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Abstract 

Harmonic analysis has been the longest lasting and most powerful tool for deal­

ing with signals and systems which involve both periodic and transient phenomena. 

Further impact on signal processing was facilitated by what we refer to as represen­

tations in combined spaces. These representations, motivated by Gabor's concept of 

time-frequency information cells have evolved in recent years into a rich repertoire of 

Gabor-type windowed Fourier transforms, relating Fourier analysis to the Heisenberg 

group. Such localized bases or frames are useful in the representation, processing, 

compression and transmission of speech, images and other natural signals that by their 

very nature are nonstationary. To incorporate scale that lends itself to multiresolution 

analysis as is the case with wavelets, the Gabor scheme is generalized to multiwindow 

Gabor frames. The properties of such sequences of functions are characterized by an 

approach that combines the concept of frames and the Zak Transform. Results on sig­

nal representation and reconstruction from partial information in the frequency domain 

are related to and derived, using relevant results obtained in the time or positional in­

formation domain. Some results concerning the representation of Fourier-transformed 

1 



discrete time (finite) sequences by partial information are rederived by exploiting the 

duality of the Fourier-Stieltjes transform and its inverse. Results related to discrete 

signals are extended to continuous one-dimensional signals. Signal and image represen­

tation by phase only information is considered also in the context of localized (Gabor) 

phase, where restoration of magnitude by iterative techniques is much more efficient 

than in the case of global (Fourier) phase. 

1 Introduction 

The subject of harmonic analysis is extremely broad, as can be concluded, for example, 
from the viewpoint of Katzenelson [16), who considers it as the study of objects (functions, 

measures, etc.) defined on topological groups. Indeed, groups are relevant to Gabor-type 

representations and wavelet-type transforms [25]. Consider the quasi-regular representation 

T(g)h(x) = kh(9-1x), (1) 

where k is a constant that may depend on g, and the independent variable x is an n­

dimensional vector. 

This representation that satisfies the functional homomorphism T(g1g2) = T(g1)T(g2)

underlines the decomposition of a function h into a package of waves, i.e., wavelets

{T(go)h, · · · , T(gN )h, · · · }. 

We say that T(g) is a unitary representation with respect to a measure µ if 

(T(g)f, T(g)h)
µ 

= (!, h)
µ

. (2) 

A wavelet-type transform is, according to the group theoretic approach, defined as a cross 

correlation between a signal f(x) and the wavelets {T(g)h(x)} that is defined as follows: 

c1(g) = c JM f (x)T(g)h*(x)µ(x)

= c(f, T(g)h)
µ

, (3) 



where h* stands for conjugate, c > 0 is a normalization constant, his a template function ( or 

a mother wavelet), and µ(x) = p(x)ax is an appropriate invariance measure (if one exists) 

under the action of the group G.

Given the equation for the analysis, (3), we are looking for a way to recover f (x) from 

C1(g), i.e. the equation of the synthesis and the conditions under which it exists. 

Most studies of wavelets have been devoted to the special case of the affine group G =

G(A-1
, b) of planar scaling and translation. A-1 is in this case a diagonal matrix with entries 

a;1 and bis the translation vector. The quasi-regular unitary representation over L2(lRn) is 

defined in this case by 

T(g)f(x) = kf (A(x - b)) , (4) 

where k = -JI and J = I det(A)I. Gabor-type representation originate from the Heisenberg 

group and the associated Weyl operational calculus. As such this representation lacks the 

scaling that is characteristic of wavelets. Scaling is, of course, important in the analysis of 

natural signals. However, the explicit harmonic, or spectral nature of Gabor-type represen­

tation is just as important. Thus, it is desirable to incorporate scaling into the Gabor-type 

representation. This is accomplished by the generalized Gabor scheme [21], [35]. In this 

paper we focus on signal and image representation by multi-window Gabor-type schemes, 

where by proper choice of the set of windows we incorporate scaling [35]. We then proceed 

to present various aspects of signal and image representation by partial information, mostly 

in the context of harmonic analysis. These two subjects are of utmost importance in signal 

processing, and have proven to be useful in a wide range of applications (not discussed in 

this paper). The two interrelated subjects are also instrumental in gaining insight into the 

structure of natural signals, and of images as such. In both cases we discuss the analysis as 

well as the synthesis. 
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2 Multiwindow Gabor-type frames 

2.1 Generalized Gabor-type schemes and the Zak transform 

Many problems in physics and engineering involve the representation and analysis of non­
stationary signals and processes. Such problems call for the development and application
of sets of functions that are localized in the sense that they rapidly decay in both time ( or
position in the case of images) and frequency. Such are the wavelets, Gabor functions and
the Wigner distribution.

The two widely-studied sequences of the so-called wavelets and Gabor functions are
special cases of the following generalized sequence:

Sr,m ,n(x) = 9r(X - nar)<Pr,m(x), (5) 

where {gr(x)} is a sequence of window functions, {ar} is a set of real numbers and { </>r,m(x)}
is a set of kernel functions. In the classical Gabor case [9], there is a single-window function
g(x), with ar = a and b some positive constant, </>r,m(x) = ei21rmbx, and m, n E YL. In the
wavelet-type Gabor case, </>r,m (x) = 1, 9r(x) = b-rl2

g(x/br), ar = abr , r, n E YL, and g(x) is
a "mother wavelet" function.

Zibulski and Zeevi [35] analyzed such sequences of functions by developing a matrix alge­
bra approach based on the concept of frames and the Zak transform (ZT). The basic results
are presented here without the proofs. The idea of using frames in order to examine the se­
quence of Gabor functions (and affine wavelets as well) was first proposed and implemented
by Daubechies et al. [4]; the so-called Weyl-Heisenberg frames. The ZT of a signal f (x) is
defined as follows [14]:

(Z !) (x, u) 6 a1l2 I: f [ a(x + k)] e-i21ruk, -oo < x, u < oo, (6)
kE7Z 

with a fixed parameter a > 0. The ZT satisfies the following periodic and quasiperiodic
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relations:
(Zf)(x, u + l) = (Zf)(x, u), (Zf)(x + 1, u) = ei21ru(zf)(x, u). (7)

As a consequence of these two relations, the ZT is completely determined by its values over
the unit square (x, u) E ((0, 1)2). This is the essence of this unitary mapping.

