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Abstract 

The single-user and two-user (multiple-access) Poisson arbitrarily varying channel with input 

and state (peak and average-power) constraints, but unlimited in bandwidth, is considered. For 

both cases the deterministic and random code capacity with the average probability of error 

criterion is obtained. In the single-user case Wyner's [19] decoder attains the deterministic-code 

capacity whereas for the two-user case a "minimum distance" decoder that belongs to the class 

of ,8-decoders [4] is shown to attain the deterministic-code capacity region as claimed. 

Index Terms - Arbitrarily varying channel, Poisson channels, capacity, optical CDMA. 
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I. Introduction

The discrete memoryless arbitrarily varying channel (AVC) models a communication scenario in 
which a channel parameter may vary with time without memory in an arbitrary and unknown manner 
during the transmission of a codeword. In this paper it is assumed that the sequence of channel states is 
selected arbitrarily subject to a constraint - the state average-power constraint, and possibly depending 
on the codebook (as the state generator is assumed to be cognizant of the code) but independently of 
the codeword actually sent. 

AVC's capacity depends on whether or not random codes are permitted, and whether the average 
or the maximum probability of error criterion is used. The random coding capacity admits a simple 
characterization as a min-max of mutual information, unfortunately random codes are not always 
implementable. 

Unless stated otherwise, the term capacity will hereafter always refer to the capacity for deter­

ministic codes and the average probability of error criterion (random-code capacity is the same under 
both criteria only in the single-user case). In the absence of state constraints, Ahlswede [1] proved the 
following dichotomy : the capacity equals either zero or else equals the random code capacity. The 
necessary and sufficient conditions for positive capacity, as well as capacity under a state constraint 
for the single-user AVC, have been determined by Csiszar-Narayan in [3], wherein it was shown that 
Ahlswede's alternatives do not necessarily hold under a state constraint. The two-user multiple-access 
AVC with and without state constraints has been considered by Gubner in [9, 10], wherein necessary 
conditions for non-empty interior of the capacity region are given. In [2] Ahlswede-Cai settle Gub­
ner's conjecture and prove that the necessary conditions presented in [9, 10] are also sufficient for 
the multiple-access AVC to have a non-empty interior of the capacity region. For a comprehensive 
treatment of the discrete AVC the reader is referred to [7, ch. 6] and the Lapidoth-Narayan tutorial 
[14] where the necessary terminology and major results are summarized.

In this paper, we determine the deterministic-code capacity of the Poisson single-user, and two-user 
multiple-access, AVC formally defined as follows. The two-user Poisson multiple-access AVC (MAVC) 
is modeled by two independent users that generate inputs A

ffli 
(t) , i = 1, 2 and an independent 

(arbitrarily varying) state input A81 
(t) , 0 � t � oo, that determine the rates of the corresponding 

doubly stochastic Poisson processes di(t) and s1(t). Specifically, di(t) (resp. s1(t)) corresponds to the 
number of counts registered by a direct detection device (usually a p-i-n diode) in the interval [O, t], 
in reaction to the input Am; (t) (resp. A81 

(t)) which is proportional to the squared magnitude of the 
optical field impinging on the detector at time t integrated over its active surface. The observation is 
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v(t) = L di(t) + s1 (t) + D(t) , (1) 
i=l 

which is also a Poisson process with instantaneous rate Ao+ A81 
(t) + I:;=

1 Am)t). The dark current 
represented by D(t) is a homogeneous Poisson process of rate Ao, We adopt an input constraint 
r = (0"1, 0"2) and state constraint A, namely the permissible average power of user i , i = 1, 2 is at 
most O"iA and that of the state input is at most AA, where A denotes the users' transmitter peak 
power, but we do not impose any bandwidth constraints on the users' and state inputs. 

The Poisson single-user AVC corresponds to the case dealing with just one user that generates an 
input Am(t) and in result the observation is 

v(t) = d(t) + s1(t) + D(t) 
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The single-user non-A.VC capacity, with constant peak constraint imposed on the encoder output, 
has been obtained by Kabanov [16] and extended by Davis [17] to reflect the imposition of an average­
power constraint on the encoder output. In his seminal contribution [19, 20] vVyner found the exact 
form of the reliability function for this single-user case. The channel capacity for the two-user non-AVC 
model was found by Lapidoth-Shamai [15] using the Kabanov /Davis formula and therein it is shown 
that CDMA is optimal in this case, while the exact error exponents for this case have been determined 
in [21]. 

The remainder of this paper is organized as follows. In section II we introduce the terminology and 
summarize our main results. These results are proved in sections III and IV. 

II. Definitions and Results

Let vf = {v(t) : 0 :::; t < T} be the observation process. A two-user code with parameters 
(M1 , M2, T, r, Pe) is defined by: 

• a set of M1 waveforms (the first user codebook) Am1 
(t), 0 :::; t :::; T, 1 :::; m1 :::; M1 which satisfy

the peak and average power constraints O:::; Am1 
(t) :::; A , 1/T J[ Am1 

(t)dt:::; u1A. 

• a set of M2 waveforms {the second user codebook) Am2
(t), 0:::; t:::; T, M1 + 1 :::; m2 :::; M1 + M2

which satisfy the peak and average power constraints O:::; Am2
(t):::; A, 1/T J;f Am2

(t)dt:::; u2A.

• a "decoder" mapping D : {vf} -+ ( {1, 2, ... , M1}, { M1 + 1, ... , M1 + M2} ).

The average probability of error for this code, when the state input is A81 
(t), is 

1 M1 M1+M2 
{ 

} 
Pe(s1) = MM � � Pr D(vf)-/- (m1, m2)1Am1 (·), Am2(·), As1 (·) ,

1 2 m1=l m2=M1+l 

and the restriction of this definition to the single-user case is obvious. 
Assuming that the same peak constraint A holds for both the signal and state seems to be somewhat 

restrictive hence (in the single-user case) we assume that the state is peak-limited to Band it is allowed 
to vary arbitrarily within a codeword interval [O, T] subject to the constraints 

(3) 

The following result due to Frey summarizes the optimal jamming strategy in the case at hand. 
Proposition 1 {18, Theorems 4,5}: For the Poisson channel defined by (2) with non-random noise 

intensity (dark current) Ao(t) = Ao, 

• The information capacity (in the sense of the average mutual information between the channel
input and output processes over the interval [O, T]) is minimized by a deterministic jamming 
intensity As1 

(t). 

• If the channel encoder is peak-constrained O:::; Am(t) :::; A and the jamming intensity is average­
power constrained as in (3), the jamming intensity which minimizes the information capacity is 
given by the "waterpouring" strategy 

A�;t(t) = [aA - Ao]+ , 
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where [zJ+ = max{O, z} and a is defined by
fo

T [aA- Ao]+ dt = AAT.

The optimal waveform is thus A�r(t) = AA, i.e. the optimal jamming sequence admits the form ofa dark current process, mutually independent of Ao, with intensity AA.
Our main result for the single-user case is the following. 
Theorem 1: The deterministic-code capacity of the Poisson AVG with input constraint r = er,

state constraint A, and B � A is

{ Afi(p*,A) , if A :s;p*(A,s0) < er
C = Afi(A, A), if p*(A, so)< A< er0, if A�er

where so= Ao/A, and fi(p, q) , p*(A, s0) are defined by

(4) 

fi(p, q) 6 -(so+ q + p) ln(so + q + p) + (1 - p)(so + q) ln(so + q) +-p(so + q + 1) ln(so + q + 1)
b. (so+ A+ l)so+A+l p*(A, so) ( A) +A - (so+ A) .e so+ so 

The random-code capacity is Cr(A) = Afi(p*, A). 
If B < A then C = Cr(A) {note that B < A implies A:::; B/A).

