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Abstract

In thiswork, we address the problem of reliable multicast distribution of bulk datato alarge set of indepen-
dent clients. The clients are not coordinated; i.e., they may start data reception at any point in time. Clients
are heterogeneous in the sense that their maximum achievable data rates from the server vary widely, both
among clients and with time. Moreover, the network may become congested and packets may be lost. Our
goal isto permit each client to receive all the data as early as possible, while minimizing network resource
utilization. The problem being addressed represents mass distribution of bulk data, such as software, soft-
ware updates, content distribution, etc. This work demonstrates that any simple, erasure correcting codes
computed over small blocks of data, can be used for this purpose in a near optimal way.

Our transmission scheme comprises a set of co-scheduled channels, whose transmission rates increase expo-
nentially. Every channel carries all the data cyclically, along with redundant packets computed using an era-
sure correcting code. (Note that, due to the perpetual nature of the transmission, the use of redundancy does
not cause the transmission of any "extra" data.) This code is applied to small, fixed-size groups of packets.
The key element in this scheme is the partitioning into small groups, which permits the efficient use of stan-
dard codes, the smart scheduling of the transmission within each channel, and the interleaving of the chan-
nels. We show that a user that subscribes to any contiguous set of channels including the slowest one must
only receive an amount of data equal to the original file size, regardless of starting time. This remains nearly
true even if packets are lost or the user changes its subscription. At the same time, the network is used effi-
ciently, in that the data rate carried over a given link is no greater than that required by the fastest down-
stream subscriber. The basic scheme is then extended in several ways to permit finer granularity of the user
datarates, and is shown to remain near-optimal even if network conditions and subscriptions change dynam-
ically. One of these extensions also applies to schemes that use an erasure correcting code that is computed
over the entirefile. Finaly, the scheme is highly scalable because the only interaction with usersistheir sub-
scription to channels.

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 1
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Glossary and Notation

Chapter 2

g - Average packet lossrate
p-1q

G - File Size in packets

N*- random variable which represents the number of times that a certain packet was sent until it was finally
succesfuly received by aclient

P - various probabilities
C - cycleindex

NC- random variable which represents the number of times (cycles) that G packets (the file) were sent until
they were all succesfuly received by aclient

i - packet index (0..G-1)

dc; - number of times packet i has been sent up to cycle c. used in chapter 2 for the optimality proof of the
simple packet schedule.

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 3



Glossary and Notation

g - packet index (0..G-1) within acycle

Pchg- Probability that a client successfully received the G packets of a file after ¢ complete cycles of G
packets each and g more packets.

O - Optimal Packet Schedule

O, - TheID of the packet sent at time slot i under packet schedule O
C - Candidate Packet Schedule

C; - The ID of the packet sent at time slot i under packet schedule C
B - Better Packet Schedule (than C)

B, - The ID of the packet sent at time slot i under packet schedule B

NGS— the random variable that represents the number of packets transmitted until succesfull reception of the
G packetsin the file under scheduling S Where Sis one of: O (the optimal packet schedule), C or B.

|G9g- Indicator. It is 1 if the packet in time slot i under schedule Sisthe onewith ID g. It is 0 otherwise.

FG*gsi- Number of times the packet with ID g is sent at or before time slot i under packet schedule S.

i - packet IDs
j,K - indexes
m,n - time slot in packet schedule

U - random variable which represents the number of times that a certain packet was sent until it was finally
succesfuly received by aclient using an ideal reliable unicast protocol

UC- random variable which represents the number of packet that were sent until a file of G packets was
finally succesfuly received by aclient using an ideal reliable unicast protocol

XC - random variable which is the number of successful packet receptions out of ¢ packets that were sent.

b - parameter for Gaussian distribution table lookup

4 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



P_- Probability that the last trasmitted packet was lost.
Ps- Probability that the last trasmitted packet was successfully received.
Q - Probability of transission from Loss to Success.

3 - Probability of transission from Success to Loss.

Chapter 3

K - Number of data packetsin FEC group.
N - Number of coded packetsin FEC group.
G - Number of FEC groupsin File.

g - Group index (0..G-1).

S- File Size in packets (S=GK).

g - Average packet lossrate

p-1-q

XC - random variable which is the number of successful packet receptions out of ¢ packets that were sent.
VC,- Probability that X© is equal to m.

P - various probabilities

c-cycles

NGK - Random variable for the number of packets needed to receive afile of GK packetsthat is divided into
G groups of K packetsto which FEC is applied.

PGKcvg— Probability that NCKis equal to cG+g which means success after ¢ cycles of G packets plus g more
packets.

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 5



Glossary and Notation

O - Optimal Group Schedule

O, - TheID of the group sent at time slot i under packet schedule O
C - Candidate Group Schedule

C;i - The ID of the group sent at time slot i under packet schedule C
B - Better Group Schedule (than C)

B, - The ID of the group sent at time dot i under packet schedule B

NGKS - the random variable that represents the number of packets transmitted until succesfull reception of
the GK packetsin the file under scheduling S. Where Sis one of: O (the optimal packet schedule), C or B.

IG’QSi- Indicator. It is 1if the packet intime slot i under schedule Sisthe one from group g. It is 0 otherwise.

FGQS[— Number of times the packet from group g is sent at or before time slot t under packet schedule S.
i - group ID.

j,h - indexes.

m,n - time slot in group schedule.

PP - Desired success probability.

c* - estimated packets per packet

c** - estimated heuristically corrected packets per packet

Chapter 4
ipd - inter packet delay
j - multicast channel index

g - time slot number within multicast channel

6 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



R; - rate of channel j.

B - Baserate.

| - subscription level

K - Number of data packetsin FEC group.
N - Number of coded packetsin FEC group.
p - packet index (0..N-1).

G - Number of FEC groupsin File.

g - Group index (0..G-1).

JW - G=W2’ (where Wis not an even number).

S- File Size in packets (S=GK).
S- slot number.

t - mini-slot number.

z - starting slot.

g* - g(2"'w)

r(g*) - non integer part of g*

M - N=2M

Ss - supersiot number.

tt - mini-superslot number.

Zz - starting superslot

0g - packet index within mini-superslot

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data
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Glossary and Notation

Chapter 5

j-t - sampled channel ID.

g - time slot number within multicast channel
K - Number of data packetsin FEC group.

N - Number of coded packets in FEC group.
p - packet index (0..N-1).

G - Number of FEC groupsin File.

g - Group index (0..G-1).

S- File Size in packets (S=GK).

i,j - channel indexes

Chapter 6
K - Number of data packetsin FEC group.
N - Number of coded packets in FEC group.

G - Number of FEC groupsin File.

8 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



CHAPTER 1 O\/G’Vla/\/

Problem Satement

Given alarge file located in a computer system herein after called a server and a very large number of client
computers that desire to download the file and are connected to the server by means of a global interconnec-
tion network, we desire to make the file available to all receivers in minimum time and with the least con-
sumption of network resources. We are interested in the case in which the receivers are arbitrarily dispersed
within the network topology, have different and widely varying connection rates to the server, and may want
to initiate the transfer at different pointsin time.

A trivial approach to the described problem would be to use some known point-to-point reliable data transfer
protocol (such as FTP) between the sender and each one of the receivers. Every receiver could start the
transfer at its desired time. The problem with this simple approach is the quick overloading of the sever con-
nection with different flows that contain the exact same data. As the number of receivers grows, the results
of such a solution would be devastating in terms of consumed network resources and would have unaccept-
able performance from a client’s perspective. We wish to address this scalability problem and find a solution
that is suitable for very large groups of receivers.

A proposed approach is to multicast the transferred data. In multicast communications, data is transferred
from the source using a tree which spans al the receiver nodes. In this way, the replication of identical data
over the same link is avoided thus drastically reducing the consumed network resources. The replication
avoidance has the primary benefit of making the scheme scalable to a large number of receivers. Thisis

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 9



Overview

because of the nature of multicast transmissions in which link saturation (as a result of simultaneous trans-
missions) is eliminated.

In order to cope with the fact that individual receivers may want to initiate the file transfer at different times,
the file could be repeatedly multicasted in a cyclic manner by the server. In other words, once finished with
the first transfer, the server would start with it all over again and so forth for as long as there are receivers
which have not yet finished to receive the data. Considering the bulk nature of the transferred data, in-order
transfer is not necessary. Therefore every receiver could join the multicast transfer at any desired point in
time and stay tuned for awhole cycle in order to receive the wholefile.

An issue that would yet remain to be addressed is that of packet loss handling. Data packets are not guaran-
teed to arrive at its desired destinations in a best effort network such as the Internet. Individua receivers
would experience different packet losses which would keep them from compl eting the reception even after
having being tuned to one whole multicast cycle. By using packet identifiers, this situation could be
regarded as that of an erasure channel. Erasure channels are characterized by the fact that errors happen in
the form of packet losses which can be positively detected and identified by the receiving side.

Traditional reliable point to point data transfer schemes use feedback from receiver to sender for loss han-
dling. Missed or corrupted packets are somehow reported to the server and retransmitted. In multicast com-
munications reliability is a much more complicated issue. Several works have been done in the last few
years on thisregard which propose all kind of hierarchical and local recovery techniques. Every one of those
schemes assume a feedback communication channel from receivers up the tree to the sender. As scalability
is one of our major goals, we want to absolutely refrain from any from of feedback and hence these tech-
niques will not be used. A scheme with no feedback requirements makes loss handling absolutely not influ-
enced by the number of receivers and so completely scalable. Such a solution has the additional benefit of
being also applicable to networks where feedback channels are virtually nonexistent such as wireless or sat-
ellite based.

Up to this point, we have not taken into account the heterogeneous characteristics of the receivers. Different
connection rates, locations in the network with respect to the server and processing capabilities such as local
storage access rate, result in different attainabl e effective rates for each of the clients. Moreover, other traffic
in the network further complicates the situation by introducing dynamics into the problem. It is clear then
that multicast transmission of the data at any single specific rate would not be a good solution for a vast
number of heterogeneous receivers. Those with higher capabilities could have gotten the file faster while
those with lower attainable rates would have caused excessive packet dropping either by themselves or by
intermediate nodes.

Dropping as a result of uncontrolled packet flow is something we would very much desire to avoid in an
environment like the Internet where congestion control can be a determinant factor of overall performance.
We would not want our protocol to contaminate the network with packets that are bound to be dropped. The
goal isthen to devise a scheme that isfriendly to other protocols that coexist in the network.

10 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



A first conceivable solution to the mentioned problem would be to simultaneously transfer the same file
using different multicast channels at different rates. In this way, every receiver would subscribe to the chan-
nel corresponding to its highest attainable rate. The clear problem with such an approach is that network
resources would not be optimally utilized. Let us consider two receivers topologically located at nearby
placesin the network but with different connection rates in their respective final hops. Because of the differ-
ent rates, the two receivers would subscribe to different multicast channels resulting in extra data flowing
through the common parts of their path.

An dternative is to use a receiver driven approach where the server sends the file using multiple channels
and clients individually tune their reception rate through subscription to one or more of these channels
simultaneously. This involves a sophisticated packet schedule at the server which is one of the main contri-
butions of this work. The multicast group membership protocols, implemented at the distribution tree nodes,
are responsible for the subscription and un-subscription mechanisms. Such dynamic membership mecha-
nisms react to subscription changes so that data is no longer forwarded along the edges of the distribution
tree if there are no subscribed clients downstream anymore. This property together with the self control
applied by each receiver through its subscription policy iswhat effectively implements the congestion con-
trol.

Therest of this chapter provides an overview of thiswork and describes its organization.

Simple Cyclic Multicast Distribution of Bulk Data

The simplest way to handle losses in the erasure channel model with no feedback described above would be
for the receiver to stay tuned for additional cyclesin order to get the still missing packets. In CHAPTER 2
on page 17, we provide a mathematical analysis for some models of such a basic scheme. We analyze per-
formance measures for receiver delays as well as consumed network resources. We back our statistical mod-
els with simulations and develop an approximation for the performance measures that provides insight into
the factors that determine the results of this simple approach. We compare the results of our simple approach
to those of an ideal selective retransmission point to point protocol. We conclude that the file size has a big
impact in the results of the proposed scheme as compared to those achieved by feedback based point-to-
point protocols where file size has no effect.

Multicast with FEC for Bulk Data Distribution

Since our goal isto provide ascheme where the results from areceiver’s perspective are comparabl e to those
that would have been achieved through a point-to-point reliable protocol, in CHAPTER 3 on page 43 we
further evolve the simple cyclic scheme to make it less affected by the size of the file. Thisinvolves the use
of known forward error correction (FEC) techniques. In a networking framework, a (K,N) forward error cor-
rection scheme works as follows: N coded packets are generated from K data packets at the server. The N
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coded packets are then transmitted through the network. The correct reception of any K out of the N trans-
mitted coded packets along with their identity, allows a receiver to reconstruct the K original packets.

FEC has been applied to many communication systems. A widely used mode, not related to our case, is one
in which FEC is introduced to effectively improve the loss rate characteristics of a transmission media. In
such a scheme, N units of information are sent instead of K for every K unitsthat have to be transmitted. The
amount of redundancy (N-K) becomes a significant factor for those applications as it determines the over-
head paid for the use of FEC. Our application of FEC is substantialy different. We use the error correcting
codes combined with a multicast cyclic transmission schedul e to enable each client to take advantage of any
packet received in order to make progress in the reception of the file. The server keeps cycling over the N
packets anyway so to satisfy additional clients. For that reason, not only that a large N does not imply a
larger overhead, the larger the N the better the attainable results for our application.

Assuming afile of size S[packets], a straightforward application of FEC to the bulk file distribution prob-
lem would ideally encode the whole file (K=S) so to generate a very large number N of coded packets. The
coded packets could then be sent cyclically using multicast. Each receiver could start reception at any point
in time and would need to successfully receive any S packets out of those that were transmitted during its

reception time in order to be able to reconstruct the original file. From a client perspective, this methodol-
ogy is ideal. The achieved results are the same as those of an equivalent selective-retransmission-based
point-to-point reliable protocol. The reason for this is quite obvious. Every single packet successfully
received counts towards completion of the file reception. Thisis equivalent to the case in which by explicitly
requesting retransmission of those packets that were lost a unicast reliable protocol achievesits results. The
use of FEC enables the multicast receiver to take advantage of any received packet where in the previous
simple cyclic scheme in order to recover a packet that was lost the receiver had to wait for that specific
packet to be transmitted again. Thislast fact is what made the simple cyclic scheme so affected by the size of
thefile.

The trivial application of FEC as presented above is the ideal solution to the bulk file distribution problem.
Network resources are optimally utilized through the use of multicast while at the same time each receiver
experiences the best possible performance results. However, practical implementations of publicly available
forward error correction coding and decoding schemes have shown to be of non-linearly increasing time
complexity with the growth of K. We want to provide a protocol that works with very large files and there-
fore we are limited to relatively moderate values of K as compared to those that would result from setting it

to the total number of packets on the file as suggested above?. We therefore choose a computationaly effi-
cient K and divide the fileinto G groups of K packets each (where G=SK). Forward error correction isthen
applied to each one of the G groups to achieve N coded packets per group. The resulting coded packets are

1. provided N is large enough (in comparison to K) so that each receiver manages to successfully receive K valid pack-
ets before the server cycles over the same coded packets again
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then transmitted using multicast and a group interleaving packet schedule that we prove to be optimal from
every receiver’s standpoint for any given set of parameters K and N.

