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Abstract - A classical technique for reconstruction of Positron Emission Tomography 

(PET) images from measured projections is based on the maximum likelihood (ML) 

parameter estimation combined with the Expectation Maximization (EM) algorithm. We 

incorporate the Wavelet transform (WT) into the ML framework, and obtain new 

iterative algorithms that incorporate local and multiresolution properties of the WT 

within the structure of the EM algorithm and the recently proposed conjugate barrier 

(CB) algorithm. Using the WT allows one to embed regularization procedures (filtering) 

into the iterative process, by imposing a subset of wavelet coefficients with a desired 

resolution on the objective function. Properties of the proposed algorithm are 

demonstrated on reconstructions of a synthetic brain phantom, and the quality of 

reconstruction is compared with standard methods. 

Keywords - medical imaging, positron emission tomography, expectation 

maximization, wavelets 



1. INTRODUCTION

PET is a medical imaging technique that enables one to quantify a distribution of radioactivity 

within the body, and, as such, it is useful in detection and identification of pathological tissue. In this 

technique, radioactive tracers, injected into the body of a patient, emit photons, which are detected in 

distinct detector pairs, or bins. By counting the number of photons detected in the various bins, one 

measures the projection of the tracer distribution at different angles. A classical technique for the 

reconstruction of 2D and 3D PET images from measured projections is based on the maximum 

likelihood (ML) framework [I]. Utilizing particular properties of the Poisson process leads to the 

Expectation Maximization (EM) algorithm for PET reconstruction [2]. This algorithm provides 

reliable reconstruction results with high resolution. However, it does not exploit the localized nature 

of images, nor their multiresolution structure. 

Furthermore, reconstruction of images from their projections usually requires some kind of 

regularization that represents a trade-off between accuracy and resolution. Image reconstruction using 

so-called blobs functions was discussed in [3) and [4]. It allows one to control the smoothness 

properties of the reconstructed image by choosing appropriately the value of the smoothness 

parameter of the blobs functions. 

Applying the Wavelet transform (WT) to the image entails a change of the parameter space and 

leads to a new iterative algorithm that incorporates local and multiresolution properties of the WT 

within the structure of the EM algorithm. Another alternative for utilizing the WT is to use penalty 

function defined in the wavelet domain. 

The desired regularization can be accomplished in a natural way in both cases; using the WT allows 

one to embed regularisation procedures (filtering) into the iterative process, as compared with 

conventional post-filtering. This task is accomplished by imposing a new set of parameters on a 

subset of wavelet coefficients corresponding to desired resolutions. 

We first describe the basics of the PET image reconstruction technique based on the ML 

framework. Next, we present the wavelet-based ML reconstruction techniques for PET reconstruction, 

and consider some computational issues. Finally, we discuss the advantages of the proposed methods 

and illustrate their potential by a simulation study. 

2. ML RECONSTRUCTION OF PET IMAGES

EM algorithm 

We first summarize some of the main results of L. Shepp and Y. Vardy [2] who pioneered the ML 

image reconstruction in PET by application of the EM algorithm. 
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Let the total number of photons detected in each bin be y(b), b = 1, ... , B. Let the body be divided 

into voxels (or pixels), and the number of photons generated independently within each voxel be n(v), 

v = 1, ... , V. Generation of photons in each voxel is described by the Poisson process, characterized by 

the expected value of photons 2(v): 
n 

-,1,(v) ;1.(v) 
f(nl ;1.(v)) = P(n(v) = nl ,1,(v)) = e --

n ! 

(1) 

The values l(v) depend on the tracer distribution, which, in tum, depend on the tissue structure in the 

body. In addition, variables y(b) are independent and Poissonian with expected values 2(b): 

-,l.(v) A.(bl f(yJl(b))=P(y(b)=yJ,l.(b))=e --
y! 

(2)

Letp(v,b) denote the probability of the event that a photon emitted from voxel v is detected in bin b, 

forming a matrix with VxB entries. The probability matrix values depend on various physical factors 

such as scanner geometry, detector efficiency, and the composition of the body being scanned. The 

issue of computing p( v, b) will be discussed later. 

