
On the Existence of Weak Learners and Applications 

to Boosting* 

Shie Mannortand Ron Meirt

Department of Electrical Engineering 

Technion, Haifa 32000 

Israel 

SUBMITTED TO MACHINE LEARNING, AUGUST 2000 

Abstract 

We consider the existence of a weak learner for boosting learning algorithms. 
A weak learner for binary classification problems is required to achieve a weighted 
empirical error on the training set which is bounded from above by 1/2- ,, 1 > 0, 
for any distribution on the data set. Moreover, in order that the weak learner 
be useful in terms of generalization, , must be sufficiently far from zero. W hile 
the existence of weak learners is essential to the success of boosting algorithms, a 
proof of their existence has been hitherto lacking. In this work we provide a proof 
that, under appropriate conditions, weak learners actually exist. In particular, we 
show that under certain natural conditions on the data set, a linear classifier is a 
weak learner. Our results can be directly applied to generalization error bounds 
for boosting, leading to closed-form bounds. We also provide a procedure for 
dynamically determining the number of boosting iterations required to achieve 
low generalization error. Finally, using the results of Kearns and Mansour, our 
results may also be applied to top-bottom decision trees with oblique splits. 
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ON THE EXISTENCE OF WEAK LEARNERS S. Mannor and R. Meir

1 Introduction 

One of the most exciting developments in the fields of Machine Learning and Pattern 
Recognition in recent years has been the development of the boosting approach to learn­
ing [Sch90, FS96]. Boosting, similarly to other ensemble based methods, such as Bag­
ging [Bre96] and Mixture of Experts [JJ94], has been shown to be quite effective in the 
construction of successful classifiers. In addition to many impressive empirical demon­
strations of the utility of the procedure, there has also been recently a great deal of 
theoretical work providing guaranteed performance bounds (e.g., [SFBL98]). It turns 
out that a key ingredient in the success of the boosting approach is its ability to yield 
classifiers that achieve a large margin, implying that the decision boundary defining the 
classifier, while separating the training points, is able to retain as large a distance as 
possible from them. The notion of margin also plays an essential role in the theory of 
support vector machines [Vap95]. 

In order to derive useful generalization bounds for boosting-type algorithms, it has 
turned out to be essential to be able to guarantee the existence of a so-called weak 

learner. In boosting, the final composite classifier is formed by a convex combination 
of base classifiers. In order for the procedure to be effective, these base classifiers, also 
known as weak hypotheses or weak learners, are required to obey the so-called weak­
learning assumption, defined in Section 2 below. While many base classifiers have been 
used in practice, it has not been clear up to this point under what conditions weak 
learners actually exist. This situation is somewhat disturbing, as the existence of a 
weak learner is essential to the theory ( and practice) of boosting. 

In this work we prove that linear classifiers are indeed weak learners. Clearly, any other 
system based on linear classifiers, such as neural networks and decision trees with oblique 
splits are also weak learners. Moreover, the proof technique used suggests a randomized 
algorithm, which achieves the desired result. In order to establish our results, a simple 
assumption needs to be made concerning the data. As we show in Section 4, some 
regularity assumption is necessary, as no effective weak learner can exist for arbitrary 
data sets. 

The proof method employed in this paper is based on the theory of geometric dis­
crepancy, a sub-field of combinatorial geometry, which deals with irregularities of dis­
tributions. The reader is referred to the excellent text-book by Matousek (Mat99] for a 
general introduction to this field. 

The remainder of the paper is organized as follows. Section 2 recalls the boosting 
framework and motivates the importance of finding weak classifiers. In Section 3 we 
introduce some basic definitions and key results from the field of geometric discrepancy. 
The main result regarding the existence of a weak linear learner is presented in Section 
4, and the application to error bounds for boosting is provided as a corollary of the 
main result. We close in Section 5 by drawing some conclusions and mentioning some 
open questions. Some of the more technical proofs have been relegated to appendices. 
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It should be commented that no attempt has been made to optimize the constants 
appearing in the lower bounds. Finally, we note that we use the term 'classifier' and 
'hypothesis' interchangeably throughout this work. 

2 Boosting and Weak Learners 

Boosting is a general meta-procedure for constructing a strong classifier from a set of 
weak classifiers [Sch90]. Each weak classifier is constructed based on a re-weighted 
version of the data set. Although there exist many versions of boosting to-date (e.g., 
[FS96, JFTOO, LMFOO, SS99]), most of them fall into the general framework depicted in 
figure 1, adapted from [SS99]. 

We begin our discussion by recalling the notion of the Vapnik-Chervonenkis (VC) 
dimension. 

Definition 1 Let H be a class of functions from X to { -1, + 1}, and let X be a set of 

m points from X. We say that H shatters X if H can compute all 2m dichotomies on 

x. The VG-dimension of H is the size of the largest shattered subset of X.

Since the final classifier constructed within the boosting framework is a convex com-

A generalized boosting algorithm 

Given: S = { (xi, Yi), ... , (xm, Ym)}, xi EX, Yi E Y � lR 
Initialize: Pi (i) = 1/m. 
Fort= 1, 2, ... , T: 

• Train a weak learner using the distribution Pt . 

• Get a weak hypothesis ht : X r"' Y.

• Update the distribution based on _the performance of ht, namely

Output: 

T T 

J(x) = L Cttht(x) / L Ctt , 
t=i t=i 

where the non-negative parameters Ctt are determined by the specific boosting 
algorithm used. 

Figure 1: A generalized boosting algorithm 
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bination of weak classifiers, it is of interest to investigate error bounds for convex com­
binations of classifiers. In this context we recall the elegant results derived by Schapire
et al. [SFBL98]. Let H be a class of binary classifiers of VC-dimension dH , and denote
by co(H) the convex hull of H,

co(H) = { f : / (x) = 2.= a,h,(x), h; E H, a; 2'. 0, 2.= a; = 1} . 

