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Abstract - A classical technique for reconstruction of Emission Tomography (ET) images from 

measured projections is based on the maxim likelihood (ML) estimation achieved with the 

Expectation Maximization (EM) algorithm. We incorporate the wavelet transform (WT) and 

total variation (TV) based penalties into the ML framework, and compare performance of the 

EM algorithm and the recently proposed conjugate barrier (CB) algorithm. Using the WT- and 

TV-based penalties allows one to embed regularization procedures into the iterative process. In 

the case of the WT-based penalty, we impose a subset of wavelet coefficients with a desired 

resolution on the objective function. It appears that the CB algorithm outperforms substantially 

the EM algorithm in penalized reconstruction. Properties of the optimization algorithms along 

with WT- and TV-based regularization are demonstrated on image reconstructions of a 

synthetic brain phantom, and the quality of reconstruction is compared with standard methods. 

Keywords medical imaging, positron emission tomography, expectation 

maximization, wavelets, total variation 



1. INTRODUCTION

ET is a medical imaging technique that enables one to quantify a distribution of radioactivity within 

the body, and, as such, it is useful in detection and identification of pathological tissue. In this 

technique, radioactive tracers, injected into the body of a patient, emit photons, which are detected in 

distinct detector pairs, or bins. By counting the number of photons detected in the various bins, one 

measures the projection of the tracer distribution at different angles. A classical technique for the 

reconstruction of 2D and 3D ET images from measured projections is based on the maximum 

likelihood (ML) framework [1]. Utilizing particular properties of the Poisson process leads to the 

Expectation Maximization (EM) algorithm for ET reconstruction [2]. This algorithm provides reliable 

reconstruction results with high resolution. Alternatively, the ML reconstruction can be performed by 

the recently proposed conjugate barrier (CB) algorithm, which has several advantages over the EM. 

The drawback of using both algorithms for minimization of the likelihood function is that they do not 

exploit the localized nature of images and their multiresolution structure. As a result, the 

reconstruction achieved by both algorithms suffers from lack of smoothness, and, at the same time, 

from lack of sharpness of edges. 

Furthermore, in practice, it is desirable to carry out reconstruction on low statistics (i.e. noisy data). 

Under these circumstances, the maximum likelihood estimate at highest resolution contains high 

frequency noise even though the original image is known to be relatively smooth. Therefore, 

reconstruction of images from their projections requires some kind of regularization that usually 

represents a trade-off between accuracy and resolution. For example, image reconstruction using 

so-called blobs functions was discussed in [3] and [ 4]. It allows one to control the smoothness 

properties of the reconstructed image on the expense of resolution. This is achieved by choosing 

appropriately the value of the smoothness parameter of the blobs functions. 

Ideally, a lower resolution reconstruction should be applied to regions with no edges. On the other 

hand, keeping higher resolution components preserves local features in the reconstructed image. This 

provides desired regularization, so that a trade-off between increasing resolution and noise 

suppression is achieved. Such a strategy requires some prior knowledge of edges' location. This 

knowledge can be obtained from another imaging procedure, e.g. the one based on the X-Ray 

computerized tomography (CT). In [IO], the authors assumed that this prior information is available, 

and used this information to build a penalty template in the wavelet domain. 

In practice, such prior knowledge is rarely available. It was shown recently that the TV method 

appears to be one of the most successful regularization approaches to ill-posed problems. For 

example, this method was applied for blind deconvolution of images [ 11]. In [ 12], the TV penalty was 

applied to image reconstruction from tomographic data. The TV penalty represents kind of a weak 

2 



prior about the object structure. In particular, it assumes that the underlying image contains edges, 

which is usually the case for medical images. 

We utilize the wavelet transform (WT) and the Total Variation (TV) functional in our penalties, and 

show that they affect reconstruction in similar ways. The desired regularization is accomplished in a 

natural way; using either the WT- or the TV-based penalties allows one to embed regularisation 

procedures into the iterative process. This task is accomplished by either I) penalizing for the lack of 

sparsity of the gradient of the reconstructed image, in the case of the TV-based penalty, or 2) 

imposing a new set of parameters on a subset of wavelet coefficients corresponding to desired 

resolutions, and penalizing for the lack of sparsity only this subset, in the case of the WT-based 

penalty. 

