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1 Introduction and main result

A planar set D will be called a lip domain if it is Lipschitz, open, bounded, connected, and given
by
D = {(z1,22) : fi(z1) < 22 < fa(z1)}, (1)

where f1, fo are Lipschitz functions with constant 1. The assumption that D is a Lipschitz domain
puts an extra constraint on the functions fr; we discuss this issue in greater detail later in this

section.

Let uo denote the second eigenvalue for the Laplacian in D with Neumann boundary conditions.

Here is our main result.

Theorem 1 (i) The second eigenvalue sy is simple in all lip domains except squares.

(ii) (“Hot spots conjecture”) For every lip domain, every Neumann eigenfunction corresponding

to po attains its mazimum and minimum at boundary points only.

The “hot spots” conjecture was proposed by J. Rauch at a conference in 1974 and never pub-
lished in print so it is somewhat vague; roughly speaking it says that in Euclidean domains, the
second Neumann eigenfunction attains its maximum at the boundary (see [3] for a discussion of
different versions of the conjecture). It was shown by Kawohl ([16]) that the conjecture holds in
cylinders. Banuelos and Burdzy ([3]) proved the conjecture for a large class of lip domains and
some convex domains. However, their techniques were limited to polygonal domains. In the proof
of Theorem 1 (ii), we will show how one can drop this assumption using the results of Burdzy and
Chen ([8]). Banuelos and Burdzy ([3]) were able to prove the “hot spots” conjecture for only one of
the eigenfunctions corresponding to pe. This naturally lead to the problem of characterization of
those lip and convex domains where 9 is simple. They gave a partial answer in [3]—it was shown
that the eigenvalue is simple in a convex domain if the ratio of length to width of the domain is
larger than 3.07. The critical ratio is only 1.53 if the convex domain is assumed in addition to have

a line of symmetry.

The “hot spots” conjecture does not hold in arbitrary planar domains ([10], [5]) but it is still
an open problem whether it holds in convex domains. See [2], [14] and [20] for some recent results

on this problem.

Our main result solves two problems posed by Jerison and Nadirashvili ([14]).



Corollary 1 The following conjectures are true.

(i) ([14], Conj. 8.2) If D is a convezx polygon with two azes of symmetry and a right angle, then

the only case in which the eigenvalue is multiple is when D is a square.

(ii) ([14], Conj. 8.5) Let D be a convez, centrally symmetric domain contained in a circu-
lar sector of acute angle and vertex P. If P € 0D, then the mazimum or the minimum of the

eigenfunction corresponding to po is achieved at P, and po is simple.

Our proof of Theorem 1 uses a probabilistic technique called “coupling.” Two large sections of
the article are devoted to the construction (Section 2) and analysis (Section 3) of “mirror couplings”
of reflected Brownian motions. Mirror couplings (without reflection) were used by Kendall ([17]) to
obtain analytic estimates. The same couplings for reflected diffusions were applied in [22], [3] and
[9]. Unfortunately, none of the last three quoted papers paid sufficient attention to the construction
of mirror couplings. The paper of Wang [22] does not offer any proof of existence of mirror couplings
for reflected diffusions. The papers of Banuelos and Burdzy [3] and Burdzy and Kendall [9] give
an explicit construction for the mirror coupling of Brownian motions reflected on a straight line.
This construction breaks down in polygonal domains when two Brownian particles hit two different
line segments on the boundary at the same time (proving that this event has a positive probability
is non-trivial; we omit the proof as it is not needed here). Although some readers may find our
construction of mirror couplings in piecewise C? domains exceedingly detailed, we believe that the

past history of the problem justifies the extra care we give to it.

The most challenging part of our paper is a probabilistic version of the “parabolic boundary
Harnack principle,” i.e., Section 3. We will show that if two mirror coupled Brownian motions are
conditioned on not meeting by a certain time then they are likely to be far apart at that time. This
intuitively obvious statement seems to have no easy proof. The core of our argument is taken from
[4]. The same approach has been already used in [1] and [9] but each application of the same basic
idea needs new estimates and some minor changes. The present application of the argument from [4]
needs completely new estimates for a few fundamental quantities—this is what makes that part of
the paper tedious. An additional complication stems from the fact that our construction of mirror
couplings of reflected Brownian motions is limited to piecewise C? domains. We have to consider
a sequence of mirror couplings in a sequence of piecewise smooth domains approximating the lip
domain. Known results on the existence of strong solutions to the Skorohod equation indicate that
the construction of a mirror coupling with the strong Markov property in an arbitrary lip domain

may be a very difficult task—we do not try to undertake it in this article.



The proof of the main theorem, using ideas of Atar [2], is given in Section 4. The core argument
is the following. Let (e1,e2) be the usual orthonormal basis for IR?. It was observed in [3] (see
also Section 4 in this article), that in every lip domain, there exists an “increasing” Neumann
eigenfunction corresponding to uo, i.e., an eigenfunction whose directional derivatives in directions
e1 + e2 and e; — ey are non-negative on D. We prove that if s is not simple then there exists
a corresponding eigenfunction which is “increasing” in a large part of the domain but not at all
points. The key estimate, Lemma 6, shows that if this condition is satisfied by the gradient in the
bulk of the domain then it has to be satisfied everywhere in the domain. In other words, Lemma
6 provides a link between the local and global estimates for the direction of the gradient of an
eigenfunction—this is where the results from Sections 2 and 3 on mirror couplings are used in a

crucial way.

We end this introduction with a few remarks on lip domains. This class of domains appeared

for the first time in [3] and [9]. The name “lip domains” was coined in [7].

It follows easily from the definition of a lip domain D that there exist leftmost and rightmost
extreme points z*,y* € D, i.e., for every z = (z1,z2) € D \ {z*,y*}, we have z} < 71 < y}. Recall
that the definition of a lip domain D involves a requirement that D is a Lipschitz domain. This
means that every € 9D has a neighborhood U such that D N U is the graph of a Lipschitz
function in some orthonormal coordinate system. Hence, fo(xz1) — fi(z1) cannot go to 0 very
fast as z7 | z] or 1 T yi. Without this condition, one could construct domains satisfying (1)
and containing infinite sequences of “rooms and passages” close to z* and y*. The results of [13]
indicate that such domains might not have discrete spectrum. The exclusion of these domains from
our considerations does not seem to be an essential limitation because lip domains with shapes

significantly different from the square are not likely to have multiple second eigenvalues.

We will write B,(z) C IR? to denote an open ball of radius r around z and we will use ¢ to

denote positive constants whose values are unimportant and may change from line to line.

We would like to express our gratitude to the following colleagues for very useful advice:
R. Banuelos, R. Bass, Z. Chen, S. Jacka, D. Jerison, C. Kenig, J.-B. Lasserre, T. Pakes, P. Pollett,
and R. Tweedie.



2 Construction of mirror couplings

Before we go into technical proofs, we briefly and informally describe the goal of this section.
Suppose for a moment that D € IR? d > 2, is a smooth domain. We are looking for a pair
of reflected Brownian motions (Xy,Y;) satisfying the following system of stochastic differential
equations,

dX =dW +dL, dY =dZ+dM, dZ=dW —2m m-dW, m= %,
for times less than ( = inf{s : X; = Y;}. Here W is a d-dimensional Brownian motion, and Z is
another Brownian motion for which the increments are mirror images of those of W, the mirror
being the (d — 1)-dimensional hyperplane with respect to which X and Y are symmetric. The
processes X and Y are reflecting Brownian motions with boundary terms L and M respectively.
We will prove pathwise uniqueness and strong existence for this system of equations. As a corollary,
it will be proved that (X3, Y}) is strong Markov. The final proposition in this section will show that

mirror couplings in lip domains have an “order preserving” property which is crucially used in this

paper.