From (2) the log-likelihood function for the measurements y(b) is given by 

L(,1,) = I ,1,(v)p(v) + I y(b) log I ,1,(v)p(v, b), 
V b V 

whereJ = {J(v), v = 1, ... , V} is the set of unknown parameters, and 

p(v) = "'f.p(v,b) 

is.the so-called sensitivity image (i.e. the probability that an emission from v is detected). 

(3) 

( 4) 

To solve (3), the EM algorithm was applied to the PET reconstruction problem leading to the 

following formula 

(k+l) lk)(v) B y(b)p(v,b)
A. ( V) = I -v--(k-)----, Vv

p(v) b=I I A (v')p(v',b) 
v'=l 

for iteratively approximating a maximizer of L(')..). 

Conjugate Barrier (CB) �lgorithm 

( 5) 

The CB algorithm proposed lately in [5] is a kind of a version of the standard Gradient Descent 

algorithm. 
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Let the function h be defined as: 

h(x) = {
II x IIP' x EL\ 

+ oo, X � L\,

where llt denotes the l
p 

norm, and � is the domain of valid values of x. In our setting, wherein x is

the value of normalized image intensity 

Let h. be the so-called conjugate function of h, and 

h.(;) = sup[;
r 

x - h(x)], 
xet. 

where i; is the conjugate image, so that i;,)., E Rv . The initial value i;0 can be initialized arbitrary 

The following two iterative steps summarizes the CB algorithm: 

step 1: 

step 2: 

where L
(Pl(An ) is a (penalized) Log-likelihood function, yn is a positive step size.

The value of h, at a given point i; is found by solving the following optimization problem 

min[; r x-11 x II], 
xet. 

so that h. ( ;) is given as the optimal value of this problem, and V h. ( ;) as the optimal solution. For 

more details see [5] and [6]. 

The CB algorithm has several advantages over the EM [7]: I) its ordered sets version always 

converges 2) the rate of convergence is known and independent of the dimension of the problem, 3) 

the error bound is about �logV. In addition, its computational cost is comparable to the EM. 

We proceed to show two strategies of how to exploit wavelet representation in PET reconstruction. 

3. WAVELET DOMAIN ML RECONSTRUCTION

The first strategy is applying the WT to the image, which results in a natural modification of the 

ML reconstruction scheme. 

Let { (f)m}, m = l, ... , M, where (f)m is an orthonormal wavelet basis vector of an M-dimensional vector 

space, and let the discrete image 2(v), belonging to this vector space, be represented by this basis as 

follows: 
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.... 

where 

l(v) = L amrpm(v) 
m=l 

,1, = <Pa, 

V *

am = L l(v)rpm(v), 
v=l 

a= <P
T 1.

(see more detailed discussion of the wavelet transform in the Appendix) 

( 6 )

( 7 ) 

Then, estimating the true A from data y is equivalent to estimating a from y, smce 

l ML (y) = <Pa ML (y) and a ML (y) = <P
T 
l ML (y). (We actually use here the invariance property of the

ML estimate). 

In particular, by substituting (6) into (3) we can transform the log-likelihood function as follows: 

and 

where 

and 

L(l ) = LLl(v)p(v,b)+
Vb 

+ Ly(b) log L l(v)p(v, b)
b V 

=LL L a(m)rp (v)p(v, b) +
v b m m 

+ Ly(b) log LL a(m)rpm(v)p(v, b),
b v m 

L(l ) = La(m)p(m,b)+
m 

+Ly(b)logL a(m)p(m,b),
b m 

V 

p(m,b)= L p(v,b)rpm(v) 
v=l 

V 

p(m) = L p(v)rp (v).
v=l m 
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Several known optimization techniques can be applied to solve Equation (9). The form of the 

transformed function in (9) is analogous to the original, which implies that the optimal a(m) 

coefficients can be obtained via the wavelet domain iterative formula 

( 12 ) 

VI eU, 

while adding positive constraints on the resulting image values. 