It turns out that the penalized CB algorithm achieves the best trade-off between accuracy and 

resolution. In particular, it keeps improving the contrast while lowering the noise level with iterations. 

To our knowledge, such a result was not achieved with any of the existing ET reconstruction 

techniques. The WT-based penalty produces more natural reconstructed images at the earlier 

iterations, than the TV-based penalty , while the last provides the best trade-off between accuracy and 

resolution. 

We first describe the basics of the positron ET (PET) image reconstruction technique based on the 

ML framework, and describe EM and CB algorithms. Next, we consider some computational issues 

related to the penalty calculations. Finally, we discuss the advantages of the proposed methods and 

illustrate their potential by experimental study. 

2. ML RECONSTRUCTION OF PET IMAGES

EM algorithm 

We first summarize some of the main results of L. Shepp and Y. Vardy [2] who pioneered the ML 

image reconstruction in PET by application of the EM algorithm. 

Let the total number of photons detected in each bin bey( b ), b = l, ... , B. Let the body be divided into 

voxels (or pixels), and the number of photons generated independently within each voxel be n(v), 

v = l, ... , V. Generation of photons in each voxel is described by the Poisson process, characterized by 

the expected value of photons .A.(v): 
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-l(v) l(v) 
f(njl(v)) = P(n(v) = njl(v)) = e --

n! 
(]) 

The values .A.(v) depend on the tracer distribution, which, in turn, depend on the tissue structure in the 

body. In addition, variables y( b) are independent and Poissonian with expected values ,1.( b ): 

,1.(b{ 
/(YI ;t(b)) = P(y(b) = YI ,t(b)) = e -J(v) __

y! 
(2) 

Let p( v, b) denote the probability of the event that a photon emitted from voxel v is detected in bin b, 

forming a matrix with VxB entries. The probability matrix values depend on various physical factors 

such as scanner geometry, detector efficiency, and the composition of the body being scanned. The 

issue of computingp(v,b) will be discussed later. 

From (2) the log-likelihood function for the measurements y(b) is given by 

L(l) = L A(v)p(v)- I, y(b) log I. A(v)p(v, b), 
V b V 

where .l = {A( v ), v = I, ... , V} is the set of unknown parameters, and

p(v) = Lp(v,b) 

is the so-called sensitivity image (i.e. the probability that an emission from v is detected). 

(3) 

(4) 

To solve (3), the EM algorithm was applied to the PET reconstruction problem leading to the 

following formula 

(k+I) lk\v) Q. y(b)p(v,b) 
l (v) = � V 

Vv 
p(v) b=I L lk) (v' )p(v', b)

v'=l 

for iteratively approximating a maximizer of L(i..). 

Conjugate Barrier (CB) algorithm 

(5) 

The CB algorithm, recently proposed by Ben-Tai and Nemirovski [5], belongs to the general class of 

the Gradient Descent algorithms. 

Let the function h be defined as: 

4 





the error bound is of order O( �log v / K ), where K is the number of iterations. In addition, its 

computational cost is comparable to the EM. 

3. TOTAL VARIATION AND WAVELET PENALTIES

As was mentioned before, natural PET data are usually very noisy due to a short acquisition time and 

various scatter effects. Exact minimization of the log-likelihood function of such noisy data leads to a 

very noisy reconstructed image. In such cases, various penalty functions reflecting smoothness of the 

noise-free image or other prior information are used in order to jmprove quality of reconstruction. In 

this case, penalized log-likelihood function takes the form 

L/J) = L(J)+ µH(J) 

= I ;t(v)p(v)- I y(b) log I ;t(v)p(v, b) + µH(J), 
V b V 

(8) 

where H(,1.) is a penalty function and µ is its weight parameter, which can be chosen based on the 

estimated signal to noise ratio (see, for example [18]). (In this paper, we choose it experimentally). 