An SDE with reflecting boundary conditions. The starting point for our analysis are some results

from [19] regarding unique solvability of an SDE with reflection. The results in that paper apply
to a class of domains satisfying complicated assumptions—we refer the reader to [19] for details.
It will suffice to say that the results of [19] apply to all D C R%, d > 3, which are C2-smooth and
all planar piecewise C2?-smooth domains with a finite number of convex corners (more precisely,
domains for which the boundary consists of finitely many smooth parts, the uniform exterior sphere
condition and the uniform interior cone condition are satisfied; see [19]) . All results in this section
hold true for all domains which satisfy the conditions listed in [19], so they are not limited to the

cases we have just listed.

Fix a bounded open set D € IR? for some d > 2 and assume that its boundary is C%-smooth if
d > 3 or piecewise smooth with a finite number of convex corners, if d = 2. For x € 9D, let v(z)
be the inward unit normal vector, if it exists. If z is a corner, we let v(z) to be an arbitrary unit
vector pointing inside the domain at x (this is just for the sake of completeness of the definition—
the reflected Brownian motion does not visit corners with probability 1 so the definition of v(z) for

such points is irrelevant).

Let (Q, F, (F;), P) be a complete filtered probability space, on which an (F})-Brownian motion

(W) is given. It was shown in [19] that for any 2 € D there exists a unique continuous (F})-



semimartingale (X;) with values in D for all ¢ > 0 a.s., satisfying
t t
Xe=x+ Wi+ Ly, |L|i= /0 Lx,copd|L|s, L= /0 v(Xs)d|L]s, (2)

where L, is a continuous process with values in IRY, with variation |L|; which is bounded on each
finite interval. In fact, there is a map I' : C([0, 00) : R%) — C([0, 00) : IR?) (the “Skorohod map”)
such that X = I'(x + W) a.s., and I' is Holder continuous of order 1/2 on compact subsets of
C([0,T] : RY). Note that in particular, the continuity with respect to the initial condition z holds.
We will call the process X a reflected Brownian motion in D (with normal reflection), driven by

W, starting from zx.

Denote
1Z||: = [E sup |Z,|*]"/*.
0<s<t

Let Z be the space of continuous adapted processes Z for which ||Z||; < oo for all ¢ > 0. We shall

need the following version of Lemma 3.1 of [19].

Lemma 1 Let o be an (F;)-stopping time. Then for each T > 0 there exists C' such that for all
t<Tandall Z,7' € Z,

t
IN(Z). 0o —T(Z') 0ollt < C /0 1Zng — 7', |[4ds.

Proof: The only difference between our lemma and Lemma 3.1 of [19] is that the processes are
stopped at a stopping time o in our version of the inequality. The original proof given in [19]

applies, with minor adjustments needed to take into account the presence of the stopping time o.

O

Equations for the mirror coupling. We will formulate a system of stochastic differential equations

for a pair of “mirror coupled” reflecting Brownian motions, i.e., satisfying the following condition.
On any time interval [s, t], on the event A that both processes do not hit the boundary during [s, ¢],
there is a (d — 1)-dimensional hyperplane (the “mirror”), depending on w € A and s, ¢, with respect

to which the processes are symmetric at every time in [s,¢].

Let (2, F, (F}), P,WW) be given, where W is a Brownian motion. We are looking for processes Z,
X and Y with the following properties. The processes X and Y are reflecting Brownian motions
in D, starting from z and y, and driven by W and Z, respectively. Here Z is another Brownian

motion on the same probability space. We will work with deterministic initial conditions, but we



note that replacing them with Fp-measurable initial conditions would add no difficulty. We want
to have

X =D(z+ W), (3)

as in (2). We also need,

Y =D(y+ Z). (4)

Let m; be a unit vector perpendicular to the mirror with respect to which X; and Y; are symmetric,
namely m; = (Y; — X;)/|Y; — X;|. For m in the unit sphere of IR, let H(m) denote the linear
operator from IR? to IR? given by

H(m)v=v—2(m-v)m, velR%. (5)

Then H(m)v is the mirror image of v about the hyperplane through the origin, perpendicular to
m. We would like Z to depend on W and on the mirror, in such a way that Z’s increments are
mirror images of W’s:

t
Z, :/ H(my)dW,.
0

For z € R%, let G(z) = H(x/|z|) if z # 0, where H(-) is as in (5), and let G(0) = 0 (the value of
G(0) is in fact irrelevant). Consider the equation

Z, = Om G (y+ Z)s — Xo)dW, + Linc (Wi — W), ¢ =inf{s:T(y+2), = X,}.  (6)
Definition 1 (i) We say that pathwise uniqueness holds for (6) if whenever Z and Z' are two
processes defined on the same probability space (2, F, P) with the same filtration (F}) and the same
(F})-Brownian motion, W, which are adapted and have continuous sample paths, satisfying (6) for
allt >0 a.s., with X =T (x + W), then Z(t) = Z'(t) for all t >0, a.s.

(11) A strong solution to (6) on a given probability space (2, F, P) with respect to the Brownian
motion W, is a process Z with continuous sample paths, adapted to the (augmented) filtration (F)V),
generated by W, and with X = T'(z + W), which satisfies (6) for all t >0, a.s.

Theorem 2 Pathwise uniqueness holds for (6). Let W be a Brownian motion on a complete filtered

probability space (2, F,(F}), P). Then there exists a strong solution of (6) relative to W.

We will refer to the pair (X,Y") as a mirror coupling of reflecting Brownian motions.

Proof of Theorem 2:



Pathwise uniqueness. We will first consider the problem on a finite time interval [0,7]. Let a

Brownian motion W on (2, F, (F,), P) be given, and let X = I'(z + W). Assume Z and Z are two

(Fy)-adapted processes with continuous sample paths, satisfying (6) for all ¢ € [0,7T] a.s. Denote
Y =TWw+2),Y =Ty+2),V=Y—-X,V=Y—X. Let o, = inf{t : [V} < 1/n},
Tn = inf{t : |I~/t| <1/n}, Sy =7y ATyp. Then S, 1 ¢ A C. To prove pathwise uniqueness it is enough
to show that P(Z, = Z;,0 <t < ¢ AC) = 1. Denote |G| = E” i j» and similarly for other d x d
matrices. On [0, S,], one has

v V]| . vV

___< c——— <en|V-V|=enl]Y —Y]|.
VI VI VALY

We will use the following version of the Burkholder-Davis-Gundy inequality ([15] p. 163),

2m

T T
El/ A dW, gcmTM*H;/ |Ag|*™dt (7)
0 0

for m > 1, and A; adapted. This, Doob’s inequality and Lemma 1 yield for any ¢ € (0,7,

E sup |Zsns, — Zsns, | < cE|Zins, — Zins, |
0<s<t

tASy ~
< cT3E/ IG(Y, — X,) — G(Ys — Xs)||4ds
0
tASn
:cﬁE/ Hﬂﬁﬁ—H m
0 \4 IW
~ 4
tASy
< T E/ Vs Vs
Vil Vi
gcﬁ#E/ ”E—@%s
0
t ~
< ¢eInt | E sup |Yuns, — Yuns, | ds

0 0<u<s

¢ -
< ¢I'*n* | E sup | Zuns,, —Zu/\gn|4ds.
0 0<u<s

Gronwall’s inequality now shows that Esupy<s<r | Zsns, — Zs/\gn|4 = 0. Hence P(Z; = Z,0<s<
Sp) = 1, for all n, and therefore P(Zy = Z,,0 < s < ¢ A() = 1. This shows that Z and Z are
indistinguishable on [0,7]. Since T is arbitrary, the same is true on [0,00). This completes the

proof of pathwise uniqueness.