Average-power constraints in the two-user case (even for the non AVC case) cannot be handled by simply considering the pairs of messages that constantly satisfy the average-power constraint [23, 24, 15), moreover the classic time-sharing principle does not hold for the MAVC subject to a state constraint [9, 10). Instead, the random-code capacity region is expressed in terms of an auxiliaryrandom variable v that can be regarded as a form of time-sharing, and in fact this formulation extends the set of attainable rate pairs. To this end let the channel inputs pdf admit the form 
(5) 

That is, given a r.v. v (that is indexed by codeword intervals) the users' and state inputs are condi­tionally independent given V = v and the input/state constraints rand A are satisfied by input/state waveforms that may sometimes violate the corresponding constraints but when averaged over the auxiliary r.v. they are satisfied; 
E[e(S)] - L1'(v)(I:e(s1)r(s1lv)) =A

ti s1 

E[l(Ai)] - L1'(v)(I:e(AmJ6i(Amilv)) = eri , i = 1,2.
ti Ami 

(6) 
By the Gubner-Hughes result [11), the random-code capacity region equals the closure of the set of attainable rates via the above strategy. 
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Herein as we aim at the deterministic-code capacity we consider the set of attainable rates during a
portion of time over which the users' and state inputs constantly satisfy a pair of constraints r , A and
furthermore we assume that the users' and state inputs are both peak-limited to A. Let f(p1 ,p2, q)
and g(p1,P2, q) be defined by

f(p1,P2, q) 6 -(so+ q +Pi+ P2) ln(so + q +Pi+ P2) + P1P2(so + q + 2) ln(so + q + 2)
+(Pi+ P2 - 2P1P2)(so + q + 1) ln(so + q + 1) + (1 - P1)(l - P2)(so + q) ln(so + q)

g(p1,P2, q) 6 -(1- P1)(so + q + P2) ln(so + q + P2) - P1(so + q + 1 + P2) ln(so + q + 1 + P2)
+P1P2(so + q + 2) ln(so + q + 2) + (p1 + P2 - 2P1P2)(so + q + 1) ln(so + q + 1)
+(1- P1)(l - P2)(so + q) ln(so + q) ,

then our result for the two-user case is the following.
Theorem 2: The deterministic-code capacity region of the Poisson MA VG with constant input 

constraint r = (0-1, 0-2) and state constraint A is 

C(p1,P2, A) = { (R1, R2) : 0 � R1 � Ag(p2,P1, A) ,
0 � R2 � Ag(p1,P2, A)
0 � R1 + R2 � Af(P1,P2, A) } , Pi� <Ti

provided that A< min{p1,P2}.
If A> min{p1,P2} the capacity region has an empty interior.
Let 

R(A,r) 6 LJC(p1,p2,A),

(7) 

where the union is over all sets IVI � oo and probability distributions of the form {5} that satisfy {6},
then the random-code capacity under constraints, Cr(A, f) is equal to the closure of R(A, r) [11}.

Actually, we show that the capacities as claimed in Theorems 1 and 2 are achievable using
"minimum-distance" decoding rules and in particular the two-user decoding rule belongs to the class
of ,B-decoders defined in [3, 4).

III. Proof of the Single-User Result

Unless otherwise stated we assume that B = A.
F irst we consider a particular case of a single-user code. We fix some small A > 0 and partition the
time interval [O, T] on equal segments of length A/A as in [19]. We limit ourselves to input waveforms
that take only extreme values O or A on each of those segments and the best of such single-user codes
gives us the lower bound on the single-user capacity.

Formally, assume the following,
a) The channel input waveforms Am1 (t), A81 (t) are constant for (n - l)A/A < t � nA/A, n = 

1, 2, ... , and take only the values O or A. For n = 1, 2, ... , let Xn = 0 or 1 (resp. x8,. = 0 or 1) according
as Am1 (t) = 0 or A (resp. A81 

(t) = 0 or A) in the interval ((n - l)A/A, nA/A]. Consequently, the
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receiver observes only samples ·v(nA/A), n = l, 2, ... , or alternatively the increments Yn = v(nA/A)­
v((n - l)A/.4). In the limit as A --+ 0 - i.e. Am 1 (t) (resp. A81 (t)) being an infinitely fast varying 
process, this assumption does not imply any loss in attainable capacity as justified by the Kabanov­
Davis technique [16, 17]. 

b) The receiver interpretes fin 2:: 2 as being the same as Yn = 0. This assumption doesn't harm
optimality in our case since Pr{:On 2:: 2} = O{A2) as A --+ 0 (i.e. Yn 2:: 2 is a rare event when A gets 
small). Thus the receiver has available 

1::,. { 1, Yn = 1 
Yn = 

0, otherwise

Subject to the assumptions a, b the channel reduces to a single-user binary-input binary-output discrete 
memoreless arbitrarily varying channel with transition probability W(ylx, s1) given by (>.0 = s0A)

W{llO, 0) - 1 - W(OIOO) = soA exp-soA = soA + O(A2 ) ,

W(lll, 0) - W(llO, 1) = 1 - W(Oll, 0) = 1 - W(OIO, 1) =
(1 + so)A exp-(l+so)A = (1 + so)A + O(A2) 

W(lll, 1) - 1 - W(Oll, 1) = (2 + so)A exp-(2+so)A = (2 + s0)A + O(L'.l2
) . (8)

Thus in our channel model the output depends statistically on whether the transmitter, the state, and 
the dark current source emit zero or at least one emits a one. 

A. Capacity Evaluation via the DMC Decomposition

Based on our assumption that the channel model (2) can be further decomposed into the discrete­
time model (8), in which the input and state alphabets are finite (in fact IXI = ISi = 2), to compute 
the capacity of our channel we follow the results of Csiszar (6] and Csiszar-Narayan in (3, 4]. 

For a state distribution Q = (l - q, q), consider the channel Wq : X--+ Y 

Wq(llO) = (1 - q)soA + q(l + so)A + O(A2) = A(so + q) + O(Ll2)

Wq(lll) = (1 - q)(l + so)A + q(2 + so)A + O(A2
) = A(s0 + q + 1) + O(A2

) • 

Hence for an input distribution P = (l - p,p) the mutual information I(P, Wq) denoted by I(p, q), 
equals 

I(p, q) = h(Ll(s0 + q + p)) - (1 - p)h(Ll(so + q)) - ph(A(so + q + l)) 

For the binary entropy function h(u) = -u In u - (1- u) ln(l - u) we have 

h( u) - -u In u + u + 0( u2) , 

h(u+O(u2)) = h(u)+O(u2 Inu), 

h(Ku) = -Kuinu- KuinK+Ku+O(u2), u--+0.

Since later we assume that A--+ 0 we shall henceforth be interested in our computations up to O(A). 
It is straightforward to show that 

I(p; q) = Llfi (p, q) 
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Furthermore, it can be easily verified by differentiation and using Jensen's inequality, that I(p, q) is a 
decreasing·function of q, then f(Q) = q implies 

I(P, A) 
6 

minJ(p, q) = I(p, A)
q�A 

Next we determine A0(P), namely the minimum of 

L P(x)U(s1 lx)f(si) = (1 -p)U(llO) + pU(lll) 

over the set of channels U : X -+ S that render the AVC symmetrizable, i.e 

It suffices to consider (11) with y = 1, x = 0, x' = 1, then 

implies the relation 

soU(Oll) + (1 + so)U(lll) = (1 + so)U(OIO) + (2 + so)U(llO) 

(10) 

(11) 

which is satisfied by exactly those channels U for which U(lll) = 1 and U(OIO) = 1. That is, the state 
strategy that symmetrizes the channel is the one that chooses state inputs identical to the message 
inputs. Thus A0(P) = p, Ao= maxp A0(P) = 1, and since [4] 

C(A) = max I(P, A) , if A< Ao 
P:Ao(P);?:A 

we obtain for the deterministic-code capacity 

C(A) = max I(p, A) 
p:p;?:A 

On the other hand the random-code capacity Cr(A) equals max
p 

I(p, A) with no constraint on p.