Given a sampleS= {(x1,y1), ... ,(xm,Ym)},xi E Xand yi E {-1,+1},ofmexamples 
drawn independently at random from a probability distribution D over X x { -1, + 1},Schapire et al. [SFBL98J show that form > dH , with probability at least 1- 8, for every 
f E co(H) and fJ > 0,

Pv(Y f(X) '., OJ '., Ps[Y f(X) '.,OJ+ 0 (;,,, ( dH(log�':'/dH))' +log� f ') , {1) 
where the margin-error P s[Y f (X) :S BJ denotes the fraction of training points for which
yd(xi) :S fJ, namely 

1 m P s[Y J(X) :S BJ = - L I(yd(xi) :S fJ),
m i=l 

where I(E) is the indicator function for the event E. Note that the term Pv [Y f(X) :S OJis simply the probability of misclassification of the classifier h(x) = sgn(f(x)). 
It is helpful to compare (1) to the classic VC bounds [VC71], which do not take into

account the fact that f is real-valued and that it is a convex combination of functionsfrom H. Let dco(H) denote the VC-dimension of co(H). Then one finds (e.g., [AB99])that with probability at least 1 - 8, for every f E co(H) and m > dco(H), 

P v[Y J(X) :S OJ � P s[Y f(X) :S OJ+ 0 (),,, ( dco(H) log(m/dco(H)) + log(l/8)) 112
)

(2)
Note that the first term in (2) is simply the fraction of misclassified points in the dataset. Comparing (1) and (2) we note two major differences. The former bound contains
the extra parameter fJ, which allows one to fine tune the bound in order to achieve
better performance. However, since P s[Y f(X) � OJ � P s[Y f(X) :S BJ the first term
in (2) is always smaller that the corresponding term in (1). However, observe that the
second term in (1) may be significantly smaller than the corresponding term in (2),
since it contains the VC-dimension of H rather than the VC-dimension of co(H), whichmay be significantly larger (e.g., Section 14.4 in [AB99]). It should be clear that there
is a trade-off between the two terms appearing on the r.h.s. of (1). While the first
term is monotonically increasing with fJ, the second term decreases monotonically. This
August 9, 2000 4
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situation is very much reminiscent of the idea of structural risk minimization, suggested 
by Vapnik [Vap8 2] in the context of hierarchical hypothesis classes. 

In order to obtain a useful bound, one needs to be able to estimate the first term in 
(1). In order to do so, we formally introduce tpe notion of a weak hypothesis.

Definition 2 Let S = {(x1, Y1), ... , (xm, Ym)}, Xi E X, Yi E {-1, +1}, be a set of m 
examples. We say that a hypothesis h ,-satisfies the weak hypothesis assumption if, for 
any probability distribution P on the m points S, the weighted empirical error of h is

smaller than 1/2 - 1, namely

m 

1 
L PJ(h(xi) =I= Yi) ::S 

2 
- ,.

i=l 

(3) 

There are two important facts to note concerning this definition. First, it is required 
to hold for any distribution P, and second, one only demands that the error be smaller 
than 1 /2 - 1. Since an error of 1 /2 is always achievable1

, this is a very weak assumption 
if I is small. 

Schapire et al. [SFBL98] have recently provided a bound on the empirical error of 
the composite classifier formed by the AdaBoost algorithm [FS96] run for T steps. In 
particular, denote the error of each weak learner by Et, t = 1, ... , T, then Theorem 5 in 
[SFBL98] shows that 

T 

Ps[Yf(X) ::S 8] ::SIT V4c}-6(1 - €.t)1+6 (4) 
t=l 

('y > B),

where the second inequality holds if each weak classifier attains an error smaller than 
1/2 - 1, 1 > B. This bound decreases to zero exponentially fast if 1 > B. In other 
words, if a sufficiently large value of I can be guaranteed, then the first term in (1) 
converges to zero. However, if, (and thus B) behaves like m-/3 for some /3 > 0, the 
rate of convergence in the second term in (1) will increase, possibly leading to worse 
bounds than those available by using standard VC results ( 2). What is needed then is a 
characterization of conditions under which the achievable() does not decrease too rapidly 
with m. For example, if 1 = 0(1/log m) this will only contribute a logarithmic factor 
to the complexity penalty, and not change the rate which will remain 0(1/.Jm), up to 
logarithmic factors. On the other hand, we have shown in [MMOO] that a value of, of 
order 1/m can always be achieved; however, such a small value is useless from the point 
of view of the bound (1). We introduce the notion of an effective weak learner, which 
characterizes a weak learner for which , is sufficiently large to guarantee that the second 

1To see this, pick a random classifier h. If the error is smaller or equal to 1/2, we're done, if not the 
error of the classifier -h is smaller than 1/2. 
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term in (1) converges to zero as the sample size increases. In the following definition 
we use the notation f(m) = w(g(m)) to indicate that f(m) becomes arbitrarily large 
relative to g( m) when m approaches infinity. 

Definition 3 A weak hypothesis his effective if it satisfies (3) with 1 > w (log m/ .jm). 

In this work we consider conditions under which an effective weak learner exists for 
one of the simplest possible classifiers, namely the linear classifier. 

3 Background from Geometric Discrepancy 

We introduce the key definitions and results which will enable us to show in Section 4 
that an effective weak learner exists. The results of this section essentially summarize 
the work of Alexander [Ale90, Ale91, Ale94], setting the nomenclature and drawing the 
connections to classification and the notion of weak learners. We start with several 
definitions. Let h denote a hyperplane 

h = { x E Rd : w · x + b = 0} .