Ezistence of strong solutions. For every n € IN, fix any matrix-valued function G™ that agrees with

G outside By, (0) and belongs to class C? on IR%. Let \, < oo denote the Lipschitz constant of
G™. We are given a probability space (22, F, P) with a Brownian motion W and the filtration (F}V)



generated by W. Denote X = I'(xz+W). We will first show that for any n there exists a continuous
adapted process Z™ such that

zi = [ @0y + 27), - X)W, (®)
0

But before that, let us note that pathwise uniqueness holds for (8). The proof is similar to that of

pathwise uniqueness for (6) but simpler, so it is omitted.

Let F be the map from Z € Z to
t
F(Z); = / GM(T(y + Z)s — Xs)dW,.
0

Recall the space Z defined before the statement of Lemma 1 and suppose Z, Z’ € Z. By Lemma 1,
Doob’s inequality for the martingale F(Z) — F(Z') and (7), we have for ¢ € (0,77,

Esup|F(Z)s — F(Z')s|* < c¢E|F(Z);— F(Z")*
s<t

t
< cth/ IG"(T(z 4 Z)s — X5) —G"(T(2+ Z')s — Xs)||4d3
0
t
< APE [ N+ 2) - T+ 2, 'ds
0
t
< ATt | E sup |Z, — Z.|"ds. (9)
0 0<u<s

Let Z(O = 0, and for k¥ € IN let Z¥) = F(Z*-1). Since G" is bounded, there is ¢ such that

1Z®) ||z < ¢ for all k. One can easily show using (9) that

k
C
12640 — Z®4 <

where ¢; is a constant that may depend on n and T'. Hence by Chebyshev’s inequality,

P(sup |Z*+D) — Z)| > 27F) < ¢(16¢)F /k!,
s<T

and the Borel-Cantelli lemma shows that with probability one, supy< <7 |Z§k+1) — ng)| <27k for
all sufficiently large k. Hence the paths of Z() converge in the uniform topology, a.s. Since T is
arbitrary, we have that the paths of Z(¥) converge uniformly on compact subsets of [0,00), a.s. It is
obvious that the limit is a fixed point of F, and therefore there exists a continuous, (F}V')-adapted

process satisfying (8) for all ¢ € [0, 00) a.s.

Let Z™ denote the process in (8) and set Y™ =I['(y + Z"). Let 7, = inf{s : |Y* — X| < 1/n}.
Since we have uniqueness for (8), it is clear that on [0,7;,], the processes Z™ and Z"*! agree a.s.

Setting ¢ = lim,, 7,, and defining

Zy = ly<¢ lim Z"M(t) 4+ 1> (Wi — W),



we obtain a continuous and adapted process Z. We see that (6) is satisfied for all ¢ € [0,00) a.s.

Therefore there exists a strong solution relative to W. ]

Strong Markov property. Let (2, F, (F}), P,W) be a complete filtered probability space and a Brow-

nian motion. Let E denote expectation with respect to P and let U = (X,Y’) denote the unique
solution to (3), (4) and (6). For v = (z,y) € (D)?, let P* denote the measure induced by U
on (C(]0,00) : IR?), B(C([0,00) : R?%))), assuming Uy = u. Let E* denote the expectation with

respect to P". The transition function for the process U is defined as

Py(u, f) = E*(f(U)),

for all u € (D)? and bounded Borel measurable functions f. Given the results on existence and

uniqueness, and the properties of the Skorohod map quoted before, we have the following.

Corollary 2 The process U is strong Markov, i.e., for any a.s. finite (Fy)-stopping time T and
bounded Borel function f, one has P-a.s., for all s > 0,

Elf(Ur+s)|Fr] = Ps(Ur, f).

Proof: We take here the approach of [21], Theorem V.32. For each finite stopping time 7', note
that Ws = Wpyis — Wp, s > 0 is a Brownian motion, and consider the unique solution Z to the

following equation, with u = (z,y) € (D)?,

tAC

Z, = \ G(D(y+ Z)s — Dz 4+ W)s)dW, + 1_~(W; — W), (10)

t>C

where ¢ = inf{s : D(y + Z); = ['(x + W),}. To take into account the dependence on the stopping

time and the initial condition, we denote Z; above by Z (u,T,t), and we also let
U(U’aTa t) = (F(lE + W--l—T)ta F(y + Z(U, Ta ))t)

Denote the Borel sigma-field of subsets of (D)? [resp., IRy] by U [resp., Ry]. We will show that,
for a given stopping time, the mapping (u,t,w) — Z(u,T,t) has ad ® R4+ ® F jointly measurable
version, and hence so does U (u,T,t). We will use these versions in the rest of the proof. Recall
the processes Z(¥) and Z™ of the proof of Theorem 2. Recall also that for each n, Z*) converge
uniformly on compacts in probability to Z". Since each Z(*) is jointly measurable, this implies
that so is Z™ (cf. [21]). Since Z is the pointwise limit of Z™ as n — oo, this shows that Z is jointly
measurable. The same argument applies to Z(u,T,t) for any fixed stopping time 7. A similar

measurability property holds for U(u,T,t) by the uniform continuity of I' on compact sets.

10



Fix a finite stopping time T and set F* = o{Wp4, — Wr : w > 0}. Then F* is independent of
Fr under P, since W is an (F})-Brownian motion. Note that Z(u,T,t) is measurable with respect
to F*. By the uniqueness results for the Skorohod map (the uniqueness holds in the deterministic
sense), I'(R)r4+s = I'(I'(R)r — Ry + Rry.)s, s > 0, whenever R is an (F})-Brownian motion. Fix a
u for the moment and denote Z; = Z(u,0,t). Then we have for ¢ > 0, on the event {{ > T + t},

T+t
Zra—Zr = | GOW+2),~T(+W))dW,
_ /01t GOy + Z)1 + (Zry. — Z7))s — T(D(a + W)p + W)y)dW,. (1)

Let ( = inf{s > 0:'(y+ Zr4.)s = ['(x + Wr,.)s}, and note that ( =0 on ¢ < T. On the event
{¢ < T +1t} = {C < t}, we have,

Zryt— 4y = Ze+Wry —We
= Zf + W, — WE (12)

Equations (11) and (12) show that Zpiy — Zp is a solution to (10) with the initial condition

U(u,0,T). By uniqueness of solutions we therefore have
Zryy — Zp = Z(u,0,T +t) — Z(u,0,T) = Z(U(u,0,T),T,t).
It follows that P-a.s., for all ¢ > 0,
U(u,0, T +t) =U(U(u,0,T),T,t).