The gradient of the penalized log-likelihood function is: 

v'L/.-t(v))=p(v)-I v y(b)p(v, b) +µVH(J)
h=I I,ik>(v')p(v',b)

v'=I 

(9) 

In the case of the CB algorithm, the update of the conjugate image in the second step in (7) is 

performed according to the gradient of the penalized log-likelihood function (above). 

The corresponding iterative formula for the penalized EM algorithm is 

(k+l) ;i(k)(v) Q. y(b)p(v, b)
l (v)= 

£.. V , "iv.

p(v) + µVH(J) b=l L ;i(k)(v' )p(v', b)
v'=l 

(10) 

Several penalty functions were proposed in the literature (see for example [8], [9]). These are usually 

applied in the original image domain. In this work we propose a new method that utilizes penalty 

function, defined in the wavelet domain. Our penalty function is intimately related to the Total 

Variation method. 

Total variation (TV) penalty 

In our study, we use the following formula for the TV penalty: 
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T(J) = IIIV J(v>lli. (11) 

Since the expression for the TV penalty (above) is non-differentiable in locations where 

IIV A( v >Ii
i 

= 0, we replace it with the approximation of the norm of gradient for a 2D image A(v ): 

HTv(A( v )) = � A�(v) + A2y(v) + 17, 

where Ax(v) and Ay(v) are derivatives in directions x and y, wherein the index v in a 2D case is a pair 

(i,j), i.e. pixel's coordinates, and f/ is the parameter which controls the smoothness of the penalty. The 

above approximation is crucial for smooth optimization methods1 . 

In order to minimize penalized log-likelihood function we need a gradient of the TV penalty term. 

We use a simple approximation of the derivatives Ax and A
y
: 

A x(i, j) = A(i + I,j)- l(i, j) 

A
y
(i, j) = l(i, j + 1)- l(i, j) 

The partial derivatives of the penalty function with respect to Ax and ),y are: 

a HTv = I 
..i u .) 

dA x (i,j) �A2

x(i,j)+A2

y
(i,j)+ 7J 

x ,
] 

a HTv 
= 

1 
..i Ci .) 

a..i y
(i,j) �l2

x(i,j)+A2y(i,j)+7J 
y 

,
J

(12) 

(13) 

By carefully analysing the contributions of the neighbouring pixels with coordinates (i,j), (i+ l,j) and 

(i,j+ 1) from (12) into the term V J.(i,J) HTv, we arrive at the following formula: 

Wavelet-based penalty 

Let { <fJm}, m = 1, ... , M, be an orthonormal wavelet basis of an M-dimensional vector space, and let the 

discrete image A(v), belonging to this vector space, be represented by this basis as follows: 

where 

Or, in matrix form 

J(v) = I amrpm (v)
m=l 

1 The CB algorithm is designed for non-smooth optimization, and it can work even for 17=0. 
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HwT = IJcsJ, (17) 
seS 

where S is the subset of the coefficients at the desired resolutions so that c = {cs Les. Again, we

approximate the modulus function by JcJ = �c2 
+ t; with regularization parameter t;.

Taking into account that c = <P5A, where matrix </)
5 

is constructed from the wavelet basis vectors

indexed on S, the gradient of the penalty can be written as 

v ,l HWT = <P;c, 

where </); is the adjoint of <P5 and vector c = [�c�s+ ]
- s 

t; 
seS

On the relation of the TV and the wavelet penalties. 

In this section, we explain why a wavelet-based penalty can be used as a penalty for the sparseness of 

edges of a 20 function, and, as so, can mimic the TV-based penalty. 