Based on the ZT defined by (6), we define the Piecewise Zak Transform (PZT) as a
vector-valued function F(x, u) of size p [34]:

F ( x, u) = [ Fo ( x, u), F1 ( x, u) ... , Fp-l ( x, u)] T, (8)
where

Fi(x,u) = (ZJ) (x,u+ �), 0 � i � p- l, i E 7£. (9)
The vector-valued function F(x, u) belongs to 12 ((0, 1) x (0, 1/p);<CP), which is a Hilbert
space with the inner-product:

1
1 

1
1/p p-1 

(F, G) = dx du L Fi(x, u)Gi(x, u).
0 0 i=O 

Since the ZT is a unitary mapping from L2 (IR) to L2 ([0, 1)2), the PZT is a unitary mapping
from L2 (1R) to L2 ([0, 1) x (0, 1/p);<CP) . As a consequence we obtain the following inner­
product preserving property:

1-: J(x)g(x)dx 1
1 

1
1 (ZJ)(x, u)(Zg)(x, u)dxdu

1
1 

1
1/p p-1 

dx du L Fi(x, u)Gi(x, u).
0 0 i=O 

This unitary property of the PZT allows us the transformation from L2 (IR) to 12 ((0, 1) x
[O, 1/p);<CP), where issues regarding Gabor-type representations are often easier to deal with
and understand.
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of the ZT was restricted to the case ab = l. In [35], Zibulski and Zeevi show that, if

the product ab is a rational number, it might be advantageous to examine this operator in

L2([0, 1) x [O, 1/p);<(;P) by using the PZT. A major result of analysis in the PZT domain is the 

representation of the frame operator as a finite order matrix-valued function, as formulated 

in the following theorem. 

Theorem 1 (Zibulski and Zeevi [35]) Let ab= p/q, p, q E N, and let Sz be the frame 
operator of the sequence, which is the PZT of {gr,m,n}- The action of Sz in L2([0, 1) x

[O, 1/p);<CP) is given by the following matrix algebra: 

(SzF)(x, u) = S(x, u)F(x, u), 

where S(x, u) is a p x p matrix-valued function whose entries are given by: 

1 
R-1 q-l ( ·) ( k) 

Si,k(x,u) = -:z=:z=zgr x-l�,u+ .: Zgr x-zE,u+- ; 

p
r=O l=O 

q p q p 

i, k = 0, · · · ,P - 1, 

and the vector-valued function F(x, u) is given by {8) and (9).

(13) 

(14) 

Since the PZT is a unitary transform, (13) is an isometrically isomorphic representation of 

S (12). 

Using the PZT and the matrix representation of the operator S, Zibulski and Zeevi [35] 

examined the properties of the sequence {gr,m,n} for a rational ab. Since, in the case of

undersampling the sequence {gr,m,n} is not complete, the results presented next are relevant

in the cases of critical sampling and oversampling. 

The following theorem examines the completeness of the sequence {gr,m,n} in relation to

the structure of the matrix-valued function S(x, u). 

Theorem 2 (Zibulski and Zeevi [35]) Given gr E L2(IR), 0 :s; r :s; R-l, and a matrix­
valued function S(x, u), (x, u) E ([O, 1) x [O, 1/p)) as in {14), the sequence {9r,m,n} associated 
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with {gr}, ab = p/q, p, q E N is comp lete if and only if det(S)(x, u) -:/= 0 a.e. on [O, 1) x 

[O, 1/p). 

The frame bounds of the sequence {gr,m,n}are determined by the eigenvalues of the 

matrix-valued function S(x, u). Let 

Amax(S) 6 ess SUP(x,u)E([O,l)x[0,1/p)) ��� Ai(S)(x, u) (15)

Amin(S) 6 ess inf(x,u)E([O,l)x[0,1/p)) lfifp >.i(S)(x, u), (16)

where >.i(S)(x, u) are the eigenvalues of the matrix S(x, u). Then, the upper frame-bound 

B = Amax(S), and the lower frame-bound A = Amin(S). This result yields the following 

theorem. 

Theorem 3 (Zibulski and Zeevi [35]) The sequence {9r,m,n} associated with {gr}, 9r E 

L2(IR), 0 � r � R - l, and ab = p/q, p, q E N constitutes a frame if and only if O < 

Am in(S) � Amax(S) < 00. 

An alternative approach to determining whether {9r,m,n} constitutes a frame is as follows. 

The following Lemma, which formulates a necessary and sufficient condition for the existence 

of an upper frame bound B < oo. 

Lemma 1 The sequence {9r,m,n} associated with for}, 9r E L2(IR), 0 � r < R - l and

ab = p/q, p, q E N, has an upper frame bound B < oo if and only if (Zgr)(x, u) are a l l

bounded a.e. on (0, 1]2 (Zgr E L00((0, 1]2)). 

Theorem 4 determines whether the sequence {9r,m,n} constitutes a frame, when an upper 

frame bound exists, and which does not necessitate calculation of the eigenvalues of S(x, u).

Theorem 4 {Zibulski and Zeevi [35]) Given 9r E L2(IR), 0 � r � R-l, such that there

exists an upper frame bound B < oo for the sequence {9r,m,n} associated with {gr}, and ab=
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p/q, p, q EN. The sequence {gr,m,n} constitutes a frame if and only if O < K � det(S)(x, u)

a.e. on [0,1) x [0,1/p), where the matrix-valued function S(x,u) is as in (14).

The following theorem concerns tight frames and the matrix representation of the frame 

operator. Recall that a set of functions { 'fPn} in a Hilbert space H constitutes a tight frame 

if 

n 

Theorem 5 (Zibulski and Zeevi [35]) Given gr E L2 (lR), 0 � r � R- l, and a matrix­

valued function S(x, u) as in (14), the set of functions {gr,m,n} associated with {gr}, ab =

p/q, p, q EN constitutes a tight frame if and only if S(x, u) = AI a.e., where I is the identity 

matrix, and A=; ��:;0
1 

llgrll2• 

In order to complete the formalism of representation, one has to obtain the dual frame. 

This can be done by using operator techniques [5, 7). For the single-window scheme the dual 

frame {S-1 gm,n} is generated by a single dual frame window function [5, 13]. This is, indeed, 

also the case for the multi-window scheme. Let { 'Yr,m,n} denote the dual frame of {gr,m ,n} 

then { 'Yr,m ,n} is generated by a finite set of R dual frame window functions {'Y
r}: 

'Yr,m,n(x) = 'Yr(X - na)e127rmbx, 0 � r � R - l, 

where 'Yr = s-
19r · Using the matrix representation (13) of the frame operator, the PZT of 

'Yr ' is: 

rr(x, u) = s-
1 (x, u)Gr(x, u), (17) 

that is, f r(x, u), Gr(x, u) are vector-valued functions in L2([0, 1) x [O, 1/p);<IY), and s-1(x, u)

is the inverse of the matrix S(x, u) (for example 

s-
1(x, u) = [det(S)(x, u)J-1adj(S)(x, u)).
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2.4 The Balian-Low theorem in the case of multi-windows 

The case of a single-window Gabor scheme with critical sampling, i.e. ab= l, by choosing an 

appropriate g(x), the sequence {9r,m,n} can be complete and constitute a frame, albeit the 

problems of stability [5]. The sequence {9r,m,n} can, however, be complete and not constitute 

a frame, in which case the representation is unstable. A classical example of such an unstable 

scheme, is the one with a Gaussian window function. 

