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Abstract 

Consider Iv! independent users, each user having his own transmit antenna, that transmit si­
multaneously to a receiver equipped with N antennas through a Rayleigh block-fading channel 
having a coherence interval of T symbols, with no channel state information available to either 
the transmitters or to the receiver. The total transmitted power is independent of the number 
of users. For a given coherence time T, we wish to identify the best multi-access strategy that 
maximizes the total throughput. 

If perfect channel state information were available to the receiver, it is known that the total 
capacity increases monotonically with the number of users. If the channel state information 
is available to both the receiver and to all transmitters, the throughput maximizing strategy 
implies for N = I that only the single user who enjoys the best channel condition transmits. 
In the absence of channel state information one is forced to a radically different conclusion. 
In particular we show that if the propagation coefficients take on new independent values for 
every symbol (e.g., T = 1) then the total capacity for any M > 1 users is equal to the capacity 
for M = I user, in which case TDMA is an optimal scheme for handling multiple users. This 
result follows directly from a recent treatment of the single-user multiple antenna block-fading 
channel. 

Again, motivated by the single-user results, one is lead to the following conjecture for the 
multiple user case: for any T > I the maximum total capacity can be achieved by no more 
than M = T users. T he conjecture is supported by establishing the asymptotic result that, for 
a fixed N and a constant M /T for large T, the total capacity is maximized when M /T -+ 0, 
which yields a total capacity per symbol of Nlog(l + p), where pis the expected SNR at the 
receiver. We further support the conjecture by examining the asymptotic behavior with large p 
for fixed M, T and N ::; T. 

Index Terms: wireless communication, multiple users, Rayleigh block-fading, multi-element 
antenna arrays. 

*This research was performed, in part, while the author was visiting the Mathematical Sciences Research Center,
Bell Laboratories, Lucent Technologies 



1 Introduction 

Multiple antenna wireless links are of ever-increasing interest to the research community, undoubt­

edly because of the spectacular throughputs that are obtainable under certain conditions [3, 11]. 

For a single-antenna link with no channel state information available at the transmitter, fading is 

never beneficial. On the contrary, the potential benefits of multiple antennas can only be realized 

in a fading environment. Our interest is the flat-fading regime where, over the frequency support 

of the transmitted signals, the channel response is approximately constant. 

Throughout we shall adopt a block-fading model [10], where the channel propagation matrix is 

constant for T symbol periods, after which it jumps to a new independent value for another T

symbols, and so on. In general our goal is to maximize throughput, in the Shannon sense, implying 

that coding is performed over many independent T-symbol coherence intervals. We will not con­

sider performance within a single coherence interval, where Shannon coding cannot be performed, 

and which requires notions such as outage capacity [10], delay-limited capacity [4], or space-time 

autocoding [6]. 

A detailed survey of information theory for fading channels is given in [2]. For our purposes it is 

convenient to subdivide the multiple-antenna problem area as shown in Table 1, with a limited 

number of references provided for the sub-areas. 

CSI at transmitter & receiver CSI at receiver no CSI 
single user [11] [3, 11] [1, 9, 14] 
multi-user [7] [11] 

Table 1: Wireless links require special treatment, depending on the number of users, and the 

amount of channel state information ( CSI) that is available. 

Usually channel state information is acquired by the transmission of a set of known training signals, 

with the required symbol duration of the training signals proportional to the number of transmit 

antennas. The overhead that is represented by training can be considerable. In fact, where one 

is free to choose the number of antennas to maximize the net throughput for a fixed coherence 

interval, half of the coherence interval is used for training [8]. Training, however, is not always 

inefficient. See (14, 5], which demonstrate that training may preserve basic "degrees of freedom" 

in the system. There certainly is no fundamental mandate to perform 
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training, so the assumption of no CSI is the most natural one to make. 