Suppose that the intensity of the original image has jumps, or, in other words, sharp edges. It is known 

that the Haar wavelet basis provides good representation of such images. Let us take a look at the 

Haar wavelet coefficients at different resolutions. Wavelet detail coefficients in the x-direction and at 

the finest resolution j are obtained by calculating the scalar product of the image with the translated 

versions of the wavelet: 

{
0.5, X = 0, y = [0,1] 

<p(j,x,y)= -0.5, x=l, y=[0,1] 
0, otherwise 

A shifted version of this wavelet is shown in Figure 1, upper left plot. 

Similarly, they-direction detail coefficients as well as the diagonal detail coefficients are obtained by 

calculating the scalar products with the corresponding wavelets (Figure 1, upper middle and right 

plots). This operation produces essentially a finite differentiation of the image in the corresponding 

direction. Therefore, at the finest resolution, the number of the corresponding detail coefficients 

which differ from zero correspond roughly to the number of jumps of the image in x,y and diagonal 

directions. For natural images, edges appear only in a few locations, therefore there should be only a 

few non-zero coefficients at the finer resolutions. Otherwise, if we observe many non-zero 

coefficients, it indicates the presence of noise. 

Proceeding to the next, coarser resolution level j-1, the corresponding wavelet is 

{
0.25, X = [0,1], y = [0,3] 

· <p(j-1,x,y)= -0.25, x=[l,2], y=[0,3]

0, otherwise 

This wavelet and its two complementary brothers are shown in the lower row of Figure 1. 
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At this resolution, the number of non-zero detail coefficients still corresponds to the number of jumps, 

but the total number of coefficients at this level is 4 times smaller, and so is the sparsity. If we further 

proceed to coarser resolutions, we will encounter levels where the support of wavelet functions is 

comparable to the 'flat' parts of the image, i.e. parts between jumps. In this case, most of the 

coefficients are expected to be non-zero, and, therefore, sparsity will fade away. This is in particular 

noticeable for the approximation (i.e. low-pass) coefficients. That is why there is no reason to include 

wavelet coefficients at the coarser resolutions into the penalty. 

In the case of the Haar wavelet basis, calculation of scalar products of the image with basis functions 

at the highest resolution is essentially equivalent to the calculation of gradients of the image. 

Therefore, the TV-based penalty can be considered as kind a WT penalty, in a particular case wherein 

the Haar coefficients at the highest resolution are penalized. Both, the sum of absolute values of 

corresponding subset of wavelet coefficients and the sum of absolute values of gradients, represent a 

measure of sparseness. (Note, that in this work we were in particular interested in improved 

reconstruction of edges of a 2D function. If our 'feature of interest' was a texture (instead of edges), 

we would penalize a different subset of coefficients). 

4. EXPERIMENTAL RESULTS

We carried out tests with the Shepp-Logan phantom; a model used in tomography for evaluating 

properties of reconstruction algorithms. The phantom was discretized into a 128x128 image. We 

slightly modified it by adding a hot spot (Figure 2), which we used for calculation of the contrast and 

noise suppression properties of reconstruction algorithms. Projection data were simulated as follows: 

we applied the radon transform to the phantom, using 60 angular and 185 radial samples of 

projections. These projection data were used as a mean rate of a Poisson process. Random samples of 

projection data were generated according to the above Poisson process, arriving at overall l .2e5 

detector counts. 

Criteria for comparison 

There are two parameters which are useful in the contrast calculation: coefficient of variation (CV) 

and contrast recovery (CR). The CV is defined as the ratio of the standard deviation to the mean-value 

of the image over some region of interest (ROI). CR for cold lesions in a hot background is calculated 

as 

CRco/d = 1 -CI H , 

where C and H are means taken over cold and hot ROI, respectively. For hot lesions m a cold 

background we compute: 

CR = 
H /C-1 

ho, 

I 
, 

H1rue C1rue - 1
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where H1rue I Cn,e is the real ratio of hot lesion to the background in the phantom. 

We use the above parameters in order to determine which algorithm provides the best trade-off 

between contrast and noise control. 