The wavelet domain raytracing procedure 

Various techniques have been proposed for calculating the probability matrix, whose element are 

p(v,b), in the original pixel (voxel) domain. In the context of the iterative schemes, there are two 

approaches: 1) to calculate this matrix in advance and store it, and 2) to calculate it on the fly. The 

size of the matrix tends to be very large for modem scanners making the first approach practical only 

for 2D reconstructions. The second approach may be implemented efficiently by computing only the 

p(v,b) which are non-zero for a given b [2]. In an NxNxN image, the number of voxels that contribute 

to a certain bin b is O(N). 

One procedure which exploits this efficiency, the so-called ray tracing procedure, is usually used in 

practice. It was argued in [2] that the probability of an event, where emission in voxel v is detected in 

bin b, can be approximated by the length of intersection of the central line of response (LOR) of bin b 

with voxel v. The ray tracing procedure determines the coordinates of the voxels intersected by the 

central LOR and the corresponding intersection lengths. 

The forward projection (FP) operation in the image domain in the context of PET is 

y(b) = I .A.(v)p(v,b). 
v=l 

( 13) 

In this case, the basis for image representation consists of box functions, and the value of image 

intensity is uniform over each basis function, i.e. over each voxel. In contrast, the FP operation in the 

wavelet domain is 

y(h)= I amp(m,b)
mEU 

6 

( 14)



and we have to calculate the probability p(m,b)that a particular wavelet function (f)m contributes to 

the value ofy(b). Now, the entry p(m,b) of the probability matrix can be approximated by the X-ray 

transform of the wavelet function along the intersection of the central LOR of bin b with the support 

of this wavelet function. In the sequel we show how to calculate which wavelet functions contribute 

to a particular bin. Let the support of the ID mother wavelet function be defined by its left and right 

coordinates as A.(<p) := [x,, x,]. Then, the support of the wavelet function with the scale and translation 

parameters sand t, respectively, is 

D.(<Ps,t ) = [s(x1 + t),s(xr + t)]. (15 ) 

Therefore, for a 2D or 3D wavelet function with the scale parameter a to contribute to the position 

with the coordinates x,y,z, the corresponding translation parameters tx, fy, 12 must satisfy the following 

condition: 

i i 

�- ir :=;;t
i 

::;;;-i
1
, where i ==x,y,z (16)

Since, due to the compressing property of the wavelet transform, there are only relatively few 

non-zero coefficients am, and a corresponding number of wavelet basis functions to be forward 

projected in order to calculate the relevant p(m,b)entries on the fly. Nevertheless, the wavelet 

domain raytracing procedure is computationally demanding. In the next section we show how to 

achieve similar to the wavelet domain EM flexibility by applying wavelet domain penalties while 

working in the original image domain. 

4. PENALIZED ML RECONSTRUCTION USING WAVELETS

As was mentioned before, natural PET data are usually very noisy due to a short acquisition time and 

various scatter effects. Minimizing the log-likelihood function of such (apriori) noisy data leads to a 

very noisy reconstructed image. In such cases, various penalty functions reflecting smoothness of the 

noise-free image or other prior information are used in order to improve quality of reconstruction. In 

this case, penalized log-likelihood function takes the form 

L
p
(.:l) = L(.:l) + µH(.:l) (17) 

where H(l) is a penalty function andµ is the weight parameter. 

The corresponding iterative formula for the penalized EM algorithm is 
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(k+l) ik)(v) B y(b)p(v, b)A (v) = I V , "iv,
p(v) + µVH(J) b=l L ik)(v' )p(v', b) 

v'=I 

where V denotes gradient operator. 

Utilizing the wavelet domain penalty 

(18) 

Several penalty functions were proposed in literature (e.g [8], [9]). These are usually applied to the 

original image domain. ln this work we propose a new method that utilizes penalty functions defined 

in the wavelet domain. 

Suppose, that for a particular WT t/J a subset of coefficients of the image J.. is of interest or, 

alternatively, that it is known that only a (small) number of coefficients which compose the subset are 

nonzero. In particular, let matrix a of the wavelet transform coefficients of the image can be 

partitioned as a = [h cJ, where h and c are so-called signal and noise subspaces, respectively, and h is 

the subset of interest. 