In the case of a single window and critical sampling, the following theorem of Balian and 

Low indicates that a wide range of well behaved - rapidly decaying and smooth functions -

g(x) are excluded from being proper candidates for generators of frames. 

Theorem 6 (Balian-Low Theorem [2, 5, 6]) . Given g E L2 (JR), a> 0 and ab= l, if 

the sequence {9m,n} constitutes a frame, then either xg(x) rt L2 (lR) or g'(x) rt L2 (JR). 

Note that g'(x) E L2 (JR) {::} wg(w) E L2 (JR), where [J is the Fourier transform of g. 

One of the solutions for this problem is oversampling. In fact, it was proven that in the 

case of a Gaussian the {9m,n} constitutes a frame for all ab < l [15, 26]. 

In the case of critical sampling of the multi-window scheme, an interesting question is 

whether one can overcome the constraint imposed by the Balian-Low Theorem by utilizing 

several windows. According to the following theorem, if all the windows in the set {gr} are 

well behaved functions, this is not possible: 

Theorem 7 (Zibulski and Zeevi [35]) Given 9r E L2 (JR), 0 S r S R - l, a > 0 and 

R(ab)-1 
= 1, if the sequence {9r,m,n}, as in (11), constitutes a frame, then either xgr (x) rt 

L2 (JR) or g�(x) rt L2 (JR) for some OS r SR - l. 

One of the advantages of using more than one window is the possibility of overcoming 

the constraint imposed by the Balian-Low Theorem ori the choice of window functions, by 
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adding an extra window function of proper nature such that the resultant scheme of critical 

sampling constitutes a frame. Whether one can find a non-well-behaved window function, 

complementary to a set of well-behaved window functions, such that the inclusive set will 

generate a frame for critical sampling, depends on the nature of the set of the well-behaved 

window functions as indicated by the following proposition. 

Proposition 1 Let a set, {gr }, 0 � r � R - 2, of R - l window functions be given. Denote 

by  G0(x, u) the R - l x R matrix-valued function with entries G�,k(x, u) = Zgr(x, u + j), 

and P(x, u) = G0(x, u)G0
• (x, u). There exists a window function gR-I (x) such that the 

inclusive set {gr}, 0 � r � R - l generates a frame for the critical sampling case, if and 

only if O < K � det(P)(x, u) a.e. on [O, 1) x [O, 1/ R).

An example of R- l well-behaved window functions satisfying O < K � det(P)(x, u) a.e. 

on [O, 1) x [O, 1/ R), can be constructed in the following manner. Take a window function 

g(x) such that the sequence {g(x - n/b)ej21rmx/a} constitutes a frame for ab= R/(R - 1).

Note, that this is an oversampling scheme (l/(ab) = (R - 1)/ R < l) and that there exist, 

therefore, well-behaved window functions g(x) such that {g(x - n/b)ej21rmx/a} constitutes a 

frame ( for example the Gaussian function). Construct the following R - l window functions: 

Clearly these are well-behaved window functions. Moreover, we obtain 

(Zgr)(x, u) = (Zg)(x-r R�
I

' u), and the matrix-valued function G0(x, u) equals the matrix­

valued function G(x, u) which corresponds to the sequence {g(x - na)ej21rmbx} (which we 

denote by {gr,m,n} ). In this case {gr,m,n} corresponds to an undersampling scheme. By the 

duality principle, since {g(x - n/b)ej21rmx/a} constitutes a frame, {9r,m,n} constitutes a Riesz 

basis for a sub-space of L2(IR). It can therefore be shown that O < K � det(P)(x, u) a.e. 

on [O, 1) x [O, 1/ R). 
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2.5 A wavelet-type Gabor scheme 

Consider a generalization of the sequence {9r,m,n}, where for each window function 9r (x) 

there is a different set of parameters ar , br : 

( ) ( 
)_12,rmbrx 9r,m,n X = 9r X - nar t:· , 

and the sampling density of the combined space is: 

R-1 

d 6 I)arbr)-1
.

r=O 

(18) 

case of the single window, the characterization of the sequence {9r,m,n} can be divided into 

the three categories of undersampling, critical sampling and oversampling according to d < 

1, d = 1, d > 1, respectively. 

In order to analyze this kind of a scheme, we consider an equivalent one with ar = a, br =

b for all r [35] and utilize the tools presented in the previous section for the analysis of the 

sequence properties. 

Utilizing the degrees of freedom of choosing a different set of parameters ar, br for each 

window function 9r, we construct a wavelet-type scheme. Let a, {3 be positive, real numbers. 

Given a window function g(x) let 

Also, let ar = {3ar, and arbr = R/ d for all r, where d is the sampling density of the combined 

space. We then have 

In this scheme the width of the window is proportional to the translation step ar, whereas, 

the product arbr is constant. This scheme incorporates scaling characteristic of wavelets 

and of the Gabor scheme with the logarithmically-distorted frequency axis [21]. However, in 

contrast with wavelets, this scheme has a finite number of window functions i.e. resolution 
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levels, and each of the windows is modulated by the infinite set of functions defined by the 

kernel. Each subset for fixed m can be considered as a finite (incomplete) wavelet-type set, 

in that it obeys the properties of scaling and translation of a complex prototypic "mother 

wavelet". For example, if R/d is an integer, the mother wavelet is defined by g(x)e?21r
m

ldR, if 

not, this definition holds within a complex phase. Thus, all the functions corresponding to 

each of these mother wavelets are self-similar. 

Scaling has been realized as an important property of sets of representation functions 

which are used in the analysis of natural signals and images. Hence the importance of this 

type of generalization of the Gabor scheme. 

3 Signal representation by partial information 

3.1 Fourier and related transforms 

Let f(t) be a complex function which belongs to L1 (-oo, oo) or L2(-oo, oo). the ordinary 

Fourier transform denoted by J(w) and its inverse are defined by 

J(w) 

f(t) 

- 1-: f(J)e-jwtdt

- �100 

}(w)dwtdw. 
271' -oo

If f(w) is zero outside the interval [a, b] then 

l lb � . t f(t) = 

271' 
a f(w)e:1w dw !al, lbl < oo ,

(19) 

(20) 

(21) 

is called a band-limited function, i.e. f(t) E Bn, where Bn is the space of bandlimited · 

functions. 

It is well known from the Paley-Wiener theorem (23] that such a f(t), with t being 

interpreted as a complex variable, is an entire function of exponential type (EFET). Due to 
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the duality of the Fourier transform and its inverse, if f (t) is time-limited to (a, .BJ, then 

(22) 

In this case, with w being viewed as a complex variable, f (w) is an EFET. This duality is 

complete if we change the argument sign and multiply (divide) by 21r. If we define a dual 

Fourier transform pair (i'(w), J'(t)) by 

f'(w) 

J'(t) 

- _!_ loo 

J'(t)dwtdt 
27r -00 

- 1: f (w)e-jwt<ku

(23) 

(24) 

we have perfect duality between time-limited signals and band-limited signals. If f (t) = f'(t), 

then f(w) = 21r]'(-w). Thus, if ](w) is given by 

J(w) = P(w) + jQ(w) = R(w) exp(i'!9(w)), R(w) > 0, 

where P(w) is the real and Q(w) the imaginary part, f'(w) is given by 

21r f'(w) = f (-w) = P(w) - jQ(w). 

