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Abstract

In image analysis, processing and understanding, it is highly desivable £0 be able to
process unages and feature domaing by methods that are specific to these domains. We
show how the geemetrical framework of scale-space flows is most cowveniont for this
purpese, and demonstrate, as an example, how different modeis of color perception
can we inferpreted as different geometries of the color space and result in a variety
of processing schemes. We ge beyond these madels and show how one can switeh lo-
cally between the L, and Ly norms for different processing flows of spatial and celor
domains. The parameter that interpolates between the norms is the magnitude of con-
trast/luminance, taken here as a local Function #f the image embeddiug space. The
resulting spatial and grey level/liuminance preserving flow, can be used for conditional
denoising and segmentation. These examples demonstrate that the propased frame-
work can mcorporate centext or task-related data, furnished by either the human user
or an active vision subsystem in a coherent and convenient way.

1 Introduction

In a variety of applications of denoising, smenthing and enhancement of images, it is
advantageous to have simple and automatic “buttons” that enable control the local
smoothing of an image or feature space according to some 8 priori knowledge of the
class of images te be precessed and the task at hand.

We present and implement a method that employs the recently-proposed gesmet-
ric Beltrami framework for non-linear scale-space methods [12]. According to this
framework, an lmage is treated as an emabedding of & manifold in a higher dimensional
spatial-feature manifold. The enabedding manifold s a hybrid space that combines spa-
t1al coordimates and a variety of feature coerdimates. The features may include apart
frem intensicty and coler, clements of the intensity jet bundle {basizally derivatives of
the intensity ), wavelets' parameters like typical local size and orientation, statistical ud
others characteristics. The choice of the appropriate emnbedding space depends on the



class of images to be processed and the nature of the task. The knowledge about the
task and the nature of the feature space is encoded in the geometry of the embedding
space.

This study is devoted to grey level and color images. Textures will be dealt
with separately [13]. A grey level image is considered according to the proposed
framework as a two-dimensional surface (i.e. the graph of I{z,y)), embedded in
the three-dimensional space whose coordinates are (z,y, [}). Likewise, a color image
is considered as a two-dimensional surface embedded in the five-dimensional space
whose coordinates are (z,y, U, Uy, Us), where (Uy,Us, U;) are color coordinates (e.g.
(U,,Us,Us) = (R, G, B)). Color space and its perception is an issue that has fascinated
researchers for over a century. It is natural, from our viewpoint, to apply our frame-
work to this class of color images since the knowledge accumulated along the years is
integrated into and encoded in the geometry of the color space. This form is especially
convenient and readily available to use in the Beltrami framework.

It was suggested [12], that the nonlinear scale space can be treated as a gradient
descent with respect to a functional that depends on the geometry (i.e. the metric)
of the image surface, as well as on the embedding and the geometry of the embedding
space. In the examples treated previously, it was assumed that the embedding space
is Euclidean and that the system of coordinates that describes it is Cartesian [12],
[4]. In fact, the geometry of the emnbedding space is flexible and can be determined
according to an a priory knowledge about the class of images to be processed and the
high level task that one has in mind. We view the geometry of the embedding space
as the interface between the high-level task, the a priory knowledge and the low-level
process to be implemented.

The simplest and most intuitive example, where a high level constraint is introduced
via a change in the embedding space geometry, is the adaptive smoothing of a grey-
level image according to different illumination conditions. This is achieved by having
an intensity-dependent embedding space geometry. We treat grey level images as an
embedding of a 2D surface in a 3D space whose coordinates are (z,y,I). We then
control locally in z,y, and I the contrast normalization ratio that parameterizes the way
we choose to normalize the feature coordinate I with respect to the spatial coordinates
z and y. Making the contrast normalization ratio a local function of {z,y, ) enables
us to control the rate of diffusion in the spatial (i.e. # and y) domain as well as along
the feature coordinate I. A similar idea, of controlling locally the gain in the image
acquisition formation process, was used by Zeevi et al. [19]{20].

Another well-known example is the geometry of the color space. Research related
to this issue started more than a hundred years ago and various geometrical and sta-
tistical methods were applied in order to resolve it. We show here how the knowledge
accumulated is naturally incorporated in the geometrical framework.

The grey level technique and color space information can be combined and naturally
generalized to treat colored images in cases where a different noise is encountered in
each of the color channels. A different PDE algorithm was utilized in 3], but with no
coupling between the different color channels.

The paper is organized as follows: Section 2 reviews approaches to the geometry of
the color space. Section 3 presents the geometrical framework for scale space, following
the approach presented in [12]. The Beltrami flow, which results from the geometric
framework, and integrates the information presented in Section 2 into a practical tool



of denoising, is presented in Section 4. In Section 5 we study the possibility to gauge
locally the importance of the feature space with respect to the spatial space. Both,
grey-level and color analysis are carried out in details. Section 6 deals with the numer-
ical implementation of the method and presents results. In Section 7 we discuss the
potential for further research. In order to be self-contained we review in the appendix
the Ricmannrian geometric definitions, terminology and theorems used in this study.