For a single user, the assumption of no CSI at the receiver versus the assumption that 

the receiver has CSI changes the problem drastically. With CSI at the receiver only, the capacity 

attaining signals are independent among the transmit antennas, and capacity increases linearly with 

the smaller of the number of transmit and receive antennas. Without CSI, the capacity attaining 

signals are temporally orthogonal among the transmit antennas within the coherence interval, and 

there is no point in making the number of transmit 

-antennas M greater than the symbol duration of the coherence interval T. When CSI is available 

to both the transmitter and the receiver, the single user can further improve performance by water­

pouring optimization, which also introduces signal correlation among the antennas. 

In contrast to the single user, multiple users must transmit independent signals. When CSI is 

available to the receiver alone, the multiple users can collectively duplicate the throughput of 

a single user, whose optimal signals are independent among the transmit antennas. With CSI 

available to both transmitter and receiver (and for the case of a single receive antenna, N = 1), 

maximum throughput is achieved by a strategy called "controlled TDMA" [2], where only the user 

who possesses the strongest propagation coefficient transmits during each coherence interval. This 

specific result does not necessarily hold for N > l. The case of CSI available either to the receiver, 

or to the transmitters and receiver, is equivalent to a coded DS-CDMA system where the channel 

coefficients play the role of signature sequences of length N (processing gain), where M stands for 

the number of users [12]. 

The focus of this note is the case where no CSI is available to either the transmitters or to the 

receiver. Here we conjecture that maximum throughput can be achieved when the number of users 

is less than or equal to the symbol duration of the coherence interval, and we establish the validity 

of this conjecture for three special cases. 

2 Signal Model 

We use a block-fading model, with coherence interval T [10, 2, 9] where M independent users 

simultaneously transmit to a single receiver equipped with N antennas in a flat-fading environment, 

where each user has sole access to one of Jvl transmit antennas, and where nobody has any channel 
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state information. The fading is described by a 111 x N complex-valued propagation vector H,

which remains constant for T symbol periods, after which it jumps to a new independent value
for another T symbol, and so on. During a coherence interval the NI users collectively transmit a
T x M complex matrix S, whose columns are statistically independent, and the receiver records a
T x N complex matrix X,

X=aSH+W, (1.1)

where W is a T x N vector of additive receiver noise, whose components are independent, zero­
mean complex Gaussian with unit variance (CN(O, 1)). The M components of H are assumed
independent and zero-mean, with unit-variance. The independence of the columns of S implies
that the users are acting with no cooperation among themselves. We enforce an expected power
constraint

tr E { S st} = T · M . (1.2)

This constraint, when combined with the normalization 1/vM in (1.1), implies that the total
transmitted power remains constant as the number of users changes, and that p represents the
expected SNR at each receiver antenna.
We wish to choose the joint probability density of the components of S, subject to the independence
of its M columns, and subject to the power constraint (1.2), to maximize the mutual information
with no CSI available to anyone (receiver and transmitters),

I(X· S) � E {10g (p(XIS))}' 
p(X) 

This maximization yields the total throughput or capacity.

(1.3)

It is convenient to assume Rayleigh fading, where the independent components of Hare distributed
as CN(O, 1), however this assumption can be relaxed for some of our asymptotic results. For
Rayleigh fading the conditional density takes the form

exp(-xtA-1 x) 
p(X IS) = 

7rTN detN A ,

where A= Ir+ (p/lvl) sst and Ir denotes the T x T identity matrix.
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3 Upper Bound on Capacity; Capacity for T = 1 

The constraint that the columns of S be statistically independent makes the maximization of the 

mutual information (1.3) difficult. If we relaxed this constraint and permitted dependent columns 

we would obtain an upper bound on the multiuser capacity, which is the cooperative multiple-user 

capacity equaling the capacity for a single use.r who has access to M transmit antennas. This 

problem was studied for the case T = M = 1 by [1] and for general T, N and M by [9], with the 

following results: 

1. The capacity for M > T is equal to the capacity for M = T;

2. In choosing p(S) to maximize mutual information, the transmitted matrix can, without

penalty, be constrained to have the factorization 

S = 1PV, (2.1) 

where IP and V are statistically independent, IP is an isotropically random T x T unitary 

matrix (i.e., the columns are orthonormal, and the joint probability density of the elements 

of IP is unchanged if IP is premultiplied by any deterministic unitary matrix), and V is real, 

nonnegative, T x M diagonal. 