Alternatively, f'(w) can be expressed in polar coordinates 

21r ]' (w) = R(w) exp(-j'!9(w)) , 

(25) 

(26) 

(27) 

where R(w) is the magnitude and '!9(w) the phase. All subsequent results relating to time­

domain (when the signals are band-limited in frequency)  will be used with reference to the 

frequency-domain (when the signals are of finite duration in time or finite extent in space), 

with proper interpretation of the duality that exists between frequency and time domain 

representations. 

In general, the signals in the time or frequency domain will not belong to L1 ( -oo, oo) or 

L2(-oo, oo). We will use delta functions to describe discrete time signals or discrete Fourier 

spectra. The application of these functions can be mathematically justified by introducing 
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the Fourier-Stieltjes transform [3], [23], 

B(w) - e(o) 

](T) - ](O) 

l
oo e-jwt

. 
- l

d](t) 
-oo 

-JW

l 
l

oo e+jwt - l A 

- - dB(w) 
21r _

00 
+jw ' 

(28) 

(29) 

where B(w) is the cumulative spectrum and J(t) the cumulative time function. The Fourier­

Stieltjes integrals are properly defined even when the time or frequency functions contain 

discrete components, while O(w) and ](t) are functions of bounded variation in (-oo, oo). 

The duality of the Fourier-Stieltjes transform and its inverse is self-evident by their definitions 

(28), (29). J(t) is bandlimited in the Fourier-Stieltjes sense if B(w) is constant outside an 

interval [a, b]. In a dual manner we define time-limited signals. In cases where O(w) is 

unbounded in its variation, more general results should be used, such as Zakai's definition of 

band- ( or time-) limited signals [32], or generalized functions [10). An important result due 

to Polya's theorem [17] or Paley-Wiener-Schwartz [10) ensures that if a signal is bandlimited 

in the Fourier-Stieltjes sense in one domain, its counterpart is an EFET. 

A discrete complex time signal is defined by 

(30) 
n 

and its Fourier transform by 

x(w) = I::xne-jwtn. (31) 
n 

Using a transformation of the whole complex plane into itself (w and z being viewed as

complex variables), 

(32) 

the generalized z-transform is defined by 

A( ) � -tn X Z = �XnZ (33) 
n 
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The ordinary Fourier sequence and z-transforms are derived through uniformly spaced (nor­

malized) sampling tn = n. The same (within the duality) definitions apply to cases where a 

discrete signal describes the spectral function. 

We use properties of a class of EFET called B-functions. These include all functions 

of finite bandwidth (according to various definitions of bandwidth). The properties of B­

functions are well established by classical theory of entire functions, and a complete char­

acterization of their zeros is known. Furthermore, for each B-function there corresponds a 

unique expansion into the product of its zeros, determined by the Hadamard factorization 

[23): 

f(s) = csmejks lim IT (1 - s/sn),
r-+oo 

lsnl:Sr 

(34) 

where f (s) is a B-function, c a complex constant, m an integer, k a real constant, and Sn 

are the complex roots of J(s). Convergence of (34) is conditional on correct order of the 

zeros [23]. This form of expansion shows that a band-limited function is uniquely determined 

(within some parameters) by all zeros. 

3.2 Time and position (i.e. 2D) domains - zero crossings 

Logan's work [17] addresses the issue of whether a one-dimensional bandpass signal can be 

uniquely determined by its real zero crossings. His work characterizes analytically the class 

of these interesting signals, and proves that a bandpass signal can be uniquely determined 

by its real zero crossings (within a multiplicative constant) even if it has complex zeros. 

Logan's existence theorem defines the_ conditions that must be satisfied in order to have a 

representation: 1. The bandpass function and its Hilbert transform should have no zeros 

in common other than real simple zeros, and 2. The bandwidth of the signal must be of 

less than an octave. These common zeros of the bandpass signal and its Hilbert transform 

(free zeros in Logan's terminology) are those that may be removed or moved around without 

destroying the bandpass property of the signal. 
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The formal conditions for a real bandpass signal representation by its zero crossings are 

stated in Theorem 8, and for real periodic function, as a special case, in Theorem 9. 

Theorem 8 (Real Bandpass Signal Version (Logan [17])) Let h(t) = Re(J(t)eiwot) 

be a real bandpass function, where f (t) is band limited and bounded. h(t) is uniquely de­

termined by its real zero-crossings within a multiplicative constant, if h(t) has no zeros in 

common with its Hilbert transform h(t) = Im(J(t)eiwot) (free zeros) other than real simple 

zeros, and if the band is less than one octave in width. 

Theorem 9 (Real Periodic Functions (Poggio et al. (20])) Let hs(t) be a real peri­

odic bandpass function 

hs(t) = L eneint
(35) 

n=-N 

where Cn is a discrete complex sequence, and * denotes the conjugate operation. The function 

hs(t) is uniquely determined by its real zeros within a multiplicative constant provided hs(t) 

and its Hilbert transform hs(t), given by 

hs(t) = L eneint Cn = -jsign(n)en' (36) 
n=-N 

have no zeros in common except real simple zeros, and Cn = 0 for lnl $ N/2 (or (N + 1)/2 

when N is odd). 

It should be noted that these are existence theorems and as such they define the necessary 

and sufficient conditions. However, they do not provide an algorithm for signal reconstruction 

from its zero crossings, nor do they address the important issue of stability. Algorithms for 

one-dimensional signals were put forward by Voelecker and Requicha [31]. These algorithms 

were modified by Rotem and Zeevi [24], and applied in reconstruction of images from their 

zero crossings. 

Theorem 10 (Bandpass Signals in Two Dimensions (Rotem and Zeevi [24])) 

Let f (x, y) be a real function that satisfies the following conditions: 
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{i) J J�00 /2(x, y)dx dy < oo. 
{ii) J�00 J2(x, Yo)dx < oo for a certain Yo (such Yo must exist due to {i)). 

{iii) r: J2(xk, y)dy < 00 for {xn} defined below {see {vii)). 
{iv) The two-dimensional Fourier transform of f(x, y) 

}(u,v) =ff f(x,y)e-j(ux+vy)dx dy
-oo 

satisfies the bandwidth condition: 

where 
� { u < -b U -a < u < a U b < u f(u, v) = 0

ll < -d U -C < ll < CU d < U

0 <a< b < 2a; 0 < C < d < 2c.

(37) 

(38) 

(39) 

(v) For y0 in {ii), the one-dimensional function of x, f(x, Yo), and its Hilbert transform
i(x, y0) do not have zeros in common except real zeros of degree one. 