(12) 

Akin to the interpretation of the capacity expression for the ordinary arbitrarily varying OR channel 
[4, section III], equation (9) offers a geometric interpretation which can be used to obtain I(p, A) as 
shown in Fig. 1. Let A, Band D be points on the tlogt curve with t1 = s 0 + q, t2 = s0 + q + 1, and 
t = s 0 +q+p respectively. Then I(p, A) equals that part of the ordinate of D which lies below the secant 
AB. Further, with increasing p, the point D moves from left to right. I(p, A) attains its maximum 
iff the tangent to the t log t curve at D is parallel to the secant AB. Denoting the maximizing p by 
p* = p*(A, s0) we have 

fJI(p, A) 

av 

p* -

- ln(s0 +A+ p) -1 - (so+ A) ln(s0 +A)+ (so+ A+ 1) ln{so +A+ 1) 

(so+ A+ 1)so+A+1 
------(so+A) 

e(so + A)so+A 
I(p*, A) 
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In summary 

C(A) 
C(A) 

Cr(A) 
J(A, A) < Cr(A) 

if A :::; p*(i\., so)
if A> p*(A, s0) • (13) 

Geometrically, the first or second case is obtained based on whether the tangent to the t log t curve at 
the point E, corresponding to t3 = s0 +2A, has a smaller (possibly equal) or a larger slope, respectively 
than the secant AB. In other words, A:::; p*(i\., s0) iff 

(so+ A+ 1)so+A+1 
s0 + 2A < -------- e(so + A)so+A 

This completes the proof of the direct part of Theorem 1 when r > A and B = A.

B. Code Construc tion and Decoding Rule

To describe a single-user code with parameters T, M = f eRTl, in which all code waveforms 
{..\m(t)} , 1 :::; m :::; M take only the extreme values O and A, it suffices to construct the supports 
bm = {t : >.m(t) = A}. Our code is precicely Wyner's code [19] that is - for a given p of the form 
p = k / M , 0 < p < 1 let A = { am,j} be the M x ( �) binary matrix, the columns of which are the 
(�) binary M-vectors with exactly k ones (and (M - k) zeros). Divide the interval [O, T] into (�) 
subintervals flj, each of length T/(1:). Put D..j C bm iff amJ = l, i.e. the support bm consists of the 
union of all subintervals D..j such that amJ = 1. As we let T -+ oo, >.m(t) satisfies (henceforth µ(B)
denotes Lebesgue measure of a measurable set B).

1 

Tµ{t: >.m(t) = A} � p

1 
Tµ{t: Am1 

(t) =A, >.m2
(t) = O} � p(l - p) , m1 =/:- m2 . 

Decoder : Any hypothesis m defines two independent Poisson processes; the first with transmission 
rate (m(t) =A+ >.0 + A81 

(t) on the interval bm where m is "active", and the second with transmission 
rate (m(t) = >.0 + ..\81 

(t) on the interval where only the dark current and state input are active. The 
conditional sample function density of the observation is given by ( e.g. [27, 28, 29]) 

where { a1, ••. , an} is the realization of the observed point process in the interval [O, T].
Since the integral 

fo
r 

(m(t)dt = (..\o + (p + q)A)T , q:::; A

does not depend on the message m, a maximum likelihood message decoder chooses m* such that [27] 
n 

m* E arg max IT (m(ai) . (14) 
i=l 
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Unfortunately, the arbitrarily varying property of the channel prevents the use of the optimum likeli­
hood ratio 

(15) 
since the decoder cannot determine the exact intensity at the realization moments. To this end for 
1:::; m SM the decoder observes vf, computes 

and then D(vl') = m* if 
'I/Jm = f dv(t) = {number of arrivals in bm} , 

}bm 

'I/Jm < 'I/Jm•

'I/Jm < 'I/Jm•

1:::; m < m*, 
m* :::;m< M. (16) 

That is, vf is decoded as that m which is "nearest" to the observed realization in the sense that 
it maximizes 'I/Jm· By (15) this decoding rule is also a maximum likelihood decoding rule, and its 
performance has been analyzed in [19] wherin it is shown that as T-+ oo 

where 

Since 

Pem - Pr{ D(v5)-:/ ml.-\m(-) is transmitted} 
< exp{-r[AE1(P,P)ls=so+q - pR] + o(T)} , 

8E1 (p,p)ls=so+q 
I _ f ( ) a 

- 1 p,q 
p p=O 

the capacity as claimed in Theorem 1 is achievable by Wyner's encoder/decoder. 
The fact that r :::; A implies C = 0 follows by the well-known argument of Blackwell et. al. [8]. 

Namely if >.1 , . . .  , AN is an arbitrary set of N code waveforms satisfying the average-power constraint, 
then assuming r :::; A consider the state input sequence that symmetrizes the channel - i.e. As1 ( t) = 

Ai , (i - l)T:::; t :::; iT, 1 :::; i :::; N. In this case [5] 
Pr{D(vf)-:/ il>.i, 81 = j, >.o} - Pr{D(vf)-:/ il>.j, 81 = i, Ao} 

> 1 - Pr{D(vr} -:/ Jl>.j , 81 = i, >.o} 
which implies that 1/N"£f=

1 
Pe(81 = j) � 1/4 and consequently Pe(81 = j) � 1/4 for at least one

j E {1, ... , N} (see [5, Appendix]). 
The cases B > A and B < A are relegated to Appendix I. 
C. Converse Theorem
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Given that the jamming strategy that minimizes the information capacity admits the form of an 
independent constant-intensity process we provide two alternatives for proving the converse. 

Set 

and let CA denote the capacity, under state constraint A, as claimed in Theorem 1. It can be verified 
that if A1 :s; A2 then CA2 :s; ct...1, and furthermore (cf. (10, section III Lemma 3.1]) 

n ct...-6 =ct... . 
O<ckA 

Consequently it suffices to show that for every O < 6 < A, the capacity under state constraint A is 
bounded above by cA-5

. Suppose R E ct... then there exists a code with this rate and a decoder with 
Pe �€for all A81 

E sn(A). 
Consider a sequence S = (S1, ... , Sn) of samples of a deterministic function A81 

(t) = (A-6)A. For 
any given code with codewords A1, ... , AN and decoder D(115), 

EPe(S) t t Pr{D(va) =J= ilAi, (A- 6)A, >io} 
i=l 

< max Pe(si) + Pr{Tl {T A81 
(t)dt > AA} .

Aa 1
ESn(A) Jo

Since A81 
(t) = (A - 6)A the second term in the r.h.s. of (17) is zero and we obtain 

t f,Pr{D(vl) =J= ilAi, (A- 6)A, Ao} :s; € .  

i=l 

(17) 

Here the left side is the average error probability of the given code on the "ordinary" Poisson 
channel with additive dark current of intensity Ao + (A- 6)A = A(s0 + A- 6). Hence, by the converse 
to the coding theorem for such channels, it follows that ct...-5 � A/1 (p, A - 6). o

Alternatively, we adopt the approach outlined in (22] and further extended in (21] to obtain a sphere 
packing lower bound on the error probability by means of which we derive a converse coding theorem. 
For a given photon arrival count n and any hypothesis of transmitted message m, we consider the 
corresponding configuration of counts (n1, n0) namely the arrival counts on bm and on b� (b� denotes 
the complement of bm on (0, T]). Each such configuration is associated with a ''volume" which is a 
function of ni and tj,j = 0, 1, where t1 = p and t0 = 1 - p. 

Assume that a code {Am(·)} of cardinality M and a decoding rule D(v5) have been chosen. 
Without loss of generality we may assume that each of the M signals Am (-) has support of Lebesgue 
measure p on [O, T].

Remark : The optimality of equi-energy signaling from the error exponent aspect is proved in (20] 
and (21, Appendix II]. 