The corresponding (open) half-spaces h+ and h- are given, respectively, by h+ = 
{ x E ]R

d 
: w · x + b > 0} and h- = { x E ]R

d 
: w · x + b < 0 }. We denote by Ha generic 

half-space. The linear classifier associated with the hyperplane h will be denoted by �h,

namely 

�h(x) = sgn (w · x + b) 

An essential ingredient of the proof of our main result is the notion of a motion invariant 
measure on the space of hyperplanes in Rd . We follow Section 6.4 in [Mat99] in describing 
this measure. First, we ignore the set of hyperplanes passing through the origin, which 
has measure zero. Second, note that any hyperplane h is uniquely determined by r ,  the 
distance from the origin and fl, the solid d-dimensional angle describing the inclination 
of the shortest line from the origin to the hyperplane (see Figure 2 for the case d = 2, 
where fl is simply the polar angle¢, 0 ::; </> ::; 27T} Let x be the bijective map from the set 
of hyperplanes to the d-dimensional Euclidean space (r, fl). If Lis a set of hyperplanes, 
we define the measure µ(L) as the Lebesgue measure of the set x(L) in the (r, fl) space, 
where r and fl are interpreted as cartesian coordinates. For example, if the set L is 
supported in the unit ball in R2

, then we have the set {(r,¢),0::; r::; 1, 0::; </>::; 21r}. 
It is easy to see that the measure µ is motion-invariant, i.e., if L' arises from L by rigid 
motion (i.e., without changing the relative positions of the lines) then µ(L') = µ(L). 
In fact, it turns out that, up to scaling, this is the only motion-invariant measure on 
hyperplanes (see Section 6.4 in [Mat99]). 
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X 

0 

<1> 0 ................ . ......... ,

X ( h) 

r 

Figure 2: Mapping from hyperplanes to spherical coordinates (based on [Mat99]) 
Given a set of points X = {xi, x2, ... , Xm} in JRd, and a signed atomic measure v. Thegeometric discrepancy D8 (v) is given by 

D
8(v) � sup{v(H)} = sup { L v(xi)}, 

H H x;EXnH 

where the supremum is over all halfspaces. 
Intuitively, the discrepancy relates to the maximal measure of points in X, which belong to a half-space. Consider, for example, the case of an even number of points, such that vi = l, i = 1, 2, ... , m/2, and vi = -1 for i = m/2 + 1, ... , m, where vi = v(xi). Then, 

D8 (v) is the maximal difference between the sizes of positive and negative sets belongingto any half space. In the sequel we will be interested in finding a lower bound on D s ( v). The main motivation for the introduction of D8 (v) is its relationship to the weighted empirical error defined in {3). Let S = {(xi, Yi), ... , (xm, Ym)}, xi E JRd, Yi E {-1, +1}, be a labeled sample of m points weighted according to {Pi, ... , Pm}. Set 
(i = 1, 2, ... , m), (5) 

be a signed measure over the points X. We will observe in Section 4 that when I::i vi = 0,
if { t, P;l(((x,) # y,)} = � - D,(v) (6) 

where the infimum is over all linear classifiers �. 
Furthermore, it follows from Lemma 4.1 that if a lower bound on Ds(v) is available for any measure v such that v(X) = I::::i vi = 0, then a lower bound can be obtained 
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for any signed measure v. For this purpose we define a set of measures obeying the 
condition, 

w(Rd) = {v: v is a signed measure such that lvl(Rd) < oo and v(Rd) = O}. 

Let K be the support of v. Then for any v E w(JRd), v(K) = 0. In this work K will 
be a finite set, X = {x1 , · · · , Xm}. Furthermore, since P is a normalized probability 
distribution, clearly we must also demand that I:::

1 
I vi I = 1. Thus, we make the 

following assumption throughout this section. 

Assumption 3.1 The signed measure v obeys the two conditions 

m 

A crucial quantity used in the sequel is the function 

I(v) 
6 L llxi - Xjll2vivj

i,j

which is a weighted measure of dispersion of the points {x1, ... ,xm}- This function 
turns out to be very useful for our purposes since it is connected to the discrepancy, 
through the following result. 

Lemma 3.1 ([Ale94], Lemma 2) Let v belong to w(Rd), and denote by µ the unique 
motion invariant measure over hyperplanes. Then 

(7) 

where H is the set of planes that cut the convex hull of the support of v. 

Two important observations follow from (7). 

1. The function I(v) is negative. This is in itself a surprising and non-trivial result,
following from the classic work of [Sch37] on isometric embeddings in Hilbert space. 
The reader is referred to Section 6. 7 in [Mat99] for a more modern proof of this 
fact using the notion of positive definite functions. 

2. The resulting inequality
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immediately yields a lower bound on D8 (v) if a lower bound for -I(v) and an upper

bound for µ(H) are available. An exact value for µ(H) is provided by Alexander 
for hyper-cubes and hyper-spheres [Ale94], and can be immediately used in our 
case. For example, from Lemma 3 in [Ale94] we find that for the case of a ball of 
radius r in ]Rd , 

ad 1 r (d-l)
µ(H) = 2r(d- 1)0 - = 21rr(d- l) 

(
�

) d-2 r 2 

where Ok= 21r(k+1)/2 (I'((k + 1)/2)f 1 is the volume of the unit ball. (We comment
that Alexander's Lemma discusses the unit ball. However, the extension to any ball 
is straightforward using results from Section 13.6 in [San76] ). Since, without loss 
of generality, we may always assume that the set X = {x1, ... , Xm} is contained 
in a ball of radius maxi,j llxi - Xj 11/2, we need not concern ourselves any further 
with the factor µ(H).