2 Color Space Geometry

Two questions should be addressed in the process of evaluating the geometry of the
color space. The first relates to the variables (or coordinates), and the second to the
geometry of the color space. Attempts to describe color perception geometry go back
more than a hundred years. Helmholtz [2] was the first to define a ‘line element’
(arclength) in color space. He first used a Euclidean R, G, B space defined by the
arclength

= (crdlog R)* + (cqdlog G)* + (cpdlog B)*. (1)

His first model failed to represent faithfully empirical data of human color perception.
Schrodinger [10] improved the model of Helmholtz by introducing the arclength

ds? = 1 cr(dR)? . ec(dG)? N cp(dB)?
" cgR+ecgG +cpB R G B !

(2)

where cg, €, cp are constants. Schrodinger’s model was later found to be inconsistent
with findings on threshold data of color discrimination.

Koendcrink et al. [5] generalized these line elements and incorporated a family of
metrics

(3)

. 2 dene dB)2
ds? = (cpR + ¢ G + ¢gB)* 2 (CR(dR} + c6(dG) + c5dB) ) ,

R G(}: Buo

where different values of « correspond to different models: o = 2 is the Helmholtz
model, @ = 1 is Schrodinger’s. Koenderink ot al. studied the case of & = 0.
Stiles at al. advocated another generalization of the Helmholtz line element

= {cgdlog(aR + b))% + (cgdlog{aG + b))? + (cpdlog(aB + b))?, (4)

with @, b being constants. Other analytical attempts culminated in the Vos-Walraven
line element [16]

45 = (@R [aufu + e eGP0+ P+l B+ )]
+ (G [me+npfFR2(1+-E) +af B )]
b B [uf+ b0+ LY
+ 2dRdG [m fu—nrfrR(L+ R%)G(l + G%) + e fsBH1 + B%)Q]

+ 2dRdB ["'?Lfb ~nafsB(1+ "-B—)Y(l + K]}
By Yo
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B Y
+ 2dGdB [anL — 0y fsB(1 + E,E)Y(l + %)} , (5)

with Y = R+ G, 51,77, 5, are constants, and

B + Y
f o= 1+B/Bo+B3/B} 7 1+Y/¥+Y3/YE
s 7 B(1—B/By) Y{4Y/Ye) ]2 Y Y3 B, B3
[]+B/Bo+B3G/Bf’ + 1+Y;1’0+y30,fy13] I+y+ ?F)(l - E?WB
B R
fr = 1+G/Go+GE/G3 + R/ Rot BOES
G(1—G/Go) R(1+R/Ra) 12 R , RS 7, G
[1+G;GO+G3;G{' ¥ 1+R;"R0+R3;’R'}] I+ g+ R3 (I+gt Ef)RG
1
fL = (6)

L1+ L/Ly + L3/L%)

with L=R+ G+ B.

MacAdams constructed an empirical line element based on direct psychophysical
experimental results. His result can be given in tables and graphs only. The theoretical
challenge is the construction of an analytical line element that is compatible with the
features of the entire color p?arception space found in MacAdams’ experimental data.

Summarizing the classcs of existing models for color space, we have two main cases:

» The inductive line elements that derive the arclength by simple assumptions on the
visual response mechanisms. For example, we can assume that the color space can
be simplified and represented as a Riemannian space with zero Gaussian curva-
ture, e.g. Helmhaoltz [2] or Stiles [15][18] models. Another possibility for inductive
line elements is to consider color arclengths like Schrodinger or Vos-Walraven [16].
These models define color spaces with non zero curvature (‘effective’ arclength).

s The empirical line elements, in which the metric coeflicients are determined to fit.
empirical data. Some of these models describe a Euclidean space like the CIELAB
(CIE 1976 (L*a*b")) [18], recently used in [9]. Others, like MacAdam [6][7], are
based on an effective arclength.

An alternative possible approach is to use statistical methods. Since the basic
colors red, green and blue are correlated in most natural images, we can adopt the
Buchsbaum [1] and the Wolf-Ginosar-Zeevi approach [17], and apply the KLT to cbtain
an uncorrelated basis ky, k2 and k3. Denoting by I the three color planes, where a =r,
g, b, the autocorrelation matrix is

P = iifﬂff’ (7)
TONM & &
=1 3=

where [ is the the channel value shifted by the mean. The autocorrelation matrix
was found for a family of outdoors scenes and diagonalized. The transformation from
R, G, B to the new basis is given explicitly by [17]:

ki 0.3744  0.4452 0.8103\ /R
(kg = | —-0.3249 -0.1195 0.0753) (G : (8)
ks 0.0051 0.0012 0.0002/ \B

where k, are the eigenvectors of the autocorrelation matrix. The coordinates used by
us are (after defining = = ¢’ and y = o7)

(x}yakl($ay)sk?(xky):k:i(z}y))- (9)



The k; coordinate represents the achromatic channel of luminance, while ks and k3 are
red-green and blue-yellow chromatic channels.

3 The Differential Geometric framework

This framework of image presentation and analysis is based on geometrical ideas

adopted from general relativity and high energy physics. The essence of the method
can be summarized as follows: '

¢ An image is congidered to be a Riemannian manifold embedded in a higher di-
mensional Riemannian manifold which is called the spatial-feature manifold. A
two-dimensional image is aceording to this viewpoint a Riemannian surface. Let
introduce on the nonlinear surface a local coordinate system (¢!, 0%). The embed-
ding of this surface in, for example, a three-dimensional space with coordinates
(X', X?% X?), is realized by specifying, for each point of the surface, the three-
dimenslonal coordinates, namely:

&

Let M denote the higher dimensional spatial-feature manifold. We introduce, in
general, a one-parameter family of embedded images (Xi(a!,0?; )8 Y where
¢t is the independent variable of the evolution, called the scale or “time”. This

parameter determines the degree of blurring or denoising of the image.