Assume further that the observation space X is 
00 

X=LXn, 
n=O 

10 



where the set Xn, n 2:: 1, consists of all sequences O :::; x1 :::; x2 ... :::; Xn :::; T and each Xt, e = l, ... , nrepresents the photon arriving moment. This implies that to each message Bi : i = 1; ... , J1J correspondsa region 'Din � Xn, n = l, . .. of making the decision in its favor, and the decision regions satisfy 
LJ 'Din = Xn and 'Din n 'D jn = (/J , i =/= j . 
i=l 

Following (22 ] introduce the "volume" IXn l of the space Xn

I Xn I = J . . . f dx1 · · · dxn = � ,@ V ( n, T) . 
}05.x1 $_x2 ... $_x,. $_T n. 

If Bi is transmitted and v(T) = n the conditional distribution of the photon counts on the two slotsbm and b� is given by 

where 

and 

Pr{-ip�=n1,1P!=n-n1 IBi,xn } = (:J1rf1 (l-1r1r-n1 b. P(n1,n),

11"1 -

t1 (1 +So+ q) 
So+ Q + p

Pr{v(T) = nlBi } = (ATt (so +�!+ Pt e-(so+q+p)AT.

(18) 

Notice that the conditional density p(x1, ... , xn lBi, n1 , n) is constant on the corresponding subset ofXn. Thus we associate a corresponding "volume" to each configuration of counts - (n1, n0 = n -ni) -as follows. 
lxn n [Bi, (n1, no)]I = v(n1, t1T)v(n0, t0T) 

- rntf1
t;o 

= (n)tfit�ov(n,T)n1!no! n1 
b. - v(t1,to,n1,no,T). (19) 

Consider the volume l'Di
n l of making the decision in favor of Bi. This volume admits different valuesbased on the corresponding configuration (n1, no) of the given realization of� with respect to the

waveform message Bi. Thus, let l'Df:1 ,no)I denote the optimum l'Din l for a realization Xn having config­uration ( n1, n0) then the conditional error probability ( of Bi) averaged over all possible configurations is lower bounded by 
[ 

1vJ:1,no) I 
] P(elOi, Xn) 2:: L l - { T) Pr{n1l8i, Xn} . n1+no=n V t1, to, n1, no, + 

(20)
This implies that the optimum distribution of {l'D;;1 ,no) I} that minimizes the r.h.s. of (20) needsto "cover" an average volume that equals at least the conditional expected value of v ( t1, to, n1, no, T)w.r.t. the distribution P(n1 , n). 
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A lower bound on the average error probability is obtained by considering the contribution of all
possible messages Oj,J = 1, ... ,M for a given Xn. Thus we should consider for each message the
corresponding configuration implied by the realization Xn and assign accordingly the optimal decision
regions v;:i ,no). Since all messages are equiprobable and exhibit the same statistical properties we can
associate with each message an equivalent volume that equals Epv(t1 , t0 , n1 , n0 , T) and the optimal
decision regions assignment reduces to the issue of covering these expected values of message volumes
as economically as possible.

Let the volume v(n, i) associated with the message ()i be given by
v(n, i) - Epv(ti, to, n1, no, T)

l 

> [EpvP(ti, to, n1, no, T)] P , 0 � p � 1
where Ep denotes expectation w.r.t. P(n1 , n) and the last step follows by the Jensen inequality.

Following the same procedure as in [21, section IV) one can show that
l 

[EpvP(ti, to, n1, no, T)P] P > { [� t; (
r_
;i;�J Ti,]';' } n v(n, T)

� v(n, i)v(n, T)

(21)

(22) 

where ""i denotes the sum of peak intensities of all photon emissions at time slot j - i.e. K.o = s0 + q, K.1 = 

s0 + q + 1, and we note that v(n, i) is in fact independent of i.
Let !'Dini denote the equivalent volume of the decision set Vin associated with the average volume

v(n, i) then using this notation the conditional error probability lower bound (20) can be stated as 

It follows that the average error probability Pe(M,{t;i)},{x:;i)},{Vin}) is lower bounded by

P. (M {ii)} {K.(i)} {V· }) > _!_ f (ATr i:e-<Ej
t;i),_y>)ATc�=li),..,(i)r[1- IVinl ] e ' J  l J ' in -M n=O n! i=l j :J :J v(n,i)v(n,T) +'

where we have associated with message Bi , i = 1, ... , M the parameters {t;i)}, {K.;i)}.
Define the fractionals of the decision regions din by din = �fn:�) , then a "good" packing set

{�n} , n = 0, 1, ... should satisfy 
din < v(n, i) i= 1, ... ,M

M

:Edin < 1

i=l 

Recall that we've assumed a fixed composition code for each of the users - i.e. {tYl}, {K.Y)} -{ti}, { K.j} Vi then the optimal { �n} for this case are 
din= min { 1/M, v(n, i)} ; i = 1, ... , M ; n = 0, 1, .. .

12 



from which we conclude that
P. (A1 {t·} {1,,·} T) > e-(I;itptJ)AT � [(I;j tjKj)AT]n [1- 1 . ] (23)e ' ' ' ' ' - � ' M-( ') 

. 
n=O n. V n, Z + 

Let f (r) 6 ( Lj ti [ r:;tjltj rr, noting that [to, t1] is a probability vector then by [30, Appendix 3A
inequality (h)] /(r1) � J(r2) for O < r1 < r2 thus f(r) is strictly decreasing. Next let O < () < 1 and
define u = Or1 + {1 - B)r2 then by [25, Appendix 5B]

J(u) � [f(ri)]° [J(r2)]1-9
thus f(r) is log-convex on [0, oo) and hence it is convex U [32, pp. 18].For a defined as 

_!_ .!.±e. a� v(n, i) � = [I: ti ( .1,,i. .) i+p] p ,
j L

J 
t3 K3 

we have ln l.
= -llnf{l + p), consequently it follows that

0: . p 

lim ln.!. __ 8Inf(1 +p)' = 
f'(l+p)' =J'(l+p)'p�O a 8p p=O f(l + p) p=O p=O 

- -lnLtiKj + L 
1 I: tjKj ln K; 6 

{).j j tjKj j 

Using the a definition we can write (23) as
Pe(M,Lt;Kj,T) �e-(L; tJitJ)AT:E [(I:j tjKf)AT]n [l- M

l n] 
j n=O 

n. a +

(24)

(25)
Thus a reflects the effective pulse energy that in a non-dark-current situation would have generatedthe same volume v(n, i) that is being experienced in our scenario (compare with [21, Appendix II]).In particular, since we analyze rates close to and above capacity we need the limiting value of ln(l/a)at capacity ( defined above as '!9). In (22, section VI Lemma 2] it is shown that the following inequality holds

where �(x) = (21r)-1/2 J:
00 

e-u2f2du . 

n ).k (n _ ).) 
e->-?; k! � � ../). '

Combining (25) and {26) we conclude that [22]
P, (M, � t;i,1, T) ?'. m:f" { ( 1 - M�• )'1> c- Z::�1<;AT)}

(26)

(27) 

We assume now that R is greater than capacity, i.e. ln M = AT /1 (p, q)+av'AT = I:i ti"-;fJAT+av'ATwhere a is an arbitrary positive constant. Since n is defined as the largest integer that satisfies Man � 1we choose n as 
n = 

I:i t;K;fJAT + b./AT 
= 

Lj tjK;fJAT + bv'AT 
ln(l/a)lp=O {) ' b < a

13



and get from (27) 
Pe(M, L tjKj , T) � (1 - e-(a-b)vAT)<P ( b ) . j JEj tjKf()2 

+ b'!9(AT)-1/2 
Following [22, section VI] we choose now b = a - (AT)-1!4 and get from (28) 

lim inf Pe(M, L tjKj, T) � <P (V a ) ,
T-too j Lj tjKj '()2 

(28) 

(29) 
proving that the average error probability is bounded away from zero for rates exceeding capacity. 