We will use the following standard fact. If ®(h,-) is independent of the o-field H for every h, and H
is H-measurable then E(®(H,-)|H) = ¢(H) a.s., where ¢(h) = E(P(h,-)). Hence, for any bounded
Borel f,

E{f(U(ua 0,7+ t))|FT}

E{f(U(U(’U,, 0, T)aTv t))|FT}
= g(U(uv OaT))a

where g(r) = Ef(U(r,T,t)). However, by pathwise uniqueness of solutions to (10), under P,
Z(u,T,-) and Z(u,0,-) are equal in law, and therefore so are U(u,T,-) and U (u, 0, -). Consequently,
g(r) =Ef(U(r,0,t)) = Py(r, f). This shows that

E{f(U(uv 0,7+ t))|FT} = Pt(U(uvovT)a f)

11



Remark. Fix some u, consider the probability space (2, F, P"), where P" is the measure induced
by U when started at u, and let (ﬁt) be the filtration generated by U. Then by Corollary 2, for
any a.s. finite (F})-stopping time T, the random variable E[f (Urs)|Fr] = P;(Ur, f) is measurable

with respect to o(Ur). It follows that it is measurable with respect to I?’T, and therefore P“-a.s.,

E“[f (Urss)|Pr] = E[f (Urys)|Fr] = Py(Ur, f).

Next we will show that the “mirror coupling” (X,Y) has in fact the mirror property.

Proposition 1 Let (X,Y) be a mirror coupling of reflecting Brownian motions, A be an event in
F, and o, be two a.s. finite F-measurable times with o < T a.s. on A, such that X4, Yy ¢ 0D and
Xs #Ys for all s € [0,7) a.s. on A. Then a.s. on A,

(Xs +Ys) - (Yo — X5) = (Xo +Y5) - (Yo — X;), forall s €[o,7]. (13)
Proof: Recall that in our notation, dX = dW + dL, dY = dZ + dM, L. and M are the boundary

terms for X and Y, and dZ = H(m)dW =dW —2mm -dW. Here ms = V;/|Vs| on {s < (}, where
Vs =Y, — X,. Applying 1t6’s formula, one finds that

dms = V| (dMy — dLy) — |Vi|~'mgm, - (dM, — dLy). (14)
This shows that the mirror does not move within [0, 7] on A. Hence for s € [o, 7],
Zy = Zy+ G(Yy — Xo) (W — W,).

Since for s € [0, T],
Xs:Xa+Ws_Waa Yts:Ya'i_Zs_Zaa

(13) follows. L

Let (e1,e2) be the usual orthonormal basis for IR? and
1= (e1 —e2)/V2, e =(e1+e2)/V2.

For z,y € IR?, let z < y mean

The following “order preserving” property of mirror couplings in lip domains is one of the crucial

ingredients of the main argument.

12



Proposition 2 Suppose D C R? is a piecewise C?-smooth lip domain for which the defining
functions fi1, fo (cf. equation (1)) are both Lipschitz with constants strictly less than one. Let
(X,Y) be a mirror coupling of reflecting Brownian motions in D, starting from (z,y) € (D)?. If
z <y then Xy <Y forallt >0, a.s.

Proof: Recall the definition of m, from the proof of Proposition 1. Let as; be the unit vector
perpendicular to ms such that, in complex number notation, ias; = ms. Then the identity (14) is
equivalent to

dmg = |Vi| " asas - (dMy — dLy).

Let 7 = inf{t : X; £ ¥} and Q) = {7 < oo}. We will show that ; has probability 0. Suppose
T < 00. Since a normally reflecting Brownian motion does not hit a fixed point on the boundary,
we can assume that X, and Y, are not at any of the vertices of 0D. Let 04D [0_D] denote the
intersection of the boundary 0D with the graph of fy [respectively, fi]. Because the Lipschitz
constants of f; and fo are assumed to be less than 1, it cannot happen that both X, and Y, are
on the same side 91D or 0_D of the boundary. Assume without loss of generality that Y, € 0, D.
Then X, € DUJ_D, m; = ¢, and a; = €). It follows from the definition of 7 that for every ¢ > 0
there exists ¢t € (1,74¢) with m;-e} < 0. Since a; is continuous, we can find small ey > 0 such that
for s € (1,7 + 0], (i) as - €} > 0; (i) as - v(Ys) > 0if Yy € OD; and (iii) as - v(Xs) <0 if X € OD.
In (ii) and (iii) we have used the fact that Y; € 0, D and X, ¢ 0. D, and the assumption that the

Lipschitz constants of fi’s are less than one. For all ¢t € (7,7 + g¢],
t
my-€e] = mr-e} +/ Vil as - €] as - (dM, — dLy)
T
t t
- / Vil ay - € ay - v(Ys)d|M], —/ Vil as - &, ag - v(X,)d|L,.
T T

The first integral in the last line is non-negative and the second one is non-positive. This contradicts

the fact that my - e} < 0 for some ¢ € (1,7 4 ¢¢) and so it shows that €; has probability zero. [J

3 Conditioned mirror couplings

Throughout this section, we fix a lip domain D C IR? and a sequence of lip domains D™ increasing
to D, such that the defining functions f7*, f3 (cf. equation (1)) are C?-smooth and Lipschitz with
the Lipschitz constants strictly less than one. Recall that a lip domains is a Lipschitz domain,
i.e., its boundary can be represented as the graph of a Lipschitz function with constant A in some

neighborhood of every boundary point (the point here is that the extreme left and right points
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have to be included). We will assume that a single constant A < oo can be chosen for all boundary

points of all domains D™ and D. For each D™, Corollary 2 and Propositions 1 and 2 apply.

Let D, = {z € D : dist(z,0D) > ¢} and D} = {z € D" : dist(z,0D™) > e}. The hitting time
of a set A by a process W will be denoted T" (A), or simply T(A), if no confusion may arise.

Lemma 2 Let ()7, denote any probability measure under which (X,Y) is a strong Markov process,
and X [respectively, Y| is a reflected Brownian motion in D™ starting from x [y]. Then there are

constants 6,0 > 0, such that for any p >0, n, z,y € D", |v —y| = p,
Qi y(To < 0p®) 21/2,

where
Ty =inf{t > 0: X4,Y; € Dg,, Xt € B,j16(x),Y: € B,16(y)}-

Proof: The lemma will be proved in two steps.

Step 1. In this step, we will show that there exist v,e9 > 0, such that for any € € (0,¢p), n, and
x € D",
Qb ,(T*(D: N Bye(7)) < £%) > 9/10. (15)

Recall the Lipschitz constant A defined before the lemma and suppose that f : IR — IR is
Lipschitz with constant A, and f(0) = 0. Let A = {z € R? : 25 > f(x1)},

Alz,r,h) = {ye€A:|y—zi| <ry2 < f(y1) + h},
OuA(z,m,h) = {y€dA(z,rh):y2 = f(y1) + h},
35A(:1:,r, h) = {y € 3A(:1:,r, h) : |y1 - $1| = ’)”}.

Let P be the distribution of the reflected Brownian motion in A starting from z. The function
9(y) = P} (T (9uA((0,0),1,1)) < T*(2:A((0,0),1,1))

is harmonic in A((0,0),1,1). By a Harnack inequality proved for such functions in [6], g(y) >
cg((0,1/2)) for some ¢ depending only on A and all y € A((0,0),1/2,1). Hence, for some p > 0
depending only on ), the reflected Brownian motion starting from any point of A((0,0),1/2,1)
exits A((0,0),1,1) through 9,A((0,0), 1, 1) with probability greater than p. By the strong Markov
property applied at the hitting time of dA((0,0),1,1) \ OA, the process starting from any point in
A((0,0),1/2,1) exits A((0,0),2,1) through 9,A((0,0),2,1) with probability greater than 1 — (1 —
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p)2. By induction, the process starting from a point of A((0,0),1/2,1) exits A((0,0),7,1) through
0uA((0,0),7,1) with probability greater than 1 — (1 — p)?, for integer v > 1. Fix a  so large that
1—(1—p)" >1—1/20.