This assumption represents sort of prior knowledge about the emission means J.., e.g. knowledge about 

a particular organ's metabolism, which defines in tum smoothness, presence of edges and other 

characteristics of the image J... Therefore, such a parametric model based on the WT can be easily 

incorporated into the Bayesian reconstruction approach. 

The original ML reconstruction problem with the above prior is formulated as: lmax{L(,1.)} 

s.:.: (l)A 2:: 0
(2)c(l)=0

This problem is not feasible since it is very difficult to satisfy both requirements simultaneously. 

Therefore, we formulate a penalized ML reconstruction problem as follows: 

t!��:(t 
,4�(A�l, J

so that the penalty term is H(,1.) = llc(,1.)IIP· (We used the /2 norm in our experiments).

In order to suppress high resolution noise while preserving edges we choose subset c to be constructed 

from the coefficients at the two highest resolutions. 

5. EXPERIMENTAL RESULTS

We carried out tests with the Shepp-Logan phantom (Figure 1 ); a model used in tomography for 

evaluating properties of reconstruction algorithms. The phantom was discretized into a 64x64 image. 
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Projection data were simulated as follows: we applied the radon transform to the phantom, using 60 

angular and 95 radial samples of projections. These projection data were used as a mean rate of a 

Poisson process. Random samples of projection data were generated according to the above Poisson 

process. 

The application of the wavelet domain EM algorithm is depicted in Figure 2. To compare with, we 

present in Figures 3 reconstructions of the image obtained by the wavelet domain EM algorithm, 

applied to the subsets of the approximation coefficients. Figure 4 shows a reconstruction achieved by 

utilizing prior information on spatial multiresolution structure of the initial image. 

In the second part of our experiments we compared performance of the plain EM and CB algorithms 

with their versions utilizing wavelet domain penalties. In this experiments we used the modified 

Shepp-Logan phantom (Figure 5) of 128xl28. In this phantom an additional hot spot was added. It 

was used for calculation of the contrast parameter. Examples of reconstructions of the modified 

Shepp-Logan phantom achieved by plain versions of the EM and the CB algorithms and their wavelet 

penalty versions (EMWP and CBWP) are given in Figure 6. Clearly, utilizing wavelet domain penalty 

not only improves quality of reconstruction, arriving at a smoother image, but also provides a better 

contrast. This fact is quantitatively illustrated in the following two figures. Diagram in Figure 7 

depicts comparison of normalized squared errors (NSEs) for plain, postfiltered and wavelet domain 

penalized versions of EM and CB algorithms. Wavelet domain penalized versions arrive at 

substantially smaller NSEs. Also, the CB algorithm outperforms the EM in all the cases of 

comparison but plain versions. 

Contrast comparison 

There are two parameters which are useful in the contrast calculation: coefficient of variation (CV) 

and contrast recovery (CR). The CV is defined as the ratio of the standard deviation to the mean-value 

of the image over some region of interest (ROI). CR for cold lesions in a hot background is calculated 

as 

CRco/d = l - CI H ' 

where C and H are means taken over cold and hot ROI, respectively. For hot lesions in a cold 

background we compute: 

CR = 
HIC:-1 , 

hol H,rue IC,rue-1 

where H ''"' 1 c ,,.,, is the real ratio of hot lesion to the background in the phantom.

We use the above parameters in order to determine which algorithm provides the best tradeoff 

between contrast and noise control. 

Figure 8 depicts comparison of contrast properties for plain, postfiltered and wavelet domain 

penalized versions of EM and CB algorithms. In this figure, each point on curves corresponds to the 
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scatter plot of CV versus CR at a particular iteration. Generally speaking, the higher each curve 

'climbs', the better is the contrast achieved. The EM algorithm outperforms the CB algorithm slightly 

in both plain and WT penalty versions, while applying the WT penalty is significantly improves 

contrast for both EM and CB algorithms. 

Figure 9 depicts convergence properties of plain and WT penalty versions of EM and CB algorithms. 

Wavelet domain penalized versions in both cases converges considerably faster than the plain ones. 