IV. Proof of the Two-User Result

To evaluate the capacity in this case we use (again) the DMC decomposition and Gubner's inner and outer bounds for the two-user capacity region [10], which are shown to coincide in the case at hand. Then using the code construction of [21] and a suitable "minimum-distance" decoding rule we evaluate an error exponent for this decoder and verify that the capacity as claimed is attainable via this decoder. 
A. Capacity Evaluation via the DMC Decomposition

Subject to the assumptions a, b in section II the channel reduces to a user-user binary-input binary-output discrete memoreless multiple-access arbitrarily varying channel with transition prob­ability W(ylxi, x2, s1) given by 
W(ljO, 0, 0) -

W(ljO, 0, 1) -

W(lll, 1,0) -

W(lll, 1, 1) -

so.Do+ O(L�.2) ,W(l!O, 1, 0) = W(lll, 0, 0) = (1 + s0).6. + 0(.6.2
) , W(lll, 0, 1) = W(llO, 1, 1) = (2 + s0).6. + 0(.6.2)(3 + so)Ll + 0(.6.2)

Again, since the inputs' and state alphabets are finite the results of [9, 10] are applicable.For a state distribution Q = (1 - q, q), consider the channel Wq : X1 x X2-+ Y
(1 - q)so.6. + q(l + s0).6. + 0(.6.2

) = .6.(s0 + q) + 0(.6.2
)

(30) 

Wq(llO,O) Wq(lll, 0) Wq(ljl, 1) - Wq(llO, 1) = (1 - q)(l + so).6. + q(2 + so).6. + 0(.6.2
) = .6.(so + q + 1) + 0(.6.2

)- (1 - q)(2 + so).6. + q(3 + so)Ll + 0(.6.2
) = .6.(s0 + q + 2) + 0(.6.2

) . 

Hence for input distributions I{= (1- Pi,Pi) , i = 1, 2 the mutual information !(Pi, P2, Wq) denoted by I(y1,P2, q), equals 
I(p1,P2, q) = h(.6.(so + q + P1 + P2)) - (1 - P1)(l - P2)h(.6.(so + q)) -(p1 + P2 - 2P1P2)h(.6.(so + q + 1)) - P1P2h(.6.(so + q + 2)) 

- .6.J(p1, P2, q) . (31) 
14 



Similarly, it can be easily verified that J(P1, P2, WQIXi) 6 J(p1,p2, qlX1) = .6g(p1 ,p2, q). Further­
more, by differentiation and use of Jensen's inequality, it can be verified that both J(p1 ,.p2, q) and 
J(p1 :p2, qlXi ) are decreasing functions of q, then f(Q) = q implies 

(32) 

The random-code capacity as claimed in Theorem 2 follows straightforwardly from (32) via [11]. 
Turning to deterministic codes we consider the set of channels Ux

1
x

2 
(W) 6 U : X1 x X2 -t S that

satisfy 

:EW(ylx1,x2,s1)U(s1lx�,x;) = :EW(ylx�,x;,s1)U(silx1,x2) , for all x1,x�,x2,x;,y. (33) 
SJ 

It suffices to consider (33) with y = 1 and (x1, x2) = (0, 0), (1, 0) then it is easy to show that if U satisfies 
(33) then U(·IO, 0) = U(·ll, 1) = 0 while U(OIO, 1) = U(Oll, 0) = 1- U(OIO, 1) = 1- U(Oll, 0) = t, 0 <
t < 1. Since this is not a transition probability, the two-user OR channel (30) is nonsymmetrizable­
X1X2. Consequently, l_%x2 = oo. 

Next we determine l,% (p1), namely the minimum of 

L P1(x1)U(s1lx1)£(s1) = (1- P1)U(llO) + P1U(lll) 
x1,s1 

b,.over the set of channels Ux1 (W) = U : X 1 -t S such that 

:EW(ylx1,x2,s1)U(s1lx�) = :EW(ylx�,x2,s1)U(s1lx1) , for all xi,x�,Y. (34) 
81 

It suffices to consider y = 1, x1 = 0, x� = 1, then 

:E W{llO, x2, s1)U(s1ll) = :E W(lll, x2, s1)U(s1IO) , 

implies the relations 

81 SJ 

soU(Oll) + (1 + so)U(lll) - (1 + so)U(OIO) + (2 + so)U(llO) 
{1 + so)U(Oll) + (2 + so)U(lll) - (2 + so)U(OIO) + (3 + so)U(IIO) 

which are satisfied when U(OIO) = U(lll) = 1. 
Thus l,% (p1) = pi, and 1% = maxp1 l% (pi) = l. Consequently, if A < 1 the two-user capacity 

region has a non-empty interior [10]. 
Let P2(x2) be any probability distribution on X2, set (P2 W)(ylxi, si) 6 

Ex
2 

P2(x2)W(ylx1, x2, s1)
and let Ux1 ( P2 , W) denote the set of channels U : X1 -t S such that 

:E(P2W)(ylx1, s1)U(s1lx�) = :E(P2W)(ylx�, s1)U(s1lx1) , for all x1, x�, y .  (35) 
SJ 

It can be verified that for the OR channel (30) Ux1 (P2 , vV) = Ux1 (W). Consequently, by [10, Lemma 5.6 
and Theorem 5.8) and [12] the rate region in Theorem 2 is achievable provided that the state constraint 
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satisfies A < min{l% (p1), li(p2)} = min{p1,P�}. Sfoce this region equals_:also to the upper bound 
given by (10, Theorem 3.2) this establishes the deterministic-code capacity as claiITied in Theorem 2. 

B. Code Construction and Decoding Rule

VVe describe a family of two-user codes with parameters T, M1 , lvI2 where the code waveforms satisfy 
the peak and average power constraint Pl' P2· To this end we set M1 = r eR1Tl ' M2 = r eR2Tl ' M =
M1 + M2• Again it suffices to construct only the supports bi = {t : Ai(t) = A}. Start with the 
case p1 = p2 = p and apply Wyner's construction to obtain a simplex system of measurable supports 
{b1, ... ,bM} � [O,T], then partition arbitrarily that system into two subsets {M1} = {b1 , ••• ,bMJ 
and { M2} = {b Mi +1, ... , b M} of cardinalities M1, M2, respectively. In the case p1 = P2 = p the subsets 
{M1 } and {M2} form the first and the second user codebooks, respectively. Denote a codebook of this 
form by C(M1, M2,p). 

When p1 =/- P2 assume, without loss of generality, that P1 < P2- Then we generate first C(M1, M2, P2) 
and modify the simplex system { M1} replacing it by another simplex system { M;} corresponding to 
the parameter p1• Recall that the interval [O, T] was partitioned on small subintervals !:::..; where each 
of the M supports {b1, ... , bM} could only contain complete (or didn't contain any) subintervals!:::..;. 
Denote p = pifp2 < 1. Consider one subinterval !:::..; and construct on it a new simplex system of 
supports {bj,z} C !:::..;, corresponding to the parameter p. Now for any bi E {M1} such that !:::..; C bi 
replace that t:::..i with any arbitrary "refinement" b;,t· This procedure is done for all!:::..; and all bi E { M1 }.
As a result we get a pair of simplex systems, corresponding to the parameters p1, p2, with the following 
distance properties [21]. 

1 
Tµ{t: Am(t) = A} � P1 m E {Mi} 
1 
Tµ{t: Am(t) = A} � P2 m E {M2} 

1 
Tµ{t: Am1 

(t) = A , Am2
(t) = 0} � P1(l - P2) , m1 E {M1}, m2 E {M2} 

1 
Tµ{t: Am1 

(t) = 0 ,  Am2
(t) = A} � (1- P1)P2, m1 E {M1}, m2 E {M2}. 

Decoder : To define the decoder mapping D for the two-user code two cases should be considered. 
Case I: Joint detection of both messages. 
Any hypothesis m = (m1, m2) defines three independent Poisson processes; the first with transmis­

sion rate (m(t) =A+ Ao+ A81 
(t) where only one codebook - m1 or m2 - is "active", the second with 

transmission rate (m(t) = 2A +Ao+ A81 
(t) where both - m1 and m2 - are active, and the third with 

transmission rate (m(t) =Ao+ A81 
(t) where none of the users is active. 