Discussion 

To illustrate the contrast improvement and noise suppression properties of plain, TV- and WT-based 

penalized versions of EM and CB algorithms (we will refer to them as EMTV, EMWT, CBTV, 

CBWT, respectively), we compare their plots of CV versus CR with those characteristics of plain EM 

and CB algorithms (Figure 3). In this figure, for each optimization method there is a curve whose each 

point corresponds to the CV versus CR pair at a particular iteration. Each algorithm was iterated 50 

times, with the penalty parameterµ= 0.005. Generally speaking, when comparing two such curves, 

the lower curve achieves a better contrast-to-noise-intensity trade-off. (Note, that the curves are 

monotonic, besides the first few iterations, and the rightmost point on a curve corresponds to the last 

iteration). It is clear that, when comparing plain versions of the algorithms, the CB has no advantages 

over the EM. Moreover, the EM algorithm achieves the same contrast as the CB at the earlier 

iteration. In contrast, when penalties are applied, the CB outperforms the EM by achieving a much 

better contrast-to-noise-intensity trade-off ( compare, for example, Figure 9 and Figure 10), although 

the CB versions achieve the same contrast as the corresponding EM versions at a later iteration. 

TV-based penalized versions of EM and CB algorithms outperform slightly the WT-based ones. 

The remarkable result is that, in the case of the CBTV algorithm, the curve is monotonically 

decreasing. This means that both, noise suppression and contrast, are improved with iterations. This 

phenomenon is depicted also in Figure 6, which shows that the CR curve is increasing for each 

algorithms, while the CV curve is decreasing only in the case of the CBVT algorithm. 

In Figure 4 we compare the contrast-to-noise-intensity trade-off in the case of TV- and WT-based 

penalties, obtained with various values of penalty parameter. Clearly, a better 

contrast-to-noise-suppression trade-off is achieved when a larger penalty is used, although this slows 

down slightly the contrast increment. 

In order to verify the performance of the algorithms at late stages of optimization process we run 1000 

iterations (Figure 5). The CBTV algorithm provides the best and consistent improvement of the 

contrast to noise intensity trade-off. 

Examples of images reconstructed by various combinations of algorithms and penalties are depicted 

in Figure 7 - Figure 13. It is easy to see, that, although the TV-based penalty provides a better contrast 

to noise trade-off than the WT-based one, the image reconstructed after 50 iterations looks more 

natural and artefacts-free for the WT-based penalty (compare for example Figure 10 and Figure 12). 

On the other hand, after 1000 iterations the CBWT algorithm reveals artefacts and contrast-to-noise 

deterioration (see curves on Figure 5, and compare Figure 13 and Figure 14). This result can be 
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explained by the fact that the WT-based penalty misses some of the edges because of the 

downsampling operation performed in the dyadic WT. As a result, the smallest shift at the finest 

resolution is 2 pixels, and, therefore, those missed locations were not penalized and prevailed at the 

later stages of optimization. Note also, that the reconstruction obtained by the CBTV suffers slightly 

from the stepped artefacts around diagonal edges. The reason is that diagonal edges are penalized 

about .fi. times stronger than horizontal and vertical ones, as a result of using the rectangular grid

(using, for example, the hexagonal grid could reduce this factor). This phenomenon can be addressed 

in more details, but this topic is out of scope of this paper. 

5. CONLUSIONS

Numerical results and comparisons, concerning convergence properties and the quality of 

reconstruction of the proposed WT- and TV-based penalized algorithms versus plain algorithms 

indicate that using either WT or TV penalty significantly improves the contrast-to-noise trade-off. 

Penalties are in particular useful when they are applied to the CB algorithm, which outperforms the 

EM for all kinds of penalties and parameters. 

The combination of the CB algorithm with the TV penalty achieves the best contrast to noise 

trade-off, and, most importantly, the CBTV algorithm improves the contrast and suppresses noise at 

the same time, monotonically with increasing number of iterations. 