By Theorem 2.3 of [6], P*(X; € dy) < c1 exp(ca|r—y|?)dy, where the constants ¢; and ¢z depend
only on A\. Choose h > 0 so small that P}'(X; € A((0,0),v,h)) < 1/20 for z € A((0,0),1/2,h).
We see that the probability that the process starting from A((0,0),1/2, ) is still in A((0,0),7, h)
at time 1 or exited it through 9;A((0,0),~,h) by that time is bounded by 1/20 + 1/20 = 1/10.
Now (15) follows by scaling.

Step 2. Consider small § > 0, large < oo, and finite stopping times

T] = TX(D}, N Bs,(¢) AL,  T{ =T (D}, NBy,(y) AL,  Ti=T ATY.

Using Step 1 with € = ép, one has for large ,
ry(T1 < (8p)%) > 9/10, (16)
and similarly, Q2 (T{' < (6p)*) > 9/10. Let
Cs, = {Xi € Bs,o(X1,),t € [T1, T1 + n°6°p” /4]}.
If 7Y < T then Bj,/»(X1,) C D" and by choosing n € (0,1) small, one can have
Qry(Csy | Fry, TI < TV') > 9/10.

Let Th = inf{t > Ty : Y; € D,5,/5 N B,,5,/5(Yr)}. Using Step 1 with e = nép/2 and the strong
Markov property,
n (T < Ty + (ndp)?/4 | Fr, T <TY') > 9/10.

Hence,
Z,y(cg,naTQ <Ti+ (7759)2/4 | FTUTII < TIH) > 8/10'

A similar formula holds in the case T/ < T{. Combining this with (16), we obtain
Q% (To < (6p)” + (19p)*/4) = (9/10)(8/10) > 1/2.

Now make & > 0 smaller, if necessary, so that (ydp + dp/2) V (y6p +yndp/2) < p/16, and thus the
lemma holds with § = nd/2. U

In the rest of this section, we denote by P, a measure under which (X,Y) is a mirror coupling
of reflected Brownian motions in D". Let 7 be the coupling time for X and Y. Following [9], we let
D" = {(z,y) € D"xD" : z: # y}, D"(¢) = {(z,y) € D"xD" : |[z—y| > e}, and D"(e) = D"\ D"(¢).
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Lemma 3 (i) There are constants o, c,a > 0 such that for all € € (0,a) and all (z,y) € D"(¢),
Py, (T(D"(a)) < 1) > ce™.
(ii) There are constants ¢ < oo and a > 0 such that for all ¢ > 0 and (z,y) € D"(e),
B2 T((B"(6)) < ee?.

(117) Let uw > 0 be a constant, and let eg > 0 be small enough so that for all n, D"(gy) contains a
nonempty open ball of fized radius. Then there is a constant ¢ > 0 such that Pﬁy(T >t) > c for all
n, (z,y) € D"(eo), t € [u/4, ul.

Proof: To keep the notation simple, the superscript n will be dropped from D", D?, Pp, , D",

D"(¢) and D"(e) throughout this proof. All constants in all estimates will be tacitly assumed to

be independent of n.

Let us outline the strategy of the proof. The main step in the proof of (i) will be to show that
starting at any z,y € D, z <y, |z — y| = p > 0, the probability of hitting D(2p) before exiting D
is bounded below by some p > 0, independent of p and n. The main estimate in the proof of (ii)
will be that the probability of exiting D before time cp? is bounded by some p > 0, where ¢ and p
are independent of p and n. These two estimates will be obtained by identifying events H, K and

a time S, with the following properties,

HC {S <T, |XS' - YS| > 2p}a (17)
while
Ppy(H) > p, (18)
and
K C {7 <cp*}, Ppy(K)>p. (19)

Recall the notation z* and y* for the unique points in D for which z* < z < y*, all z € D. See
the beginning of this section for the definition of the Lipschitz constant A\ characterizing D. Let
0" D [respectively, 9~ D] denote the upper [lower] part of the boundary dD. Let a > 0 be so small
that (I) whenever Bsa, () intersects both 9t D and 9~ D then one has |z — z*| A |z — y*| < 64)a;
(IT) there is a coordinate system in which D N Biagye(z*) is equal to the set of points above the
graph of a Lipschitz function with constant A; and (III) a similar statement holds for y*. We will

consider z,y € D with |z —y| = p and p € (0,a). There are three cases: (a) Bsg,(z) intersects
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either 97D or 7D, but not both, (b) Bss,(z) intersects both parts of the boundary, (c) Bsa,(z) is
contained in D. In case (c), the existence of H, K, S for which (17), (18) and (19) are valid follows

from a simple scaling argument for the planar Brownian motion, and we therefore omit the details.

(a) From now on, we will refer to X and Y as “Brownian particles” or simply “particles.” In case
(a) there are two possibilities according to whether the particles X and Y are close to the upper or

lower boundary. We consider only the lower boundary, since the other case can be treated similarly.

Recall that (er,ez) is the usual coordinate system in IR%. Within case (a) we consider three
sub-cases: (al) the angle 8, which y — z forms with e; is within [—7/4, —7/16]; (a2) 6 € [r/16, 7 /4];
and (a3) 6 € (—7/16,7/16).

(al) Assume z and y are as in case (al). Let 0,6 > 0 and Tj be as in Lemma 2, and let Hy denote
the event {Tj < 0p?}. By definition, on Hy, X1y, Y € Dsp, and X7y € By ji6(), Y1, € By16(y)-
A simple calculation, using the fact that 6 € [—n/4, —x/16] shows that X7, - e > Y7, - e2. Define

AX($7370777T) = {|Xt B Ut| < 77t € [SaT]}

If Hy holds then Y7, — X7, # 0 and we can define orthogonal vectors (£1,&2) as follows, & =
(Yr, — X1,)/|Yr, — X1 |, and &2 is the unit vector orthogonal to &; for which & - ea > 0. We will
define an event Hy C Hy which represents, intuitively speaking, a motion of X along a tube that

starts from X7, and is parallel to the mirror. Namely,
Hl = HO N AX(XToaTOa :0_1£2a hpa Tl)a

where T} = Ty + 8p%, and h = (§/2) A (1/16). Note that on Hy, neither X nor Y hit the boundary
0D within the time interval [Ty, T1]—this follows easily from the fact that Byj,(Xr,) and By,(Yr,)
are contained in D, and that locally, D is the set of points above the graph of a Lipschitz function
with constant 1. Also note that the fact that Xp, - e > Y73, - e2 on Hy implies that £ - e; > 0,
which shows that, on Hy,

X1, -e1 > X, - e1 — hp. (20)

On Hj, the distance between the particles at time 7} is within [(1 —1/8 —2h)p, (1 + 1/8 + 2h)p].
To make the distance larger, we consider an event H, on which X moves within a tube starting

from X7, in the direction of —e;. Specifically,
H = H1 n AX(XTlaTla _p_lela hpa T2)7

where Ty =T} + 5p2. Let A C IR? consist of two line segments—the first one starts from Xz, and

goes 8p units in the & direction; the second one starts at the endpoint of the first one and goes 5p
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units in the —e; direction. If Hy holds then the distance of A from 0D is greater than hp, because
the boundary is locally Lipschitz with constant 1. Hence, if H occurs then X does not hit the

boundary within the time interval [T}, T5].