{vi) For {xn} in {iii), the one-dimensional function in y, f(xn, y), and its Hilbert transform 
](xn, y) do not have zeros in common except real zeros of degree one. 

{vii) The set of points {xn } constitutes a sampling set for B(a, b) by having density greater than (b-a)/1r. More precisely: if N(L) is the number of sampling points on the interval 
(0, L), then the sufficient condition is 

. N(L) b- a 
hm sup-->--. 

L-+oo L 7r
(40) 

Then, if there exists another function g(x, y) which also satisfies conditions (i)-{vii), 
and if 

sign(g(x, y)) = sign(f(x, y)), (41) 
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we have 

g(x, y) = o:f(x, y). (42) 

That is, f and g are identical within a multiple constant. The proof is a direct extension 

of Logan's theorem [17]. Since the one-dimensional functions f(xn, y) and f(x, y0) satisfy 

Logan's conditions, we can construct the functions along vertical lines x = Xn, scale them 

according to the function on the horizontal line y0, and then, having a sampling set {xn}, 

the value off (x, y) is determined (up to a constant) at every point in the plane. Obviously, 

x and y can be interchanged in conditions (ii)-(vii) and in the proof [24]. 

Theorem 11 (Bandpass in One Dimension, Lowpass in the Other) (Rotem and 

Zeevi [24]) Let f(x, y) be a real function that satisfies the following conditions: 

(i) J J�
00 

J2(x, y)dx dy < oo.

(ii) J J�
00 

J2(x, Yn)dx < oo for {Yn} defined below.

(iii) The two-dimensional Fourier transform of f(x, y) satisfies

where 

� { u < -b U -a < u < a U b < u 
J(u,11)=0 

l/ < -CU l/ > C 

0 < a < b < 2a; 0 < 
c 

< 09 . 

(43) 

(44) 

(iv) For {Yn } in (ii), the one-dimensional function in x ,  f(x, Yn) and its Hilbert transform

J(x, Yn) do not have zeros in common except real zeros of degree one. 

(v) There exists a straight line£ of angle (} to the x axis, where

2a - b
tanB < 

3c
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(by (iii), b < 2a, so O > OJ such that the one-dimensional function J(s) satisfies along 

f, 

1-: J(s)ds < oo. (46) 

(vi} The Junction f(s) and its Hilbert transform }(s) do not have zeros in common except 

real zeros of deg ree one. 

(vii} The set of points {Yn} constitutes a sampling set for B(c). 

Then, if there exists another function g(x, y) which also satisfies conditions (i}-(vii}, and if 

sign(g(x, y)) = sign(J(x, y)), (47) 

we have 

g(x, y) = af(x, y). (48) 

In this case, the function is determined on horizontal lines Yn and scaled on the diagonal f. 

Having {Yn}, a sampling set for B(c), we can determine the value for every point between 

the lines. 

The conditions can be interchanged so that the function is determined on multiple diag­

onals and one horizontal line, or another diagonal angle less than O relative to the x axis. 

The importance of formulating the conditions of free zeros in the case of a two-dimensional 

signal (e.g. an image), is in the observation that these conditions have to be satisfied only 

on a sparse set of lines in the plane. Furthermore, if the signal is periodic ( and every finite 

image can be considered as one period of a periodic, infinite signal, thus enabling bandpass 

conditions to exist) - only a finite number of lines, out of the infinite number of lines in the 

plane, have to satisfy the free-zero conditions. Thus, even if the strict condition of having 

no free zero is not realized in an image which satisfies one of the bandpass conditions, the 

image is still likely to be represented by its zero crossings. 
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3.2.1 Reconstruction of images from their zero crossings 

The proposed algorithms directly follow the proofs of Theorems 10 and 11. If the image 

satisfies the conditions of Theorem 10, the one-dimensional functions on several rows ( or 

columns) are reconstructed, using an iterative algorithm described below. Then, another 

one-dimensional function is reconstructed along a column (or a row), and used for scaling 

the previous functions. If the image satisfies the conditions of Theorem 11, the scaling is done 

along a diagonal at the proper angle. The rest of the image is reconstructed by interpolation. 

The reconstruction algorithm is as follows: Given the clipped signal S, pass it through 

an ideal bandpass filter to yield S0 . Designating the bandpass operation as B
p
{-}, obtain 

the initial signal 

So= B
p
{sign S} (49) 

and then continue iteratively 

(50) 

The algorithm converges when sign(Si) = sign(S). It can be shown that the process of 

these successive approximations is contracting. If Logan's conditions for uniqueness are 

met, then Sn = a.S, where a is some constant. This algorithm yields good results for 

most bandpass signals, with the number of iterations varying from a few up to 100. If 

sign(Si(nT)) = sign(S(nt)) for every n, there can still exist another continuous signal S1(t) 

where S'(nT) = Si(nT) but sign(S'(t)) '¢ sign(S(t)), so S'(t) '¢ S(t) and also Si(nT) '¢ 

a.S(nT). This ambiguity can be viewed as a result of real-zeros jitter that may also change 

the location of the complex zeros (24]. It should be noted, however, that the dependence of 

the deviation of the co�plex zeros on that of the reals zeros is closely related to the question 

. of stability. This issue is dealt with elsewhere (33]. 

The error analysis indicates some simple ways to reduce the errors in the scaling factors. 

For example, select a column along which the reconstructed signal converged; locate the 
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maxima of the signal. ( On these points the normalized errors are minimal.) Reconstruct 

the signals along some rows intersecting the selected column at the peak points and scale 

them according to the peak values. Then reconstruct the signals in the other columns. 

The intersection points of each column with the rows form two vectors: that of the ( as yet 

unscaled) values of the signal along the column and that of the scaled values of the signals 

along the rows. Denote the unscaled values along the column by c( k) and the values of the 

rows by r(k). If there are M rows, then the optimal scaling factor for the column is 

(5+) 

In this way the effect of reconstruction errors in the columns and the rows tends to cancel 

out (24]. 

The same method can be applied to images which are bandpass in one dimension and 

lowpass in the other (Theorem 11). The scaling is carried out in this case by reconstruction 

on several diagonals intersecting one column at its maxima, scaling the diagonals, and then 

scaling the other columns by values of the points of intersection with the diagonals. 

In order to have an ideal bandpass (or lowpass) image, the signal should be looked upon 

as periodic, the actual image being one period (in the two-dimensional sense). The conditions 

of finite Fourier integrals should i.n this case be modified for periodic signals. 

The bandpass operation can be carried out by calculating the FFT of each column and 

simp�y deleting all components out of the passband, and then transposing the image and 

repeating the operation. This is equivalent to convolving the image with an infinite, periodic 

bandpass filter. 