We include a mathematical analysis of the performance of this protocol along with simulation results that
back our statistical model. We compare the results to those of the previous simple cyclic scheme and show
the effect of the FEC group size in the performance of the proposed scheme. We repeat then the comparison
against the ideal selective retransmission protocol and show the benefits achieved through the use of FEC
groups. We show that the results for a wide relevant range of setup parameters are comparable to those of
the ideal point-to-point reliable scheme thus achieving our desired goal.

We also develop a bound for the mathematical expression that models the behavior of the presented proto-
col. We further simplify this bound to achieve an approximation that behaves very closely to the calculated
expression and provides meaningful insights about the impact of the different parameters on the perfor-
mance results.

Multi-rate Distribution to Heterogeneous Clients

In order to take full advantage of the benefits of multicast transmission in the presented heterogeneous cli-
ents scenario, we need a scheme where slower receivers take advantage of part of the data that goes to the
faster ones but never add to the load of the links. In CHAPTER 4 on page 83, we show that in such a case,
the network utilization is optimal in the sense that for every link in the transmission tree there is at least one
client downstream that is receiving al the data that flows through the link. We call this situation optimal
network utilization since the load on each link is never greater than what it would have been had only the
fastest receiver downstream be downloading the file using a point-to-point reliable transport protocol.

In order to achieve the described optimal situation, we have pursued the approach of aggregated (or cumula-
tive) channels. The server multicasts the data using different channels at different rates and receivers sub-
scribe to one or more channels subject to the following restriction: All receivers subscribe to channel 0 in
which datais sent at a base rate. Receivers with higher reception capabilities subscribe to additional chan-
nels in their numbered order. In other words, in order for a receiver to subscribe to channel j it has to sub-
scribe to channels 0..j-1. We prove that this subscription policy results in optimal network utilization as
defined above.

We then consider the combined packet stream received by each receiver under any subscription rate and pro-
pose a packet schedule mechanism and channel rate assignment scheme that results in optimal attainable

2. Some new FEC codes have been introduced lately that allow to use much larger values of K than those codes we refer
to in thiswork. These codes are proprietary afact that makes them far less attractive.In this work, we develop a
schedule mechanism that combined with publicly available well known FEC codes, achieves results comparable to
those that would be achieved with the new proprietary codes.
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performance from the receiver standpoint. The main challenge is for the packet schedule to maintain the
group interleaving property, that was proved optimal in a previous section, for all receivers simultaneously
regardless of their subscription rate and their starting point in time. We have thus solved the multi-rate prob-

lem while achieving the same results® presented previously when the receiver rate heterogeneity was not
taken into consideration.

Rate Resolution Enhancementsfor Layered M ulticast

The multi-channel packet schedule scheme described above is based on cumulative subscription to channels
whose rates are each double the rate of the previous one. The packets on channel 0 and 1 are sent at a base
rate. From there on, every channel has double the rate of the previous one. We call this rate assignment:
exponential. Clearly, with such arate assignment and the cumulative subscription policy described above,
each client is then allowed to select arate equal to an integer power of 2 times the base rate. This coarse res-
olution in the rate selection may be too restraining for some practical cases. In particular, widely deployed
congestion control schemes require a higher resolution in the rate selection in order to react as expected to
network congestion.

In CHAPTER 5 on page 131 we further evolve our packet schedule scheme to provide more flexibility in the
choice of the desired rate by each of the receivers. We explore two approaches to accomplish this goal. In
the first one we achieve higher resolution rates by generating slower channels out of the schedule mecha
nism achieved before. We show that by sampling at the server our previously optimal channels, to achieve a
new set of channels all of the same rate, we get a schedule scheme that behaves very closely to the optimal
case and at the same time provides complete freedom in the rate selection.

The main drawback of the channel sampling technique is the increase in the number of multicast channels
used. Our second approach to rate resolution enhancement uses a different technique that keeps the number
of multicast channels to the same amount as in the original cumulative exponential scheme. For this, we
relax the restriction of aggregated channels and eval uate a selective (non-cumulative) subscription approach.
In other words, every receiver is free to select among the channels the desired combination that best matches
its attainable reception rate. We test this selective approach using our proposed exponential channel packet
schedule and show near-optimal results. Aswe prove, under a non-cumul ative subscription scheme like this,
clients may pick any combination of the transmitted channels and that may result in anon-optimal utilization
of network resources. We show that for our suggested non-cumulative scheme the network over utilization
is bounded by a small number and analyze the implications of this fact for practical cases.

3. optimal for any given FEC configuration (K,N) and comparable to what can be achieved with an ideal point-to-point
reliable protocol.
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We further evolve our exponential non-cumulative scheme into a combined approach where intermediate
nodes in the distribution tree (such as routers) consolidate the channel requirements from downstream agents
in order to achieve optimal network utilization. This is done at the expense of not satisfying in some cases
the exact requirement of one or more of the downstream agents. We show a consolidation heuristic that
guarantees to each client at |east the same rate than the one that would have been achieved under the expo-
nential cumulative scheme. Our heuristics are based on an attempt to satisfy the slower receivers as close as
possible to their exact requirement. Thisis motivated by the observation that these receivers are the ones that
will mostly benefit (in absolute terms) from an increase in their reception rate.

Unlike the previous simulations where results were analyzed from a single receiver standpoint, for this case
we build a simulation infrastructure that enables us to mimic the effect of multiple receivers in arandomly
generated multicast tree. We apply then our proposed heuristics to very large sets of receivers and show the
improvement achieved over the exponential cumulative scheme.

Network Dynamics

We evaluate in CHAPTER 6 on page 167 the impact of network dynamics in the performance results
attained by our proposed mechanisms. We simulate a scenario where the subscription rate for a client is
changed during its reception time and measure the effect of this rate change in its perceived performance
results. We show that the impact of thisis very low and therefore claim that our proposed methods are appli-
cable to the practical case where network dynamics affect the rate selection.

Summary

Our work is summarized in CHAPTER 7 on page 173
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CHAPTER 2 Srrpleq/dlc
Multicast Digtribution

of Bulk Data

2.1 - Introduction

Distribution of Bulk Data

Let us consider a server connected to a large internetwork using a line of bandwidth B and several clients
connected to the same network using lines of capacity B; where B is greater than B; for all clients. Let us
assume the capacities of the mentioned links are the only bandwidth limiting factors in the communication
between the server and the clients. Let us further assume that the probabilities for missing or corrupted pack-
ets are independent and equal to q for every packet transmitted.

FIGURE 2.1 -A Server and Several Clients
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When asingle client C, downloads afile from the server (using for example the Unicast File Transfer Proto-
cal), its perceived results are mandated by its effective transfer rate which is B,* (1-0). Thisis a reasonable
result but is based on the assumption that there is always available bandwidth on the server’s connection to
the router. A serious problem arises when several clients attempt to download from the same server at the
same time. The Unicast FTP approach does not scale very well. Very soon the server connection collapses
and becomes the bandwidth limiting factor. Assuming fair distribution of bandwidth among all clients, the
following figure shows the impact on the effective data rate for identical types of Unicast FTP customers as
the number of transfersincreases.

FIGURE 2.2 - Multiple clients downloading from the same server
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If the files being transferred to the distinct clientsare al different, thereis not much that can be done asthere
isareal need for bandwidth augmentation on the server connection. However, there are many cases when all
(or most of) the clients are trying to download the very same file. A good example of such a case iswhen a
software company releases a new version of avery popular software or an update patch. In such cases peo-
ple tend to connect and try to download those newly available files as soon as they become available causing
the collapsing of the server connection. This phenomenais sometimes called “ The midnight madness prob-
lem” because it usually happens at the late hours of the night when those rel eases are effectively made avail-
able to the public. Other cases with similar kind of problems are file distribution services for data such as
weather, stocks, news and server mirrors updates.

Using Multicast for Bulk Data Distribution

Multicast or point-to-multi-point communications are an attractive solution for the problem presented so far.
In Multicast communications, data is transferred using a multicast routing tree that reaches all clients inter-
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ested in the transmission. In thisway, a single portion of the data flowing through alink in the multicast tree
satisfies at the same time all receivers downstream that link in the tree.

Multicast communication has been and still is a subject of vast research. Several problems exist when using
this kind of data transmission including among others, multicast group management [1] [2], multicast rout-
ing [3] [4] [5], reliable multicast protocols [7] [11] [8] [9] [10] [11] [13], congestion control for multicast
[12] [14] [15] [16] [17], session naming and management and multicast security issues.

Some of this problems will be addressed in this work in the framework of bulk data distribution.

2.2 - Smple Multicast for Bulk Data Distribution

File Multicasting

As seen, in order to overcome the limitations of the server connection and to take advantage of the fact that
several (possibly non synchronized) copies of the same information are flowing on the same link, a natural
solution is to use Multicast. Clients will use special multicast file transfer programs and join scheduled ses-
sions of the file transfer. This sessions could be attended by every client wishing to download the file at the
specified time (or at any time after the previous multicast has begun). Users would have to wait maybe afew
minutes for the starting of the next session but the advantage would be great as the number of userslistening
to the same multicast session would be the reducing factor in the usage of the outgoing communication link
from the server. The timing and consequently the number of concurrent multicast session would be deter-
mined by the server communication capabilities.

Cyclic Multicast

The above method of scheduling multiple (possibly overlapping in time) multicast transfers of the same file
isreally not necessary for our problem. That solution is well suited for media streaming where the ordering
of the received information is substantial. In our case, since every receiver needs the whole file anyway, we
could use a single cyclic multicast. In other words, the server would send the file and start al over again as
long asthereis at least one client receiving the data. The clients could join at any stage and listen to the mul-
ticast transfer for a whole cycle which can begin at any time. No waiting for the start of the next session
would be needed and in addition one single instance of the multicast would have to be transmitted consum-
ing much less bandwidth at the server connection than before. With this approach we are back at our ideal
transfer rate and we can support an unlimited amount of clients without any impact on the server’s connec-
tion.
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Packet L oss

A problem that still needs to be solved, for this solution to work, is that of packet loss handling. In a packet
switching network packets are lost mainly for two reasons. The first is related to the properties of the trans-
mission media and is often regarded as bit error rate. Most modern transmission technol ogies achieve very
small bit error rates (in the order of 10"-10 or smaller) and therefore most of the packet osses experienced in
practical cases are related to the second cause: congestion control. Widely deployed network fabric devices
react to congestion by dropping packets. Thisisin turn interpreted by the endpoints as an implicit conges-
tion notification which causes them to slow down their injection rate thus alleviating the congestion prob-
lems. This dropping behavior isthe main reason for packet loss in cases relevant for our problem.

When using a unicast approach, an end to end reliable transport protocol isimplemented between the server
and each client. Transmission errors are handled by the standard selective retransmission mechanisms. A
missing or corrupted packet is resent by the server upon request from the client that detected its loss. With
the multicast approach, areliable scheme is much harder to implement. Reliable Multicast has been a subject
of research and no single widespread solution exists yet for thistask. We will further elaborate on thisimpor-
tant issue in the following chapters but we can say at this point that one of the main issuesin Reliable Multi-
cast isthat of scaling of the solution to huge groups of receivers.

Handling Packet Lossin Cyclic Multicast

In our particular case, we could take advantage of the cyclic nature of our multicast. A viable trivial
approach for error handling with no overhead whatsoever from the server point of view, would be for the cli-
ent to stay tuned to the multicast and wait for the next cycle in order to receive missed or corrupted packets.
This method is completely scalable in the number of users as it makes no use whatsoever of a feedback
channel.

In asomewhat different context, the cyclic distribution of datais addressed in [19]. That work focuses on the
multiplexing of multiple streams in the same distribution channel and does not analyze the effect of packet
losses.

We analyze the impact of packet losses in the performance of this simple agorithm. We assume that |osses
are caused by either packets that never reached the destination or corrupted ones which are discarded by
lower protocol layers and appear to the application as missed packets aswell. We further assume in this anal-
ysisthat losses are non correlated in time. We address the time correlated model afterwards.
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Analysisfor Cyclic Multicast

We aim to calculate the time areceiver hasto stay tuned to the cyclic multicast in order to receive the G dis-
tinct packets that form the whole file. We will measure this time in packet units. Let q be the probability that
a packet does not reach our particular receiver. And clearly p=1-q is the probability of successful reception
of that packet.

Let N* be arandom variable which represents the number of times that a certain packet was sent until it was
finally successfully received by our particular client. Clearly, the probability that a certain packet was
received at or before cycle cis given by:

: (EQY)
P(N'<c)=1-P(N*>¢)=1-¢f
Thisisindependent for every packet so if we denote with N© the random variable that represents the number

of cycles needed so that the G packets are successfully received, then:

(EQ2)
PN <c)=(1-¢f)°

Given afile composed of G packets, the average number of cyclesfor receiving the whole file is then given
by:

(EQ3)

E(NG):CZ::c[P(NG :c)=§1:cEﬁP(NG >c-1)-P(N°® >¢] =

:Z:P(NG >c—1):§P(NG >c):§(l— P(N° <c))
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(EQ4)

Optimality of the Simple Cyclic Multicast

The scheme proposed above involves the server continuously looping over the file packets. We prove that in
the absence of any form of error correction codes, when only the original data packets are being transmitted,
this cyclic looping is optimal in terms of the average number of packets that need to be transmitted for a
receiver to successfully complete the reception of the wholefile.

For brevity, the proof is given in “Optimality of the Simple Cyclic Schedule for the Whole Cycle Model” in
Appendix A (page 183).

The proof shows that, for the packet schedule to be optimal, the server has to send every packet once before
sending a packet for the second time and so on. The packet order within the cycle could be any. However, in
order to satisfy the further constraint of clients starting reception at any point time we need to restrict the
server to use the same packet order in al cycles. With this no matter at which point in time a client starts,
every G transmitted consecutive packets are all different.

A Better Model for the Cyclic Multicast

The result attained so far is in fact worse than what will be experienced in a practical case. The reason for
thisisthat the model above assumes a client will keep receiving during the whole cycle even after success-

fully receiving its last missing packet!. This difference can be significant especially when files are large. A
more real prediction follows. We calculate the probability that the transfer is successfully completed after
receiving packet g in cycle ¢ assuming our same packet scheduling scheme is used.

1. A common mistake is to assume the difference between these two approaches to be half a cycle. Thiswould have
been true if before the last cycle there is only one packet missing which is not necessarily the case.

22 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



Simple Multicast for Bulk Data Distribution

We define our random variable N to be now the number of packets (as opposite to the number of cycles)
transmitted before successful reception of the whole file. We calculate then the probability of success after
receiving exactly cG+g+1 packets as:

(EQ5)
P(N M <c+1) theprobability
that g (thepacketsbefore
packetgineverycycle)already
succeededn thepreviousccycles
orthecurrentone
PN scGrg+l)=rS = por 0 f-¢f ) 0 b TP
sCcG+g+l)= cg p[];] -q -q _
el g=0.G-1

\_ﬂ_—/
packetgis P(Ng-(g+1)=C) theprobability

succesfull thatG—?gﬂ) (thepacketsafter
afterc+ltrials packetgineverycycle)already
succeedednthepreviousccycles

The average number of packets that will be sent from the moment a client joins the multicast transfer until he
successfully receives all the packetsisthen given by:

(EQ6)

o G-1

EN®)=>Y (cG+g+D S

=0 g=0

Proof of Optimality for the Evolved M odel

We prove that for the evolved model, where a client completes its reception whenever it receives the last
packet that was missing, the simple cyclic packet schedule is still the one that results in minimum average
reception time from the perspective of any client and regardless of its starting time.

The proof is a specia case (K=1) of a more general one presented in “Proof of Optimality for the Group
Interleaving Schedule” on page 52. We also present in “Optimality of the Simple Cyclic Schedule for the
Partial Cycle Model” in Appendix A (page 185), asimplified version of the proof, that suits the special case
in question.