» From a geometrical viewpoint this family of embedded images describes a flow of
a two-dimensional surface within a higher dimensional space. The dynamics of
the surface How is governed by a nonlinear heat-type partial differential equation
applied to this one-parameter family of images. The equation is derived as a
gradient descent of a functional that weight embedding maps in a geometrical
way. It gives a precise control ou the direction and amount of diffusion at each
point of the image surface. This is to be compared with linear scale-space that
diffuses “blindly” or the Perona-Malik equation that has a local control on the
amount of diffusion but not on its direction.

We turn now to a rigorous treatment of these ideas and present the technical tools
implemented in the sequel. A precise definition of a manifold and its geometry are
incorporated. Next a measure on the space of embedding maps is introduced. The
measure, or the energy functional, depends on the geometry of the spaces involved and
is independent of the coordinate system sclected to describe these manifolds.

3.1 The Induced Metric

Let X : ¥ = M be an embedding of (X, (g,,)) in (M, (hi;)), where £ and M are
Riemannian manifolds and (g,,) and (hy;) are their metrics respectively. We can use
the knowledge of the metric on M and the map X to construct the metric on Y. This
procedure, denoted formally by (g, )y = X*(hij)am and called the pullback, is given
explicitly as follows:

gu ot o) = hi;(X)8, X9, X7, (10)



where 7,7 = 1,...,dimM are being summed over, using the Einstein summation con-
vention, and 8,X* = 8X*(c!,a?)/do".

3.2 The Measure On Maps

The diffusion equation to be used is derived as a gradient descent of an action func-
tional. The functional in question depends on both the image manifold and the embed-
ding space. Denote by (Z, {g,,)) the image manifold and its metrie, and by (M, (k;;))
the spatial-feature manifold and its metric. Then, the mapping X : ¥ — M is presented
by the action [8]:

S[X*, g, hij] = / A0 /3™ 8, X8, X hiy (X), (11)

where m is the dimension of X, ¢ is the determinant of the image metric and ¢
is the inverse of the image metric. The range of indices is p,» = 1,...,dim L, and
t,j = 1,...,dim M. The metric of the embedding space is h;;.

The Polyakov action is 2 generalization of the Lo norm to curved spaces. Here,
d"o,/g is the volume element (area element-for d=2) of ¥ - the image manifold,
and g" 8, X*8,X7hi;(X) is the generalization of |V./|? to maps between non-Euclidean
manifolds. Note that the volume element as well as the rest of the expression is
invariant under reparameterization, that is, o# — §#(¢',0?). The Polyakov action
depends, actually, on the geometry and not on the way we describe the objects via
our parameterization of the coordinates. In other words the resultant value of the
functional does not depend on the choice of local coordinates.

3.3 The Gradient Descent Flow

Given the above functional, we have to choose the minimization criterion. We may
choose, for example, to minimize the functional only with respect to the embedding.
In this case the metric g, is treated as a set of parameters that can be selected with
reference to the application. Another choice i8 to minimize only with respect to the
feature coordinates of the embedding space, or one may choose to minimize the image
metric as well. Each of these choices yields a different flow. Some flows are, in fact,
identical to existing methods like the heat flow, the Perona-Malik flow, or the mean-
curvature flow. Other choices are new and will be described below in detail.
Another important point is the choice of the embedding space and its geometry. In
general, we need information about the task at hand in order to fix the right geometry.
Using standard methods in variational calcultus, the Euler-Lagrange (EL) equations,
with respect to the embedding, are (see [12] for derivation):
1 ;45 1 . . ,
-3 \@h“m = m\/_ga,,(\/agwa,,xs) + %0, X78, X g, (12)

where Fj % are the Levi-Civita connection coefficients, with respect to the spatial-feature
metric h;;, defined as (see Appendix A):

. 1. . ; ‘
= §h”(ajh:k + Okhji — Oihyp). 1



The second term in Eq. (12) is due to the non-linear geometry of the embedding space.

We view the scale-space as a gradient descent:
X;E:ax*':_ 1 ,ads

ot 2,/g 8X!

A few remarks are in order. First, note that we took the freedom to multiply the
EL equations by a strictly pesitive function and a positive definite matrix.

This factor is the simplest one that does not change the minimization solution, while
giving a reparameterization invariant expression. This choice guarantces geometric
flow and does not depend on the parameterization. The operator acting on X' in the
first term of Eq. (12) is the natural generalization of the Laplacian from flat spaces to
manifolds, called the Laplace-Beltrami operator, or in short Beltrami operator, denoted
by A,. When the embedding is in a Euclidean space with a Cartesian coordinate
system, the connection elements are zero. If the embedding space is not Euclidean,
we have to include the Levi-Civita connection term since it is not identically zero any
more.