Recall that the “mirror” is the line of symmetry between X; and Y;. We will now show that
assuming H, the distance between the particles exceeds 2p at time 75 or earlier than that. First,
if Y € D on [T1,T5], then within the time interval [Ty, 7] the mirror is fixed. Note that the angle
of the mirror relative to e; is within [r/4,m/2]. Therefore X,, which is inside Bj,,(X7, — 5peq), is
at a distance of at least 5p/v/2 — hp > p from the mirror. Hence the two particles are at a distance

greater than 2p from each other. If Y hits the boundary during [T, T3], let
U =sup{t e [T},T5]: Y, € OD}.

There are two cases: (I) If U € [Ty, Ty + 3p?%], then the mirror does not move within [U, T5]. Recall
that the angle that the mirror forms with the horizontal axis is always in the range from /4 to
3n/4. Tt follows that on the interval [U, T3], the distance from X7, to the mirror must grow to
at least 2p/v/2 — 2hp > p. Hence at time T, the particles are more than 2p units apart. (II) If
U € (T} + 3p?, T3], then Xy is at a distance greater than 3p/v/2 — hp > 2p from the boundary,
while Y7 is on the boundary, and again we find a time prior to 75 when the particles are more than
2p apart. We conclude that there is S satisfying (17). For a standard planar Brownian motion W,
the probability of {|W; — p~!rt| < vyp,t € [0,p*T]} is strictly positive by the “support theorem”
and independent of p, by scaling. For H to happen, two events of this form have to happen, with
X in place of W. This, the strong Markov property, and the fact that Hy has probability greater
than 1/2, imply that (18) holds, with some p > 0 that is independent of p.

Next we discuss the event K which we define as
K=H Nn{r <T\ +p°}.

It follows immediately from the definitions of Hy and H; that on K one has 7 < cp2. If H; occurs
then the convex hull of By,,(X7,) U By,,(Yr,) is contained in D. This, Brownian scaling and the
strong Markov property easily imply that the probability that 7 < T} + p? conditional on Fy, is
bounded below on H; by a positive constant independent of p. Since the probability of H; is itself
bounded away from zero, (19) follows. This completes the discussion of case (al). Case (a2) can

be treated in a similar fashion, by interchanging the roles of X and Y.

(a3) We let H and K be defined as in case (al). A simple calculation shows that in this case, on

H, the angle which & forms with e; is within [—7/8,7/8]. Moreover, neither of the particles hits
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the boundary before time T} + p?, and at this time the distance between the particles is greater

than 2p. Hence (17) holds true. The validity of (18) and (19) can be proved as in case (al).

(b) In case (b), both points z and y must be in one of the discs Biag,(z*) or Biaga.(y*). We will
assume the latter, without loss of generality. Let (€1,€2) be a coordinate system in which D is
locally the set of points above the graph of a Lipschitz function with constant A. Let Hy be defined
as in case (al). Let

H= HU N AX(XTlaTlapilg% hpa T2)7

where T} = Ty, To = T} +5\p?. Then the analysis based on the last visit of Y to 0D within [T}, T3],
carried out for case (al), applies in the current case in an analogous way, and shows that there is

S for which (17) holds. Again, (18) is a simple consequence of scaling.

Finally, we describe the event K for case (b). Let y* denote the line segment emanating from y*
defined as {y* +réy : r € [0,129a]}. Then it is easy to see that if z; € y* then for any x € B, /16(z1),
and y € Ds, with y > z, the convex hull of By,,(x) U By, (y) is contained in D. Let

KU - HO N AX(XToaTﬂap_lrgla hpa fl)a

where r = 1 if (X7, —y*) - & < 0, and r = —1 otherwise, and T} is the first hitting time of y* by
X after time Ty. It is easy to check that

HoN AX (X1, Ty, p~'ré1, hp, Ty + 3p%) C K.

This and scaling show that the probability of K; is bounded below. Next, let T, be defined
analogously to Tp, namely, T = inf{t > T} : X;,V; € D;,, X; € Bp/w(Xﬁ),Yi € Bp/w(Yﬁ)}-
Lemma 2 and the strong Markov property imply that conditional on .7-"%1, one has Ty < Ty + op?
on {fl < 7} with probability at least 1/2. It follows that the event K; = Ky N {TQ <T + op’}
has probability bounded below by a positive constant independent of p. According to an earlier
remark, under K, one has that the convex hull of Bhp(X@) U Bhp(Y@) is contained in p. We
conclude that

K=K n{r <T,+p*}
has probability bounded below by a constant independent of p. This completes the proof of (19).

Let us show how (17) and (18) imply part (i) of the lemma. Let (z,y) € D(¢), and let p =
|z —y| > e. Then

Pry(T(D(2p)) <7) 2 p,
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and by the strong Markov property,
Py, (T(D(2%p)) < 1) > p.
Taking k = [log(a/e)] + 1, we obtain
P, y(T(D(a)) < 7) > p(e/a)” 8P,
which completes the proof of (i).
Consider part (ii) next. By (19), we have Py, (7 > ¢p?) < 1 — p. By the Markov property,
Pyy(r > kep?) < (1—p)F,
and therefore for any z,y with |z —y| = p <,

Ex,yT(ﬁg) < Epyt < Z kep? (1 —p)F = ¢1p? < ¢1€2.
k>1

Part (iii) is an easy consequence of Lemma 2 and the strong Markov property. Suppose t €

[u/4,u]. Then

Ppy(r>1t) > Ppy(rt>u)
> Puy(To < 0p®, X5 € Byy(Xr,),Ys € Byp(Yny), s € [To, To + u))
> (1/2)Py(Ws € Bpeo(),s € [0,u])
> ¢

where as before h = (§/2) A (1/16), W denotes a planar Brownian motion starting from z, and
where we have used the fact that on the event specified on the second line, X and Y do not visit

the boundary within [T, Ty + u)]. 0

The following lemma is almost the same as Lemma 5.1 in [4]. We reproduce it here because it
is one of the most important elements of our argument. The present form of the result is very close
to Lemma 3.10 in [9]. The intuitive meaning of the lemma is that if we condition X and Y on not
coupling before time 1, then the processes are likely to move apart for a considerable distance at
time 1. Hence, Lemma 4 below is a version of the parabolic boundary Harnack principle for the

process (X,Y).
Lemma 4 There are constants ci,ca > 0 such that for oll n large and for oll x,y € D™ with x >y

and x # vy,
Pwn,y(|X1 _Y1| > 01|7' > 1) > Co.
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Proof: The proof of this lemma uses methods considerably different from those in the rest of the
paper so it will be convenient to introduce some notation specific only to this proof. First of all
recall the following convention from the proof of Lemma 3—the superscript n will be dropped from
all pieces of notation. This should not cause any confusion because the constants in Lemma 3 do

not depend on n.

We will write Z = (X,Y’) as the separate components of Z will play no role in this proof. The
state space of Z is D x D. Recall D, D(¢) and D(e) defined before Lemma 3. The distribution
of Z starting from z and the corresponding expectation will be denoted P? and E?. Conditioning
by a harmonic function A will be reflected in the notation by writing P} and Ef. See [12] for the

discussion of conditioned Brownian motion and [18] for conditioning of general Markov processes.

We will denote the space-time counterpart of Z by V. More precisely, if Z has law P?, then
the law of the space-time process {V; = (Z;,s —t),t > 0} will be denoted P**. The distribution
of space-time process conditioned by a parabolic function g will be denoted P;>*. By abuse of

notation, T'(A) will denote the first hitting time of A for V' as well as for Z.