For m= (m1, m2), 1 � m1 � M1, M1 + 1 � m2 � M1 + M2 let (cf. Figure 2) 
510 6 bm 1 n b�2m 

301 6 b�l n bm2m 

311 6 bm 1 n bm2 m 
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Soo
t:,. 

be nbc 
m 

-
m1 m2 ·

The decoder observes· vl, computes the sufficient statistics vector ( 'ljJ!, 'ljJ:n, 'I{)!) defined as
- f dv(t) = {number of arrivals in S� u S�}

ls�usfr.1 

r dv( t) = { number of arrivals in s�} '
lsu 

- n - ('ljJ! + 'ljJ�) = {number of arrivals in S!!?},
and D(vf) = m 

6 (mi, m2) iff
• '!pin + 'Ip! '?. 'ljJ:n, + 'Ip!,.
• No m' exists such that 'ljJ:n, '?_ 'lpir£ and 'I{)!, '?. 'ljJ':n.

...... 

That is, given the observation vf the decoder decodes the message m that is "nearest" to the observa­
tion vf and not dominated by any other message m' with respect to both projections 'lpir£ and 'ljJ!. The
reader familiar with the class of ,8-decoders defined in [3, 4) (see also the tutorial [14, section IV.6])
realizes that this decoding rule falls within this category.

Consequently,
Pem 

6
Pr{D(v5) = m'jm}

< Pr( LJ {1/J�, '?.1/J�} n {'¢!, '?.1/J!}lm) 6 Pr( LJ Em1 lm) ,
�� �� 

where Em , denotes the event { '!pir£, '?. 1Pin} n { 'IP!, '?. 'ljJ!}.
Case II: Detection of one message while the other is known.

(36) 

Assume that the decoder knows Am1 
and wishes to decode Am2

• In this case the decoder treats the
known message Am1 

as noise, on the interval where it is active, while decoding Am2 • 
Consequently the

decoding interval is split into two regions. For any M1 + 1 � m2 � M1 + M2 let
t:,. 

so 
m 

{t E [O, T]: Am1 = 0 and Am2 = A}
51 

m 
{t E [O,T]: Am1 = A and Am2

= A}
The decoder observes vf and computes

tJ. f dv(t) = {number of arrivals in S!}
ls� 

tJ. f dv(t) = {number of arrivals in S�}
ls:,. 

Then D(vf) = m2 if 1/J!
2 

� 1/J!• and 1/J:n
2 

� 1Pin; t/m2 i= m2 - i.e. the decoder favors tlie message m2which maximizes the number of arrivals on both intervals.
C. Error probability for detection of both users

17



Let m = ( m1, m2) be the transmitted message, m' = ( m�, m�) =/= m any_ other message. vVe
assume the support set Sm = Sm1 U Sm2 of (Am1 

( ·), Am2 
(-)) as shown in Fig. 2. This implies that

the number of arrivals in [O, T] is the sum of three independent Poisson distributed random variables,vVB = v(T2) -v(T1), vVAc = v(T1) + v(T3) -v(T2) and Wv = v(T)-v(T3), with parameters A2, A1 and A0 respectively, where
A2 (2A + qA + Ao)P1P2T = (2 + so+ q)p1p2AT 
A1 - (A+ qA + Ao)(p1 + P2 -2p1p2)T = (1 + so+ q)(p1 + P2 -2P1P2)AT
Ao (qA + Ao)(l -P1)(l -P2)T =(so+ q)(l -P1)(l -P2)AT (37)

Thus v(T) is Poisson distributed with parameter A= A0+A1 +A2 = (s0+q+p1 +p2)AT. Furthermore,given that v(T) = n, WB, WAc and Wv have the extended Bernoulli (multinomial) distribution 

(38)
where

i = 1,2.
Thus the joint probability

(39)

The code waveforms ( Am� ( ·), Am� ( ·)) define the corresponding subregions A�, Eb and Cb defined as
A'

0 
-

c� -

B'
0 

-

b
m

, n b':n, 
1 2 

b':n, n bm
, 

I 2 

bm, nbm,
I 2 

µ(A�) = P1 (1 -P2)
µ(C�) = P2(l -P1)
µ(Eb)= P1P2

Given that WB = � we are interested in how these arrivals are distributed on A�+ Cb, Eb and(Ab+ Cb+ BbY- Let W10, W11 and W1q, denote the number of arrivals on (Ab+ Cb) n Bo, on Eb n Boand on (A�+ Cb+ BbY n Bo then (W10, Wn, W1<1>) are jointly distributed according to 
Pr{ W10 = ko, Wu= k1, W1q, = n2 -ko -k1} = (;:) (n2 � ko)t�0t�1 (1-t

1 -t2t2-ko-ki , (40)
with t1 =µ(Ab+ Cb)= (p1 + P2 -2P1P2) , t2 =µ(Eb)= P1P2·
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Similarly, the n1 arrivals on iv Ac and no on ivD are distributed on Ari +Cb, Eb and (Ari+ Cb+ Bblaccording to 
Pr{ Woo = ko, Wo1 = k1, Wo,> = n1 - ko - k1} ( ;; ) (ni � ko) t:,Ot�' (1 - t1 - t2 )"' -•,-•,

Pr{ W4> 0 = ko, W4>1 = k1, W4>4> = no - ko - k1} - (::)(no� ko) t�0 t�1 (1 - t1 - t2ro -ko-ki ( 41)
Furthermore, we will also need the conditional distributions of the n2 arrivals on vVB and n0 arrivals on
WD given that the n1 arrivals on WAc are split to: koo on Ari+Cb, k10 on Eb and k4>0 on (Ari+Cb+Bb)C ,namely 

Pr{ Wu = k1, W14> = n2 - k1 - k10IW10 = k10}
Pr{ Wo1 = ki, Wo4> = n1 - k1 - koolWoo = koo}

Pr{ W4>1 = k1, w</></> = no - k1 - k<t>OIW<f>O = k4>0}
We define now the following two events A1 and A2 as

A1 6 (Woo+ W10 + W<f>O - n1 � O!>.m 1, Am2, n2, n1, n)

(42)

A2 6 ( Wo1 +Wu+ W4>1 - n2 � O!Am 1, Am2, n2, n1, n, Woo = koo, W10 = k10, W4> 0 = k4>0) . (43)
Notice that A1 n A2 actually determines the sought for event Em'·From (40), (41) and (42) 

E( Woo+ W10 + W </>O - n1l>-m1, Am2, n1, n2, n) -
E(Wo1 + Wn + W4> 1 - n2l>-mpAm2 ,n1,n2,n, Woo, W10, W4>0) -

If the above expectations are negative , the probabilities Pr(A1) and Pr(A2) will be small. Hence wedefine the following sets 

Next we have

Ao - { ( n1, n) : 0 $ n1 $ n , nt1 - n1 < 0} 
A1 - { (n2, n) : 0 $ n2 $ n - n1 , (n - ni)t2 - n2(l - t1) < 0} . 

Pr(A ) < E(e
r(Woo+W10+w.,,o-n1)I>. ). n n n)1 _ m1, m2, 1, 2, 

Using the distributions in ( 40) and ( 41), we obtain
Pr(A1) $ exp{,y1(r)} = exp{nln(l - t

1 + t1e7) - n1r} . 
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'Y (7) is minimized when e.,.
= 

ni{l-ti) - i.e. 7 = ln ni{l-ti) >_ 0 if (n1, n) E A0• Substituting this 1 (n-n1 )t1 ' (n-ni)t1 value we get 

In a similar way 
Pr (A2) :::; E ( er(Woi +Wu +W</li-n2 ) 1Am1

, Am2 , n1, n2, n, Woo , W10, W <f>O) 
Using the conditional distributions in ( 42) we obtain 

Pr(A2) :::; exp{"f2(7)} = exp{(n - ni)[In(t2e.,. 
+ (1 - t1 -t2)) - ln(l -t1 )] -n27}. 