One final ingredient needed in order to prove our main result is the construction of 
an auxiliary measure in JRd+l _ The main idea here, due to Alexander [Ale90], is to view 
]Rd as a hyper-plane in JRd+1, and construct a measure in JRd+l for which a lower bound 
on Ds (v) can be established. We briefly describe the construction and properties of the 
new measure, referring the reader to [Ale90, Ale91, Ale94] for the full details. Let <I> 
be an atomic measure over IR, concentrated on the finite set R = {r1, r2, ... , rn}· For 
X = {x1, ... , Xm}, consider the set Xx RC JRd+1 , and define the convolution measure 
v * <I> over X x R by

From Corollary 3 in [Ale91] we conclude that 

-I(v * <I>) :'.S -ll<I>llif(v),

where ll<I>ll1 = :Ei=1 i<Pk l· Finally, let qik = (xf, rkf E JRd+l be a point in Xx R. From 
Lemma 9 in [Ale91] we have that 

where 

-J(v *<I>)= -L LJ<I>(xi, Xj)vivj - I(<I>) L v;,
ih 

e e 

Jq,(xi, xi)= LL llqik - C}jdl2<Pk<Pl 
k=l l=l 

(8) 

(9) 

It is important to observe that since llqik -C}jdl� = llxi - Xj II� + Irk -rd2 , the function 
J<I>(xi, Xj ) depends on Xi and Xj only through d = llxi - xj ll2 - In Section 4 we use (8) 
and (9) as a starting point for our proof. We quote two essential features of the function 
h,(Xi, Xj ). 
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Lemma 3.2 ([Ale91], Theorem 4 and Lemma 7) Let <I> be an atomic measure concen­
trated on the n points {r1, · · · , rn} in IR, and such that L�=l <I>(ri) = 0. Assume further 
that d = llx - x'll2 exceeds 8, the diameter of the support of <I>. Then 

00 

]cp (x, x') = d L ck
I2k ( q> )d-2k'

k=l 

where ck is defined by (l + x2) 112 
= 1=:

0 
ckx2k , and 

Moreover, 

n n 

t'(<t>) 6. LL h - ri1£<I>(ri)<I>(rj), 
i=l j=l

(10) 

(11) 

Lemma 3.3 ([Ale91], Theorem 6) Let <I> be an atomic measure concentrated on the n 
points {r1, · · · , rn} in IR, and such that L�=l <I>(ri) = 0. Then -Jcp(x, x') is a strictly 
decreasing positive function of d = llx - x'll2 , 

4 On the existence of weak learners 

With the basic mathematical tools of Section 3 in hand, we proceed now to the proof 
of the existence of an effective weak learner based on hyperplanar decision boundaries. 
A few words are in order concerning the construction of linear classifiers for arbitrary 
data sets, which are, of course, not linearly separable in general. When the points are 
linearly separable, it is known that there are effective (i.e., polynomial time) procedures 
for determining the separating hyperplane. For example, linear programming achieves 
the desired goal. When the points are not linearly separable, it has been proved that
the problem of finding the linear classifier with the minimal number of errors is NP-hard 
(see, for example, Section 24.2 in [AB99]). Recently, it was shown in [BBD99) that the 
problem is NP-hard even if only an approximate solution is required. Note, however, 
that our problem is somewhat different, as we are interested only in finding, for any 
distribution on the data points, a 'weak' solution, i.e., one that is always slightly better 
than the trivial error of 1/2. Our main focus here is on the existence of such a linear
classifier, since this will establish the existence of a weak learner. We proceed now to 
the mathematical analysis of the problem. 

Let 

�(x) = sgn(w · x + b), 

be the classification according to the hyper-plane h defined by h = {x: w · x + b = O}. 
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0 0 
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Figure 3: Sixteen alternating points on a sp here. No line can achieve an error lower than

1/2 - 1/8 = 3/8 

Let S = {(x1, Y1), ... , (xm, Ym)}, Xi E JRd, Yi E {-1, +1}, be a sample of m points. 
We need to establish an upper bound on the error 

m 

c(P,f,) 6 LPJ(Yi =/-f.(xi)) (12) 
i=l 

where Pi 2: 0 and L
i 
Pi = l. Observe that c(P, f.) may also be expressed as L:

i 
Pi[l -

Yif.(xi)]/2. 

First, we wish to show that unless some conditions are specified, there can be no effec­
tive linear classifiers. To show this consider the following example, which demonstrates 
that, for any classifier f,, there exists a set of points such that c(P, f.) 2:: 1/2 - ,, where 
1 � 0(1/m). 

Example 1 Consider the points x1, ... , x2m on the boundary of a circle, and set vi =

( -1) i ( 2m )-1
. Clearly L

i 
vi = 0 and L

i I vi I = 1. For example, in Figure 3 there are 8
grey (positive) points and 8 white (negative) points alternating on the circumference of 
a circle. From the symmetry of the problem, it it is clear that any line cutting the circle 
( and not passing through any of the points) is such that there is a difference of at most 
1 between the number of points from either color on either side of the line. Clearly the 
error incurred by any hyperplane his at least 1/2-1/m, and cannot fulfill the condition 
required from an effective weak learner (recall Definition 3). D 

We introduce an auxiliary signed measure, defined by vi = PiYi, as in (5). For any 
measure v and classifier f, let 

m 

D(v, f.) = L vif.(xi) 
i=l 

August 9, 2000 11 
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4.1 Main Theorem 

We are now ready to state our main result. We begin with the more general theorem, 
specializing to some specific cases in two corollaries. We begin by defining an auxiliary 
function that will result from the proof of Theorem 4.1. 

-1 t:::,, (2n) � t 2 2 1/2 (2n)! d Fn(d, r,) - - n - 2 £=/-1) (1 + R (r,/4nd) ) (n _ R)!(n + £)! (15)
Before stating our main result we describe some of the properties of Fn ( d, r,), as this

function plays a central role in the bounds we derive. 