(14)

4 The Beltrami Flow

The metric of the embedding space is composed from the spatial metric and the feature
space muetric as a direct sum. Namely:

d'sg = dsgpatial + ﬁds?feature ’ (15)

More general line elements for the spatial-feature space are, in principle, possible.
One such possibility is to consider a non-constant §, such that the strength of the
conjugation between the spatial and feature coordinates is locally fixed in spatial and/or
image features. This generalization, treated below in Section 4, is one of the novelties
of this study.

Other generalizations may include non-trivial metric elements that combine spatial
and feature coordinates (i.e. mnon trivial coefficients of dxdl for grey level images or
dydR for color images). Such further generalizations as well as numerical results will
be reported elsewhere {13].

4.1 Grey Level Beltrami Flow

Consider grey level images, it is clear that the intensity I has to be considered differently
from z and y. In fact, the relative scale of I with respect to the spatial coordinates
(z,y) has to be specified. This can be interpreted as taking the following metric of the
embedding space

1 0 0
(hij) = (0 1 0). (16)
00 p

We will see below that different limits of this ratio 3 interpolate between the flows that
originate from the Euclidean L' and L? norms.

A grey level image is regarded asa map f : X — R3, where ¥ is a two-dimensional
manifold, and the flow is natural in the sense that it minimizes the action functional

7



with respect to I and taking the metric {g;;) as the induced metric Eq. (10}. It is
easy to verify that this Bow is invariant under reparameterization. The coordinates X
and Y are, according to this viewpoint, parameters determined as above by ¢! and o2.
The result of the minimization is the Beltrami operator acting on I:

1

—3,(/99*"8,I) = HN;, (17
N Vog™ o, ! !
where H is the mean curvature and N; is the component, in the I direction, of the
vector normal to the surface, given explicitly by the following expressions:

(1+ Iy — 20Dy Iy + (1 + I2) Iy
o
1
- _.__.._(._I 1_I sl)Ta (18)
Vel
where g = 1 + I2 +I§.
The geometrical meaning is obvious; each point on the image surface moves with
a velocity that depends on the mean curvature and the 7 component of the normal
to the surface at that point. Since the normal to the surface along cdges lies alinost

entirely in the X-Y plane, I changes very little along the edges while the flow drives
other regions of the image towards a minimal surface in a more rapid rate.

I¢=A9IE

4.2 Color Analysis

Similarly, to the above treatment of grey level images, in the case of for color images we
minimize with respect to the color space coordinates, i.e. R,G,B or the KLT coordinates
K, K3, K;3. For the geometry we choose the following metric

ds? = dz® + dy* + Bds2,,,,, (19)

where 42 is constant. Alternatively, for such a fixed 3, we can say that the metric of
the embedding space is

1 0O 0 0 0
0 1 0 0 0
(h'ij) =10 0 pBh Bhrg Bhey | - (20)
0 0 Bhy Bhyy Bhgs
0 0 pBhey Bheyy Phy

In the color spaces that we described in Section 2, all the metrics, but the Vos-
Walraven one, were diagonal. Namely, they have the form:

1 0 0 0 0
0 1 0 0 0
(hij) ={0 0 pBhe 0 0 . (21)
0 0 0 ﬁhgg 0
0 0 0 0 Bhay

The induced metric elements are according to Eq. (10):

g1 = 14 B(herRE + hyyG? + hyyB2)

8



g1z = gn = (R Ry + fﬁggGrcGy,"' by By By )
g2 = 1+ B(he Ry + hyyGh + hyp B2). (22)

Note also that this two-dirnensional image-induced-metric is different from the one we
had in the Euclidean case. It means that the choice of the color space geometry has a
direct impact on the first term of the diffusion equation (i.c. —;%8“(\/‘69“”8,,4?{"). This
is not the only place where changes should be made. The second term which includes in
this case non-trivial Levi-Civita connection coeflicients, should be evaluated as well. We
introduce the notation 8; = Bh;; for ¢ = r,g,b and calculate the Levi-Civita coefficients.
In our case h;; is

hij = iy . (23)
Using this explicit form in the general formula of Eq. (13), we get
. 1,
_:-'k = Eai l{djcriégk + 6;:(!,:(553' - Biaj(sjk): (24)

This means that a Levi-Civita coefficient is zero, unless one of the lower indices equals
the upper one or the lower indices are equal. In the case of the Schrédinger model, we
find:

L
Ly, = A_L", (25)
where A = ¢, R + ¢,G + ¢ B. A short analysis yields for this model
. icg S 2 SR S Lg..g. 26
ik ZAIJ.' ik 24 ik 2A ij 2, i3 0%k, ( )
or term by term:
c 1
. o= -1
” 2A QCI,.
= - _ %
My = = ~34
Ch
:b = FET‘I: _ﬁ
[ _— C!}' r
Fyg - 2Afg
T cbr‘r
b = 241 (27)
where all other non-zero elements are obtained by cyclic permutations of {r, g,b}.
Combining Eqs. (12), (14) and (26} we finally get the flow:
1 c . .
I[= 08,1 = (55 + 7)) (Rig" +2R:Ryg'” + Ryg™)—
c , .
L (R:Gog" + (RaGy + RyGa)g™ + ByGyg™)~
Cp
4 (BeBog' + (RaBy + RyBr)g' + By Byg™)+
o R '
L (G29" +2G.Gy0" + G+
o R .
a5 (B’ +2B.Gyg" + Bye™), (28)
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r gz9 ng 11 12 t
AgI = (—2g + 2g + 9; +gy)f,,+
12
Y=g gy‘}'
(—29 + = % + gl2 +gy L+
glljn::l:+2912I;y+922I;y’ {29)

gl = gY |0z (gi = Bg” [By) and g, = Bg/0z (g, = Ig/Dy).
A flow based on Stiles’ line element is computed similarly. The line element sug-

gested by Koenderink et al. is closely related to the local contrast normalization method
and is treated in the next section.