(44) 

( ) . . . . d h T n2 l-t1 -t2 . I n2(l-t1 -t2) > 0 ·r ( ) A s b ·t . ,2 r 1S mm1m1ze W en e = n-
n
i -n2)t2, - 1.e. 7 = n (n-n

i -n2)t2 
_ l n1, n2, n E l · u st1 utmg 

this value we get 

Combining (44) and (45) we conclude that 
( ) ( ) n

ntf1t�2(l-t1
-t2)n-n1-n2 t:,. Pr A1 · Pr A2 :::; ni n2( ) _ _ = r(n1, n2, n) . n1 n2 n -n1 - n2 n n1 n2

In summary we have 
Pem :::; Pr ( LJ Em, l..\m1, Am2) 

m1 -;/:.m 

L Q(n1, n2, n) Pr( LJ Em,IAmp Am2, WAc = n1, WB = n2, v(T) = n)
n1,n2 ,n m'-;/:.m 

< I: Q(n1,n2,n)[ I: r(n1,n2,n)r(n1,n2,n)EAonA1 m'::j:;m 
+ I: Q(n1,n2,n)[ I: r1(n1,n2,n)r (n1,n2,n)EAonA1 m'::j:;m 

+ L Q(n1, n2, n) LE r2(n1, �' n)r (n1 ,n2,n)EAgnA1 ';:f,m 

+ L Q(n1, n2, n)

Consider the term 
Pem(l) - L Q(n1,n2,n)[ L r(n1,n2,n)r (n1,n2,n)EAonA1 (m� ,m�);;/,(m1 ,m2) 

< Mf Mf EntO:�; Q(n1,n2,n)[r(n1,n2,n)r 
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Now for a given n,

Let �1 = ni/n , 6 = n2/n so that 
n n-n1 

L L Q(n1, n2, n)fP(ni, n2, n) = 
e-AAn 

t nf
i ( n) (n -6n) 1rf1n

7rg2n(l - 7ri 
_ 

7r2)(1-{i-6)n [ tf t(l - t1 - t2)l -{i-{2 ]7
47)n! n1=0n2=0 6n 6n �/�2

2 (1-6-6)1 -{i-6 
Using the fact (can be derived in the same way as Example 12.1.3 in [31]) 

( n ) (n -6n) < enH({1,{2,l-6-6) 

6n 6n 

- exp{-n[6 ln6 + 6 ln6 + (1 -6 -6) ln(l - �1 -6)]},
( 47) becomes

n n-n1 

L L Q(n1,n2,n)fP(n1,n2,n) 

where 
t:,. a /3 'Y 

cp{6, 6) = 6 ln c + 6 ln c + {1 -6 -6) ln 1 � � ,
<,l <,2 - 1 - 2 

{48) 

. 1 p 1 1and we've used the notation a= {tf1ri)T+p , /3 = (t21r2)i+p , 1 = [ (1- t1 - t2)P(l - 71"1 - 7r2)]i+P,The function g({1, 6) is a concave function in 6 and 6 and is maximized for 6 = a/(a + {3 + ,y) and
6 = {3/(a + {3 + ,y) and the maximum is ln(a + {3 + 1), this yields 

n n-n1 -AAn 

n�o n�o Q(n1, n2, n)fP(n1, n2, n) S (:- 2)! (a+ {3 + 'Yt(l+p)

from which we get 
Pem(l) 

00 e-AAn < MP MP '°' (a + {3 + 
'"")n(I+p)

1 2 2i (n _ 2)! I 

- MP MP A2(a + /3 + '"")2(1+p). � e-A (a+ /3 + ,y)(l+p)(n-2)An-2

1 2 I 2i (n - 2)! 
Mf Mf A2(a + {3 + 1)2(1+p) exp{-A + A(a + {3 + ,y)(l +p)} 

21 
{49) 



Noting that

the exponent in the right member of (49) is
-A+ A(a + /3 + ,)(i+p)

-TA{ (so + q +Pi+ P2) - [ (p1 + P2 - 2p1p2)(l +so + q) 1iP 

....1... 1 
] 

l+p
} +P1P2(2 +so+ q) i+p + (1 - P1)(l - P2)(so + q) i+p 

(50)
In Appendix II we show that the terms Pem(i) , i = 2, 3 are bounded by Bie-T(AE;-pR) where Ei �

E12- Furthermore, it is also shown there that Pem(4) :5 e-E4
T and E4 � maXQ::;p:9 E12(p,p1,p2, q) = 

E12(1,p1,P2, q). Thus the average error probability of our "minimum distance" decoder satisfies
1 M1 M1 +M2 

{ [ ] } Pe = MM L L Pem :5 exp -T AE12(P,P1,P2, q) - pR + O(T) 
1 2 m1=l m2=M1 +1 

which establishes the joint decoding error exponent lower bound. Since
8E12(P,P1,P2, q) 

I - J(p )
!::I 

- 1,P2,q 
up p=O 

the rate-sum capacity as claimed in Theorem 2 is achievable by this code and decoding rule.
D. Error probability for detection of one user

(51)

In this case it is assumed that the decoder is informed on the code waveform Am1
• Consequently,

the decoding of Am2 is split into two intervals; T1 the interval over which Am1 = 0 and T2 the interval
over which Am 1 

= A. As each of these decoding tasks is a single-user decoding task we can apply the
results of section II to evaluate the corresponding error exponent.

On T1 the decoder decodes Am2 with background noise of Ao + A81 
(t) hence the probability of

erroneous decision on this interval is upper bounded by
Pe(l) :5 exp{-T1A [(so+ q + P2) - ( (1 - P2)(so + q)� + P2(so + q + l) i!p) l+P] + T1pR2} (52)

On T2 the decoder decodes Am2 
with background noise of Ao+ A+ A81 (t) hence the average probability

of error on this interval is upper bounded by
Pe(2) :5 exp{-T2A[(so + q+ P2 + 1)- ( (l -p2)(so +q+ l)rh +P2(so +q+ 2)rh) l+p] +T2pR2} (53)
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Substituting T1 = (1 - p1 )T and T2 = p1T and recalling that the decoder will make an error if
and only if on both intervals its decision is in favor of m; =/- m2 - i.e. Pem = Pe (l) · Pe (2), we get
the error exponent for decoding one user while the other is known. Let this exponent be defined as
En (P,P1,P2, q), i.e. Pe (l) · Pe (2) ::; exp{ -T AE11 (P,P1,P2, q) + T pR2}.

Since
8E11(P,P1,P2,q)' _ ( )

£l - 9 P1,P2, q 
up p==O 

the capacity region as claimed in Theorem 2 is achievable by our code and decoding rules.
V. Summary and Conclusions

We study the capacity of the Poisson single-user and two-user (multiple-access) arbitrarily varying
channel, subject to input and state constraints. Using a DMC decomposition for the non-bandwidth­
limited Poisson channel in combination with the general results of Csiszar-Narayan (for the single-user
case) and Gubner (for the two-user case) the deterministic-code capacities of these channels have been
obtained. An essential result due to Frey, which determines the optimal jamming strategy in the
Poisson regime for the case at hand, has been used to obtain a converse.

We've also considered decoding rules that attain the aforementioned capacities. Specifically, in the
single-user case W yner's [19] minimum distance decoder is shown to have a positive error exponent
for all rates not exceeding capacity. In the two-user case we suggest a minimum distance decoder
that belongs to the class of .8-decoders introduced in [3, 4] for deterministic codes on the (single­
user) AVC. This decoder is shown to exhibit a positive error exponent everywhere inside the two-user
deterministic-code capacity region.

Appendix I 

Proof of Theorem 1; the cases B > A and B < A.

Consider the case B > A while 1/T J ;\91 
(t)dt = AA. Using simple function approximation and

passage to the DMC limit as .6. -+ 0 establishes the optimality of binary signaling for both the encoder
and state inputs [20, 22]. A state sequence with constant intensity and average power AA can be
generated as follows.