Lemma 4.2 The function Fn(d, r,) satisfies the following properties: 
1. For fixed r,, Fn(d, r,) is a positive and monotonically decreasing function of d.
2. Fn(d, r,) �ad+ br,/d when r,/d is large (relative ton). 
3. When r, / d is small,

� [( 1 ).2nl·l·3 .. ·(2n-3) l (r,)
2nFn(d, r,) � 4n 2 · 4 · 6 .. · (2n) (2n)! d d · 

The symbol '� ' indicates that the additional terms are of smaller order. 
The proof of Lemma 4.2 is presented in the appendix. In Figure 4 we plot Fn ( d, r,) as
a function of r, for d = 2 and n = 4 and as a function of d for r, = 1 and n = 4. The 
properties mentioned above are evident in this figure. 

We are now ready to state our main result. 

Theorem 4.1 Let S = {(x1, Yi), ... , (xm, Ym)}, Xi E JRd, Yi E {±1} be a fixed sample, and let non-negative weights Pi be assigned to each point in S such that I::::;,1 Pi = l.Denote by x± the points xi for which Yi= ±1, IX± I = m± = a±m, and set 

L = max IJxi - Xj 112· 
t,J 

Let the sets x± be partitioned into K± disjoint subsets denoted by X{. Then for any P there exists a linear classifier ( such that 
1 c(P, () � 
2 

- "/
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Figure 4: F4(d, TJ) as a function of d (for fixed TJ) and as a function of TJ (for fixed d) 

where 

(16) 

and where Cd= f(d/2)/[n(d - l)f((d - 1)/2)] depends only on the dimension d, and

m 

-I(v) 2: 0.00477 [log2 (125Ja+a_m)r312 L v;
i=l 

K+ K_ 

+ L Fn(d;, 77) L Z:::lvillvjl + L Fn(d-;;, 77)L Z:::lvillvjl· (17) 
k=l k=l 

Here dt is the diameter of the k 'th subset in the partition of x± , and 
n = f(l/2) log2 (125Ja+a_m)l, i.e., n = 8(logm). 

Remark 1 Observe that 77 measures the minimal distance between points belonging 
to the two oppositely labeled subsets. As can be expected, the lower bound improves 
for larger values of 77. We refer to 77 as the gap, and observe that it is a quantity 
characterizing the geometric distribution of points. This should be contrasted with the 
parameter I in Definition 2, which characterizes a classifier, rather than a set of points 
( the points themselves enter through ( 3)).

Remark 2 The statement of the theorem requires the partition of the sets x± into 
K± subsets. Clearly there are many such partitions, for values of K± between 1 and 
m±. A careful inspection of the second and third terms in (17) implies that there is a 
trade-off to be considered. First, observe that if one of the subsets of x± is a singleton, 
the corresponding second or third term in (17) is absent. Next, assume that the number 
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of regions K±, is large, and that each subset Xr is composed of a relatively small set 
of nearby points. In this case, the number of summands is large, and the functions 
Fn ( dt, TJ) are also large since dt are small and the function Fn ( d, TJ) is monotonically 
decreasing with d. On the other hand, the terms I::ih lvi llvil are small, since they 
contain a small number of terms. In the extreme case where the size of the partition is 
equal to the number of points, the second and third terms in (17) are entirely absent. 
Consider now the other extreme situation, where K± = l, i.e., no partition of the points 
is constructed. In this case, the number of summands in the final two terms in ( 17) 
is reduced, and Fn (dt, TJ) � Fn (L, TJ) is also smaller. On the other hand, the terms 
I::

ih I vi 11 vi I are large, since they contain a large number of terms. Thus, the optimal 
partition of the sets x± depends in each case on the specific geometry of the points, as 
well as on their assigned measures vi. For example, we show in example 2 below, a clear 
case where it is advantageous to choose K± = 2 rather than K± = l. 

Example 2 We give an example where a better bound may be obtained using a larger 
partition of the set X. Consider the XOR configuration of points in figure 5. Since the 
first term in the bound (17) is not affected by the partition we compare only the final 
two terms, for the case K± = l and K± = 2, where in the latter case the partition is 
into the separate four quadrants. Simple algebra leads to the following two bounds: 

(K± = 1) 

(K± = 2). 

From the first property in Lemma 4.2, Fn (d, TJ) is positive and strictly decreasing function 
of d. By picking d small enough and D large enough, the bound (17) can be made larger 
for the case K± = 2. D 

In order to obtain a better understanding of the structure of the bounds, we consider 
the special case where all the weights are equal in magnitude, namely !vi i = 1/m for all 
i. We then have the following corollary.

Corollary 4.1 Let the condition of Theorem 4-1 hold, with the additional constraint 
that !vi i = 1/m for all i = l, 2, .. . , m. Denote the number of positively/negatively
labeled points by m± = a±m, 2 < m+ < m - 2. Then there exists a linear classifier�
such that 

where 
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Figure 5: 8 points in a XOR position, D is the maximal distance between equally labeled points,

and d is the distance between equally labeled points within a localized region. 

Cd = f(d/2)/[41r(d - l)f((d - 1)/2)) and n = f(l/2) log2(125Ja+a_m)l For small
values of T} / L we find that Fn ( L, T)) 2: f2 ( m-2 Jog(2Le/17) (log m )-3/2), implying that

'Y 2: n ((logm)-3/4m-l/2) + n ((logm)-3/4m-log( 2te )).