At the earlier iterations (up to about 70), the CBWT algorithm produce artefacts-free reconstructed 

images which look more natural than the ones obtained with the CBTV. Nevertheless, the 

performance of the CBWT algorithm deteriorates after some 100 iterations, as a result of a 

downsampling procedure (see above). Our current research is concentrated on improving the 

performance of the WT-based algorithm, which, we feel, has more flexibility than the TV-based one. 
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Figure 2. Modified Shepp-Logan phantom 
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Figure 9. Reconstruction with the EMWT algorithm: image (left) and its two slices (right) 
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Figure 10. Reconstruction with the CBWT algorithm: image (left) and its two slices (right) 
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Figure 11. Reconstruction with the EMTV algorithm: image (left) and its two slices (right) 
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Figure 12. Reconstruction with the CBTV algorithm: image (left) and its two slices (right) 
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Figure 13. Reconstruction with the CBTV algorithm: after 200 iterations (upper row), after 1000 

iterations (lower row) 
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approximation coefficients a1+ 1 from a coarser scale approximation and detail coefficients a1 and
d1, is performed by a dyadic upsampling followed by the corresponding convolutions with filters 
h(k) and g(k) 

a1+1 (k) = L h(2m -k)aj(k) + L g(2m - k)dj(k). (I IA) 

mEZ mEZ 

A corresponding multi-level wavelet synthesis of a sampled signals from its wavelet coefficients 
can be written in the matrix form as: 

(12A) 

Let us define the following sequence of functions ({Jn(t), n EN so that 

({J2n(t) = L fi h(k)<pn(2t - k), (13A) 

kEZ 

({J2n+I (t) = L fi g(k)<pn(2t -k), (14A) 

kEZ 

where <po(t) = cp(t) , and <p 1 (t) = 1/f(l). Thus, starting from the family of generating functions 
({Jn(t), n E N, and constructing from them orthogonal wavelet waveforms, we arrive at the 
triple-indexed family of functions: 

({)Jnk(t) = 2Jl2cpn(2it-k), j,k E Z, n EN. (ISA) 

As before,}, k are the scale and shift parameters, respectively, and n is an explicit frequency 
parameter, related to the number of oscillations of a particular generating function ({Jn(t). The set 
of functions ({)Jn(t) forms a (j,n) wavelet packet. This set of functions can be split into two parts 
at a coarser scale: ({JJ-1,2n Ct) and ({JJ-l,2n+I (t). It follows that these two form an orthonormal basis of 
the space which is spanned by ({)Jn(t). Thus, we arrive at a family of wavelet packet functions on 
a binary tree (Figure 2A). The nodes of this tree are numbered by two indices: the depth of the 
level j = 0, I, .. ,J, and the number of node n = 0, 1, 2, 3, ... , 21-I at the specified level. 

Using such a family of functions allows one to analyze given signals not only with a 
scale-oriented decomposition but also with reference to frequency subbands. There are 2L

wavelet bases in such a library (L is the number of samples in the signal), and, therefore, 2L ways 
to represent a given signal. Naturally, the library contains the wavelet basis. There are several 
criteria for choosing the best basis, i.e. the best tree, for a given signal (see, [18] for a survey). 
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Figure 2A. Wavelet packets decomposition tree 

The decomposition coefficients CJnk = (s, (f)Jnk) are also split into (j n) sets corresponding to the 
nodes of the tree. There is a fast way to compute them, using banks of conjugate mirror filters, as 
is implemented in the fast wavelet transform [16). As is clear from the above discussion, a 
multiresolution wavelet decomposition of a function consists of splitings of its approximations at 
successively coarser resolutions into two parts. In the wavelet packet decomposition both the 
approximation and detail signals split at each level into two parts. This results in a much richer 
decomposition structure, and the corresponding binary tree of coefficients in this case is 
complete (Figure 2A). 

25 



f -- ----

The.Center/or Communication· andlnfoniiiiiion,'l'echnologies (CCIT)

'is�·:by·t11e:Departmel:\f'of Eleciljcal�ngineering. 

Tecbticlll>��rtis listed alS() as

a: PtlB # 1210,January 200L 


	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	cover2