5 Local Contrast Normalization

5.1 Analysis of Image Intensity -

According to the above analysis there is an implicit parameter of the embedding pro-
cedure. So far we described the embedding as

{XYe',0%) = ¢!, X%(o',0?) =0?, X3(o!,0?) = I{o?,0?)}, (30)
but actually the contrast normalization is arbitrary and could as well be chosen as

X3o!, 0% = BI(c',0?). (31)
In the latter case, the line clement is

ds? = dz? + dy? + d(X3)? = dz? + dy? + B2dI%. (32)

We interpret the scaling of the intensity as a change in the metric of the embedding

space:
10 0
(hij) = (01 D). (33)
0 0 g2 |

The limits of very large and very small 8 correspond to the L, and Ly norms, respec-
tively, as can be easily seen from the EL equations (12):

. _ 8Ly
él_ff}] EL(f) = (Igz+1Iy)= A
, I, — 20 1,0,y + 121 iL
li 2 — y EL ToYTTY z Yy — l‘ :
Jim A BLB) ( (12 +12)? ) o1 (34)

The flows that result from these two limits in the form of I; = EL(8) are very different
in nature as can be seen in Fig. (1), where the two halves of the image were processed
with different 3 ratios. In a large class of images, where intensity is not uniform and
significant portions of the image are very bright or very dark, various regions should
be treated differently. Omne should affect very little the dark regions by changing the
inter pixel relationships, since processing destroys all the available information in those

10



Figure 1: Left: Original Lenna image. Right: Lenna processed with § = 4.4-left half and
8 = 0.6 right half.

regions, while brighter areas can be processed more “rapidly” (aggressively) without
considerable loss of information. This can be achieved according to our formalism
by considering the conirast to be a local function of (#,y,7) and interpreting it as
an embedding of the image surface in a non-Euclidean three-dimensional manifold.
Similar ideas, implementing different nonlinear formalism, underline the adaptive gain
control processing reported by Zeevi et al. [19], {20].

The main idea is to let 3 be a local function of z, y and I such that various regions
will be treated differently. As an example we choose a contrast normalization function
B(x,y. I) such that for dark regions g is large and the flow is L)-like, while for more
luminous regions [ is small and the flow is Ly-like. There are many reasonable choices
for the function 3. We will use

Bl y, 1) = Ae~trmol —tsly=go)" ~tulT=Ho), (35)

with 4 and b's constants yet to be defined.

The cffect of the function 3 is to impose slow diffusion within an ellipsoid with axes
by, by and b3 around (xg, yo, fo)- More distant areas diffuse at the normal Beltrami rate
while in very distant areas, where 8 < 1, the diffusion is faster then the Beltrami rate
and approaches the linear scale-space rate. From a geometrical viewpoint, it amounts
to choosing an appropriate embedding space. The metric of the embedding space is,
under these circumstances, not constant:

1 0 O
hiy=1{0 1 0 . (36)
0 0 Blx,yI)?

This equation implies that the distance along the intensity axis depends on the point
(z,y,I) where it is measured. In other words, our embedding space is not Euclidean
any more.

As a consequence of the fact that we are working now on a curved manifold as our
embedding manifold, we have to take into account that the Levi-Civita connection of
our three-dimensional manifold docs not vanish, and its contribution has to be added

11



according to the EL equation. Note also that the two-dimensional image induced
metric is different from the one we had in the Euclidean case, since the induced metric
depends on h;; by Eq. (10}. The first term of the EL reads:
1
BgmI = gﬁ({l + B Ly — 287 Ly Loy + (1 + 5213 Loa
= BBele + B2+ I})) (37)

where g = det(g,,) = 1+ B2(I2 + Ig). :
The Levi-Civita connection coefficients are according to the definition {Appendix
A) '

1.
Pl = §h“(3jhlk + Ohji — Grhyr), (38)

where there is an implicit sum over I. In our case h;; is given by Eq. (36). Using the
above definition, we get

F:%}?, = -06; B *

F§3 = —BBy T

Im133 = lg_lﬁz

F%:i = ﬁ—lﬁy

i = 876, (39)

where all the other coefficients vanish. We can now calculate the second term of the
El equations:

[50uX'8,X7g" = Tiig" +2Tg'? + T3p0”
2[3‘?3(?:1§$ + ngIy) + 2F§g(g12fx + g% 1)
Iyslg Iz +2¢ “ 11, + g™ 1)

l}g(zﬁxa + 28,1, + B (12 + I2). (40)

Collecting all the terms, we get the flow

+ +

I

L, = ;—2((1 + [a"“’Iﬁ)Iyy — 2[3213:11}1“.,.
(14 B2 ee) — B(Bedy + By L) T2 + I+

1
5g (28l + 281y + B (2 + 1)) (41)

This can be written in an explicit way by performing the derivatives on the function 3
given by Eq. (35}.