6. DISCUSSION

In this work we proposed new algorithms utilizing the WT in the ML PET reconstruction in two 

different ways. The first way is based on transformation of the parameter space to the wavelet domain 

and applying an iterative process to the WT coefficients. This strategy provides good results, but 

computationally not efficient at the moment. The second way is to utilize penalty function defined in 

the wavelet domain. 

The proposed algorithms reveal several desired properties. In particular, the proposed schemes 

allow estimation of parameters (e.g. the intensity values of 2-D pixels or 3-D voxels in the case of 

PET) at desired resolutions. In practice, it is desirable to carry out reconstruction on low statistics (i.e. 

noisy data). Under these circumstances, the maximum likelihood estimate at highest resolution 

contains high frequency noise even though the original image is known to be relatively smooth. 

Therefore, a lower resolution reconstruction should be applied to regions with absence of edges. This 

provides desired regularization, so that a trade-off between increasing resolution and noise 

suppression is achieved. In contrast, keeping higher resolution components preserves local features in 

the reconstructed image. This approach is in particular useful in case when a priori knowledge on the 

image structure is available. 

Numerical results and comparisons, concerning convergence properties and the quality of 

reconstruction of the proposed wavelet-based algorithms versus standard algorithms indicate 

superiority of the proposed method. 

The wavelet domain penalty can be applied in two ways: 1) by utilizing some prior knowledge on 

the spatial and multiresolution structure of the desired image, and 2) by applying penalty function 

based on the norm of (all) coefficients of the WT representation of the reconstructed image at each 

iteration. In the second case, using the 11 norm is of particular interest, since it represents sparse 

properties of the image. Since most of the medical images are quite sparse, such a penalty can be used 

without any prior knowledge of the WT representation structure of the desired image. 

The current research is concentrated on the comparison of the proposed WT penalty-based method 

with other penalties used in literature, and on the using the 11 norm in the penalty function. 
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Figure 6. Comparison of the modified Shepp-Logan phantom reconstruction: EM reconstruction 

(upper left); CB reconstruction (upper right); EM with wavelet penalty reconstruction (lower 

left); CB with wavelet penalty reconstruction (lower right). 
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Appendix 
Wavelet based multiresolution 

decomposition and wavelet packets 

The following brief outline of the pyramidal algorithm for multiresolution analysis is based on 
the formalism of Mallat [16). The algorithm is given here for one-dimensional functions and can 
be defined in a similar way for the dyadic, separable two dimensions, in which case, one obtains 
a 4-band pyramid or tree (see below). (One can also obtain a 2-band pyramid by using a quinc 
sampling scheme and two-dimensional nonseparable wavelets [17)). 

The multiresolution framework is based on two sets of subspaces of L2(R) - Vj and Wj,j E Z, 
which satisfy the following conditions: 

I) .. .V-1 ::i Vo ::i V1 ...
2) Wj n wk = 0; VJ * k E z
3) Vj n Wj = 0
4) Vj u Wj = Vi+1;Vj E z

In addition, Vjis dense in L2(R) for}-+ oo. Index} is a scale parameter, and the scale becomes 
finer (i.e., the resolution increases) with increasing}. 

The projection of a function.f{t) onto subspace Vj is an approximation of f{t) at scale j, and the 
projection of the function.f{t) onto subspace Wj provides the detail of.f{t) at scale}. The detail 
function contains the information that is lost in the transition from A.J(t) to A1+JCt). 

Starting from a single function <p(t), the father wavelet, it is possible to generate an orthonormal 
basis of the scaling functions 'PJk(t) = 2i12<f>(2it - k),j, k E Z, spanning Vj. Similarly, starting
from a single function lfl(t), the mother wavelet, one can obtain an orthonormal basis of wavelet 
functions 1/fJk(t) = 2i121f1(2it - k), spanning W1, where k is a shift parameter.

Thus the approximation and detail of the function at scale j are represented by 

A.J(t) = L aj(k)</>1k(t),

kEZ 

D.J(t) = L dj(k)l/fjk(t),

kEZ 

where 

aj(k) =< f{t), 'PJk(t) >, 

di(k) =< f{t), 1/f Jk( (t) > 

Since the subspaces Vj and Wj are orthonormal, a unique inverse transform exists. 