Chartsfor Cyclic Multicast

In the following charts, we can see the calculated average normalized reception time for different error prob-
abilities q and packets per file G The averages were normalized by dividing them by G in order to make
them comparable.
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Figure 2.3 on page 24 and Figure 2.4 on page 24 compare the results of using the whole cycle model versus
the partial cycle model as a function of the packet loss rate and file size respectively. As predicted, the par-
tial cycle model achieves better results (closer to reality anyway) and the difference is not constant.

FIGURE 2.3 - Cyclic Multicast - Whole cycle model vs. Partial cycle model
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FIGURE 2.4 - Cyclic Multicast - Whole cycle model vs. Partial cycle model
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Figure 2.5 on page 25 shows the results using the partial cycle model as afunction of the file size for differ-
ent packet loss rates.
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FIGURE 2.5 -Simple Cyclic Multicast - Avg asa function of File Size
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Figure 2.6 on page 25 shows the average number of cycles needed to receive the whole file using the partial
cycle model as afunction of the packet loss rate.

FIGURE 2.6 - Simple Cyclic Multicast - Avg as a function of Packet L oss
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We can clearly see the price paid for errors. Even very low error probabilities render avery high price to pay.
The problem is with the whole cycle that has to be awaited in order to recover a missed packet. Measuring
the price paid in absolute time (not normalized) would have further emphasized the problem with largefiles.
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A Simple Approximation for the Simple Cyclic Multicast

A similar approach for evaluating the performance of this simple cyclic scheme isto look at the amount of
cycles needed to guarantee the complete file reception with a probability larger than P (for P close to 1).
Looking at this performance measure isin some cases even more relevant than looking at the average.

As far as the scheduling is concerned, we have shown optimality of the average by proving optimality for
each component in the average weighted sum. Therefore our proof appliesto this case as well.

We have seen that:

(EQ7)
Pl <c)=l-crf =[] < (e f et
q°=0
Therefore:
(EQ8)
- In(P(N‘3 < c)) =-q°G
We want to find c for P close to 1 so using:
(EQ9)
-In(P)=(1-P)
We get:
(EQ 10)
1P
1°P ¢ L= VG . Int-P)-In(G) _ InL-P) , In(G)
G Inq In(a) In@)  -In(a)

The expression above clearly matches our simulated and cal culated results as shown in the following charts.
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FIGURE 2.7 - Cyclic Multicast - Approximation as a function of File Size

Cyclic Approximation

—e—c (calc)
—#—c (approy

1 T T
1 100 10000 1000000

Packets per Packet for P 0.99

Packets in File

FIGURE 2.8 - Cyclic Multicast -Approximation as a function of L oss Rate
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Analysisfor ARQ Transport Protocols

We have calculated so far the performance implications from a client perspective when receiving afile using
the suggested simple cyclic multicast scheme. In order to compare these results, we cal culate now the equiv-
alent measurements for a unicast transmission with same error parameter and file size.
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Packet loss in unicast reliable communications is commonly handled using ARQ schemes. Every Receiver
communicates its packet losses to the sender by means of a feedback mechanism and thisin turn selectively
retransmits those packets that were lost. For bandwidth optimization reasons there is usually more than one
packet outstanding (sent but not yet acknowledged) in a unicast transmission but for the purposes of packet
loss handling the protocol is equivalent to the following simplified description: The sender keeps sending
each packet until it is successfully received at the destination.

With this model in mind, every packet successfully received counts toward successful completion. Thisis
what makes the big difference when compared to the cyclic multicast analyzed above. Because of the same
reason, unicast is to this extent not influenced by time correlation among losses. Clearly the only thing that
mattersin this ssimplified analysisis the error rate.
We start by calculating the probability of not receiving a single packet after c attempts:

(EQ11)

PU>c)=q°

The average number of times a certain packet hasto be sent in order to be successfully received is then:
(EQ 12)
EU)=>cPU =¢)= ZCE[P(U >c-1)-PU >c)| =
PU >c)= Z q°=1/p
c=0
Since for every subsequent packet its transmission will start when the previous was successfully received
then the average total time (in packet units) for the transmission of G packetsis given by:
(EQ 13)
EU®)=GEU)=c/p

Comparison Charts Unicast vs. Simple Cyclic M ulticast

Figure 2.9 on page 29 and Figure 2.10 on page 30 compare the results for simple cyclic multicast and uni-
cast as afunction of file size and loss probability respectively.
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FIGURE 2.9 - Cyclicvs. Unicast - Avg Cyclesasa function of file size.
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Figure 2.9 on page 29 shows the results as a function of the file size. As expected, with point-point reliable
communications the file size has no effect on the normalized performance measure perceived by the receiv-
ers. The simple cyclic multicast shows the log behavior that we have seenin Figure, “A Simple Approxima:
tion for the Simple Cyclic Multicast,” on page 26.

Figure 2.10 on page 30 shows the same performance measure but this time as a function of the average loss
rate. Theloss rate impact on unicast is clearly low. The ssimple cyclic multicast is much more affected by the
loss rate especially when the file is very large. This result is not surprising, lost packets have a huge impact
on the no-feedback simple multicast scheme since the receiver needs to wait for a whole file transmission
cyclein order to have the chance of recovering alost packet.
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FIGURE 2.10 - Cyclicvs. Unicast - Avg Cycles as a function of L oss Probability
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In a future chapter we address this limitations of simple cyclic multicast. We will show reliable multicast
schemes that obtain results comparable to those of unicast through the use of error correction codes.

An Approximation for Unicast

We already stated that averages can sometimes be midleading. As an alternative we estimated how many
packets will areceiver see before we can say that it has successfully received the complete file with a proba-
bility higher than P (for P close to 1). We follow the same approach here for unicast.

For this we need the probability of success at or before ¢ packets which is given by:

(EQ 14)

Pl sc)= chm(l— a) o

i=G \

Figure 2.11 on page 31 shows a calculated plot of this function.
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FIGURE 2.11 - Probability of Success after ¢ packets
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Let us define arandom variable X which is the number of successful packet receptions out of ¢ packets that
were sent. The density function for X is then:

(EQ 15)
tl)=ple =)= Jo-dler
and its distribution is given by:
(EQ 16)
Fli) :gfxc(i) =§(fj(1-q)iq~
As expected,
(EQ 17)
=31 0=3] pdt =lp-dvl =1
From here:
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PU° <c)=F .(J-F.(G-1)=1-F .(G-1)

XC

Since for our practica cases (very large G):

cgl-q)>GEl-q)>>1

then we can apply the DeMoivre-Laplace Theorem to obtain:

P(UG < c)=1— F.(G-1) =1—GaussDist(—G —1- (1“1)@}

\q il—qi@:
Let us define b to be the value that which for a given desired success probability P, makes:

P =1- GaussDist (- b)

Then, given adesired P we need to find the ¢ for which:

G-1-(1-q) _ _

Jai-a)e

b

Solving for ¢ we get:

.- 2(1-a)a+41-d)(G —1)+2byb?(1- 0P +4(1- o) a(G -1)

41-qf

which for small error rates can be approximated as:

(EQ 18)

(EQ 19)

(EQ 20)

(EQ 21)

(EQ 22)

(EQ 23)
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(EQ 24)

(G-1)+byq(G-1)

(1-q)

As expected, the approximation tends to the avg when G tends to infinity.

=

In order to verify the accuracy of this approximation we plot in the following figures the calculated and
approximated versions of ¢ for P=0.99. The corresponding b for P=0.99 isroughly 2.35

In order to attain the calculated version of ¢ for the following figures we linearly interpolate the curve P(c) in
the vicinity of the desired P as shown in Figure 2.12 on page 33.

FIGURE 2.12 - Unicast Approximation - Linear Interpolation for Calculated ¢
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c istherefore calculated as:

(EQ 25)
P-p2 N
pl- p2

c2

Figure 2.13 on page 34 and Figure 2.14 on page 34 show the results of the approximation verification.

In Figure 2.13 on page 34 we can see the point at which the conditions for using the DeMoivre-Laplace the-
orem start to apply. Clearly the approximation is very good for file sizes longer than 100.
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FIGURE 2.13 - Unicast Approximation- Cyclesasfunction of file size.
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FIGURE 2.14 -Unicast Approximation - Cycles as function of loss probability.

File Size: 500 packets

25
(]
2 =
a 21 b
= X
£ e
T 1.5 - T

NS
3 Ll —m— est ¢ (norm)
g R calc ¢ (norm)
- hr RO
g 1
[%2]
Los
Q
@
o
0 T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6
loss probability

Figure 2.15, “Cyclic vs. Unicast - Cycles asfunction of File Size.,” on page 35 (note the log scale) compares
the results for the simple cyclic multicast versus a unicast protocol. As we aready concluded, the perfor-
mance of the simple multicast from areceiver’s perspective is considerably lower than that of the anayzed
ideal unicast. On the other hand, the simple cyclic multicast scheme allows the transmission to a huge num-
ber of non-synchronized receivers simultaneously with optimal utilization of network resources. Thisis of
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paramount relevance since the performance presented from areceiver’s perspective may not beideal butitis
definitely acceptable especially when for resource availability reasons the unicast alternative is smply not
viable. Notwithstanding, in the following chapters we pursue the development of a solution that will bring
the multicast results from aclient’s perspective closer to those of the unicast case.

FIGURE 2.15 - Cyclicvs. Unicast - Cyclesasfunction of File Size.
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2.3 - Time-Correlated Losses

Packet Lossesin the I nternet

Throughout our analysis, we have assumed losses to be non correlated. We regarded the loss probability to
be constant and independent from packet to packet. However, in the internet for example, most packet rout-
ers respond to congestion by discarding packets. In this kind of routers, when packet queue lengths get over
some threshol d, packets are dropped as a congestion relief mechanism. A variety of policies exists for packet
dropping selection. A widely deployed class of heuristics resultsin the packet queuetail being dropped. This

kind of behavior clearly resultsin correlation among packet |osses?.

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 35



Simple Cyclic Multicast Distribution of Bulk Data

The Receiver Two-state M odel

In order to model this bursty loss scenario we will use areceiver two-state approach. We assume the receiver
to be in either one of two states (S for success and L for loss). A receiver in the S state has successfully
received the last packet. A receiver isin the L state when the last packet that should have arrived has been
lost. Basically, this model alows the loss probability for the next packet to be different depending on
whether the last packet was lost or not.

The state diagram for the two-state model with its transition probabilities is depicted in Figure 2.16 on
page 36. By setting the adequate transition probabilities we can model with this scheme the desired error
burst scenario.

FIGURE 2.16 - Receiver two-state model

Our parameters are the total loss probability and the average burst length. We now cal culate the correspond-
ing transition probabilities for the two-state model that suit our selected parameters.

Let N be arandom variable denoting the number of consecutive losses in aburst. Our desired average burst
is then E(N). The total loss probability is equal to the probability of being in state L which will be denoted
PL.

Clearly:

2. Correlation in its pure meaning may be also periodic (which may be very bad for our agorithm if the
period happens to be G) however that is not areal scenario. In real life loss correlation appearsin the
form of bursts.

36 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



Time-Correlated Losses

The state transition equation is:

Ps = aPL + (1_ IB)PS

Where:

R+P=1=PR =1-P,
Replacing Py :

Ps = 0’(1— Ps)"' (1_ IB)PS
We get:

QI+

(EQ 26)

(EQ 27)

(EQ 28)

(EQ 29)

(EQ 30)

(EQ 31)
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(EQ 32)
_all-R)_ @-R) _

I:)L
P2 TEN® T EN)E-R)

Parametersfor Simulations Using the Two-state M odel

All our calculations so far assumed uncorrelated losses. In other words the loss probability for the next
packet was the same independently of whether the last packet was lost or not. This case can be simulated
using the two-state model by setting:

(EQ 33)

1-a = ﬂ

In such a case:
(EQ 34)
E(N)-1 P N
E(N)  E(N)f-pr) 1-R)E(N)-1)=R,

(EQ 35)

_ 1

E(N)_ (1_ PL)

which looks familiar as expected. It isthe result for the uncorrelated case where the average loss burst is:

(EQ 36)
1

(1-a)

When simulating the correlated case, we will choose:
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(EQ 37)
E(N)>1/(1-R)
in order to model the behavior of the internet routers mentioned above.
The case where:
(EQ 38)

E(N)<1/(1-PR)

is less interesting since it represents the case where the loss probability is higher when the last packet has
been successfully received than when it has been lost.

Simulation Results
We simulated the loss correlated model and obtained the results shown in the following charts.

For this loss correlated model we use a simulator (as opposed to the cal cul ations we used above for the non-
correlated case). Figure 2.17 on page 40 shows the simulator results as compared to the calculated ones
when operating the simulator with parameters that result in non-correlated model as described above. We
clearly seethat the results match perfectly.
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FIGURE 2.17 - Verifying the two-state model simulator
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Figure 2.18 on page 40 and Figure 2.19 on page 41 show the impact of correlation on the results as a func-
tion of loss probability and file size respectively.

FIGURE 2.18 - Time Correlated model - Function of loss probability
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FIGURE 2.19 - Time Correlated model - Function of file size
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We see that loss correlation improves the expected results. The reasons are related to the very nature of the
cyclic scheduling. When losses are correlated, for any given average packet loss probability, the probability
of alossin the same packet in subsequent cyclesis drastically reduced (since the loss rate was already “con-
sumed” in packets adjacent to the first time of the one that was lost). A single retransmission then helps to
receive several packet that were originally lost which brings the successful end of transmission closer.

Figure 2.20 on page 42 further emphasizes this property. In this figure we see the average cycles as a func-
tion of the loss burst length. We can see that the longer the average burst the greater the improvement. In fact
the result approaches asymptotically the result for unicast when the burst length is increased. This can be
explained intuitively by considering the extreme case where all packet |osses happened in the same burst. In
such a case, the complete file will be successfully received after reception of exactly the amount of packets
in the burst. But since this amount of needed extra packets is equal to the loss probability multiplied by the
total amount of packets sent we get the same results as for the unicast case.
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FIGURE 2.20 -Time Correlated model - Function of loss burst length
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Other Modelsfor Loss Correlation

More sophisticated models for loss correlation could be devised using more than two states. We could fur-
ther generalize our model of error burst by defining a state for every number of consecutive errors and also
one for every number of consecutive successes. We could use a model with a non finite number of states
with transition probabilities defined as a function of the state. We could aso have a finite number of states
with some states representing more than a certain number of errors or successes.

Conclusions

We have shown that for correlated cases which model the actual behavior of some practical scenarios the
results are better than those when using a non-correlated model. The uncorrelated case will therefore be
regarded as lower bound because positive correlation can only improve. We will keep using the non-corre-
lated models for their smplicity whenever necessary with the knowledge they provide a worst case estima-
tion.
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CHAPTER 3 MUItI Cag \Mth FEC for
Bulk Data Digribution

3.1 - Reliable Multicast Transport Protocols

Reliable data communication is generally characterized by the capability of the network protocol to provide
application clients with atransmission framework where packets are received by their destination peers with
neither losses nor duplications and in the same order as they were sent.

In amulticast scenario like the one we are evaluating, the problems of ordering and of duplicate packets can
be relatively easily solved asthey have no direct implication and no need of interaction with the network and
the sender in particular. There are no scaling issues in this regard since every receiver of the multicast group
can handle this task independently. A simple approach would be to include some sequence number in the
packets and have a higher protocol layer reorder and eliminate duplicates accordingly.

On the other hand, the issue of packet losses is much harder to overcome. At first thought, some kind of
interaction with the sender is required to request the retransmission of the missed packets. The following
sections further elaborate on the different approaches in the search for solutionsto this problem.