Proof The claim follows by simple substitution of lvd = 1/m and K± = l in (17),
i.e., using the trivial partition of the sets x± . As in Example 2 above , we note that
Fn(d, 77) is a positive and monotonically decreasing function of d = !Ix - x'lb- Thus,
since d! :S L, we may replace Fn (d!, rJ) by Fn(L, TJ) to get a somewhat weaker lower
bound. The lower bound on Fn(L, rJ) follows by using the results of Lemma 4.2 to
show that Fn(L, TJ) 2: O((rJ/ n)2nan(2n)l), where an is the (n + 1)-th coefficient in the
expansion of ./f+x, and noting that an 2: (n + 3)-2. Finally, we use the inequality
va + b 2: (y'a + vb)/./2, which follows from Jensen's inequality and the concavity of
the square root function. 0

Finally, we comment on a hypothesis class which is widely used in many of the appli­
cations of boosting, namely the class of stumps. This class consists of linear classifiers
for which the decision boundary is parallel to one of the axes. We show that under the
conditions of Theorem 4.1 stumps cannot achieve an error lower than 1/2, while this is
clearly possible using general linear classifiers.

Lemma 4.3 Let 2 be the class of axis parallel linear classifiers (stumps). Then there 
exists a set of points S, obeying the conditions of Theorem 4,1, for which E(P, �) = 1/2 
for any� E 2. 

Proof The result follows by simply considering the set of points in figure 6, composed
of a XOR configuration of equally weighted points. It is clear by symmetry that no axis-
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obtain that the second ( complexity penalty) term does not decay to zero, due to the fact that the gap parameter 'Y decays to zero too quickly. However, it is well known that in most successful applications of boosting, only a small number of weights, say s, retain non-negligible values, while most weights shrink ( exponentially fast) to zero. In this situation, keeping in mind the normalization condition I:;:

1 
lvil = 1, the term I:;:

1 
vt is in fact of order ( = 1/ s, instead of order 1/m. As long as s = o(m), the existence on an effective weak learner is established. In this situation we may in fact obtain much better rates of convergence, as attested by the following theorem. 

Theorem 4.2 Let S = {(xi , Yi), .. . , (xm, Ym)}, Xi E JRd, Yi E {±1} be a sample of
m points drawn independently at random from a distribution D over JRd x {-1, +1}, 
and such that the minimal distance between differently labeled points in S is TJ. Assume
that the AdaBoost algorithm has been run for T steps, and that there exists an integer 
T0 :S T, such that the probabilities Pi assigned to the points in S obey I:;:

1 
Pl 2: ( for

T > To. Then for sufficiently large m, with probability at least l - 6,

{ 2TJ(l - µ)(T-To)
} ( 1 ( dH 7;2 1) 112) PD[Yf(X)] :S cexp - ((log m)3/2 +o .jm TJ(µ2(log(m/dH)) + log"J ,

where the constant c depends on T0, andµ E (0, 1) is a free parameter.

Proof First, observe that the generalization bound (1) applies to all f E co(H), and inparticular to the f obtained via the boosting algorithm. Second, under the conditions of the theorem, we know that there exists a constant a and a positive number 'Yo = [a(rJ(log m)-312] 112 such that each weak learner achieves an error smaller than 1/2 - 'Yofor T > T0. Set()= µ"(0, 0 < µ < l. Then from the work of [SFBL98], see (4), we find that the empirical error of the classifier f obeys 
To Ps[Yf(X) :S BJ :SIT J4Ef-0(1- Et)l+O

t=l 

x exp { T 
� 

To [(1 - µ"(o) ln(l - 2"fo) + (1 + µ"fo) ln(l + 2"(o)]} ,
where we have split the product ( 4) into t :S T0 and T > T0 . For large values of m, i.e., small values of 'Yo, we expand the logarithm, substitute for 'Yo as a function of m,and obtain the desired claim for the first term in (1). The second term is obtained by straightforward substitution of()= µ"(o in the second term of (1). D 
Remark 3 The bound of Theorem 4.2 is particularly interesting as it relates the number of boosting iterations to the sample size and to the properties of the data ( through T/). In particular, as long as the gap parameter TJ is strictly positive (independently of m), and 
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as long as T increases faster than (log m )312, we are guaranteed that the classification error will converge to zero. For example, Let T = 8((log m)512). Then we find that the bound behaves like 

PD [Yf(X)] � 0 ( 1 ) +o ((-3.!!_) l/2 ((log(m/dH))7/2)
1/2)'m2ri(l-µ)/( (ryµ2 m 

which decays to zero as a function of m at a rate depending on ( and on the gap parameter rJ. It is important to observe that an appropriate value of T is determined 
dynamically here, and not preset in advance, since the condition that I::i Pl 2". ( is only known after the algorithm is run. 

It should be clear that Theorem 4.2 and Remark 3 may be used in order to select an appropriate value for the number of boosting iterations needed to guarantee that the total error bound approaches zero. As far as we aware there has been no systematic method to-date to address this problem. 
Finally, we comment that Kearns and Mansour [KM96] have shown that several widely used algorithms for the construction of top-down decision trees, are in fact boosting algorithms. Considering decision trees formed by oblique splits at each node, we conclude that our results establish bounds on the generalization error for decision trees as well. 

5 Conclusions 

We have considered the existence of a weak learner in boosting algorithms. The exis­tence of such a learner is a crucial requirement for the success of boosting algorithms, but there has been no general proof to-date that such a learner exists. In this work we have shown that an effective linear weak learner exists, and have provided bounds on its performance. It turns out that the only condition needed for the existence of a weak linear learner is that the positively /negativey labeled points be separated by some nonzero gap. Combining our results with the standard generalization bounds for boosting, we are able to establish complete bounds on the performance of boosting algo­rithms. Since the existence of a weak learner has been established for linear classifiers, the results clearly hold for any more complex classifiers for which linear classifiers are a sub-class. Two notable examples are neural networks and decision trees with oblique splits. We also argued that our bounds can be directly used in order to determine the number of boosting iteration needed in order to guarantee convergence of the expected error to zero. Whether the bounds are sufficiently tight in order for this procedure to be practically useful remains to be seen. 
It is important to stress that the only condition needed in order to guarantee the existence of a weak linear classifier is a finite gap, i.e., a positive distance between points belonging to the two classes. In practical pattern recognition applications it may be hard 
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to guarantee a sizable gap as the sample size increases. A challenging open problem here 
would be to investigate under what conditions a weak learner may be shown to exist 
without this assumption. We have argued that, at least for homogeneous hyperplanes, 
this requirement is necessary, while the question for general hyperplanes remains open. 
A promising approach to this issue is based on the work of Rogers [Rog94], which extends 
the results of Alexander [Ale90, Ale91] to piecewise uniform measures. 