5.2 Color

A local normalization constant for color images means a special choice of the line
element:

ds® = dz? + dy* + B(Uy, Uy, Us)ds 21 (42)

12



where the U’s are the coordinates of the color space and ds?,,, describes its geometry.

Note that the line element suggested by Koenderink et al. is of this form:

. 1 . .
ds? = dz® + dy? + o——— (dR? 2+ dB?). 43

3 x+y+(R+G’—|—B)2( +dG° + ) {43)
We thus consider gradients at low intensity to be of greater importance than the same
gradients at high luminosity.

The above line element is a special case of a local intensity normalization of a line
elernent of the form

ds? = dz”® + dy* + B(R + G + B)(dR? + dG* + dB?). (44}
The Levi-Civita coefficients are accordingly
b = B7H{8kB5i; + 035 — BiBdjk). {45)
In the case of the formalism proposed by Koenderink et al,
2 -
-1 * .
B ==, '
o8 = -~ . (46)
where A = R+ G + B. The Levi-Civita connection coefficients are
2
F:j = —Z (51;3‘ + (Sgk - 5;,‘ ) . (47)
The second term of Keenderink's flow reads
] f Y 2 .
I7,0,I'0,Fg" = —Z(zaﬂra,,A — 3" 0%, )", (48)
k=r.g,b

We choose a less singular 8 as follows:
PB(A) = C(tanh(a{A — b)) + 1). (49)

It is also more flexible and enables slightly better results. The Levi-Civita conuection
is

. 2a
—1:
Y WL 3 50
Aol =g (50)
and, consequently, the second term of the red channel flow becomes
i i 2a
I50,I'0,Pg" = m(g”(ﬁg ~ G2 — B2+ 2R, G + 2R B,)+

29"2(R; Ay + RyGy + RyBy — GGy — By By)+
9% (R2 — G% — B2 4+ 2R, Gy, + 2R, By)) (51)

and, likewise, the other channels arc obtained by proper cyclic permutations.
Another attractive possibility is to use the Buchsbaum coordinates, used also by
Wolf et al. [17] for chromatic enhancement, and choose an intensity normalization
function B(k1), such that for regions of high intensity 8 is large and the flow is less
diffusive, while for low intensity regions £ is small and the flow is diffusive. There

are many reasonable choices for the function 8. For the sake of illustration we use a
combination of the logistic function:

k1) = Atanh(a(ky — b)) +1), (52)
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where the constants A, ¢ and b are yet to be defined. The Levi-Civita coefficient is in
this case

- 2a
T =870 = it 11 (53)

and all the other coeflicients vanish. The second term of Eq. (12} is now equal to:
[0, X 8, X7 g™ =T1,(g" k12 + 29" k1 k1, + 972K12). (54)
Collecting all the terms we get the flow

kie = Dgpk+Tii(g" ka2 + 20"k kyy + 977k13)
ko = Dypke
ky, = ﬂg(ﬁ)k;;. (55)

6 Experimental Results

6.1 Grey-Level

We present results obtained with our algorithm and compare them with those obtained
by applying the Euclidean Beltrami flow. It is important to be reminded that there is
an inherent difficulty associated with any attempt to compare the performance of two
different flows. This is due to the lack of accepted objective criteria for assessing the
effects of the image of a given algorithm. The evaluation is further complicated by the
fact that it is task dependent. Yet it 1s rather easy to realize the differences between the
flows by simply looking at the sequences I(z, y, 1} generated by two different algorithms.

We consider first Lenna’s image preprocessed by an asymmetric “lateral illumina-
tion” effect obtained by adding a tilted plane to the image (Fig. 2}).

The resultant Lenna image was processed with J in the form Eq. (35), with pa-
rameters chosen to be by = by = 0, b = 0.0025 and A = 3. The derivatives of 7 with
respect to the intensity can be done analytically while for the spatial derivatives of 3
and for those of the intensity we used the central differences scheme with a 3x3 kernel.
We used an explicit Euler scheme for solving the partial differential equation. The
result of the non-Euclidean flow after 20 iterations is compared with that obtained by
using the Beltrami flow (Fig. 2).

As expected, and clearly depicted by the images of Fig. 2, our flow diffuses the
brightest area of the image (particularly in the right side of the image) more rapidly
than the Beltrami flow does. It is comparable in the center of the image, and diffuses
slower in the darker regions, notably in the left side of the image.

6.2 Color

Our algorithm is demonstrated by using the sailboats image (Fig. 3). This is a color
image constructed from a CCD camera by a de-mosaicing algorithm. We wish to filter
out artifacts created in the process of de-mosaicing.