Note that for the capacity-attaining signal, the columns of S are not independent. In contrast, if 

perfect CSI were available to the receiver [11] the components of S would be independent CN(O, 1), 

and the capacity would increase monotonically with M.

If perfect CSI were available to the receiver, the total M-user capacity would be equal to the single­

user/M-antenna capacity [11]. If CSI were available to both receiver and transmitter, and if N = 1, 

only one user should transmit in each block: that who enjoys the best channel condition [7]. This 

strategy was referred to as controlled random TDMA in [2]. This strategy does not necessarily scale 

with N for an arbitrary propagation matrix H. This can be deduced by examining H matrices 

that satisfy the Welch bound, that is ifHtH = IN, and kHHt has diagonals equal to one. In this 

case it can be shown [13], via the analogy to coded DS-CDMA previously mentioned, that capacity 

equal to Nlog(l + p) is achieved only if all NI 2'. N users transmit i.i.d. equal-power signals. 

We conclude that the absence of CSI drastically changes the problem, and that the total M-user 

capacity is generally less than the single-user/M-antenna capacity. 
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For the special case where T = 1 (arbitrarily fast fading) a single user having Ai antennas can
attain the same performance with a single antenna, so the total capacity for !vi users is equal to
the capacity for one user. This establishes the optimality of TDMA for T = 1 and unavailable -
CSL This conclusion extends also to all fading matrices H which are statistically invariant under
a unitary transformation.
For the general case T > 1 an obvious conjecture [2], in light of the results cited from [9], is that
the total capacity for any M > T is equal to the total capacity for M � T. At present we are
unable to prove this conjecture, but in the following sections we make some headway by studying
the case where T and M grow big simultaneously, or p grows asymptotically large.

4 Asymptotic Results for Large T, M 

We begin by deriving some upper and lower bounds on the mutual information (1.3). Throughout,
we only assume that the components of H are independent, zero-mean, and unit variance. The
central relation is

I(X; S) - E {10
g [

p(XIS). p(XIS, H)]}
p(X) . p(XIS, H) 

= E { log [p(
:Ji)

H)] }- E { log [P��:i::)]}
- I(X;S, H) - I(X;HIS). (3.1)

The mutual information I(X; S, H) corresponds to an additive Gaussian noise channel, X = 

(p/M) 112 Z + W, where Z = SH. This mutual information is maximized by making Z zero­
mean complex Gaussian with independent columns, with covariance of each column equal to that
of each column of SH, or E { sst }. This bound, combined with (3.1), gives an upper bound on
I(X; S),

I(X; S) < I(X; S, H) 

< N log det ( Ir + ; E { S st}) 
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Note that in the process of ma.ximiziug (3.5), S has been made white Gaussian. The c�mbination
of (3.1), (3.4), (3.6), and (3.8) gives a lower bound on mutual information,

vVe use a common matrix identity and Jensen's inequality as follows, to bound the second term,
with the components of S independent, CN(O, 1),

E{log det (1r+ ;sst)} = E{log det (1M + ;
1
sts)} 

< log det (IM + ; E { st S}) 

= log det (1M +!IM) 

= Mlog (1 + !) . (3.10)

See also the symmetry properties in [11, Remark 3]. The substitution of (3.10) into (3.9) gives

I(X; S) � T · [E{log det (1N + ;HtH) }- �N log (1 + !) ] (3.11)

We simultaneously let T and M become big while maintaining a constant ratio M/T. This gives
[11]

I(X; S) � T · N [1og(l + p) - � log ( 1 + !) ] (3.12)

Finally we let the ratio grow small, M /T - 0, which yields the asymptotic result
I(X; S) � TNlog(l + p). (3.13) 