Fix some small ey > 0 such that Lemma 3 applies with £y, and let M = D(ep) and D1 = D\ M.
Let h(z) = P*(T(M) < 7) and Uy = {z € Dy : h(z) € [2F71,2F]} for integer k.

By Lemma 3 (i), Uy C D(c;2%/®), for some c¢;,&¢ > 0. Then Lemma 3 (ii) shows that
sup,cp, B (T(UF)) < c22%%/%. Tt follows that

o0

Z sup E*(T'(US)) < oo.
kzozeU_k

An argument of Chung [11] (see also [4]) shows that for suitable c3,

o0
c3 Yy sup E*(T(USy))
k:OZGU*k

is an upper bound for Ej (T(Df)). It follows that for a suitable u > 0 and every z € D,

PE(T(DY)) < u/4d) > 1/2. (21)

Recall the discussion of space-time processes at the beginning of the proof. The function
(z,8) = g(z,t) = P*(T > 1)

is parabolic in D X [0, 00) with boundary values 1 on D x {0} and 0 otherwise.
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Let g1 be a parabolic function in D X [0,00) which has the same boundary values as g except
that gi(z,0) is changed from 1 to ¢ for z € Dy, where d € (0,1) will be chosen later. Now we will

estimate g on D x [u/2,u].

By Lemma 3 (iii), we have g1(z,s) > ¢4 for all z € M and s € [u/4,u]. We obviously have
h(y) <1 for all y. Let h(z,s) = h(z). For z € D; and s > u/2 we have, by (21),

gi(z,s) = / g1y, )P**(T (DY) € dt, X (T (Dy)) € dy)

telu/4,u]
y€OD

B / h(z,s) h(y,t)

g1(y, ) P**(T (DY) € dt, X (T(DY)) € dy)

te[u/4,u]
y€0Dy
h(xas) z,s c c
= | e OB (D) € dt X(T(D) € dy)
telu/4,u] ’
y€0Dq
> [ h@9)aP (D) € dt, X(T(DY)) € dy)
te[u/4,u]
y€0Dq
= h(z,s)ca P (T(DF) € [u/4, s])
> h(z,s)es/2 = cesh(z,s) = csh(x).
Let
Wi = {(Z,S) 291(2’,8) € [2k,2k+1]33 € [U/Qau]}a
k1
W= (] W,
k=—00

where k; < 0 will be chosen later. If 2™ < ¢5 then Wi, C Ugiy, X [u/2,u]. Using the estimate of
Chung [11] we obtain for small k; and all z € D,

k1
EXM(T(W°)) < ¢ Y, sup EVST(WY)
k=—00 (yzs)EWk

IN

k1
6 Y sup  EYT(Ug,,,) < oo
k=—oc0 (yzs)EUk+m

Choose k1 so small that for any z € D,
EG'T(WE) < u/8. (22)

Let
Q = {(x,s):q1(z,s) >2" s e u/2,u]}.
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Since the g;-process cannot exit D x [0,00) through 0D x [0,00), (22) implies

PZT(Q) > u/4) < 1/2. (23)

Now let § = 2F1- 1. Since 0 < g1 < 1, the process g1(V;) is a martingale under P** and
g1(z,8) > 2k for (z,s) € Q, we see that there is at least 2¥171/2 chance that V under P** will hit
M x {0} before hitting any other part of (D x [0,00)). Thus we have for (z,s) € Q,

Py Ve M x (0] =
| (610:0) /912 5) PP Vs € dy (D % [0,50))) = 5]

z/P“Me@fWWXMwmzﬂ
M

> oki=1/9,

This and (23) yield, by the strong Markov property, for all z € D,
P VeeMx{0}] > ¢ >0.

The ratio of g and g; is bounded away from 0 and oo on the accessible boundary of D x [0, 00), so
PyU[V,e Mx{0}] > >0

for all z € D. This is equivalent to the statement in the lemma. L]

4 Neumann eigenfunctions

We will consider lip domains D C IR? in this section.

Recall the coordinate systems (e1,ez) and (e],€)), and the partial order “<” on IR?, defined

before Proposition 2. For a function u € C'(D) write

8'u:min{au Bu}‘

9 e,
Let
S ={uecCD):du(x) >0,z € D},

S={ueC'(D):du(x) >0,z € D}.
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Lemma 5 Let D be a lip domain other than a rectangle. Consider a Neumann eigenfunction i in

D corresponding to the second eigenvalue. If 1p € S then ¢ € S,

Proof: We will first prove the following claim.
(A) There exists a nonempty ball B C D and a constant a > 0 such that 9" > a on B.

Assume that (A) does not hold. Since ¢ € S and % is non-constant, there is z € D where
0Y(x)/0e; > 0 for either i = 1,2. Assume without loss of generality that 0y (z)/0¢} > 0. The
inequality holds in a neighborhood of z, by continuity of V). We have assumed that (A) fails, so
there exists an open set where 9v/del, = 0. Since 1, as an eigenfunction, is real-analytic in D,
01/ 0eh, = 0 holds everywhere in D. Hence 1(z) = g(x1), where z; refers to the first coordinate of
x = (x1,z2) in the coordinate system (e}, e)). The only function of the form v (z) = g(x;) which
satisfies the equation Ay = —pu91p is () = cosxzq, upon appropriate translation and scaling of
the coordinate system. As a generalized solution to the eigenfunction equation, 1 satisfies for any
f e C*(D),

m/ fz/)dx—l—/ d)Afder/ v o(dz) = 0,
D D op  Ov

where v is the inward unit normal vector field, and o is the surface measure on dD. The divergence

theorem implies that
,u2/ fipdx :/ Vf-Vipdz.
D D

We will use a test function of the form f(z) = 6(z2). For any such function f, the right hand side

of the last formula is zero, and so we have

/ cos x1 O(z2)dx = 0. (24)
D

The eigenfunction 1 must vanish at some points of D. It follows from the periodicity of ¢ (z) =
cosz; that we can assume without loss of generality that 1 vanishes on {z € D : z; = n/2}. By
Courant’s Nodal Line Theorem, ¢ cannot vanish anywhere else in D. Hence, D C {z : —7/2 <
x1 < 3w/2}. Recall from Section 1 the left and right vertices of D, called z* and y*. Let «; [resp.,
as] denote the line through z* [resp., y*], parallel to the €}-axis. The fact that D is a lip domain
which is not a rectangle implies that the projection onto the €}-axis of aq N 9D is not equal to that
of oy N ID. Hence, for either i = 1 or 2, o; N dD is not symmetric about the line through the
point (7/2,0) parallel to e,. Assume without loss of generality that there is no symmetry for i = 1.
Then either [ -, 9(z1,22)dzy > 0 for all lines o which intersect D and are sufficiently close to oy,

or the integral is strictly negative for all such «. Now let @ be such that f(z) = 0(z2) is zero off an
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e-neighborhood of «, it is equal to 1 in a neighborhood of a;, and nonnegative in D. Then, if € is
small enough, [}, fipdz # 0. This contradicts (24), and therefore (A) holds.