Prior to performing the sign operation, it is recommended to interpolate the signal so 

as to reduce the zero-crossings jitter. Interpolation is also needed in creating the diagonals, 

so that they can be inclined at an angle of less than 45°. In order to create a bandpass 

signal along the diagonal, the signal should also be periodic. This is done by continuing the 

diagonal along some periods of the image until it reaches the starting point. Because of the 
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assumed periodicity of the image, continuing the diagonal means "folding" from bottom to 

top each time it reaches the last row. 

3.3 Frequency domain - discrete signals 

We now present theorems concerning one-dimensional discrete signal representation by par­

tial information in the frequency domain. These include the cases of phase only, sampled 

phase, one bit of phase, magnitude, and signed-magnitude. The theorems are quoted as 

stated in the original papers. 

Theorem 12 (Hayes, Lim and Oppenheim [12]) Let x(n) and y(n) be two finite length 

real sequences whose z-transforms have no zeros in reciprocal conjugate pairs or on the unit 

circle. If '!9x(w) = '!9
y
(w) for all w, then x(n) = {Jy(n) for some positive constant{]. If 

tan '!9(w) = tan '!9
y
(w) for all w, then x(n) = {Jy(n) for some real constant{]. 

'!9x(w) and '!9
y
(w) are the respective phases of the Fourier sequences of x(n) and y(n). 

The results have been extended to complex sequences and the condition prohibiting simple 

zeros on the unit circle relaxed. 

Theorem 13 (Hayes [11]) Let x(n) and y(n) be complex sequences which are zero outside 

the interval [O, N - I], with z .:.transforms having no zeros in conjugate reciprocal pairs or 

on the unit circle. If M � 2N - 1 and '!9x ( w) = '!9
y 
( w) at M distinct frequencies in the 

interval [O, 21r], then x(n) = {Jy(n) for some positive real number{]. If M � 2N - 1 and 

tan('!9z(w)) = tan('!9
y
(w)) at M distinct frequencies in the interval [O, 21r], then x(n) = {Jy(n) 

for some real number{]. 

Theorem 14 (Hayes, Lim and Oppenheim [12]) Let x(n) be a real sequence which is 

zero outside the interval [O, N - l] with x(O) =I- 0 and which has a z-transform with no zeros 
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in conjugate reciprocal pairs or on the unit circle. Let y( n) be any real sequence which is also 

zero outside the interval [O, N - l]. If .ix(w) = '19
y
(w) at N - 1 distinct frequencies in the 

interval (0,1r), then y(n) = (Jx(n) for some positive constant (J. Iftan('/Jx(w)) = tan('!9y(w)) 

for N -1 distinct frequencies in the interval (0, 1r), then y(n) = (Jx(n) for some real constant 

(J. 

Theorem 15 (Hayes, Lim and Oppenheim [12]) Let x(n) and y(n) be two real sequences 

whose z-transform contain no reciprocal pole-zero pairs and which have all poles, not at 

z = oo, inside the unit circle. If the magnitude of the Fourier transforms of x(n) and y(n) 

are equal, then x(n) = ±y(n + m) for some integer m. 

Theorem 16 (Theorem 2 of Van Hove, Hayes, Lim, and Oppenheim [29]) Let x(n) 

and y(n) be two real, causal (or anticausal}, and finite extent sequences with z-transforms 

which have no zeros on the unit circle. If the signed Fourier magnitudes of the sequences 

(denoted by G�(w) and G�(w), respectively, and defined by (52} and (53}} are equal for all 

w, G�(w) = G�(w) 0 <a< 1r, then x(n) = y(n). When a= 1r (or O}, and if G;(w) = c;(w) 

for all w and x(O) = y(O), then x(n) = y(n). 

The signed Fourier magnitude G�(w) and Fourier magnitude Rx(w) are related through 

G�(w) = S�(w)IRx(w)I, 

where the bipolar function S�(w), defined by 

{ +l O! - 7r < '19x(w) < O! } 
S�(w) =

-

-1 otherwise 

incorporates one bit of phase information at each frequency [19], [29). 

(52) 

(53) 

Theorem 17 (Oppenheim, Lim, and Curtis [19]) Let x(n), y(n) be two real, finite ex­

tent, causal (or anticausal} sequences with all zeros outside (inside} the unit circle. If 

S�(w) = St(w) for all w, a = 0, 1r then x(n) = (Jy(n), where (J is a scale factor. (For 

a = 1r /2, (J is a positive factor.) 
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4 Duality of results in time and frequency domains 

Based on the duality of the Fourier-Stieltjes transform and its inverse, relevant well-known 
results for time domain problems, concerned with unique representation of bandlimited func­
tions by partial information, were applied by Shitz and Zeevi [27] in order to derive results 
about unique representation of a Fourier transformed discrete or continuous time signal by 
partial information in the Fourier domain. This approach does not only enable the deriva­
tion of new results for the continuous signals, but more importantly, also highlights the 
interrelationship of the problems in the two domains. 

Shitz and Zeevi (27] have derived, and in various cases extended the results concerning 
signal representation by partial information in the frequency domain by application of Lo­
gan's results (Theorems 8 and 9), and those of Voelecker [30). In the sequel only outline 
their approach. 

Let x(t) be a complex, finite time signal; x(t) equals to zero outside the interval (0, T). 
Let x( w) be the Fourier transform of x( t), assumed to exist at least in the Fourier-Stieltjes 
sense, then 

x(w) 

x(t) 

/

00 

x(t)e-jwtdt = 1T 

x(t)e-jwtdt 
J_oo O

- 2- /
00 

x(w )e'wtdw271" J _oo 

x(w) Px(w) + jQ
x
(w)

Rx(w) exp(i'19x(w)) Rx(w) > 0

(54) 

(55) 

(56) 

Px(w), Qx(w), Rx(w), and '19x(w) are, respectively, the real part, imaginary part, magnitude, 
and phase of x(w).
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4.1 Signal representation by its Fourier phase 

Theorem 18 (Shitz and Zeevi [27)) Let x(t) be a complex.finite-time signal whose Fourier 

transform x(v) has no complex conjugate zeros. The signal x(t) is uniquely determined 

{within a positive multiplicative constant) by its Fourier phase '19
x(w), Vw. If x(v) has no 

conjugate zeros at all {neither complex nor real), then x(t) is uniquely defined {within a real 

constant) by tan('19x(w)). 

This version of Theorem 12 is valid for continuous signals. Its discrete version, obtained by 

using the discrete model 

(57) 
n 

and by interpreting the free zeros (see Theorem 8) as reciprocal conjugate zeros (in the z­

plane), turns out to be an extended version of Theorem 12. In fact, x(n) may under this 

generalization be a countable sequence provided O < tn < T for all n (tn may, for example, 

be a convergent sequence) and "En lxn l < oo. This result is evident due to the entireness of 

x(v) which contains a countable but not necessarily finite number of zeros (34). (Theorem 12 

is obtained by choosing T = N, tn = N and O � n < N). 