A multi-level analysis representation of such a sampled function in terms of its details and 
approximation functions up to some reference level J is given by: 

f{t) = A1.f{t) + L Dj(t).

;?.J 

Further, let the sequences h and g, describing a lowpass and a highpass filters, respectively, 
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satisfy the following relationships, the so-called refinement equations: 

¢(t) = I: fi. h(k)¢(2t - k), (6A) 

kEZ 

l{f(t) = I: fi. g(k)¢(2t - k). (7A) 

kEZ 

The approximation and detail coefficients at scale}, a1 and d1, respectively, can be recursively 
calculated from the approximation coefficients a1+1 at a finer scale, by convolving it with filters 
h(k) and g(k), followed by a dyadic down-sampling, i.e. 

aj(k) = h * Gj+I (2k), 

d}(k) = g * Gj+I (2k), 

(8A) 

(9A) 

where * denotes a convolution operation; The next step in a multi-level decomposition splits the 
approximation coefficients a1 using the same operations, producing recursively the coefficients 
a1-1 and d1-1. 

Lets be a vector containing L samples of a continuous function JU), and let L be a power of 2. In 
this case, we can consider these samples as approximation coefficients of f{t) at the finest 
(available) scale J = log2L, and a multi-level wavelet analysis of a sampled signals can be 
rewritten in the matrix form: 

c = Ws, (lOA) 

where a new features vector in the wavelet domain has the following coefficients structure: 
c = [ao,do, d1, ... ,d1-1F, and Wis a matrix of an orthonormal wavelet basis, describing the 
multiresolution decomposition given in (8A) and (9A). The corresponding tree structure of 
coefficients for the case of a 3-level decomposition is depicted in Figure I A. 

8:i =
s 

Figure IA. Multiresolution wavelet 

The complement operations of those given in (8A) and (9A), i.e. the calculation of a finer scale 
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approximation coefficients a1+1 from a coarser scale approximation and detail coefficients a1 and 
d1, is performed by a dyadic upsampling followed by the corresponding convolutions with filters 
h(k) and g(k) 

a1+1 (k) = L h(2m - k)aj(k) + L g(2m - k)dj(k). (1 l A) 

mEZ mEZ 

A corresponding multi-level wavelet synthesis of a sampled signals from its wavelet coefficients 
can be written in the matrix form as: 

(12A) 

Let us define the following sequence of functions (f)n(t), n E N so that 

(f)2n(t) = L J2 h(k)<pn(2t - k), (13A) 

kEZ 

(f)2n+I (t) = L J2 g(k)<pn(2t - k), (14A) 

kEZ 

where <po(t) = </J(t) , and <p 1 (t) = tp(t). Thus, starting from the family of generating functions 
(f)n(t), n E N, and constructing from them orthogonal wavelet waveforms, we arrive at the 
triple-indexed family of functions: 

(f)Jnk(t) = 2Jl2cpn(2it- k), j,k E Z, n EN. (15A) 

As before,}, k are the scale and shift parameters, respectively, and n is an explicit frequency 
parameter, related to the number of oscillations of a particular generating function (f)n(t). The set 
of functions (f)JnU) forms a (j,n) wavelet packet. This set of functions can be split into two parts 
at a coarser scale: (f)J-l,2n(t) and (f)J-l,in+t (t). It follows that these two form an orthonormal basis of 
the space which is spanned by (f)Jn(t). Thus, we arrive at a family of wavelet packet functions on 
a binary tree (Figure 2A). The nodes of this tree are numbered by two indices: the depth of the 
level} = 0, 1, .. ,J, and the number of node n = 0, 1, 2, 3, ... , 21-1 at the specified level. 

Using such a family of functions allows one to analyze given signals not only with a 
scale-oriented decomposition but also with reference to frequency subbands. There are 2L 

wavelet bases in such a library (L is the number of samples in the signal), and, therefore, 2L ways 
to represent a given signal. Naturally, the library contains the wavelet basis. There are several 
criteria for choosing the best basis, i.e. the best tree, for a given signal (see, (18] for a survey). 
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