Using a low pass filter, e.g. the heat equation, for each channel separately, we
obtain the sequence of images depicted in the upper row on Fig. 4. This filter does
not preserve sharp edges and blur the image severely. We thus need an edge preserving

14



Figure 2: Processing of a grey-level image by the Beltrami flow. Upper-left: original 256x256
Lenna image. Upper-right: superposition of Lenna’s image and a tilted plane. Lower-left:
the recombined image (upper-left) after 20 iterations of the Beltrami flow. Lower-right: The
recombined image after iterations of the non-Euclidean flow.
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Figure 3: The original sailboats tmage constructed from a CCD camera by a de-mosaicing
algorithm.

flow, i.e. the Beltrami flow (see Fig. 4 middle row). While in this case the results are
much better than in the linear one, they still suffer from a drawback. Looking closely
on the poles, one can see that instead of linear objects we get piecewise linear objects
with very large and noticeable dislocations. These are artifacts of the compression that
the Beltrami flow wrongly identifies as “true” edges and, therefore, does not smooth
out.

We therefore need an algorithm that will smooth out the structure along the poles
in a manner that a linear filter does, but will process everything else where according
to the Beltrami flow. Qur solution consists of using a non-Euclidean spatial-feature
space whose metric is described by a Beta function that is very small over dark regions
(i.e. ky =0 or R+ G+ B =0) and close to 1 elsewhere. Specifically, we choose

B(k)) = A(tanh(a(k, — b)) + 1), (56)

with A = 0.5, @ = 0.05 and b = 10. We extract 8 from a linearly smoothed image
in order to have a smooth transition betwcen regions with high and low values of 3.
The image was smoothed by 5 iterations of the linear heat equation with time step of
dt = 0.1. The result obtained after one iteration of our highly non-linear flow with
dt = 0.05 is presented in Fig. 7. A closer comparison of the poles between the Beltrami
flow and our algorithm is depicted in Fig. 8.

The Beltrami flow is not scale invariant. The images shown in Fig. 6 illustrates the
difference obtained in using 8 = 1 and 8 = 5 in the Stiles flow. Using the Scrodinger
model of color perception results in a different flow. Snapshots of the flow which is
based upon the Schrédinger model are depicted in Fig. 5.

7 Discussion

Many studies in vision and image sciences are oriented toward either global analysis
(Bayesian, neural nets etc.) or local one (PDE, differential geometry etc.). Yet, it is
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Figure 4: Results of applying a flow to the sailboats image after 4, 8, 12 iterations, from
left to right, respectively. First raw: The Laplacian flow (heat equation). Second raw: The
Euclidean RGB Beltrami flow. Third raw : The Stiles flow.
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Figure 5: Image processing By the Schridinger flow. Time (scale) is increasing from left to
right. '

clear that in most cases the performance of a global task (e.g. scgmentation, identifica-
tion) depends on the performance of the pre-processing and analysis stages. Likewise,
the performance of local algorithms can be enhanced if an a priori knowledge about
the class of images to be processed or the high-level task is given, and physical (e.g.
illumination conditions) or psychophysical conditions are specified.

Rather than resorting to either the local or global approach, we propose in this
study, to use the embedding space geometry within the framework of the Beltrami
approach as a convenient and efficient interface between processing of global and local
data. We presented in this paper only preliminary results that demonstrate the princi-
ples in the context of a simple setting. More realistic applications require further work
in order to understand, by a combination of analytical and experimental methods, the
right geometry of the embedding space which is appropriate for a given task. Other
potentially powerful extensions may incorporates texture, depth and various invariance
properties. These questions as well as the application of the proposed framework to
medical images are under current investigation.
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Figure 6: Results of applying a Stiles flow to the sailboat image after 4, 8, 12 iterations,
from left to right, respectively. Upper row: Stiles flow with = 1. Lower row: Stiles flow
with =5
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Figure 7: Left: The sailboats image after 200 iterations of the Euclidean Beltrami flow.
Right: The same image obtained after one iteration of our adaptive smoothing algorithm,
using a metric described by a logistic-type Beta function.

Figure 8: Comparison of the two smoothing algorithms illustrating their effects on the
structure of the pole. Left: an enlarged part of the Beltrami smoothed image, Right: An
enlarged part of the image obtained by application of our adaptive smoothing algorithm.
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o{s‘.v.ggfs’;{of = d +ilif +df

Figure 9: A length element of a surface curve ds may be either defined as a function of a
local metric defined on the surface {o(,03), or as a function of the coordinates of the space
(x,y,I) in which the surface is embedded.

Appendix

A fundamental concept related to Riemannian differential geometry is distance. The
natural question in this context is how do we measure distances? Consider first
the important example of mapping X : ¥ — IR}, Denote the local coordinates of
the two-dimensional manifold £ by (o!,0?); these are analogous to arc length in
the case of a one-dimensional manifold, i.e. a curve (Fig. 9). The map X speci-
fics for each point (o!,0?) its 3D coordinates. The explicit form of X is given by
(X' (0}, 02), X2(0*, 02), X (01, 0%)).

Since the local coordinates o are curvilinear, the squared distance is given by a
‘positive definite symmetric bilinear form, called the metric, whose components are
denoted by gy, (o', 0%):

ds’ = gudotdo” = 911(d61)2 + 2912d01d02 + ggg(doz)g,

where we used Einstein summation convention in the second equality (i.e. identical
indices that appear one up and one down are summed over). We denote the inverse of
the metric by g"*, so that g"*g,, = &4, where 64 is the Kronecker delta.