Theorem 2 of Hayes, Lim, and Oppenheim [12], which is the no-poles-in-reciprocal-pairs 

version of Theorem 12, follows the latter and can be derived by using an anticausal signal 

x(t) =I= 0 for -T < t � 0, or alternatively by using the transformation z = e-jv instead of 

An alternative and much simpler derivation of Theorem 12 is possible by application of 

Theorem 9 which already deals with a discrete signals (trigonometric sequences). However, 

under this approach the obtained theorem is restricted to discrete signals. 
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4.2 Signal representation by its sampled Fourier phase 

Consider a finite extent complex sequence dn, which equals zero outside the interval [O, N -l]. 

·The discrete Fourier transform d(w) of dn is given by

N-l
d(w) - L dne-jnw 

n=O 

(58) 

where PJ(w), Qa(w), Ra(w), and 19a(w) are the real part, imaginary part, magnitude, and 

phase of d(w). The transform is extended to the whole complex plane by replacing w with 

v = w + ju. 

Similarly to our consideration of the continuous case, we define a new sequence an which 

is time constrained, or "bandpass in time". 

Its Fourier sequence 

an = 0.5(dn-M + d*_n-M) M > 0.

M+N-l 
&(v) = L ane-jnv

n=-(M+N-l) 

is alternatively written as the sum of two sequences 

defined by 

-M

n=-M-(N-1) 

M+(N-l) 
Na(v) - L anein/.1 = o.sd(v)e-jvM

n=M 

&(w) is real since dn = d*_n . 
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The Hilbert transform cy(11) of &(11) is defined by 

&(11) 

&(11) 

M+(N-1) 
-jn11 · · ( ) �ne ' �n = 'I, sign n an 

n=-M-(N-1) 

Rc1(11) sin( Mv -t9c1(11)) . 

(65) 

(66) 

Now we can apply Theorem 9 [20]. The one octave bandwidth requirement is satisfied by 

choosing M > (N - 1). We note that &(-v) is equivalent to h(t) in the notation of [20]. 

Interpreting this work in the context of our own notation, it was shown that if 110 is a free 

zero of &(-11), then both this zero and its conjugate 110 are zeros of N0(11) (20, eq. (6)]: 

(67) 

Derivation of Theorem 13 is straightforward, by application of the formalism provided in [20]. 

Accordingly &1(11) is the Fourier sequence of another time bandpass sequence aln which is 

zero for lnl (/. [M, M + (N - l)] and defined similarly to ( 59), where dn is replaced by dln. 

It was shown in (20] that 

&(w)cy(v)l(w) - cy(11)l(w)&l(w) - Ra(w)Ra1(w) sin(t9a(w) -t9a1
(w)) 

N-1

'""" -jnw
, 

L..J ene 
'. 

-(N-1) 

(68) 

This equation can be interpreted as an appropriate convolution of two complex sequences of 

length N, one of them being causal and the other anticausal. 

It was shown in [20] that the Vandermonde determinant associated with the real roots of 

(68) is not equal to zero if Logan's conditions are satisfied, so if t9a(11) = t9i11
(11) for at least

2N - 1 distinct frequencies in the interval (0, 21r) then en in (68) all equal zero. Therefore 

sin(t9J(w) -t9i11
(w)) = 0 for all w or, equivalently, tant9J(w) = tant9i11

(w) for all w.

Logan's condition prohibiting complex free zeros, when expressed in the context of z,

dictates a no reciprocal conjugate zeros condition, but still allows zeros on the unit circle. 

By the fact that tant9J(w) = tant9a1
(w) and through Theorem 12 we have dn = f3dln for 
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some real /3, and Theorem 13 follows. It is emphasized, though, that in this case zeros on the 

unit circle are not allowed except for the case when the points wi at which rJ d(wi) is specified 

are all the real zeros of & ( w), as discussed in the preceding subsection. 

· Theorem 5 of Hayes, Lim, and Oppenheim [12] is a special case of Theorem 13 considering 

a real sequence dn. The phase iJJ(O) at w = 0 is always zero. It is defined in this case for at 

least N distinct frequencies over the interval [O, 1r), provided M?:: N - l. Theorem 4 of [12], 

which is equivalent to Theorem 3 of [12], can be derived in the same way, using anticausal 

sequences or the complex transformation z = e-iv. 

4.3 Derivation of Theorem 14 

Theorem 14 in its complex version is derived by directly applying Theorem 9. Through (68) 

we reach the following equality: if 'l?J(w) = '19J
1
(w), at least for 2N - 1 distinct frequencies 

in the interval (0, 21r), then 

&(w) &l(w) 
&(w) &l(w) (69) 

(70) 

Since &(v) satisfies Logan's conditions, it can be uniquely determined within a real constant. 

If &l(v) also does not possess forbidden free zeros (in Logan's sense), the theorem is proved 

immediately. If, however, it does possess such free zeros, complex, or real, multiple zeros, 

then we can identify &l(w) within a real function b(w) which is positive or negative for all 

w, i.e., 

&l(w) = b(w)&(w). (71) 

From (71) we thus realize that aln is a convolution between an and some conjugate sym­

metric sequence bn, so that aln cannot be time-bandpass in the same band as an, lnl E 
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[M, M + (N - 1)]. This is possible only when b(w) = /3, /3 being a real constant. Again, if 

the equality refers to '19 J(w) = '19 di (w) for distinct 2N - 1 frequencies in (0, 21r), the signum 

function of al(w) and a(w) is uniquely defined, so that b(w) in (71) can be only a positive 

function and the multiplication factor f3 is therefore positive. It should be emphasized that 

free zeros on the real axis of a(w) are not permitted according to this theorem, except for 

the case when the instants wi, at which '19J(wi) is specified, are all real zero crossing instants 

of a(w) (because for zero crossing Logan permits simple free zeros to occur). Theorem 14 is 

merely the real version of the theorem derived here, restricted to real sequences. 

Theorems 6 and 7 (in Hayes et al. [12]) are dual of Theorem 14 here for pole-only 

sequences. they can be derived using the methods implemented in the case of the dual 

Theorems 12 and 13 for pole-only sequences. 

4.4 Signal representation by Fourier magnitude 

We turn back to a continuous causal case where x(t) is defined by (55) and x(w) is an analytic 

signal expressed by 

x(w) Pi:(w) + jQx(w) = Px(w) - jFx(w) 

Rx(w) exp(j'l9x(w)), Rx(w) > 0. (72) 

This is an analytic representation of a lower sideband signal in the frequency domain, with 

Px(w) being real. Equivalently, (27r)-1x(-w) is an analytic representation of an upper side­

band [30], [18]. 