ARQ (Automatic Retransmission Request)

In aprevious chapter we described a simplistic point to point ARQ based protocol for which a server keeps
sending a packet to a client until the packet has been successfully received and then moves to the next
packet. The server is explicitly notified by the client of packet successes and misses. Most of the point-to-
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point reliable protocols use more evolved methods that take into account other considerations, however for
the sake of comparison, thisloss handling model resembles the real case in a quite faithful manner.

In amulticast framework sending explicit acknowledgesis very problematic. When the number of receivers
increases the single server has to deal with an augmenting number of response packets. Moreover it has to
keep context information for each of its receivers to manage retransmissions. This scheme is therefore not
applicable to large receiver sets.

NAK based schemes are somewhat better than ACKsfor multicast. In aNAK based reliable multicast proto-
col, only receivers that have failed to receive a packet explicitly request a retransmission. Those that have
succeeded do not send any feedback packets. This reduces the number of responses that the server has to
deal with when the loss probability is low. However when the number of receivers increases beyond some
point, the probability that a packet has been missed by one of the receivers increases and the server starts to
get more and more responses. Moreover, 10ss is correlated among receivers in multicast communication.
When one receiver misses a packet, it is very likely that most of its topologically close neighbors have
missed the packet aswell. In such a case, asingle loss would result in alot of negative feedback packets that
will have to be processed by the server wasting precious processing time.

These problems are often referred to as the feedback implosion problem because of the extraload that huge
feedback causes to the server. Hierarchical methods have been suggested to mitigate the feedback implosion
problems, however there is yet no massively deployed solution that solves all the problems.

An interesting issue related to selective retransmissions in multicast is whether the server sends the repeated
packet to the whole multicast group or just to those that explicitly requested it on a separate point-to-point
channel. While the former scheme negatively impacts those that have aready received the packet the latter
uses much more bandwidth.

Forward Error Correction

As we have mentioned above, feedback based schemes have serious scalability problems when applied to
multicast with very large receiver sets. We need an alternative approach that makes no use of areverse chan-
nel. Apart from being scalable, a scheme like that could be used in highly asymmetric infrastructures (such
as wireless networks) where little or no upload channel is available.

The basic idea behind all no-feedback approaches is to have the server do retransmissions in an open-loop
kind of way. In a previous chapter we analyzed the simplest of such schemes. There, our server repeatedly
transmitted all the packets of the file in a cyclic manner while each of the individual clients kept receiving
until the whole file was successfully completed. We evaluated the performance of that simple mechanism to
find out that the number of packets in the file had quite a big impact on the time that takes for each receiver
to complete. This is an undesired property especially when comparing to an ideal selective retransmission
scheme whose performance is not affected by the file size.
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A more evolved method which as we will show deals with the file size effect, can be achieved through the
use of Forward Error Correction. Forward error correction (FEC) is based on the presumption that some
losses will occur. The sender anticipates the effect of losses by sending some kind of redundant information
along with the packets. Receivers use this redundancy in order to reconstruct lost packets. The idea clearly
resembl es the concept of parity. Under FEC schemes, a specific packet that is successfully received, can be
used to recover any one out of a group of lost packets thus effectively reducing the waiting time that a client
experiences when a particular packet was lost.

The application of FEC to reliable multicast was investigated in [18] [20] [21] [22] [23] [24] and [25].
Among these, [18] [20] and [23], deal with multicast distribution of bulk data.

Lower layers of the protocol stack (link layer CRC, network layer fragment timeout/checksum, etc.) provide
error detection and drop erroneous packets. By using a sequence number, the client can identity the received
packets and detect those that were lost. Under these conditions the network can be regarded as an erasure
channel. In this computer communication framework, we use the error correction capabilities of FEC to
reconstruct the missing (or “erased”) packets and it is for this that FEC codes are sometimes called erasure
resilient codes.

FIGURE 3.1 -Forward Error Correction Schematic Description
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The general idea behind an erasure coding scheme with parameters (K,N) is depicted in Figure3.1 on
page 45. The sender divides the data stream into K packets. The K data packets are passed through an
encoder that generates N>K packets. The N packets are then sent to the receivers. The encoding processis
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built so that upon reception of any K+€ packets along with their identities, a receiver can reconstruct the K
original packets that formed the original data stream. When € is zero the encoding is called Maximal Dis-
tance Separable (MDS) and has the obviously desirable property of maximum efficiency.

The building of FEC encoders and decoders is beyond the scope of our work. We will use widely available
FEC codes such as those described in [27] to base our analysis. A basic introduction to FEC principles of
operations can be found in [27] and [28]. More comprehensive material isavailablein [26].

Remark: FEC has been applied in many communication systems. A widely used mode, isonein which FEC
isintroduced to effectively improve the loss rate characteristics of atransmission media. In such ascheme, N
units of information are sent instead of K for every K units that have to be transmitted. The amount of redun-
dancy (N-K) becomes a significant factor for those applications as it determines the overhead paid for the
use of FEC. Our application of FEC is substantially different. We use the error correcting codes combined
with amulticast cyclic transmission schedule to enable each client to take advantage of any packet received
in order to make progressin the reception of the file. The server keeps cycling over the N packets anyway so
to satisfy additional clients. For that reason, not only that a large N does not imply a larger overhead, the
larger the N the better the attainable results for our application. Furthermore, if N is very large and K is the
size of the file (since every receiver will keep receiving packets until successfully receiving any K packets)
the case is clearly equivalent to what the best selective retransmission approach (i.e. reliable unicast) can
provide and therefore optimal in terms of receiver perceived performance.

From a server perspective, the reason that makes FEC particularly effective in amulticast scenario isthe fact
that a single transmitted packet is useful to substitute alost packet at multiple receivers simultaneously even
when it comes to replace a different missed packet at each client. The advantages of FEC are exacerbated
when the amount of clients grows to a very large number. The probability that each packet is missed by at
least one receiver grows with the number of receivers and the fact that a single FEC packet can overcome
multiple packet losses at different receivers makes FEC especially attractive.

The absolute benefit of FEC from a sender’s perspective is somewhat reduced when the shared portion of
the multicast tree increases. The reason for that is quite obvious. The more shared links in the tree, the higher
the possibility that a single packet loss in some intermediate link will simultaneously affect alarger popula-
tion of receivers. When such athing happens, the retransmission of that particular packet would have solved
the problem to every single one of them resulting in no apparent benefit in the usage of FEC. Notwithstand-
ing, the use of FEC is never detrimental and for the above example to be applicable we would have needed
some kind of feedback mechanism to report the identity of the lost packet (athing we already concluded to
be not desired).
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3.2 - Using Erasure Codes with Multicast for Bulk
Data Distribution

FEC Groups

We desire to transmit a very large file from a server to avery large number of receivers using multicast and
FEC. Ideally, we would have desired to encode the entire file using FEC and start transmitting the encoded
packets. Under such a scheme our clients would experience the same exact performance as an equivalent
unicast client using feedback based packet retransmission. This follows from the fact that when the whole
fileis encoded using FEC as a block, every successfully received packet counts toward completion.

However, the encoding and decoding complexity of publicly available forward error correction codes grows
non-linearly when the amount of packet increases. Consequently, for computability reasons, forward error
correction is generally applied to data blocks of conservative size. Our goal isto find a solution applicable to
files of huge size and therefore we will resort to file partitioning. Big files will be divided into blocks for
which FEC codes are computable. [27] presents a software implementation of codes that can run in personal
computers with very acceptable performance. Extrapolation of the resultsin [27] enable us to conclude that
with nowadays computers, FEC codes are more than easily feasible for block sizes that range around the
tens of packets.

It isworth noting though that the coding and decoding stages are not a critical part of our application, asthey
are not required in real time. Coding may be done before transmission starts; and decoding can be done inde-
pendently to the packet reception process. Nevertheless we desire our mechanism to not be affected by code
complexity since otherwise the decoding stage would take arelevant part in the performance assessment.

In this chapter, we deal with the packet schedule needed to attain optimal results from areceiver’s perspec-
tive when the file is partitioned and encoded with FEC as suggested above. Alternatively, a very efficient
class of erasure codes has been proposed in [28]. These codes are shown to be adequate for very large data
blocks at the expense of some lossin the code efficiency (€>0). In other words, they allow large blocks to be
coded with no partitioning at the cost of some more than K code packets needed to reconstruct K data pack-
ets. It has been shown in [28] that in many cases the amount of extra packets needed is small as compared to
the benefits attained. However, our solutions apply to files of huge sizes for which even these codes would
need some file splitting and moreover, this novel FEC codes are proprietary and therefore it is very interest-
ing to find alternative solutions that provide comparabl e results by using codes that are available in the pub-
lic domain.

In this chapter we devise solutions that apply to cases where traditional, publicly available, maximal dis-
tance separable, error-correcting codes are used and therefore the block sizeis limited to afew tens of pack-
ets. We split our file into blocks of suitable size and propose a packet schedule scheme that achieves results
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comparable to those of equivalent selective retransmission techniques from areceiver’s perspective. Recall
this was the main motivation for further devel oping the ssmple cyclic multicast scheme presented in the pre-
vious chapter. We desire to obtain a multicast mechanism (so to maintain the optimal network resources uti-
lization), that is perceived from a client’s perspective as one with comparable performance to that of reliable
unicast.

Let us then denote with K the number of packets that for computability reasons can be encoded using FEC.
We call each of these blocks a group. We divide our fileinto G groups of K packets each and denote each of
the groups with:
(EQ1)
g= O’]_' ..G-1
Clearly GK isthe size of thefile.

FIGURE 3.2 -Dividing aFileinto groups of K packetsfor FEC
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In order to successfully complete the reception of the file, each client needs any K different packets out of
the N in every group. All packets are sent by the server using a specific schedule mechanism. Each client
keeps receiving packets until it has successfully accumulated enough packets to complete the file reception.

Cyclic Multicast with FEC

The server has now atotal of GN different packets obtained by encoding the GK packets of the file. We sug-
gest the following packet schedule denoted group interleaving for the server to transmit thefile.
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Definition 3.1 - Group Interleaving Packet Schedule
The packet to be sent at time slot i belongs to the group given by

(EQ2)
i mod G

and the coded packet index within the selected group (to be sent at time dlot i) is given by:

\_%3 Jmod N

(EQ3)

In this context, we define a cycle to be the process of sending G packets, (using the group interleaving
schedule) one per FEC group. Figure 3.3 on page 49 depicts the group interleaving schedule and shows 2
cycles. The transmission by the server is continuous so when the GN packets are exhausted the process starts
over again.

FIGURE 3.3 - Group Interleaving Packet Schedule
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We evaluate bel ow the performance of this FEC based mechanism in terms of the average amount of packets
that asingle client hasto receive in order to get the whole file when the group interleaving schedule is used
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to transmit the packets. We show that the use of FEC resultsin a significant improvement in the performance
perceived by the receivers as compared to the simple cyclic scheme of the previous chapter. In particular, we
expect the results with G groups of K packets to be much better than those of the smple cyclic case since the
number of packetsin acycleisreduced by afactor K. This reduction means that a receiver that is missing a
packet has to wait much less time to have the chance of receiving it than before where the whole file was
retransmitted in a cyclic manner.

We prove that given a FEC mechanism with specific parameters K and N, the best results from a receivers
perspective are attained when the file is transmitted using the group interleaving schedul e presented above.

From the server’s perspective the benefits come from the fact that with FEC a single packet may be used by
different clients to replace different packets that each of them has missed.

The group interleaving schedule was al so presented in [20]. However we have found no referencein thellit-
erature that provides mathematical analysis of its performance neither proofs of its optimality from a
receiver’s perspective.

Performance Analysis of Multicast with FEC

L et us denote by X®arandom variable that represents the exact amount of packets received successfully by a
client out of ¢ sent packets; and with V., the probability that X® is equal to m. If the loss probability for
every packetsisindependent and equal to g, and p is 1-q, then:
(EQ 4)
pch—m ;‘ 0 < m < C
Ve =P(X® =m)= me-my
0 otherwise

Let us derive then the probability that the file was successfully received by one client after the packets from

¢ complete cycles plus g+ 1 packets from the current cycle have been sent. For this we define NGK to be a
random variable representing the number of packets that were sent for a client to successfully receive the

file. The probability that N®K is equal to cG+g+1 packetsis given by:

(EQ5)

c GHot) /., g
PeK =PNOX =cGg+1) = piv, DEZ\/J] Eﬁi\/ﬁ] c=00 g=0G-1
j= j
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and the average for NGK is then:

(EQ6)

G-1

E(Ne*)=3> T [G e+ g1 ps]

c=0g=0

Thisanalysisis made assuming we have an unlimited supply of coded packets per group (N). In practice, we
will see that this assumption is adequate. FEC schemes with N=8K are pretty common. We will see that the

results for P((N®K>8GK) are negligible for virtually all relevant cases and thus the assumption is justified.

Special Case: K=1. Aswe shall see, larger values of K result in lower average transfer times but increase the
complexity of the encoding/decoding. In particular, when K=1, G is equal to thefile size in packets. In such
a case, since there is a single packet per group, the group interleaving mechanism degenerates into a mere
cyclic transmission of the file packets. Then:

N 9 . \&lew) 9
oo S| S| =earSv]  (Sw]

j=1

(EQ7)

c=01,--0 g=01---G-1

which is the same result we achieved in the previous chapter for the smple cyclic multicast with no FEC as
expected.

Special Case: G=1. Another extreme case is when we have a single FEC group for the whole file. From a
per-receiver performance standpoint, the proposed algorithm under this condition has to obtain the same
results as that of a selective retransmission point to point mechanism such as TCP. Thisis because under this
scheme, since all packets belong to the same (and only group) each packet successfully received counts
towards compl etion.

Since G=1, K isequal to the whole file size. Then we use:

(EQ8)

j=K j=K

N S N
R 3

but since G=1, g can only be 0 which resultsin:
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(EQ9)

K-1c-K+1 d
= pve, ={ PP Y (K ifem K )
0 otherwise

czK-1

The average for (Eqg. 9 on page 52) is K/p which is the same result as expected from the unicast analysisin
the previous chapter. For the detailed mathematical derivation see “Average for G=1" in Appendix A (page
192).

Proof of Optimality for the Group Interleaving Schedule

In this section we prove that for any given K, the group interleaving schedule suggested above is optimal
from areceiver’s perspective. We are assuming for the proof that N isinfinite. As we see below, being N one
order of magnitude greater than K for all relevant cases, this assumption is perfectly justified. Notwithstand-
ing, the proof can be extended, using the same principle, to the finite N case.

Theorem 3.1- Group Interleaving Optimality

Let us denote with O the group interleaving schedule defined in “ Group Interleaving Packet Schedule” on
page 49 and with O, the group to which the packet sent in time slot i belongs under such a schedule.

(EQ 10)
O =imodG i=012,---

Given afile of size S packets and an implementable FEC code with parameter K. Assuming G=5K, the
schedule O results in the smallest average amount of packets needed to be transmitted for a client to receive
thewholefile.

Proof:
We prove by showing that for any packet schedule (denoted C) other than O (the one we claim to be opti-
mal), there exists another packet schedule (denoted B) that gives better results. We construct this better

schedule and shown that the construction method convergesto O.

We denote with:
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(EQ 11)

GK
NS

the random variable that represents the number of packets transmitted until successful reception of the GK
packetsin the file under schedule S. Where Sis one of O (the optimal packet schedule), C or B.

We define F (below) to be number of packets of a specific group g that have been sent out of the total first t
packets sent under schedule S.