It is interesting to comment that the main result of this paper required some rather 
advanced tools from the field of combinatorial geometry, specifically the sub-field of 
geometric discrepancy. It would seem extremely difficult to establish the existence of 
effective weak learners using elementary techniques. An immediate question that arises 
here relates to the establishment of weak learnability for other types of classifiers, which 
are not based on hyperplanes. This issue is currently under investigation. 

We have not touched in this paper upon the issue of algorithmic design. The con­
struction of the motion-invariant measure in Section 3 immediately suggests a stochas­
tic Monte-Carlo type algorithm for this purpose. It would also be interesting to see 
whether deterministic algorithms exist, for which the property of weak learnability can 
be established. 

Acknowledgements We are grateful to Ron Aharoni for directing us to the field of 
geometric discrepancy, and to Jifi Matousek, Allen Rogers and Shai-Ben David for very 
helpful discussions and comments. 

Appenix 

A Proof of Lemma 4.1 

Proof Since 

it suffices to prove that if for every symmetric v 

m 

L vi�(xi) > 2E
i=l 
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Changing the order of summation yields the following equation:
_1 (2n) � l (2n)! d Fn(d, rJ) = - n - 2 L..)-1) (n _ C)!(n + £)!l=l 

� � t )2k (2n)! 
+ 2 L..., ak L...,(-1) (CrJ/4nd ) (n _ C)!(n + C)!", k=l l=l 

(24)

The first term vanishes, as in ( 21). We proceed to study the elements in the secondsum. The next combinatorial lemma characterize the behavior of the summed elements:
Lemma B.1 If 1 $ k < n then L�=l 

(-l)f£2\n+����-l)! = 0

Proof The proof is by induction over k. Fork= 1 recall that E;:
0
(-l)l£2 t,g:2'l)! = 0

[GR94) (0.154.3). We therefore have that:
� )l 2 

(2n)! 0 = L...,(-1 C C!(2n - £)!
l=O 

= (-1rn2 (
2n) + 2(-lt �((n - l)2 

+ (n + l)2)(-l)l (2n)!
n L..., (n + C)!(n - £)!l=l 

( )n 2 (2n) 2( )n �
( )l (2n)! 

= -1 n n + 2n -1 � -1 ( n + C) ! ( n _ C) !
( )n �( )l 2 

(2n)! 
+ 2 -1 L..., -1 C ( n + C) ! ( n - C) !

l=l 

The first two terms vanish, as in (21) so we have that E;=l (-l)f £2 (n+����-l)! = 0
We proceed to the induction step. Assume the result is true fork'= 1, ... , k- 1, thenfrom [GR94) (0.154.4) fork < n 
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Rearranging and collecting terms yields: 
0 = (-ltn2k (2n) + 2(-lt �((n - l)2k + (n + l)2k)(-1)1! (2n)! 

n {;;{ (n + f)!(n - f)!
= (-1rn2k (2n) + 2n2k(-1r f)-1/ (2n)! 

n 
f=l 

(n + f)!(n - f)! 
+2(-lt� ( 2k)n2k-2m�(-llf2m (2n)! L 2m L (n +f)!(n-f)!

m=l f=l 

( )n �( )e 2k (2n)! 
+ 2 -l L -l f ( n + f) ! ( n - f) !

f=l 

Note that all the odd powers vanish, since the sum of binomial coefficients for ( n- l)2k 
+ (n + l)2k consists of even powers only. The sum of the two first terms vanish as in (21),by the induction the third term vanishes too. The last term is the desired element and�thmeforeO. D 

As a result we know that the first k - 1 elements in the sum of (24) vanish. The k-thelement can be calculated by recalling [GR94) (0.154.4) 
�( )' 2k (2n)! - ( )'L -l f fl ( 2n - f) ! - 2n · · 
f=O 

Repeating the argumentation of Lemma B.l results in 
( )I _ �(- )eo 2n (2n)! 2n · - 2 L 1 {, ( n + f) ! ( n - f) !

f=l 

(25) 

By taking the first non vanishing element in (24) as the approximation we have that: 

C Proof of Theorem 4.1 

(26) 
D 

Let J+ (J-) denote the indices of the positively (negatively) labeled points. Due toLemma4. l we assume without loss of generality that P is symmetric, namely L
iEJ

+ Pi =L
iEJ

- Pi, implying that L
i 
vi = 0, where vi = YiPi. We start from the basic identity (8).Recall that the measure !l> is defined over the set R = {r0, r 2, ... , rn } and the convolution 

measure over XX R is given by (v*!l>)(xi, rk) = v(xi)!l>(rk). Let x+ 
= x-:_- u ... uxt+' 

and similarly for x-, be partitions of x± 
. Denote the indices of points in xt by It.
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Keeping in mind the negativity of J4>(xi,xj) (Lemma 3.3) and J(<I>) (Lemma 3.1) , we 
have the expression, 

jEX+ iEI-
K+ K_ 

+LL LIJ4>(xi, Xj )lvivj +LL LIJ4>(xi, Xj)lvivj.
k=l i#j i,jer: 

k=l i#j 

i,jElj; 

(27) 

where we have used the fact that for points xi and Xj belonging to the same class the 
weights vi and Vj are of the same sign, while vivj < 0 if i E J+ and Vj E 1-. The
remainder of the proof proceeds by first defining an appropriate measure <I>, and then 
bounding each of the terms in (27). 