We will need the following result from [8] (Theorem 2.4) on “synchronous couplings.” Suppose
z,y € D. Then there is a probability space (', F', P, ), and a process (W, X,Y) such that X
[respectively, Y] is a reflected Brownian motion in D starting from z [y], and W is a Brownian
motion on the filtration generated by (W, X,Y), such that (X,Y) admits the following Skorohod

representation:
Xo=zt Wt [Vl Y=y + Wt [ w(VdM],,

where |L| and |M| are boundary local times for X and Y, respectively, and where v is the inward
normal vector field on dD. Theorem 2.4 of [8] shows that the synchronous coupling (X,Y’) in D
may be obtained as a limit of synchronous couplings in a sequence of polygonal lip domains Dy,
approximating D. For polygonal lip domains, the following “order preserving property” has been
proved in [3], and so it holds for the coupling (X,Y) in D; if z < y then X; <Y, for all ¢ > 0,
P; ,-a.s. We have for any ¢ > 0,

e () = By h(X), e " p(y) = By yih(Yy).

Let B = B,(zo) be a ball satisfying claim (A) proved at the beginning of the proof, and let
B = B,s(x0). Let € D, y = = + re} and T = inf{¢ : dist(X;, D) < dist(z,dD)/2}. Note that
(Y1) —1p(X71) > 0 with probability 1, because X7 <Y; and ¢ € S. We have Y1 — X; = Yy — X, if
T > 1. Hence for all r € (0, p/2) such that y € D,

Y

FW) —wle) > e B [((0) — (X)) )

(¢a/2)PL (X1 € B,T > 1),

\%

where a > 0 is the constant in (A). Since the right hand side is positive and independent of 7, it
follows that 0 (z)/0e| > 0. A similar argument applies to di/0eh, and we conclude that 9'yp > 0
on D. ]

Recall that D, = {x € D : dist(z,0D) > ¢}.

Lemma 6 Suppose D is a lip domain other than a rectangle. For any &1 > 0 such that the interior

of D¢, is non-empty, and any §,b > 0, there ezists eo > 0 with the following property. If 1 is a
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Neumann eigenfunction corresponding to ue with

Y >4§ on D,
dY >0 on D,

| <b on D,

then
9% >0 onD.

Proof: Let E, be the expectation corresponding to the distribution of reflected Brownian motion

in D, starting from x. Then for any ¢ > 0, and z,y € D,

e 2 (h(x) = p(y) = Exh(Xe) — Eytp(Ya).
Hence, it will suffice to show that for all z,y € D, z > vy,

Epp(Xo) — Eyp(Y2) > 0.

Recall the domains D" from Section 3. We will denote by P, a measure under which (X,Y")
is a pair of reflected Brownian motions in D", starting from (x,y), which is mirror coupled on the
time interval [0, 1) and synchronously coupled on [1, 2] (see the proof of Lemma 5 for the definition

of a synchronous coupling).

If z € D then the distributions of X under P;', converge weakly to the distribution of the
reflected Brownian motion in D in the uniform topology on C([0,2],1R?), as n — oo, by Theorem
2 of [7]. Since a similar remark applies to Y, it is enough to show that there exists e, > 0 such

that for all large n,
By, ($(X2) —(Y2)) > 0.

Denote the coupling time by 7. Since Xo = Y5 on {7 < 1}, it suffices to show that
By [h(X2) —(Y2) [ 7> 1] 2 0. (25)
By the uniform continuity of transition probabilities in D™’s proved in Theorem 2.1 of [8],
P2,(X, €C) < ¢[C], (26)

for any Borel subset C of D, where |C| denotes the Lebesgue measure of C, and ¢ does not depend

on z,C and n. Let ¢; and ¢y be the constants from the statement of Lemma 4. We can assume
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that o < £1. By Proposition 2, Xy > Y5 a.s. Recall that 0" > 0 on D.,. This implies that
P(Xo) —1p(Ye) > 0 on {Xo,Ys € D.,}. By (26),

Ep,((X2) —o(Yo)[r > 1) > Eg [(+(X2) —¥(Y2))l{x; vaep.,} T > 1]
—Qb[Px,y(Xz =4 DE2|T >1)+ Px,y(YQ =4 D52|T > 1)]

> E:?,y[(?/)(Xﬂ - ¢(Y2))1{X2,Y2€D51,\X27Y2|>c1/2}|7— > 1] — ces.
Since 0'1p > § on D.,, we have ¢(X3) — (Y3) > d¢1/2 on {Xo,Ys € D, | Xo — Yo| > ¢1/2}, so
By, ((X2) —p(Y2)|r > 1) > P (X2, Ys € Dey, [ Xo — Yo > ¢1/2 | 7> 1) — cea.

It is clear that Lemma 4 remains valid if we replace ¢; in that lemma with any smaller constant.
Assume that ¢; > 0 is so small that there exists z € D such that By, (2) C D.,. An easy argument
based on Lemma 2 and the strong Markov property shows that if |X; — Y7| > ¢; then with some
probability p > 0, independent of n, we have Xs,Ys € D, and | X2 — Ya| > ¢1/2. Hence,

B ($(Xs) — (Vo) > 1) > cPP[1X1 = Yi| > ci]r > 1] — ce

> cey — cea,

where the last inequality follows from Lemma 4. Note that cy and the other constants in the last

formula do not depend on z and y. Taking eo > 0 small, (25) follows, and Lemma 6 is proved. [J

Proof of Theorem 1: One can easily verify that both parts of the theorem hold in rectangles so

we will assume that D is not a rectangle.

(i) The argument is similar to that in the proof of Theorem 4.1 in [2]. Arguing by contradiction,

assume that po is multiple.

Recall from the proof of Lemma 5 that there exists a synchronous coupling of reflecting Brownian
motions in D with the property that X; < Y; for all ¢ > 0, if Xy < Yy. This and the argument
given in the proof of Theorem 3.3 of [3] show that at least one of the eigenfunctions corresponding

to 2 belongs to S. Fix one of these eigenfunctions and call it ¢.

We have assumed that ps is multiple so there exists an eigenfunction ¢ which is orthogonal to
¢. Since ¢ and —¢p* cannot both be in S, we can assume without loss of generality that ¢ ¢ S.
Let
¢ = (1 —a)p+agpt, aecl0,1],
and
a" =inf{a € [0,1] : ¢* € S}.
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We claim that a* < 1. Since 8'¢* > 0 on D for a < a*, and 9'¢* — 9'¢* pointwise in D when

a1 a*, we have that ¢¢ € S. Hence a* cannot be equal to 1. Therefore there is a sequence a;, with
ag } a*, ag € (a*,1), ¢ & S. (27)

For a € (a*,1) let
e(a) = sup{dist(z,0D) : &' ¢*(x) < 0}.

Note that as a | a*, &' (%) — 9'(¢*") uniformly on compact subsets of D. Since ¢* € S, Lemma 5
implies that ¢ € S. Therefore for any compact set C, we have &' (¢%) > 0 on C for all a sufficiently

close to a*. Hence
lim e(a) = 0. (28)

ala*
Let €, > 0 be as in Lemma 6. Using again the facts that the convergence 0/¢* — 0'¢® is uniform
on compacts, and that ¢* € g, we have that there are constants 0 > 0 and a; € (a*, 1) such that
d'¢® > 6 on Dy, for all @ € (a*,a;). Since by definition, 9'¢* > 0 on D, for all a € (a*,a1),
Lemma 6 and (28) show that ¢® € S for all a € (a*,a2), where as € (a*,a1). This gives a

contradiction with (27). As a result, the eigenvalue is simple, and Theorem 1 (i) follows.

(ii) We have shown in the first part of the proof that there is only one eigenfunction corresponding

to p2 and that it belongs to S. This immediately implies part (ii) of the theorem. ]
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