(EQ 12)
1 S=g¢ .
|Gyg= 0 0,1,...G— i O,]_,.--
e O FEI R SRR
(EQ 13)
t-1
Feo=> 130 go{oL- G- t{ 0L
i=0
We will show that for any schedule scheme C (candidate schedule) with:
(EQ 14)
C D{le...e_i i =012
different from O, there exists another schedule B (better schedule) with:
(EQ 15)
B D{le...e_j} i =012,
such that B resultsin asmaller average than C.:
(EQ 16)

0c#0 0B /E(NS*) < E(NS*)

In other words, we will prove first that for any schedule (except the one we claim to be optimal) there exists
another schedule that achieves better results.
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Let us divide the schedule scheme C into cycles of G packets each. Since C is different from O there is at
least one cycle of G packets for which in C thereis at least more than one packet of the same group?. Let us

pick thefirst such cycle.
(EQ17)
C#20=[k,i, j,h/Csy; =Coon =i c0{0123-¢¢ i,j,h{012--G-}

Case 1. (c<K) Thefirst cycle in which there is more than one instance of the same packet is before sending
GK packets. Let uslook now at the first point in the proposed schedule C at which for the first time K pack-
ets have been sent from all G groups. Let us denote the total number of packets sent until this point with m.

m= m (EQ 18)
= mi G- {IEGH
= i,.r.‘m}/ Og0{o12,--G-3x<i/FSo =K

Notethat if Cis such that mdoes not exist (i->infinite) then our suggested O is of course better than C since
E(N¢) isinfinite. So B will chosen to be equal to O in such acase.

If mexists, our suggested improved schedule B will send the exact same packets as C after the first m pack-
ets. For the first m our suggested improvement will reorder the same packets so that the first GK packets are
K out of each of the G groups (in any order) and the remaining m-GK are randomly ordered.

(EQ19)
il 0<i<GK
B =qJanyorder fromthe packetsin C notusedinthe firstGK. GK <i<m
C m<i

The probability of success at or before packet i is received for i greater than or equal to mis the same for
both schemes. However for C the probability of success at or before packet i for i smaller than mis zero
where for the suggested improved scheme it is greater than zero for al i greater than or equal than GK-1.

1. Theorder of the packetswithin each cycleisnot relevant at this stage. We show later that in order for different clients
to start reception at different points in time then the order of packets within all cycles has to be the same.
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(EQ 20)
PINS* <i)=pP(NS* <i)=0 0<i<GK -1
P(NS* <i)>P(NS* <i)=0 GK -1<i<m
P(Ne* <i)=P(NS* <i) m<i

Case 2: (c>=K) The first cycle in which there is more than one packet of the same group is not within the
first K cycles. Let us pick within cycle c the first time that a group is transmitted for the second time and
denote its position in the packet stream with n.

(EQ 21)
N ooy {clG,cG+1,cG+2,-i-3/G =C

n= mi
i{cG,GH,CG+2, -

Let us go further down the packet stream and denote with m the first packet position after n for which a
group that has not yet been sent on cycle c istransmitted in C.

(EQ 22)
m=_ min /] H{clG,cG+1cG+2-i -3 /G £C

inLn+2,

Note that if C issuch that position m does not exist (i.e. keeps sending packets from the same group forever
after position n) then our suggested optimal scheme istrivialy better.

The improved schedule B will look exactly like C with packets in positions m-1 and m interchanged.

(EQ 23)
C I £m=-1i#m
B=1C, i=m-1
-1 =m

Since the packets sent so far are the same, the probability of success at or before packet i is received for i
other than m-1 is the same for both schemes.

(EQ 24)
P(NS* <i)=P(NSX <i) i zm-1
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However as proved by Lemma A.3 - on page 194, the probability of success at or before packet m-1 is
greater for B than for C.

We have shown then for both case 1 and case 2 that:

(EQ 25)
P(NS* <i)>P(NS* <i) i=01 o

and also that thereis at least onei for which:

(EQ 26)
e 1) plug s )

From this and from:

(EQ 27)
E(Ne*)= 3 f1-P(Ne* <i)
=

We get:

(EQ 28)

E(Ng")<E(NG)

We have shown so far that for every schedule C other than O thereis at least one schedule B which resultsin
a better Avg. Since there are infinite schedules we yet need to show that our schedule improvement scheme
convergesto O when applied to the resulting improved schedule on and on. This result follows from the con-
struction of B.

Clearly when the original C is such that it is covered by case 1 the resulting B is such that if regarded as a
new C it will be covered by case 2. Therefore we only need to prove that the B proposed for case 2 con-
vergesto O.

From the construction of B we can see that if applying the same construction to B the resulting schedule
would have resulted in m being one less than the one before (until m becomes n+ 1, this can happen after the
first iteration) and then n would have advanced at least one position. After some more iterations n would
cross a cycle boundary thus incrementing ¢ and leaving the previous cycle equal to O in that range.
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Finally, the packet schedule within each cycle follows from the fact that we desire each client to start receiv-
ing at any point in time with no impact to its perceived results. Therefore we need all cyclesto have the same
packet order to achieve group interleaving regardless of the starting point within the cycle.

ged

FEC with Group Interleaving Results

In the following figures we show the effect of FEC and group interleaving on the average amount of packets
that a receiver will have to wait for complete reception of the file. We normalize the average by dividing it
by the total number of packetsin thefile in order to make results comparable. We call this performance mea-
sure avg packets per packet.

(EQ 29)

G,K
avg packetsper packet = E{N

Figure 3.4 on page 57 shows the avg packets per packet as a function of the loss rate. We can clearly appre-
ciatein thisfigure the benefit of FEC. The curve that shows the results for K=1 is the one that corresponds to
the results of the previous chapter where no FEC was applied. Aswe seein the graph, increasing K has a big
positive impact on the results. The lowest curve which corresponds to the ideal unicast caseis our goal. We
can seethat by increasing K, the results of the group interleaving schedule approach our goal.

FIGURE 3.4 - Group Interleaving (Avg as a function of loss rate)
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An important question is that of which value of K should be selected. From the results presented in these fig-
ures, the greater the K the better. However, as we have aready said, for implementation reasons K has to be
kept relatively small. We can also appreciate that the benefit increase decreases as we approach the ideal
case. We use the results shown in the following charts in order to make the right choice.

In Figure 3.5 on page 58, we vary K (and calculate G as the total number of packetsin the file divided by the
chosen K so that the file size is kept constant). We show the results for some different loss rates in the same
chart for the sake of comparison. As expected when K is 1 the results are the same as in the previous chapter.
We clearly see that results improve drastically when K grows. Finally as K gets closer to the file size (which
turns G into smaller and smaller numbers) the result approaches that of a unicast transmission. As expected
the unicast result is the same as that for the case where K is equal to the file size (and therefore G is 1).

FIGURE 3.5 - Group Interleaving (Average as a function of K)
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It can al so be appreciated from this figure that the additional benefit of increasing K decreasesasK grows. In
particular, by picking K around 32 we see that a great portion of the FEC benefit has already been achieved.
We further emphasize this point in Figure 3.6 on page 59 where we show the percentage of benefit obtained
for every value of K. We define 100% benefit to be that of using K equal to the file size (unicast equivalent
results) and 0% to be the one for the simple cyclic multicast case of the previous chapter.

The FECBenefit is then given by:
(EQ 30)
E(NsY)- E(N%'K)

FECBenefit(K ) = E(N=)-E(N")
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where Sisthefile sizein packets.

FIGURE 3.6 - Group Interleaving (FEC Benefit asa function of K)
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Aswe see in Figure 3.6 on page 59 the dependence of the benefit of using FEC on the value of K is not very
much affected by the loss rate. This is not to be confused with the expected average amount of packets
needed which are indeed sensitive to the loss rate as we see in Figure 3.4 on page 57. A salient consequence
of what we appreciate in Figure 3.6 on page 59 is that we can pick a value of K such as 32 (which is per-
fectly implementable as far as computability of the FEC code is concerned) and that same value is suitable
for a wide range of loss rates. For that value of K we see that well over 90% of the benefits of FEC are
achieved.

Finally, once we pick K to be 32, we show in Figure 3.7 on page 60 the effect both file size and avg loss rate
on the expected packets-per-packet measure. The results are clearly much better than those presented in the
previous chapter for the simple cyclic multicast with no FEC. We obtain results smaller than 2 even for very
large files and big loss rates. Even in situations where the typical loss rate is around 10% (still a large one

indeed) the results for large files? (32MB) is around 1.2 packets-per-packet which is very satisfactory. The
logarithmic nature of theimpact of file size in the results (as seen for the previous simple cyclic) is preserved
here aswell (note the log scale of the file size axis), However, as we shall seein afuture section, its effect is
mitigated since it is divided by K which being 32 reduces its influence in a significant manner.

2. G=1024, K=32, Packet Size=1KB
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FIGURE 3.7 - Group Interleaving Results (K=32)
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FIGURE 3.8 - Group Interleaving (Compared to Unicast - K=32)
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In Figure 3.8 on page 60 we compare the results attained with FEC (K=32) to those of the ideal selective
retransmission protocol (reliable unicast). We plot the ratio between the results shown in Figure 3.7 on
page 60 and those of the equivalent unicast case, asafunction of file size and avg lossrate. Asit can be seen,
the results are now comparable and satisfactory. As an example, let us consider the case where the average
loss rate is 6% and the file is 32MB long (G=1024). Figure 3.8 on page 60 shows that the extra amount of
time perceived by aclient of cyclic multicast with FEC as compared to what would have been the case if he

was privately3 downloading the file using reliable unicast, is merely about 20%" hi gher. We claim these
results to be very satisfactory. Specialy when considering the fact that the same transmission is now being
made available to any number of simultaneous non-synchronized receivers with optimal utilization of net-

work resources?.

Comparing Group Interleaving to Random Schedule

In order to emphasize the necessity for acareful packet schedule scheme such as the one we described above
(and proved to be optimal), we compare the results of the Group | nterleaving schedule to those of a Ran-
dom Packet Schedule. Under the Random Schedule, in every time slot, the group to which the packet that is
going to be sent belongs, and the coded packet within that group, are randomly selected with a uniform dis-
tribution.

FIGURE 3.9 -Group Interleaving vs. Random (Function of File Size)
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3. Thisisatheoretica comparison since aswe have shown at the beginning of thiswork, reliable unicast to all receivers
isnot an option. Actual results if attempted would be much worse than anything because of the heavy congestion at
the server’s connection to the network.

4. Inareal situation it is expected that this value will be even lower because of the burst type correlation of
packet |osses.

5. Weformadly define the concept of optimal network utilization in the next chapter.
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Figure 3.9 on page 61 compares the results of our optimal schedule to the ones that would be achieved if
packets were scheduled in arandom manner. We plot the Random Overhead which is the number of packets
needed to receive the file under random schedule divided by the number of packets needed when the pro-
posed group interleaving schedule is applied. We can clearly appreciate the benefits of the group inter-
leaving schedule which become even bigger as the file size grows. For files of reasonable relevant size, the
overhead of arandom schedule are on the order of 60%.

Note that when the number of groups (G) is 1 the Random Overhead is till greater than 1. This is because
even though there is no difference in the group of the scheduled packets (all packets belong to the same sin-
glegroup) thereis still a probability that the exact same packet is scheduled more than once.

Figure 3.10 on page 62 shows the Random Overhead as a function of the average loss rate. As expected, we
see the overhead decrease as the loss rate grows. This is because when the loss rate is bigger and lots of
packets are missed random sel ection hits more frequently a needed packet than when the loss rate was small.
We appreciate though that for the relevant range of loss rates the overhead of the Random schedule is very
large.

With this we conclude that the group interleaving schedule is not just optimal but also necessary to achieve
results comparabl e to those of an equivalent selective retransmission protocol. This result will be of special
importance in the next chapter when multi-rate versions of the schedule are developed in order to maintain
the optimal properties of the group interleaving.

FIGURE 3.10 - Group Interleaving vs. Random (Function of L oss Rate)
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Time Correlated L osses

Figure 3.11 on page 63 shows the effect of burst losses in the performance results for two different values of
K. For K=1 which models the case where FEC is not applied, we can see that loss burstiness has a great
impact in the final results (as we have seen in the previous chapter). For K=32 the effect of burstsis much
smaller. Results are improved when the average burst length increases but the relative impact of this effect is
small as compared to the no FEC case. Thisis expected. When the FEC group size grows, the identity of lost
packets becomes less important as there are more packets in the stream that can be used to recover it. In par-
ticular when the FEC is applied to the whole file, the statistical properties of the loss burstiness have no
effect whatsoever in the results. Such a scheme (very much like selective retransmission) is only impacted
by the overall number of losses.

FIGURE 3.11 - Group Interleaving - Error correlation - Different K
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3.3 - A Bound for Multicast Bulk Data Distribution
with FEC

Our godl in this section is to derive an expression for the minimum number of packets that need to be trans-
mitted to a client so that the whole file is successfully received with a probability of P. We normalize this
number by dividing it by the number of packetsin thefile so to make the results comparable among different
cases.
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So far we used computer generated cal culations that gave us some insights on the performance of the group
interleaving algorithm as compared to an ideal point to point reliable transport. In this section we wish to
bound the success probability and obtain an expression from which the number of packets that need to be
transmitted for the success probability to be higher than P can be calculated analytically.

It isimportant for us to achieve a simple analytical expression so that we can get further insights about the
dominant factors in the performance of the proposed algorithm. We start by looking at a single FEC group
and then extend the results to the multi-group case.

Bounding the Probability of Successfor a Single Group

We want to bound the probability of successful reception of K packets of a single group at the point in time
or before ¢ packets of that group have been transmitted which is given by:

(EQ31)

P(N* )= @(1_ o) o

i=x \

As follows from this expression, when analyzing the probability of success for a single group (assuming the
number of coded packetsisinfinite) the error handling model isidentical to that of unicast transmission of a
K-packet file.

In aprevious chapter we used the DeMoivre-L aplace theorem to approximate the probability of success at or
before ¢ packets for aunicast case. Thisanalysis somewhat resembles what we desire to show in this section.
Figure 3.12 on page 64 shows the DeMoivre-Laplace approximation for a relevant set of transmission
parameters.

FIGURE 3.12 - DeMoivre-Laplace Approximation Drawbacks
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Aswe can see from the chart, the DeMoivre-L aplace approximation is not suitable for our needsin this case.
Unfortunately the main condition for the DeMoivre-Laplace theorem to make a close approximation does
not hold. The theorem requires cq(1-q) to be alarge value. In our case, where small values of q are highly
relevant, and K (which isin the same order of c¢) can be alow value such as 32, 16 or even 8, this condition
does not hold. A more important reason for the unsuitability is the fact that the DeMoivre-L aplace theorem
makes an approximation and not a bound as we see in the chart above. Even small differences could have a
large impact on our calculation since we wish to estimate c for probability figures very close to 1 (as we
want to calculate the probability of simultaneous success for G groups, for avery large G).

A further disadvantage of the DeMoivre-Laplace theorem isthe fact that it is based on lookups to a Gaussian
distribution table. This lookup is clearly non-invertible and therefore not suitable to put in the form of an
analytical expression.

L et us then define arandom variable X® which is the number of successful packet receptions out of ¢ packets
that were sent. Clearly:

(EQ 32)
P(N*™ < ¢)=1-P(x° <K)

FIGURE 3.13 - Domain for the bound
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And the density function for X® which is plotted in Figure 3.13 on page 65 is given by:
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f(i)=Px°=j) =®(1—q)iqH

where q is the loss probability per packet and p is 1-q.

A known bound is the one given by the Tchevycheff inequality.

