be 3/2. Flow f2,2 = 1, thus
f2,1 = 3/2− 1 = 1/2. Thus f1,2 = 1− 1/2 = 1/2 and thus f1,1 = 3/2− 1/2 = 1.

In Fig. 7, k = 3. The flows traversing each of the sources must be 4/3. We assume that the
paths traversing sources s1, s2 are as in Fig. 6. Consider the case when w(1) is the end node of

P
(3)
u . The flows can be calculated as follows: f3,2 = 1, thus f3,1 = 4/3 − 1 = 1/3. Also, f2,2 = 1,

thus f2,1 = 4/3 − 1 = 1/3. The flow entering v1 must be 1, thus f1,2 = 1 − f3,1 − f2,1 = 1/3 and
f1,1 = 4/3− 1/3 = 1.

In Fig. 8, k = 4. The flows traversing each of the sources must be 5/4. We assume that the
paths traversing sources s1, s2, s3 are as in Fig. 7.

We investigate several cases. Suppose w(3) is the end node of P
(4)
u . We have f4,2 = 1, thus

f4,1 = 5/4 − 1 = 1/4. Thus f3,2 = 1 − 1/4 = 3/4, thus f3,1 = 5/4 − 3/4 = 2/4. Also, f2,2 = 1,
thus f2,1 = 5/4 − 1 = 1/4. The flow over v1 must be 1, thus f1,2 = 1 − f3,1 − f2,1 = 1/4, thus
f1,1 = 5/4− 1/4 = 1.

If w(2) is the end node of P
(4)
u , then f4,2 = 1, thus f4,1 = 1/4. Also, f3,2 = 1, thus f3,1 = 1/4.

The flow f2,2 = 1− f4,1 = 3/4, thus f2,1 = 2/4. Also f1,2 = 1− f2,1 − f3,1 = 1/4, thus f1,1 = 1.

If w(1) is the end node of P
(4)
u , then f4,2 = 1, thus f4,1 = 1/4. Also, f3,2 = 1, thus f3,1 = 1/4.

Also, f2,2 = 1, thus f2,1 = 1/4. Also, f1,2 = 1− f2,2 − f3,1 − f4,1 = 1/4, thus f1,1 = 1.

If w(0) is the end node of P
(4)
u , then f4,2 = 1, thus f4,1 = 1/4. Also, f3,2 = 1, thus f3,1 = 1/4.

Also, f2,2 = 1, thus f2,1 = 1/4. Also, f1,2 = 1− f2,1 − f3,1 = 2/4, thus f1,1 = 1− f4,1 = 3/4.

Given Vk obtained by our algorithm, the above flows can also be obtained algorithmically by
running the non-linear optimization algorithm (in MATLAB say):

18

2s

1s

0v

1v

2v

3s

3v

1
V

1L
1R

2L
2R

3L
3R

4L
4R

5L

5R

6L

6R

Figure 9: Self −Hijacking

max
∑

i log(fi,1 + fi,2)

subject to

{ ∑

i(fi,1 + fi,2) = F
capacity constraints on nodes of M

Given that the maximum of the product of variables whose sum is given is reached when the
variables are equal, the above optimization leads to fair flow.

6.3 Construction of Self-Hijacking Augmenting Paths

As seen above, step (j + 1) of the Algorithm is based on sending a flow of 1 over each path

P
(j)
i , i = j, . . . , k and finding a Self-Hijacking Augmenting Path traversing one of the sources

si, i = j, . . . , k. The construction of this Augmenting Path produces the second path for that
source. The need for the Self-Hijacking property is shown in the following example:

Consider Fig. 9, where for the sake of clarity, we draw only some of the graph edges. We
start with the paths (s, s1, L5, R5, v0) , (s, s1, L4, R4, v1), (s, s2, L6, R6, L3, R3, v2), (s, s3, L1, R1, v3)
and send a flow of 1 on the latter two (recall that the dummy source s is on the paths, but is not
depicted in the Figures). The set V1 is as depicted. We seek a self-Hijacking Augmenting Path
traversing s2 or s3 to any node in V1.

Selecting the Self-Hijacking-Augmenting Path (s, s2, L2, R2, L3, R6, L4) from s2 to V1 results in
two paths traversing s2, one to v2 and one to nodes of V1. The first will be selected as P2,1, while
the second concatenated with the corresponding links in V1 will compose P2,2 . This allows adding
s2 to the collection of sources for which we have found two paths. However, selecting instead the
Augmenting Path (s, s3, L2, R2, L3, R6, L4) from s3 to V1, which is not Self-Hijacking, results in two
paths traversing s3 towards v2, v3 and one path traversing s2 to V1. This outcome does not serve
our algorithm.

19

Lemma 9. At the end of stage j, 1 ≤ j ≤ k in the Algorithm of Section 6.2, there always exists
an Augmenting Path traversing each source si, i = (j + 1), . . . , k to some node in Vj.

Proof. Note that at the end of stage j in the Algorithm, there is one path P
(j)
i , carrying 1 unit

of flow, from each source si, i = (j + 1), . . . , k to the cut. The total is (k − j) units of flow. The
set of sources {si, i = (j + 1), . . . , k} contains k − j sources and since there are no isolated sets of
sources, the minimal cut of this set has at least (k − j + 1) nodes. Therefore, there is at least one
additional path from each source to the sink. It must traverse Vj .