Let X : 22 —+ M be an embedding of (3, (g,.)) in (M, (hi;)), where T and M are
Riemannian manifolds and (g,,) and (h;;) are their respective metrics. We can use
the knowledge of the metric on M and the map X to construct the metric on X. This
procedure, formally denoted by {g..)z = X*(hi;)um, is called for obvious reasons the
pullback. It is given explicitly by:

!}pv(ﬂ'1:‘72) = hij(X)apxiaqua (57)

where ¢, j = 1,...,dimM are summed, and 3,X° = 8X(c?,0%)/80*.
Counsider, for example, a grey level image which is, from our viewpoint, the embed-
ding of a surface described as a graph in IR%:

X:{01,02)—+($=ol,y=02,z=l’(ol,02)), (58)
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where (z,y, z) are Cartesian coordinates. Using (10), we get

( )_(1+I§ Irf_,,,)
I TN Ll 1+12)

This can be intuitively understood as follows: Eq. (10) means that the distance mea-
sured on the surface by the local coordinates is equal to the distance measured according
to the embedding coordinate system (Fig. 9). Since the map X identifies z with !
and y with 0%, we can write

(59)

ds® = de+dy® +dI?
= dz’ + dy® + (Ldz + I,dy)
(1 + I2)da? + 2L Ldzdy + (1 + IZ)dy*. (60)

Note that one cannot tell by inspection of the metric by itself whether the surface
or manifold in question is flat (Euclidean with no curvature) or not. In order to settle
this issue, we need the concept of connection and Gaussian curvature.

Parallel transport and connections -

In order the take derivatives of a vector field on a manifold we need to compare vectors
at different points on the manifold. This becomes obvious from consideration of the
heuristic formula

aV?  Vi,dd A L) =V, L)

57 = Am Az (61)

We sec that the first term in the numerator is defined at x + Ax while the second ferm
is defincd at x. In order to have a meaningful expression we have to transport V(x)
to x + Ax, without a change, and compute the difference. Since there is no natural
way, in general, to do that, we have to specify how we perform this procedure, called
parallel transport. Let \7|1+A$ denote a vector V|, parallely transported to x+ Ax.
We demand that the components V* satisfy

?i(:f_i Az) -Viz) « Az,
(Vi+ Wi (z+Az) = Vi(z+ Az)+ Wiz + Ax). (62)

These conditions are satisfied if we take
Viz + Az) = Vi{z) ~ VE(z)[%, A7, (63)
and the covariant derivative with respect to z7 is defined as

o Vi + A2, ) — Vi a0, ) OV
Jim Kz - o

+ T VE (64)

Different choices of Pjsk correspond alternative means for executing the parallel trans-
port.
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(Geodesics

Another way to understand the connection coefficients ij is as follows: Vector field
components are given at any point, on the manifold of dimension N, in terms of ¥
smooth and linearly independent vector fields. These N vector fields form, at each
point, a linear basis-a frame for the tangent space at that point. The components
of a given vector field are given with respect to this local frame. Frames at different
points of the manifold are different in gemeral. The connection describes how the
frame is changed infinitesimally on the manifold. Denote by e;j(x), ¢ = 1,..., N, the
basis vectors of the space tangent to M at point x. We can take, for example, the
directions along the local coordinates ¢; = 8/8z%. Denoting the covariant derivative
by V, the change in the frame’s vectors, when moved infinitesimally, in the direction
of one of the vector basis, is

Vie; = Ve.ej = ;T4 (65)
Similarly, moving one vector in the direction of another vector is expressed by:

VvW = V'V (Wiej) = Vi(e;[Wile; + WV, e;5)
= VOW*/0x! + WITE)ex.

Let now X be an interval I = (a,b) and M some Riemannian manifold. The
mapping C : I —+ M is a curve on M. Let W be a vector ficld along the curve and V
the vector tangent to the curve:

d dr(t)
V=—=
di dt

If W satisfies

Jei. (66)

VW =20 for any t € (a, b), (67)

W is said to be parallely transported along C{t). If the tangent vector itself is parallely
transported along the curve C, that is, if

VvV =0, (68)
the curve C'(t) is called geodesic. In reférence to the components, this equation reads

&2z - dz? dak .
a g =0 (%)

where z* are the coordinates of C(t).

The Levi-Civita Connection

The connection coefficients were up to this point arbitrary. We will now choose a
special connection by adding a condition on the space of connections. Remermber that
the metric defines an inner product on the tangent space to a manifold. We demand
that if two vectors X and Y are parallely transported along any curve on the manifold,
then the inner product between them remains constant under parallel transport. Let
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V be a tangent vector to some curve along which the vectors are parallely transported,
then

Vi (g:;; XY = VEV(9);; XY = 0, (70)

where we used the fact that X and Y are parallely transported (i.e. Vy X = VY =0).
Since X, Y and V are arbitrary, we must have

Vi(g)iy = 0. _ (71)

A connection that satisfies this condition is called meéric compatible. At this point we
will quote the result:

Theorem 1 (The fundamental theorem of Riemannian geometry) Given a Ric-
mannian manifold (M, g}, there exists a unique symmelric connection which is com-
patible with the metric g. This connection is colled the Levi-Civita Connection. [is
components are given by the following expression

1 , ,
T = 59“ (Oigik + Orgji — Digje)- . (72)
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