For the binomial distribution:

and the variance:

o?=cpq

We aim to calcul ate:

P(XC <K): PQXC—E(XCng) - e=cp—K

but in order for the result to be relevant we need to make sure that ¢ is big enough so that:

E=cp—K>c-cp

which istruefor:

(EQ33)

(EQ 34)

(EQ 39)

(EQ 36)

(EQ 37)

(EQ 38)

66 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



A Bound for Multicast Bulk Data Distribution with FEC

(EQ 39)
K
c>
P—d

In that range, the inequality gives us:

(EQ 40)
C
P(N* <c)=1-P(x° <K )21- P4 _
(cp-K)

Another applicable known bound is the Chernoff [32] bound which for our case looks as follows:

(EQ 41)

-2(cp-K )?

P(N™ <¢)=1-P(X° <K)21-€ ©

We compare the results of the Tchebycheff and Chernoff bounds against the actual valuesin Figure 3.14 on
page 67. As can be seen, these bounds are very loose and therefore not suitable for a meaningful analysis.

FIGURE 3.14 - Tchebycheff and Chernoff bounds
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We proceed then to develop our own bound. In our approach we take advantage of the observation that for
the relevant range of j, the distribution under analysis decreases faster than a geometric sequence with the
decrease of j.

Let us define:

(EQ 42)
_pbee=i-3
AR

then:

(EQ 43)

C (o d p i .
I e A . ( j .
_:(J‘J (-2-i+0la) T i g

= : —
[j—ljqu“ (J)I(S_J)I(gjqc (c-i+1)p

We are interested in a range for which the ratio should be smaller than one (P decreases as j decreases),
therefore:

(EQ 44)
(0, <1) -~ (ja<cp-jp+p) - (ip+ja=j<cp+p)
which matches what we see in Figure 3.13 on page 65.
Theratio is clearly an increasing function of j for j<cp+p. And then for c>K/p we get:
(EQ 45)
max p. = p = M
o<j<k ' ! K-t (C_K +2)p

We use now the ratio to bound the density for X° as follows:
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Then:

Pl =)= P = +1) <Pl = )<

<pK—l( K—lP(XC =] +2))<‘ < (pK_l)K_l'j P(XC =K —1)

A <K)=3 A = )< Slac)  ppxe =)=
=p(x°= K_])jzi; )

We tried afew different approaches here namely:

(EQ 46)

(EQ 47)

1. Take advantage of the fact that the corresponding infinite geometric series converges and then use:

A <K<ree=k 5 a,) ==K

1= s

2. Usethefinite geometric series:

o <K< =k -13a. =L

1@1

Al ek

(EQ 48)

(EQ 49)

3. Further split the range into smaller portions (i.e. j<c/2 when g<p) to reduce the difference between the

bound and the calculated value.
(EQ 50)
cl/2 . K-1 .
P(xc<k)<P(xe=K-1] Y (0,.) + (o)
c>K/p j=0 j=cl2+1
Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 69



Multicast with FEC for Bulk Data Distribution

We tried all approaches and found out the simplest one provides a bound that is very close to the calcul ated
value for awide range of the parameters. We leave the improvement of the bound using the mentioned tech-
nigues as an option when closest approximations are desired.

Summarizing, our proposed bound is given by:

and therefore:

<k PC o

(EQ 51)

K-1 K+
oKip 1-a.,  Ccp-K+l+p —Jp ¢

(EQ 52)

F’(l\llK sc):l— F’(XC <K)>1——(C_K+2)p [KC_JPK_ e

oK/p cp-K+1+p

We show the results in Figure 3.15 on page 70 and Figure 3.16 on page 71 for loss rates of 0.05 and 0.25
respectively. We compare the attained bound with the computer generated exact calculation.

FIGURE 3.15 - Bound for P(NYK<=c) - L oss Rate 0.05
Loss Rate 0.05 - K 32
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FIGURE 3.16 - Bound for P(NVK<=c) - Loss Rate 0.25
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The results are clearly satisfactory. The bound is very close in all areas of interest (when P is sufficiently
closeto 1) even for relatively large values of q such as 0.25 as we seein Figure 3.16 on page 71.

FIGURE 3.17 - Bound for P(NYK<=c) - Comparison with DeMoivre-L aplace
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To further emphasize the properties of the suggested bound we show in Figure 3.17 on page 71 azoomed in
section of one of the previous charts. In thisfigure we can see the cal culated version compared to our bounds
and to the DeMoivre-L aplace approximation.
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I solating the Needed Number of Cycles from the Bound

Thereis still more to be done in order to attain our goa of getting an expression from which we can isolate ¢
as afunction of al the other parameters (K, g and the desired success probability). The bound we presented
so far is highly valuable for estimating P as we have shown above. However it is hard to isolate ¢ from it.
For that purpose we further evolveit as follows.

Theideaisto simplify the bound so that ¢ appearsin aform that can be easily isolated. We start with the first
factor that has c in the expression above.

We have:

(EQ 53)

(5
——K+2|p
(C>K} (c-Kk+2)p _\p _Kg+2p

p cp—-K+1+p Kp K+1+p 1+p

(EQ54)

Kg+2p( C K+
P(N*“ <¢)>1-———% a
(c>K/p ) 1+p (K_ljp q

Thisis still not enough to make the isolation of ¢ practical. The combinatorial expression above is hard to
invert. In order to further simplify it we use Newton's binomial as follows:

e o]
R

and then substitute in the bound to obtain:

(EQ 55)
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(EQ 56)

K-1
P(N™ < c)>1—KQ;2p[Ej 2q
c>K/p 1+ P q

which is an expression from which ¢ can be easily isolated as desired.

We show in Figure 3.18 on page 73 the invertible bound as compared to the previous one. Clearly the results

are worse than before. The biggest impact is that of the use of 2° which highly simplifies the calculation at
the expense of worsening the bound. The important bound feature is still preserved and as we see below
when we isolate ¢ and compare its estimation with the calculated values the results are very good.

We clearly see two sections in Figure 3.18 on page 73. The first part of the chart where the simpler bound
has its worse behavior isrelated to the fact that we are multiplying a yet relatively high residual probability
by a number much larger than what should have been. On the other hand for higher values of ¢, even though
2¢ isyet higher, the probability by which it is multiplied is very small making its effect negligible. In partic-
ular, as we will see below, since we need simultaneous success for alarge number of groups (G) we will be
interested in cases where P is very closeto 1 arange at which the invertible bound is very good.

FIGURE 3.18 - Invertible Bound for P(NYK<=c) - L oss Rate 0.05
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Isolation of c for the single group case is from here straightforward. Given a desired success probability PP,

(EQ 57)
K +2 K-1
(1-pP)=—372P P(Ej 20
1+p (q
1+ K-1
_ (29 =(-pP| —P_| 4
Kg+2p \ p
The number of cycles c that a client needs to receive the file with probability PP isthen at least:
(EQ 58)

o= e 2P e (a9

q+2p p
In(2q)

Thisresult is an intermediate step. In our scenario we have G groups to take care of simultaneously. We fur-
ther develop our bound for ¢ in the multiple group scenario in next section.

c=

Accounting for Multiple Simultaneous FEC Groups

When considering the G simultaneously transmitted FEC groups with K packets each that resulted from

dividing a file of S packets for FEC computability our success probability function at or before ¢ packet

cycles becomes?:

(EQ 59)
p(Ne* <c)=[P(N* < c]°

So if PP isthe desired success probability then ¢ needs to be such that:

6. weuse adlightly smpler model here where NGK represents the number of cycles as opposed to the number of pack-
ets. A cycleisthetime that takes to send G packets which according to our schedule scheme belong each to one dif-
ferent group. Thisissimilar to the simplest approach we took in the previous chapter however in this case theimpact
in the result is somewhat smaller since awhole cycle is much smaller than thefile.
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(EQ 60)
p(x° <K)=1-¢PP
Using the formula we achieved in the previous section we get:
(EQ 61)
In(L-%/PP )+in[ E*P | (k -2)in| 9
c= Kg+2p p
In(2q)

which is the bound we were looking for.

A Practical Approximation - I solating the Effect of G

Thereisyet an improvement that can be done to the expression for ¢ above. The effects of G and PP can be
made clearer if we manage to separate them. Since PP is close to 1 we can approximate:

(EQ 62)
InPP
(\B/ﬁ) - e? ~1+ InPP
G
and:
(EQ 63)
InPP=—(1-PP)
So we are looking for ¢ so that:
(EQ 64)

FAx°<K) ﬂ—%ﬁké (1-PA

Using the formula we achieved in the previous section we get:
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(EQ 65)
+
~In(G)+In(1- PP)+I 1+p +(k -0 9
o= Kg+2p p
In(2q)
which is the estimation’ for ¢ we were looking for.
Let us now normalize c by dividing it by K in order to obtain the packets-per-packet measure.
(EQ 66)

~In(G)+In- PP)+Ir{K]('q:F2)pJ+(K _])IF{EJ

K1n(2q)

c=

Remark: A salient observation of this expression is that the effect of the file size in the packet-per-packet
measure is divided by the FEC parameter K. Recall that in the previous chapter, when the “simple cyclic

multicast with no FEC"® was analyzed, we concluded that the logarithm of the file size was a determinant
factor in its performance. We see now that through the use of FEC, this effect gets “diluted” by the division
by K.

The following figures verify our estimated ¢* against the one calculated using the exact probability func-
tions. We do that as a function of all the parameters in order to understand the limitations of the proposed
estimation. The results are highly satisfactory. The expected differences (mainly from the use of 2°) do not
distort the general effect of the parameters in the estimated c* and therefore a lot of interesting features can
be analyzed.

7. We call this an estimation (as opposed to a bound) because of the approximation we took for PP*L/G. Aswe see
below the behavior of the estimation is still on the safe side as we intended it to be while devel oping the bound.

8. equivalent to K=1
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FIGURE 3.19 -c* asafunction of K - Loss Rate 0.05
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Figure 3.19 on page 77 shows c* as afunction of K for the same file of size 32768 packets. As K grows G
decreases so to keep GK equal to 32768.

The figures show that the estimation is pretty satisfactory. The qualitative features are completely preserved.

Even though at this stage the plotted expression is an estimation®, we can clearly observe that it is always on
the safe side of the calculated value.

We can see that for very small values of K, the difference between the estimation and the calculated valueis
not negligible. We try to asses this worst case difference by analyzing our estimation in the extreme case
where K=1 (simple cyclic multicast with no FEC). Thisisthe case we analyzed in the previous chapter. Sub-
stituting K=1 in our estimation we get:
(EQ 67)
+
~In(G) +In(L-S)+1 n(lpj

q+2p
In(2q)

c=

9. because of the estimation for PP*1/G
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The third term is quite negligible since the argument of the logarithm isvery closeto 1. If we eliminate it we
obtain:

(EQ 68)

_In(1-9) B In(G)

In(2q)  In(2q)
which is close in its form to the results we obtained for the estimations of the simple case in the previous
chapter. The qualitative impact of the parametersis exactly the same. The difference in the argument for the

logarithm in the denominator is the source for the difference and it comes from the compromises we had to
take to be able to isolate ¢ in a simple manner.

Figure 3.20 on page 78 repeats the same experiment for a higher loss rate. 0.25 was picked because it is
pretty much at the edge of the relevant loss rate range for awide variety of applications. The results here are
very much like those of the previous example.

FIGURE 3.20 -c* asafunction of K
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A careless reader may wrongly conclude from Figure 3.20 on page 78 that the estimation converges to the
calculated value for larger K. Thisis not true. The calculated value converges to the unicast result when K is
equal to thefile size (and G is consequently 1) as expected (we have proved this convergence in a previous
section). The estimation converges to a somewhat higher value given by:
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(EQ 69)

In(2q)

Thisis again mandated by the compromises we made in order to achieve a simple invertible expression.

Figure 3.21 on page 79 shows the behavior of our estimation as a function of the loss rate. The file sizeis
kept constant at 32768 packets as well as K which isheld at 32.

FIGURE 3.21 -c* asafunction of L oss Rate
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An interesting observation is that for any particular value of K, the difference between the calculated ¢ and
the estimated one (plotted on the same chart) as a function of the loss rate is fairly constant for a wide and
relevant range of loss probabilities. We will see below that this observation holds when the estimation is
tested as afunction of the file size as well. We therefore apply a heuristic correction factor to our estimation
asfollows:
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(EQ 70)

-G +Ir1-PR + ’{K](-;-FZJ

KiIr{zz)

p}(K_])I{g] ~4K)

c* =

where:

(EQ 71)
e(k =32)=0.1

as we can see from Figure 3.21 on page 79.

We verify the corrected estimation (c**) as afunction of thefile sizein Figure 3.22 on page 80. K isfixed at
32 so as the file size increases the number of groups does so accordingly. We show the estimation for aloss
rate of 0.05.

FIGURE 3.22 -c** asafunction of thefile size (L oss Rate 0.05)
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As can be seen, the corrected estimation is very close to the calculated value. Thisis especially true for file
sizesin the relevant interesting range.
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Remark: Summarizing, we have shown an estimation formula that behaves very close to what the calcu-
lated value does for a wide range of loss rates and virtually any file size. Since the file size and the average

loss rate are effectively the actual changing parameters, we claim that for any specific implementati on'® we
provide a simple expression from which performance results from a receiver perspective can be estimated
with fairly good precision.

We finally evaluate our estimation as a function of the desired success probability PP and show the resultsin
Figure 3.23 on page 81. Again we see the estimation is very close to the calculated value. This result
enhances the usability of our estimation for the cases where the desired success probability may vary among
different cases.

FIGURE 3.23 -c** asafunction of the desired success prob (L oss Rate 0.05)
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10.implies a specific value of K
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CHAPTER 4 MUItI'rate Dlﬂl’l bUtI On
to Heterogeneous
Clients

4.1 - Congestion Control in Multicast

I ntroduction

Multicast communication over a packet switched network has its main challenges deeply related to its very
nature: One to Many Transmission. A large set of arbitrarily dispersed and heterogeneous receivers renders
the issues of packet loss handling and congestion control into a major challenge as traditional feedback-
based solutions applied to point-to-point communications get immediately disqualified.

Transmission errors and packet losses which are handled in traditional point to point communication in a
variety of ways result in a much more difficult problem to overcome in point to multipoint transmissions.
Feedback gets limited by scalability considerations and selective retransmission techniques get prohibitive
as their number would increase unbounded with the growth in the number of receivers.

Flow and congestion control, which are a determinant factor in the performance of very large networks,
impose the second limiting factor. The dispersion in location of receivers and the variety in their connections
to the network make traditional control schemes unusable. Feedback based methods collapse for scalability
reasons and, more important, no single data rate would be adequate for most point to multipoint applications
with alarge number of receivers.
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We have shown in previous chapters the use of cyclic transmissions methods combined with forward error
correction techniquesin order to provide scalable packet loss handling, yet refraining from any kind of feed-
back channel requirements. We analyzed the performance from the receivers point of view and showed a
scheme which was optimal in terms of expected delay. In this chapter we attack the problem of congestion
avoidance with the same scalability goal in mind.

The most widely deployed method for congestion control in large networks is the one used by TCP. Routers
in the TCP/IP internet drop packets as a result of congestion. The TCP injection endpoints react to packet
drops according to specified rules. Basically, packet injection rate is reduced when packet drops are
detected, and is gradually increased when transmissions succeed. This policy has as its main objective the
relief of network congestion.

The research areas of congestion detection, packet dropping policies and endpoint reaction to congestion
have been and till are of major interest to the scientific community and the networking industry. A variety
of schemes have been proposed and tested with different degrees of success. Virtualy all of these
approaches are based on feedback and are therefore unsuitable to our problem.