The question in which cases (27r)-1x(-w) [or equivalently, .x(w)] is determined uniquely 

by its magnitude is equivalent to the problem of determining when a single-side-band (SSB) 

signal can be unambiguously demodulated (within a sign factor) by an amplitude modula­

tion (AM) detector. We apply Voelecker's [30] results directly to (21r)-1x(-w), and extend 

Theorem 15 to the continuous case. According to Voelecker, x(-v) (or x(ll)] cannot have ze­

ros in either the upper half plane (UHP) or lower half plane (LHP). Substituting v = w + ju,
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we have that u > 0 and u < 0 [or vice versa with respect to x(v)]. Accordingly, we have for 

continuous signals the following theorem. 

Theorem 19 {Shamai and Zeevi [27]) Let x(t) be a complex finite-time signal whose 

Fourier transform x(v) possesses no zeros either in the lower half-plane {LPH) or in the 

upper half-plane (UHP), then x(t) is uniquely determined by the Fourier magnitude Rx(w) 

within a constant time shift and a complex phase factor eia. . 

Representing a discrete time signal by (57) and applying the complex transformation z = ei"', 

we derive the all zero version of Theorem 15 for complex sequences. The zeros at the origin 

of z-m, m being an integer, are permitted since they form pure delays. Because these delays. 

cannot be identified by the magnitude, we have the ambiguity x(n) = ±y(n + m). The 

formal derivation which includes terms of z-m is obtained directly by defining x(t) to be 

zero outside an interval (To, T), where T > T0 > 0. The pole-zero version of Theorem 15 is 

derived by resorting to the same reasoning. However, x(t) should in this case be defined as 

a convolution between two appropriate causal (all-zero) sequences one of which has only the 

zero terms of Theorem 15 and the other zeros which are the reciprocals of the poles defined 

in that theorem. The new signal is also an analytic signal, and Theorem 15 follows. 

Since Theorem 8 of Hayes, pm, and Oppenheim (12] is just a mirror version of Theo­

rem 15, it can be derived by the same arguments using the lower half-plane instead of the 

upper one or vice versa. 

4.5 Signal representation by Fourier signed-magnitude 

Applying well-known results, obtained in the time domain for continuous band-limited func­

tions, Shamai and Zeevi [27] derived the following extended version of Theorem 16. 

Theorem 20 {Shamai and Zeevi (27]) Let x(t) be a complex signal which vanishes out­

side the interval [O, T) with x(O) being real. The signal x(t) is uniquely determined {within 
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x(O) for a= 0, n) by the Fourier signed-magnitude for any O � a � 1r, provided the Fourier 

trans/om,, x(v) contains no multiple real zeros. 

4.6 Signal representation by one bit of Fourier phase 

By direct application of Logan's results (17], a continuous version of Theorem 17, generalized 

to incorporate also complex signals, was derived. 

Theorem 21 (Shamai and Zeevi [27]) Let x(t) be a complex signal with vanishes outside 

the interval [O, T), with x(O) being real. The signal x(t) is uniquely detemiined (within a 

positive multiplicative constant for a -:f:. 0, 1r, or within a real constant and within x(O) for 

a = 0, 1r} by the one bit of Fourier phase, provided the Fourier trans/om,, x(v) is zero-free 

in the closed upper half-plane. 

Using the analytic signal 

x(v)e-i0 
- P:(v) + jQ�(v) 

- Rx(v) exp(j('l?x(v) - a)) , (73) 

f(t) in Logan's notation becomes equivalent to (21r)-1x(-v)e-i0e-iTv/2 in our case, since the 

Fourier transform (not the inverse) of this function is zero outside the interval (-T /2, T /2). 

According to Logan's theorem in the context of our notations Re{(21r)-1x(-v)e-io.-jTv/2
• 

eiµv} has only real simple zeros if (21r)-1 x(-v)e-iUTv/2+0.) is zero-free in the closed lower 

half-plane (v = w + ju u � 0). 

P;(v) is an EFET which is real on the axis v = w (in fact it is a B-function) and it 

determines x(t) except perhaps for x(O). If the zeros of x(v) are all in the closed upper 

half-plane, p;+1r/2(v) has only simple real zeros and it is of course determined within a

multiplicative constant by s:(v). The latter, in turn, determines the real zero crossings of 

Q�(v) (utilized in the preceding subsection). s�+1rf2(v) determines eventually the real zero
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crossings of P(:(11). In fact, the multiplicative constant is positive unless a = 0, 1r since as 

was mentioned before s:;(v) determines, not only the zero crossing instances of p:;+1r/2(11)

but also its sign. In the case of a = 1r /2, P(;(v) determines also x(O) which is assumed in 

our theorem to be true. 

Interpretation of these results for the discrete version is straightforward, by defining x(t)

according to (57). The conditions with respect to the z variable are found by using z = ei11
• 

Since z; = w + ju and u ::; 0, all the zeros in z-notations have to be outside or on the unit 

circle; those on the unit circle must be simple zeros. 

The extended version of Theorem 21 applies to complex sequences, and permits simple 

zeros on the unit circle; it is valid also for the generalized z-transform, since the results 

are valid for complex [except for x(O)], continuous causal, and finite extent signals. The 

anticausal case can be derived by the same procedure, suing anticausal finite extent complex 

and continuous signals instead of x(t), or alternative, in the case of discrete signals, by 

applying the transformation z = ei11 instead of z = ei11
• 

4. 7 Signal and image reconstruction from localized phase

The subject of one-dimensional signal and image representation by phase information was 

extended to localized phase. Porat and Zeevi [21] represented images by Gabor phase and 

showed that such representations by partial information preserve edge information of the 

original image. Their work was further extended to restoration of magnitude by constrained 

iterative techniques [1]. Images (and other signals) can be reconstructed from localized 

(Gabor-type) phase more efficiently than from global (Fourier) phase. One straightforward 

saving is in the number of computational operation (i.e. computational complexity). The 

other reason is the much faster convergence rate of the iterative algorithm in the case of 

localized phase [1]. The reason for faster convergence rate remained obscured until recently, 

when Urieli, Porat and Cohen [28] proved the following theorem: 
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Theorem 22 (Urieli, Porat and Cohen [28]) Let L and K be two convex sets whose 

intersection contains the solution of the POCS (projection onto convex sets) algorithm of 

iterative orthogonal projections between the two convex sets. 

Given a discrete signal x(n) = [x0, x1, · · · , Xn-if, the optimal convergence angle a= 1r /4 

is obtained if and only if the x(n) is a geometric sequence, i.e. x(n) = c[l, q, q2
, • · • qn-lv 

where c and q are scalars. For all other signals a < 1r / 4 (i.e. slower convergence). 

How does Theorem 22 relate to the convergence rate reported in [1]. As Urieli et al. (28] 

observed, if a signal x is sequentially bisected into smaller segments, the ratio of monotonic 

to nonmonotic sequences increases. Since smaller segments, are more likely to be monotonic 

than larger segments, they are likely to more closely correspond to geometric sequences. 

This finding provides an additional good reason for further investigation of natural signals' 

representation in combined spaces, such as the Gabor-type and wavelet representations. 
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