We begin with a useful lemma from [Ale94]. 

Lemma C.1 Let v be an atomic measure concentrated on a set of m points in �d . Let

{J be the minimal distance between any two points. Then

-I ( v) 2: cd{J L v;,
i=l 

where c2 = 0.02. 

Defining the measure <I> 

S imilarly to [Ale94] define the signed one-dimensional measure <I>n-i, concentrated on 
{O, 1, ... , n} as follows: 

- k(n) 
<I>n-1(k) = (-1) k 

It is easily seen that <I> obeys the following following two conditions: 

l!<I>n-1 II = 2n , 

L i5

<I>n-l ( i) = 0 (0 � s � n - 1). 

The last property it easy to check by looking at the derivatives of the expression 

and setting x = 1. 
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We then define a normalized measure <I>, supported on the set {O, rJ/4n, 2ry/4n, . .. , ry/4}by 
(k= 1,2, ... ,n)<I>(kry/4n) � 2-n<I>(k) = (-ll (:) 2-n

Clearly II <I> Iii = 1 and the n - l first moments of <I> vanish.

Lower bound on the first term in (27) 

From Lemma C. l we conclude that
II(<I>)I 2 0.02(ry/4n) L 1¢kl2

= (0.005ry/n)r2" � (;) 
2 

� (0.005rJ/n)2- 2n (2:)
2 O.OOlryn-3/2.

In (a) we used a standard identity for binomial coefficients, and the Stirling bound
y'2rn (�) n $ n! $ y'2rn (�) n+l /12n 

was used in the final step, in the form (2;) 2 (1/2)('1rn)- 1!222n
. 

Lower bound on the second term in (27) 

(28) 

Using a Taylor expansion for the square root function one may show (see Lemma 3.2)that 
Jq,(x,x') = dLckI2k(¢,)d-2k

k=l 

where d = !Ix - x'lb and J2k(<I>) is defined in (10). Let h = ry/4 be the diameter of thesupport of <I>. Keeping in mind that lckl < 1 and using the fact that IJk(<I>)I = 0 for
k = 0, l, ... , n - l, and lf2k(<I>)I $ ll<I>llih2k (see (11)) in general, we find that 

!Jif>(x, x')I $ d L h2kd-2k
k=n+l 
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where we have used the fact that ll<I>lli = 1. Since d 2: r, (recall that xi E x+ andXj Ex-) and h = r,/4, it follows that h/d � 1/4 and thus [1 - h2d-2J-1 � 16/15. Wethen find that (h) 2n+l IJ;p(x,x')I � 1.07 d h 

� 1.07 · 4-(2n+1)(r,/4) 
Continuing we find that 
-
LL IJ;p(xi ,xj

)llvil lvj l 2: -0.06 · 2-4nr, L L lvillvjl
iEJ+ jEJ- jEX+ iEJ-

where m± = IJ± I. In the second step we used the Cauchy-Schwartz inequality to show 
that Li Lj lvi l lvj l � JLi Lj vfvJ Li Lj 

1. 

Lower bound on the third and fourth terms in (27) 

We now move on to deal with the final terms in (27). For this purpose we need a lowerbound on IJ;p (xi, Xj )I. From (9) we have the explicit expression 
n n 

k=O l=O 

where <Pk = <I>(rk) and qik = (xf, rkf E JR.d+l . 

Let x and x' be points in JR.d such that llx-x'll2 = d. Let�= r,/4nd, then the followingrelations hold for the measure <I> defined in ( 28). 
d-1J;p(x,x') = d- 1 t t(-l)k+£ (d2

+ (r,/4n)2 (k-£)2)112 (;) (;) 
k=lO £=0 

= t t(-1)k+£(1 + e(k - e)2)112 (;) (;) 
k=O £=0 

(a) t. (:) 
2

_ 2(1 + e)l/2 t (:) (
k

: 1) + 2(1 + 4e)1i2 t, (:) (k : 2) + · · · 

c•> t, (:)' + 2 t.<-1J'<1 +e'eJ11, t (:) (k : e) 
= (2n) + 2 t(-1)£(1 + e2e)1/2 (2n)! (29) 

n 
£=l 

(n - f)!(n + £)! 
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In step (a) we separated the sum into terms with k = £, lk - £1 = 1, lk - £1 

= 
2, etc. In step ( b) a standard formula for the sum of binomial coefficients was used, and a re-arrangement of the sum was performed. 

For the specific measure <I> introduced in (28), define 
Fn(d, T/) = -J<I>(x, x') > 0 ( llx - x'll2 = d). (30) 

From Lemma 3.3 we conclude that Fn(d, Tl) is a positive and strictly decreasing function of d. Thus, the third term in (17) is bounded from below by 
K+ 

L Fn ( dt, T/) L LI 1/i 11 Vj I 
k=l 

where 

A similar bound holds for the fourth term in (17). 
Concluding the proof 

Combining all the results derived, we have the following lower bound, 
-J(v) 2 � [ O.OOln-3!2 � vf - 0.06 · r•• Jm+m-llvll+llvll-]

K+ K-

+ LFn(dt,Tl)LLlvillvjl + LFn(d;;,T/)LLlvillvjl, (31)
k=l k=l 

where llvll± = (I:iEJ± vl) 112. The parameter n has been free up to now. In order toguarantee that the second term is smaller than the first, we need to select n large enough so that the second term is smaller than (say) half the first term, namely 
o.ooosn-312 :I:: v; > 0.06. 2-4

n Jm+m-11v11+11v11--
Simple mathematical manipulation shows that this is equivalent to the requirement 

3 n n 2:: 
8 

log2 -;; 

[ 1 llvll2 ] 213a= 120 Jm+m-llvll+llvll-
We use the following simple lemma. 
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