Even in the presence of some kind of feedback channel, the congestion control issue for multicast is still
problematic. Packet injection rate affects all receivers simultaneously while these may be located at different
areas of the network that experience congestion in a different manner. In a simplistic approach, since at any
point in time different bandwidth is available to different clients, the transmission rate for the multicast ses-
sion could be made suitable for the weaker receivers. If all clients were connected to the server using links
that limited their bandwidth to some similar value then this simplistic solution may have been acceptable to
some extent. However, from a realistic standpoint, when some users have larger available bandwidths such
asa128Kbps 1SDN or higher speed lines like cable modems (2Mbps), T1 or E1 (1.5-2Mbps), the suggested
technique is not practicable. Imagine some thousands customers receiving the file at 14Kbps because one
single listener to the multicast has an old modem.

An aternative approach to congestion control in multicast transmissions where routers along the way filter
the packet stream so that corresponding sections of the tree get their adequate rate is discussed in [16]. How-
ever, the main limitation of these kind of approaches is related to the difficulty in the deployment of such a
solution in a huge global networks. New protocols for which it is sufficient to update the interested end-
points with no change required to the network infrastructure are much more likely to succeed in an environ-
ment like the internet.

Recaver-Driven Flow Control

As mentioned above, the key to true scalability for the multicast approach proposed in previous chaptersis
that it provides a solution to the packet loss problem with no requirements for a feedback channel. In this
section we develop a solution for the congestion control problem with the same motivation in mind. For this
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purpose, transmission rate control has to be receiver driven. Each receiver has to be able to independently
regulate its own reception rate according to its perceived state of the network congestion on the path from
the server to itself.

In order to implement such a solution, multicast group membership mechanisms can be used. The simplest
receiver driven mechanism could involve a server simultaneously sending the same file at different rates
using different multicast addresses. Each receiver could join the one multicast address that matches its
reception rate. The clear problem with such an approach is that network resources would be far from being
optimally utilized. Let us consider two receivers topologically located at nearby places in the network but
with different connection ratesin their respective final hops. Because of the different rates, the two receivers
would subscribe to different multicast channels resulting in extra data flowing through the common parts of
their path. We further address this issue and formalize some related results in “ The Optimal Network Utili-
zation Paradigm” on page 87.

The receiver driven approach can be further evolved into one in which clients subscribe to one or more than
one channel simultaneously according to their rate capabilities. We will show that by using multiple chan-
nels with appropriate subscription policies, the network utilization can be made optimal.

Asfar as network dynamics are concerned, areceiver driven approach can be adequate as well. In response
to packet drops, receivers would drop their subscription to one or more of the multicast channels they are
currently receiving. When coordinated among the clients, this packet-loss triggered group-unsubscription
effectively reduces the network traffic on the congested paths as a direct result of the multicast group prun-
ing that takes place in the intervening routers.

It is an important goal for the proposed solution to behave in a friendly way to other network traffic. The
receiver driven approach as described in the previous paragraph resembles the behavior of TCP as far as

reaction to congestion is concerned and therefore it is applicable to the P internet?.

Remark: Receiver driven flow control was investigated in [12] [14] [15] [17] and [23]. Severa works on
this area such as [12] propose the application of receiver driven rate control techniques for one to many
transmission of media. In the media streaming framework, the receiver driven rate control allows clients
with different connection capabilities to receive the same transmission with different levels of detail. Each
receiver subscribes to as many multicast channels as possible in order to receive the highest possible quality
of the received transmission. With this scheme, the server sends different information on each channel in a
way that further details are incrementally supplied to those clients that are capabl e of receiving them. In con-
trast, for bulk data distribution, it is not acceptable for the rate control to affect the level of detail as in the
media transmission case. Bulk data has to be received intact by all clients regardless of their reception rate

1. Infact, it could be argued that when a packet is targeted to alarge multicast group it should not be regarded as areg-
ular point to point packet sinceit is serving a much wider number of receivers.
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capabilities. For this reason, the application of receiver driven techniques in the bulk data scenario involves
atrade-off on the reception time as opposed to the reception quality of the media case. Instead of receiving a
higher quality when subscribing to more channels, we desire the file reception time to be shortened for cli-
ents with higher reception rates.

Summarizing, the multi-channel distribution of bulk data presented in this chapter is based on the receiver-
driven selective subscription technique described so far. The rate for each of the multicast channels that
belong to the same transmission, its packet schedule mechanism and the client subscription policy, are the
three key components that define a proposed scheme. In the following sections we develop this three com-
ponents to achieve our desired goals of minimum reception time and optimal utilization of network
resources.

Notation and I mplementation Aspects

The server transmits a file using multiple multicast Channels simultaneously as suggested above. In an IP
internet context, every Channel is implemented using a single IP multicast address to which all packets
belonging to the Channel are sent. Each Channel is denoted with a number: j.

The server sends the packets using a specific transmission rate for every channel. The transmission rate for
channel j is denoted: R;. In an IP internet context, desired transmission rates may be achieved by means of a

specific inter-packet delay that is applied by the server on every channel. The channel is alogical concept
meaning packets of all channels are sent out of the server through its (possibly only one) network interface
as shown in Figure 4.1 on page 86. In this work we use channel rates that are all integer multiples of some
base rate, for this reason, the required channel interleaving for emulation of concurrent transmissions at the
respective rate is straightforward.

FIGURE 4.1 -Inter-packet delay for channel rate control
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The choice of which data packets are to be sent on each channel at every point in timeis defined by what we
call a packet schedule mechanism which combined with the receiver’s subscription policy constitute the
determinant factor in the performance of the suggested approach.

Every receiver thus controls its reception rate by subscribing to one or more channels. Rate increases and
drops are achieved by a receiver through changes to its subscription state. In an IP internet this may be
implemented with regular multicast membership protocols such as IGMP [2].

Summarizing, in this chapter we are looking for:

* Channel Rate Assignment: Transmission rate (ipd) for each multicast channel
* Packet Schedule Mechanism: Which packet is sent on every channel at every point in time
e Subscription Policy: What are the rules used by a client to decide which channels should it subscribe to.

so that the reception time is minimized while network resources are optimal Iy2 utilized.

The Optimal Network Utilization Paradigm

The receiver driven scheme suggested above, motivated by the problem of different clients rates, requires us
to determine which packets will be transmitted at each channel. A very simple approach to the multi-layer
schedule problem would be for the server to send simultaneously and over different channels, different parts
of the file using the lowest network rate for each channel. In a previous chapter, while solving the packet
loss problem, we divided the fileinto FEC groups for coding complexity reasons. A simple approach for the
packet schedule could be to send the coded packets of each FEC group in a separate channel. A possible
channel subscription policy suitable for this packet schedule could be for the client to join as many multicast
channels as its reception rate allows and keep them until enough packets have been successfully received.
Once finished receiving the group of the file at a specific channd, a client would unsubscribe from it and
join other ones to continue until the whole file was received.

From areceiver’s standpoint, this method sounds very appealing. If each FEC group is sent through a sepa-
rate multicast channel, then by subscribing and unsubscribing once K packets have been successfully
received, we achieve a scheme where the client perception is equivalent to that of the ideal selective retrans-
mission case. However, precisely for the same reason as regular point-to-point reliable protocols are not
suitable for the bulk data distribution problem, this simplistic approach is not adequate. The subscription/
unsubscription mechanism takes the place of the selective retransmission feedback and has the similar effect
of links overutilization and ultimately collapse of the network resources.

2. We define optimal network utilization in the next section
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The problem of basically all the schedule mechanisms that send different parts of the file on different chan-
nelsis that of network resource overutilization. The main motivation for using multicast in the first place
was to reduce the amount of traffic on network links when more than one receiver downstream is interested
in the same data. Two topologically close clients that are not coordinated in their subscription state result in
non-optimal network bandwidth consumption.

FIGURE 4.2 -Non-Optimal Network Utilization with Multicast
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The example in Figure 4.2 on page 88 shows atrivial case for non-optimal network resource utilization. The
numbers on the links denote the channels that are being transmitted through it. Channels reaching a receiver
are those for which it has subscribed. In the example, receiver a has subscribed to two channels and receiver
b has requested three. Since they are not coordinated, the link connecting the server to the intermediate
router is being filled with 4 channels worth of bandwidth.

When the file is divided so that different parts of it are sent through different multicast channels as in the
simple scheme described above, non-optimal network utilization arises. This is a result of topologically
close receivers which at a point in time subscribe to different channels. The non-coordinated subscription is
caused by different reception rates that cause some client to advance before its neighbor, by clients starting
reception at different points time and also by packet losses that affect some of the receiver but not the others.

We desire our mechanism to be optimal in terms of network resources consumption.

Definition 4.1 - Optimal Network Utilization

We define a scheme to be of optimal network utilization when for every link in the multicast routing tree,
thereis at |east one receiver downstream which is subscribed to al the channels that are being transmitted on
thelink.

The definition for optimal network utilization stems from the fact that when it holdsit resembles a point to
point connection between the server and the highest rate receiver downstream from that link. By achieving
optimal network utilization as defined here, we obtain a scheme where the bandwidth consumed at each
link is never higher than what would have been consumed if there was a single receiver downstream regard-
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less of the number of clients simultaneously taking advantage of the transmission. Figure 4.2 on page 88
shows an example of optimal network utilization.

FIGURE 4.3 -Optimal Network Utilization with Multicast
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Cumulative Subscription for Optimal Network Resource Utilization

In order to achieve optimal network utilization we will use acumulative subscription policy. A cumula-
tive subscription policy forces the heterogeneous clients to behave in a coordinated way regardless of their
reception rate, experienced losses and starting point in time.

Definition 4.2 - Cumulative Subscription Policy
A subscription policy is called cumulative when in order to subscribe to channel j, aclient has to subscribe
to al channelsi wherei<j.

We prove in Theorem 4.1 - on page 89 that a cumulative subscription policy results in optimal network
utilization as desired.

Theorem 4.1 - A Cumulative Subscription Policy Resultsin Optimal Network Resource Utilization

We merely need to prove that for every link in the multicast routing tree, thereis at least one receiver down-
stream that subscribesto all the channels flowing through the link.

Proof:

Let us denote with m the highest channel flowing through the link. Since channel mis flowing through the
link there is at least one receiver downstream that is subscribed to it. Let us denote one of these clients with
r. Because of the cumulative subscription policy, r hasto subscribe to all channelsi wherei<m. From here,
all other channels flowing through the link are received by r and thus all channels flowing through the link
arereceived by r.

ged
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We define then the subscription level of areceiver to be the highest channel to which the receiver is cur-
rently subscribed. We denote the subscription level with |. When a cumulative subscription policy is used,
the subscription level fully describes the subscription state of areceiver.

The subscription rate of areceiver isthen mandated by its subscription level and isthe sum of the rates of
the channels from channel 0 up to and including channel I.

Having a cumulative subscription policy for optimal network utilization, we still need to assign transmission
rates to the channels and define a packet schedule mechanism for each of them so that the transmission time
isoptimal from areceiver’s standpoint. We devel op thisin the following sections.

4.2 - Exponential Cumulative Channels Scheme

Given afile of size S, we have proved in a previous chapter, that if no feedback is available and the best
achievable FEC encoding scheme has parameters K and N, then the best transmission scheme from a
receiver standpoint, is one where thefileis partitioned into G=SK groups, each group is encoded using FEC
to obtain N packets and these encoded packets are transmitted using a cyclic group interleaving schedule.

Under the proposed receiver-driven rate control mechanism, each client subscribes to a subset of the multi-
cast channels transmitted by the server. In this way, the packet stream received by each client is the union of
the channels to which it subscribes. For the multi-channel mechanism to attain optimal results, we devisein
this section a channel packet schedule that maintains the required interleaving properties of the combined
received packet stream seen by each client. The real challenge stems from the fact that different clients sub-
scribe to different channels and thus, for the results to be optimal for al clients, we need our scheme to
maintain the required interleaving properties for al subscription levels simultaneously. Moreover, as it is
aso our goal to allow clients to join the transmission at any point in time, we build the packet schedule for
the channels so that optimal results are attained regardless of the moment that a client started its reception.

As may beinferred from the presented requirements, a packet schedule for the channels, that satisfies all the
presented conditions is not trivial. It is therefore reasonable to ask ourselves at this stage, whether or not is
the building of such a precisely tailored packet schedule, justified by its expected benefits. The answer to
this question is given in a previous chapter where we showed the group interleaving approach compared to
the use of arandom packet schedule. The results for the random are much worse than those of the proposed
optimal scheme. Moreover, our scheme benefits from the bursty nature of losses which further enhances the
difference in results as compared to a random schedule. As a closing remark on this matter, the scheme we
present below satisfies all requirement while its implementation is trivial from a server’s perspective so al

its great benefits are achieved at no extra cost3.
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Exponential Channel Rates

We will set the transmission rate for the first channel (j=0) to be equal to a base rate denoted B. The rate for
the subsequent channels R, will be set to be equal to the sum of the rates of al previous ones. We call this

channel rate assignment exponential and define it formally as follows:

Definition 4.3 - Exponential Channels
Channels are called exponential when their transmission rate R; is defined as:

(EQ1)

j—lB j=0

Rj: ZR >0
i=0

Note that a straightforward property of exponential channelsisthat the rate of all channelsj>1 are double the
rate of channel j-1.

Figure 4.4 on page 91 shows a schematic abstraction of the exponential channels and the corresponding
rates achieved for every subscription level when a cumulative subscription policy is applied.

FIGURE 4.4 - Cumulative Exponential Channels
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3. It may be even argued that a random schedule implementation may be more demanding than the optimal one that we
are proposing.
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Figure 4.5 on page 92 provides some mativation for using exponential channels in our schedule scheme.
Basically, the channel schedule for optimal resultsis built by starting from the lowest rate channel (j=0) and
sequentially introducing additional ones while taking care to keep the interleaving properties of the cumula
tive stream. Let us assume that up to level 1-1 the schedule achieves the required interleaving properties.
This meansthat out of G consecutive packets transmitted jointly over channels 0 through I-1 each belongs to
adifferent FEC group. When channel | is added, thetimeit takes to transmit G packetsin channels 0 through
| is by definition shorter. By setting the rate in channel | to the sum of the rates of channels 0.. I-1, the time
for G packets at level | becomes exactly half the time for G packets at level I-1. Then, in order to maintain
the group interleaving property we schedule the packets on the second half of the G packets at level I-1 at
channel | as shown in the figure. Consequently, the groups to which the packets in the first half of the time
for G packets at level 1-1 belong, will be scheduled in channel | for the timeimmediately following. The rate
doubling resulted in exactly two times G packets being sent in the sametime it took to send G packets before
the addition of channel |. This exact doubling makes the packet ordering for interleaving tractable. The
Details will be further understood after the forecoming sections.

FIGURE 4.5 -Motivation for exponential channels
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Developing the Cumulative Exponential Packet Schedule

We have defined so far our subscription policy to be cumulative and assigned exponential rates to our
channels. In this section we present the packet schedule for each channel that satisfies the requirements of:;

e Group Interleaving for al subscription levels: The packet stream is such that out of any G consecutive
packets each belongs to a different FEC group.

* Packet Interleaving for all subscription levels: The packet stream is such that any N consecutive packets
that belong to the same FEC group (sent at an interval of G packets one from the other because of the
group interleaving property) are all distinct.

* Invarianceto startingtime: The Group Interleaving Property and the Packet I nterleaving Property
hold regardless of the starting time.
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Remark: The purpose of these three propertiesis to preserve in the multi-channel scenario the characteris-
tics of the packet stream perceived by a client, regardless of its own rate and starting time. Thisisto obtain
the same results that we proved to be optimal (and comparable to those of an ideal reliable unicast) in the
previous chapter.