The jammer limits its peak to A where A < A ::; B then it forms a refinement partition of the
intervals .6.j , say .6.j,l and chooses to transmit A on U1 .6.j ,l C .6.j such that

A decoder that observes vf on the partition defined by .6.j cannot distinguish the above state sequence
and that which adopts A = A and transmits with peak A on Ui .6.j,z/.6.j = A. Consequently, Theorem
1 holds for this case.

Consider now the case B < A. Here the most the state input can do is transmit with peak B

(which is strictly smaller than A) over .6.j. Let /3 !::. B/A and write for this case
vV(llO, 0) = so.6.
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fV(lll, 0) 
W(ljO, 1) 
vV(lll, 1) 

(1 + so)�
(so+ ,B)� 
(1 + So + ,8)� 

We consider now the set of channels U : X -+ S that render the AVC symmetrizable, i.e 
L W(ylx, s1)U(sdx') = L W(ylx', s1)U(s1 Ix) . 

s1ES 

It suffices to consider (54) with y = l, x = 0, x' = l, then 
L W(llO, s1)U(sill) = L W(lll, s1)U(s1'0) , 

s1ES s1ES 

implies the relation 
soU(Oll) +(so+ .B)U(lll) = (1 + so)U(OIO) + (1 +so+ ,B)U(l!O)

(54) 

(55) 
The only U that satisfies (55) is U = 0, which is not a transition probability, hence the AVC isnon-symmetrizable and its deterministic-code capacity equals the random-code capacity. o

Appendix II 

In this appendix we upper bound each of the terms Pem(i), i = 2 ... 4 in (46). To simplify the 
. 

h 
. 6 expressions we use t e notation s = s0 + q.Consider the term 

Pem(2) = I: Q(n1, n2, n) [ I: r1(n1, n2, n)r 

where 

< 
(n1,n2,n)EAonA1 m'::/-m 

I: Q(n1, n2, n) [ I: r1(n1, n2, n)r 
(n1 ,n2,n)EA1 m'::/-m 

I: Q(n1,n2,n)x(n1,n2,n)[ I: r1(n1,n2,n)r 
(n1,n2,n) m'::pm 

< Mf Mf L Q(n1, n2, n)e1'((n-ni) 1.:.
2
11 -n

2lrf (n1, n2, n) , 
(n1 ,n2,n) 

( ) { 1 if (n1,n2,n) E A1X ni, n2' n = 0 otherwise 
and the last inequality follows since x(n1, n2, n) � exp{ r[(n - ni) I�ti - n2]}.Now for a given n, 
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To proceed further let us consider first the inne'r sum 

To obtain the tightest bound we minimize h(r), setting the derivative to zero 

we get 

8h t2 T....!2.._ t2 -T(l-....!2.._) 
- = (1 -7!"1 -7r2)- - e i-t1 - 7r

2 (l ---.-)e i-t1 
= 0 '8r l -t1 1 -t1 

T 
7r2(l-t1-t2) 2+s 

e = =--
(1 -7!"1 -7r2)t2 s 

Note that r = In[(2 + s)/s] 2:: 0, as required. Combining these results we obtain 
AT -!IL. _!2_ h*(r) = A(t0 + t2)s to+t2 (2 + s)to+ t2

Turning back to Pem ( 2), 

where 

� A { [ 1 ( ) 1�p
] 

l+p} 
E2 - AT l - (tf1r1)'i+p + (1 -t1 )Ph*(r) 

A [ 1 
( -!IL. 

_!2_) 1�p
] 

l+p 
- AT- t1 (l+s)i+p+(t0+t2) s to+t2(2+s)to+ t2 

To prove that E12 � .E2 it remains to show that 

(56) 

Let p = to�t2 
and t = ( 2�8) m then as s increases from O to oo t increases from O to 1. Using these

definitions we have to show that 

r(p, t) =pt+ (l -p) -tP 2:: 0 , 0 � p � l , 0 � t � 1 

For O � p � 1 the function g(t) = tP is concave and g(l) = 1 , g'(l) = p. Hence the graph of g(t) lies
below its tangent line at (1, g(l)) : 1 -p + pt (see [19, Appendix II]). 
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SOT= ln(l + s)/[tosm +t2(2+s)m ]
l+p > 0 as required.to+t2 . -

Combining (58) and (57) we have 
I I AT [t0s T+ii + t2 (2 + s) Hp] (1+p)(to+t2) 

g*(r) = - (1 + s)ti , 
A to+ t2

- i.e. Pem(3) � B3e-T(AEa-pR) , where

To prove that E3 2 E12 we need to show that

(59)

Lett= tosm+hC2+s)m . 1 
, so that t increases from to

t
+2t2 2m to 1 ass increases from Oto oo.to+t2 (l+s) rf,; We have

which completes the proof.
F inally we turn to Pem(4),

< 

....L. 1 t0s 1
+P + t2 (2 + s)i+ii 

----
....L.
-:---- + t1 = (1 -t1 )t + t1

(1 + s) Hp 

L Q(n1, n2, n)xo(n1, n2, n)xi (n1, n2, n)
(n1 ,n2,n) 

L Q(ni, n2, 
n)eT1 (nt1-n1)e72((n-n1) 1�11 

-n2]

(n1,n2,n) 

where xo(n1, n2, n) , x1(n1, n2, n) are the indicator functions of the sets Ag and A1 respectively.
For a given n
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Since the inner sum identifies with [h(72)Jn-ni in (56) its optimized value is 
__!.o_ __!.o_ h*(72) = k(t0 + t2)s to+12 (2 + s) 1o+t2. vVe consider now the outer sum

Setting the derivative of v w.r.t. 71 to zero yields 

By [30, Appendix 3A inequality b] 
� _!L, tos + t2 (2 + s) 

8
10+12 (2 + s)to+t2 5 < (1 + s) to+ t2

hence 71 > 0 as required. Substituting (61) into (60) we obtain v = � st0(1 + s)ti (2 + s)t2 so 
Pem(4) ·5 e-E4T where E4 = A/T-Ast0(1 + s)t1 (2 + s)t2• 

(60) 

(61) 

To show that E4 is not less than E12(P,P1,P2, q) - pR it suffices to show that E4 � E12(1,p1,p2 , q).
Let t = s / ( 1 + s) and consider the pair of functions f and g defined by 

We have 

J'(t) -

g'(t) -

!" (t) -

g"(t) -

f 1::,. [tot!+ t2 (2 - t)i + ti ]2
g t:,. tto ( 2 - t) t2 

[t0tt + t2(2 - t) t + t1](t0ct - t2(2 - t)-tJ 
totto-1 (2 - t/2 - t2tto (2 - t)t2-l 
![t0rt - t2(2 - t)-!]2 - ![t0tt + t2(2 - t)l + t1][t0ri + t2(2 - t)-i] 
2 2 

to(to - l)tt0 -
2(2 - t)t2 

- 2tot2 tto- 1 (2 - t)t2- 1 
+ t2 (t2 - l)tt0 (2 - t)t2-

2

Now, /(1) = g(l) = 1 , f'(l) = g'(l) = (to - t2) while g"(l) = (t0 - t2)2 - (to+ t2) = 2f"(l) < 0. 
Next f (0) = ( y2t2 + t1)2 

, g(O) = 0 - i.e. J(O) > g(O) and as t --+ 0 g'(t) = 0 (t-(l-to)) while 
f'(t) = 0 (t-t) hence f'(O) > g'(O) since 1/2 5 t0 5 1 for O 5 Pi 5 1/2, i = 1, 2. Furthermore, 
g"(t) < 0, f"(t) < 0, 0 5 t 5 1 whence both functions are concave. These facts imply that the graph 
of j (t) lies above that of g(t) and since E4-El,���wz12,q) = j (t) - g(t) the proof is complete. 0 
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Figure 1: Geometrical interpretation of I(p, A). t1 = s0 + q , t2 = s0 + q + 1 , t = s0 + q + p 
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Figure 2: Schematic diagram of a two-user code waveforms. 
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