Together, (3.3) and (3.13) imply that for fixed N and asymptotically, for large T and M, and with
M/T-+ 0, the mutual information is I(X; S) = TNlog(l + p), which is equal to the capacity for
a single user, having an unlimited number of transmit antennas with perfect CSI at the receiver.
This supports our original conjecture (e.g., mutual information maximized for M/T :s; 1).
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5 Asymptotics with Large p

To support further our conjecture we now focus on the case where T, lvl and N are fixed, while

the signal-to-noise ratio p .- oo. This asymptotically high SNR region is appropriate for multiple

users operating

in an extremely high data rate regime. Again, resorting to an upper bound by allowing the full

cooperation at the transmitter sites we invoke recent results by Zheng & Tse [14] characterizing

the asymptotic capacity of the single user lvl-transmit, N-receiver systems with coherence time T.

The capacity behaviour [14] is

where

C(M,N,T;p) 

logp

M* = min { M, N, l � J } 

(4.1)

(4.2) 

Here C(M, N, T; p) stands for the capacity over the coherence interval T (not normalized) with M

transmit and N receive antennas, and SNR = p. With N = 1, this result supports our conjecture,

as immaterial of what the coherence time Tis (fixed though), having a single operating transmitter

yields the optimal possible asymptotics with respect to p.

Clearly, we cannot infer from [14] the optimal strategy for N > 1. For N < l � J, the fact that the

single-user capacity does not require more than N transmitters doesn't imply necessarily the same

conclusion in the multiple user case. This is because, in the single user case, capacity achieving

signals are in general correlated for different transmitting antennas, and this cannot be the case for

multiple users.

To investigate the behavior for N > 1, though N < T, we resort again to independent Gaussian

signals, and we explicitly assume that the components of Hare independent Gaussian. We denote

this by a subscript G. We find

Ia(X; S) 2: Ia(X; SIH) - Ia(X; HIS) (4.3) 

Notice that

Ia(X; SIH) = T · Csr(M, N;p), ( 4.4) 
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where Csr(AJ, N; p) stands for the single user normalized capacity per unit time with AI transmitters 
and N receiving antennas and signal-to-noise ratio p [11]. The symmetry of the signal model (1.1) 
yields, 

Ic(X; HIS)= N · Csr(M, T; p).

Symmetry considerations [11] imply that 

Csr(a, b; bp) = Cs1(b, a; ap)

Now, it is known [11] that 
Csr(M, N; p)

logp 

which when combined with ( 4.3) yields 

----+ 

p-+00 
min(M,N) , 

Ic(X; S) 

logp ----+ 

p-+oo 
2: T min(M,N)-N min(M, T).

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Consider now the case of fixed N and T and N s; T. Clearly, the asymptotic expression is optimized 
by letting M = N, which yields, 

Ia(X; S) 

log p ----+ 

p-+oo 
(4.9) 

Note that for 2N s; T, this yields the optimal performance as deduced by (4.1), (4.2). For lf J < 
N :ST, there is a gap between the behavior of (4.9) (where M = N) and (4.1} which is optimized 
for M = l f j < N. We conjecture that ( 4. 9) reflects the actual asymptotic behavior in this case 
and the penalty with respect to (4.1) is attributed to the independent signaling at each transmitting 
antenna. 

6 Conclusions 

The absence of CSI drastically alters the behavior of a wireless link for independent multiusers. 

We conjecture that, from the standpoint of maximizing throughput, the number of users should not 
exceed the symbol duration of the coherence interval. We have established the correctness of the 
conjecture for three special cases: 1) a coherence interval comprising one symbol, 2) a coherence 
interval of unlimited duration, and 3) an unlimited SNR. 
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As mentioned in the introduction, there is an interesting analogy between multiple user, multiple 

antenna links and coded DS-CDMA with random signatures. In the regime considered here, the 

signatures are chosen in an absolutely random fashion for every T-symbol coherence interval., with­

out their values being known by any of the receivers, whether legitimate or not. It is not surprising 

that our results also conform with the autocoding capacity [6), where, for the case of unknown CS! 

the number of actively operating users at each time instant is small compared with T.
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