Assume that we are at the end of stage j in the Algorithm of Section 6.2. That stage requires
the construction of a Self-Hijacking Augmenting Path. Such a path is found as follows:

Find an Augmenting Path ˜̃Pi traversing each source {si, i = (j + 1), . . . , k}. If any of the
Augmenting Paths is Self-Hijacking - done. Otherwise:

• Denote by h(si) the last hijacked source of ˜̃Pi.

• Find a series of sources s1, s2, . . . , sℓ , such that sm = h(s(m−1)), m = 2, . . . , ℓ and s1 = h(sℓ).

• Alter ˜̃Pi by deviating the path backwards all the way to h(si) (for example in Fig. 9, continue
the Augmenting Path from R6 to L6 and s2). Denote the resulting Augmenting Path by P̃i.

• Let P̃ = P̃s1 ⊔ P̃s2 . . . P̃s(ℓ−1) ⊔
˜̃Psℓ

• Let P
(j+1)
u be P̃ with all loops removed.

Theorem 13.

a) There exists a series of sources s1, s2, . . . , sℓ, as above.

b) The path P
(j+1)
u constructed above is a Self-Hijacking Augmenting Path originating at s1

and terminating at some node in Vj.

Proof. Part a) follows from the fact that there is a finite number of sources. To prove part b), note
that since we are following Augmentation Paths in graphs with unity capacities, the only way for

P
(j+1)
u to be blocked is if it attempts to employ an edge that P

(j+1)
u itself had employed before. In

other words, that edge was visited before by P
(j+1)
u . This contradicts the fact that P

(j+1)
u is loop

free. Finally, note that h(sℓ) = s1 , namely the last hijacked source of ˜̃Psℓ is s1, thus P
(j+1)
u is a

Self-Hijacking Augmenting Path. Moreover, ˜̃Psℓ terminates at some node in Vj and therefore so

does P
(j+1)
u .

7 Adjustments to the Basic Algorithms

If F = 1, we can improve the throughput of HDR, if the two Routing Paths are as disjoint as
possible [Seg15]. The algorithm for making them as disjoint as possible is:

20

1. Find all 1-cuts in the network. This is easily done by finding any 1-cut with a Max Flow
algorithm, setting its harvesting rate to 2 and repeating the process.

2. For all 1-cuts along the shortest path, set their harvesting rate to 2.

3. Now the Max Flow will be at least 2 and will provide two disjoint paths, each with flow of 1.

4. Translating these paths to Routing Paths, we obtain two paths PA and PB, each with flow
1/2, as disjoint as possible. The throughput will be T = 1.

Consider the network of Fig. 10. The Harvesting Rate of all relaying nodes corresponds to 10
packets/slot. The nominal maximum flow is 10 packets/slot. It can be achieved if both paths are
that can be obtained with both paths being 1 − 2 − 4 − 5. With the algorithm above, we get one
path 1− 2− 4− 5 and the other 1− 3− 4− 5. Simulation shows that HDR gets throughput of In
the first case, we get an throughput of F = 9.13 packets/slot, while in the second case T = 9.81
packets/slot. Note that the nominal throughput of 10 packets/slot cannot be achieved, since as
explained in the Appendix, the simulation takes into account energy spent by nodes for control
packets and for overhearing headers of data packets not intended for the node itself.

Figure 10: One Source - Three Relaying Nodes

In all configurations, the common portion of two paths can be translated into 2 paths that are
as disjoint as possible as shown above.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[Bai03] Georg Baier. Flows with Path Restrictions. PhD thesis, TU Berlin, 2003.

21

[BKS05] Georg Baier, Ekkehard Köhler, and Martin Skutella. The k-splittable flow problem.
Algorithmica, 42(3-4):231–248, 2005.

[CCPS98] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial Optimization. John Wiley & Sons, Inc., New York, NY, USA,
1998.

[ELSY17] S. Erlich, A. Lavzin, A. Segall, and M.I. Yomtovian. A simulation system for energy
harvesting networked tags (EnHANTs). Technical Report arXiv:1701.01799 [cs.NI],
2017.

[JMB01] David B. Johnson, David A. Maltz, and Josh Broch. Dsr: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. In In Ad Hoc Networking, edited by
Charles E. Perkins, Chapter 5, pages 139–172. Addison-Wesley, 2001.

[KS06] Ronald Koch and Ines Spenke. Complexity and approximability of k-splittable flows.
Theoretical Computer Science, 369(1-3):338–347, 2006.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

[LS] A. Lavzin and A. Segall. Hdr - a routing algorithm for multiple source networks with
energy harvesting units. In submitted to MEDHOCNET 2018.

[MGS+15] R. Margolies, M. Gorlatova, J. Sarik, G. Stanje, J. Zhu, Miller P., M. Szczodrak, B. Vi-
graham, L. Carloni, P. Kinget, I. Kymissis, and G. Zussman. Energy harvesting active
networked tags (enhants): Prototyping and experimentation. In ACM Transactions on
Sensor Networks, volume 11, pages 62–99, 2015.

[PR99] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In WMC
SA’99, 2nd Workshop on Mobile Computing Systems and Applications, pages 90–100,
Feb 1999.

[Seg15] A. Segall. HDR - a hysteresis routing algorithm for energy harvesting tag networks. In
MEDHOCNET 2015, Algrave, Portugal, June 2015.

22