The intuition behind the derivation of the packet schedule formulas presented below is somehow related to
the observations made above with regards to Figure 4.5 on page 92. Let us start, for the sake of simplicity,
by considering only the group interleaving property. Since receivers at subscription level O receive only the
packets sent on channel O, it is clear then that packets in channel 0 must be scheduled so that every packet
out of G consecutive ones belongs to a different group. Without loss of generality we define then our sched-
ule to send packets from group 0 to G-1 and so on in a cyclic manner on channel 0. When considering now
the clients at subscription level 1 we face the (still simple) problem of setting the packet schedule of channel
1 so that when combined with channel 0 the aggregated packet stream still complies to the group interleav-
ing rule. For thiswe need to schedule the same packets as in channel 0 but with a*“ phase” offset of G/2. We
keep the same packet order so that no matter the starting time, the group interleaving conditions are pre-
served. Figure 4.6 on page 93 shows this group index assignment for the first two channelswhen G is 8. The
number within the blocks denotes the group to which the packet belongs.

FIGURE 4.6 - Assigning Group Index in the Packet Schedule - Channels0 and 1
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The building of subsequent channels is based on the same principle as can be inferred from Figure 4.7 on
page 94. However the problem becomes trickier as the rate is increased and further channels are added. In
contrast to what may have been assumed, consecutive periods of G packets at channels higher than 1 do not
look the same. See channel 2 in Figure 4.7 on page 94. The resulting period for each channel j is not G but

G2 this being a consequence of the interleaving requirements.
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FIGURE 4.7 - Assigning Group Index in the Packet Schedule - Channel 2
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The determination of the packet index within the selected group follows a similar process. The goal is to
assign packet indexes so that two consecutive packets from the same group transmitted at any subscription
level are different. Asan example, Figure 4.8 on page 94 shows the consecutive packets that belong to group
4 at subscription level 2. For the schedule to attain the desired results, all these packets need to have a differ-
ent packet index.

FIGURE 4.8 - Assigning Packet Index in the Packet Schedule
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The group interleaved stream is then looked-at at a “lower resolution” meaning that groups of G packets are
regarded as ablock for this purpose. The same packet index is then assigned to all the packets within each of
these blocks (which are guaranteed by the properties of the group index formulato belong to distinct groups)
so that the packet interleaving property is attained using the same guidelines as above but for blocks instead
of individual packets. Further insights into the building process of the packet schedule are provided within
the proofs of its properties in sections to follow.
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The Packet Schedule For mulas

Remark: The packet schedule formulas presented below together with the proofs of their propertiesin the
next sections are one of the main contributions of the presented work.

In Figure 4.5 on page 92 we show the notation for the packet schedule formulas. Channels are denoted with
j and packet position within each channel with g.

FIGURE 4.9 - Packet Schedule Parameters
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Definition 4.4 - Cumulative Exponential Multi-channel Packet-Schedule
The packet in position g in channel j is from group:

(EQ2)
_ q G
g= ‘{meio,j—l J+[2] J + max( \\Zmax omax(0,j-1) Jj |:l:q|2’“"‘" (©.i-1)
and its packet index (out of the N coded packetsin each group g) is given by:
(EQ3)

2max(0,j—1) N
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In the next few sections we prove the properties of the “ Cumulative Exponential Multi-channel Packet-
Schedule” on page 95. We show that for any starting time and any subscription level, the packet stream
received by any client (which isthe union of the channelsto which it is subscribed) has the group and packet
interleaving properties proved optimal in the previous chapter. In “Group Interleaving Properties’ on
page 96 we prove that at any subscription level, the aggregated packet stream is such that any given consec-
utive G packets belong each to one of the G FEC groups. In “Packet Index Interleaving Properties’ on
page 112 we prove that out of the packets received from each group, there are no repetitions of the same
coded packet until al the different ones have been sent.

With this result we will have shown a mechanism with optimal network utilization (because of the cumula-
tive subscription policy) that is also optimal from the standpoint of all receivers regardless of their subscrip-
tion rate and their starting point in time.

4.3 - Group Interleaving Properties

The Group Interleaving Theorem

As we have shown in a previous chapter, for a schedule to be optimal from a receiver standpoint, packets
have to be transmitted in a group interleaved fashion. We prove that this feature is accomplished by our pro-
posed packet schedule for concurrently-active receivers at different subscription levels even when each
started the file reception at a different point in time.

Let G=27 (the number of FEC groups into which the file was partitioned)*. We wish to prove then, that for
every subscription level

(EQ4)
0<l<d
if we take any consecutive G packets that were transmitted starting at any slot boundary, then each one of

these packets belongs to a different group g. We make some definitions and prove some needed lemmas
before proving the desired property in Theorem 4.3 - on page 104.

4. Thisproperty is proved herefor G that is a power of 2. In afuture section we prove this property for the generalized
case.
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We define a slot to be the time that takes to transmit a packet on the slowest channel. We number the slots
starting from 0 and denote the slot number with s.

FIGURE 4.10 -slot and mini-dot definition
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We define aj-mini-dot to be the time that takes to transmit a packet on channel j.

From the definitions above, there are 211 j-mini-slots per slot in channel j (0<j<=I). And asingle j-mini-slot

in channel 0. We number the 21'1j-mi ni-slots within asot in channel j from 0 and denote the mini-slot num-
ber with:

(EQ5)
tofat--2%-1 >0
and
(EQ6)

t{d  j=0

Clearly, as shown in Figure 4.11 on page 98, q (the packet position within a channel as defined above) can
be written as:

(EQ7)
g=2%s#t  j>C

and
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(EQ 8)
g=s j=0

FIGURE 4.11 - packet position (q) asa function of sot (s) and mini-sot (t)
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We now calculate the number of dots needed for the transmission of G packets at subscription level |.

Lemma4.1- Number of Slotsneeded for G packetsat Level |

The number of slots required to transmit exactly G packets at level | is 2H,

Proof: given in Appendix A on page 197.

FIGURE 412 - Slotsfor G packetsat level |
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Using the defined s and t, we can how rewrite the expression for the group index as:

(EQ9)

g =|al+2’+2° |, =
j=0
=[la]+G +G |, =|al, =8|,

and:

(EQ 10)

o<j<l

IEl
_ |‘2 2§1+'[J+23_j +oin q?j—ls_'_t
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G

<2l
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G
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We aim to prove that the G packets in the shaded region of Figure 4.12 on page 98 include exactly one
packet per group. In other words, we prove that if we start receiving packets at a slot boundary, then we will
not see a packet of the same group for a second time before we have received one packet from all different
groups once. Let z be the starting slot number as depicted in Figure 4.12 on page 98. We first prove this
property using slot 0 as the starting point (z=0) in Theorem 4.2 - on page 104. We extend the proof to the
genera case (any 2) in Theorem 4.3 - on page 104.

Lemma4.2 - - Modulo Elimination
Starting at slot zero, when looking at G consecutive packets, the modulo in the group index formula (Eg. 9
on page 99) and (Eg. 10 on page 99) can be eliminated. Therefore, the group index formula can be rewritten

as follows.

Given z=0 then:

(EQ 11)
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(EQ 12)
g =s+2’77+277" 0

O<j<l

Proof: given in Appendix A on page 198.

We aim to show now that given any two packets in the alowed range (of s, j and t) for G packets, these
belong to different groups. For this purpose we use a binary representation of the group indexes and prove
below by comparing its binary coefficients.

Given a<2’ anatural number. The bi nary representation of ais defined as:
(EQ 13)
blai)o{od ifo1---3-h
such that:

(EQ 14)
J-1 '
a=) b(a,i)2
i=0

it isaknown fact that this representation exists and is unique for al a as defined above.

Figure 4.13 on page 100 and Figure 4.14 on page 101 show schematic views of the binary representation of
g forj>0and j=0 respectively.

FIGURE 4.13 - Binary representation of g (j>0)
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FIGURE 4.14 - Binary representation of g (j=0)
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To further emphasize the effect of each of the representation parameters (s,j and t) in the binary representa-
tion of g we show afew examples. In Figure 4.15 on page 101 we see the binary representation for a packet
from group 2. For G equal to 64 and subscription level 3, the first packet from group 2 is sent on channel 0
on slot number 2. The figure shows the meaning of the j, s and t components of the representation. We see

that this packet is sent in channel 0 from the fact there is no bit set beyond the range occupied by sin the
binary representation.

FIGURE 4.15 - Binary representation (Example: G=64 1=3 g=2)

6-1 6-3 0

0
0

J
g |o|lololo]1]|o|

s=2

Figure 4.16 on page 101 shows a packet from channel 1. Thisis clearly identified by the fact that the first bit
set beyond the range occupied by sisthe M Sb of the representation.

FIGURE 4.16 - Binary representation (Example: G=64 1=3 g=33)
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Finaly, in Figure 4.17 on page 101 we show a packet from channel 3.

FIGURE 4.17 - Binary representation (Example: G=64 |=3 g=41)
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We derive now the values of the binary representation of g from the binary representation of its parameters
s, j and t. For j=0 we have:

(EQ 15)
J-1-1
g=s= Zb(s,l)EZ' + ZOEZ'
i=0 i=J-l
Clearly then:
(EQ 16)
b(s,i) 0<i<J-lI
b(g,i)= _
(jg=o) { 0 J-I<i<d
For j>0 we have:
(EQ 17)
g=s+271+ 277 @=
1= J-j-1
‘leb(s )2 + ZJ:OEZ' + 21[2' +27" J*lzb(t )2 =
i i=J-1 i=J-j i
= J-j-1
_lelb(s ) + ZJOEZE' + Zlm +Zb(t ) 2o =
i=0 i=J- i=J-j i=0
I~ J-j-1 -
—leb(s i)2 + Z]:om' + 21[2' ib(t,i ~J+j-)m
i=J-l i=J-j i=J-j+1
Clearly then:
(EQ 18)
blsi) 0<i<J-|
) 0 J-l<i<J—|
b(£<gj;|l)_ 1 i=J—j

bti-J+j-1) J-j<i<J
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Now, using the presented binary representation of g, we prove the following lemmaby comparing the binary
coefficients of two packets with the same group index within the calculated range of s,j and t.

Lemma 4.3 - Uniqueness of the j,st representation of g within a range of G packets at any subscrip-
tion level I.

For any group denoted with gy, which can be represented as:

(EQ19)
_ S =0
9 _{SK +277 4270 { 0<j, <
with parametersin the range:
(EQ 20)
S, D{O,:L---,ZJ" _]}
i 0{02,+-. 1}
t.0{og-, 2 -3 j, >0
b, D{C} k=0
the representation above is unique which means that:
(EQ 21)
S=5
(9:=0,) -0 =1;
L=t

Proof: given in Appendix A on page 200.

We can now prove the desired group interleaving property for starting slot 0 (z=0).
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Theorem 4.2 - Group Interleaving when G=2’ and Starting Slot zis0.
For every subscription level |

(EQ 22)
O0<l<d

if we take any consecutive G packets that were transmitted starting at slot 0 (z=0), then each one of these
packets belongs to a different group g, where G=27.,

Proof:
We have shown that in the range defined by

(EQ 23)
so{o1,- .27 -3
jof{od---.1}
tofo,-, 27 -3 j>0

to{d j=o0

there are exactly G packets (Lemma4.1 - on page 98) and that all those packets belong to different groups
(Lemma 4.3 - on page 103). We thus have proved that we have sent one packet from each group.

ged
The extension to any starting dot z follows
Theorem 4.3 - Group Interleaving when G= 2 (for any Sarting Slot).
For every subscription level |
(EQ 24)

0<l<J

if we take any consecutive G packets that were transmitted starting at a any slot boundary (z), then each one
of these packets belongs to a different group g, where G= 2%,
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Proof:
When starting at atime slot z other than 0 the domain for sin our representation becomes:

(EQ 25)
sD{z,z+],---,z+2J‘I —i

Let us define g# to be g-z. Then for g# the proof for Theorem 4.2 - on page 104 holds and there is exactly
one packet of each group within the G packets defined by the parameters domain. Clearly by adding the
same zto every g# after applying modulo G we till have G different groups.

ged

Generalized G (not a power of 2)

The Group Interleaving Theorem was proved in Theorem 4.3 - on page 104 for G that is a power of two
(G=27). This requirement may be somewhat restrictive in practical cases.

The file size in bytes is equal to K times G times the packet size in bytes. In actual implementations, we
expect K (the number of data packets per FEC group) to be fixed (hard-coded in the implementation). As for
the packet size, playing with it may involve intervention on lower layers of the transmission protocol which
is highly undesired. We see then that G is mandated by the file size so restricting it to powers of 2 poses a
high limitation. We show here that our schedul e conserves the optimal group interleaving properties for any
G

In this section we generalize the Group Interleaving Theorem (Theorem 4.3 - on page 104) for awider class

of values of G. We wish to prove that our schedule scheme is an optimal packet schedule for any G=W2” for
all subscription levels| up to (and including J) where J is an arbitrary non-negative integer number and Wis
an arbitrary odd integer number.

We follow a similar approach to the one we used for the proof above. We need to prove that at any subscrip-
tionlevel | (smaller than or equal to J) for any G consecutive packets starting at a slot boundary, the packets
belong to different FEC groups.

Using the same slot and j-minislot definitions as above, the number of slots needed to receive G packetsis
now given by Lemma4.4 - on page 106
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Lemma4.4 - Number of Slotsneeded for G packetsat Level | for Generalized G

The number of dots required to receive exactly G packets under subscription level | is w2H

Proof: The proof is the same asfor Lemma 4.1 - on page 98.

We showed already that:

(EQ 26)

and from the new definition of G follows:
(EQ 27)
g =|s+W2'7 +w2 "3
G

o<j<l

We prove first in Theorem 4.4 - on page 111 the group interleaving property for slot O as the starting point.
The results are extended to any starting slot in Theorem 4.5 - on page 111.

Following the results from Lemma 4.4 - on page 106 the range for sis now:
(EQ 28)
sofod,--- w2 -1}
Lemma4.5 - Modulo Elimination (Generalized G)
In a similar manner as in Lemma 4.2 - on page 99, we wish to eliminate the modulo in the group index
expression. We prove here that when the starting slot is O, for G consecutive packets, the modulo in (Eq. 26
on page 106) and (Eq. 27 on page 106) can be eliminated. Therefore, the group index formula can be rewrit-

ten as follows.

(EQ 29)
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(EQ 30)
g =s+W2'7 +W2 "

o<j<l

Proof: givenin Appendix A on page 203.

We show now that there are no two packets belonging to the same group within the range defined above that
contains G packets and therefore the G different packets ought to be one from each group.

Our proof isvalid for any | in the allowed range. Without loss of generality, once we pick one specific value
for I, W2 isa constant in our proof. It is therefore equivalent to prove that the possible values of:

(EQ 31)

dlsit)= ?,(\zj;gt)

are all different within the allowed range of parameters (that spans G values as proved by Lemma 4.4 - on
page 106).

For the proof we express g* as a sum of its integer and non integer parts (the non integer part is denoted

r(g*)).
For j=0, the integer part of g* is:

(EQ 32)

j=0

and for j>0:
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(EQ 33)
s )| v M2
50 w2t w2t w2
Iij s<V>/3H
:L S_+2‘j+2‘j+ltJ:L S_J+2‘j +2‘j+1t =
w2 w2
=2 42y
Let us define:
(EQ 34)
r(g)=g'(sit)-[g(s i)
which is the non-integer part of g*.
Clearly:
(EQ 35)
f(_;)=9*(8,LtHg*(s,J',t)J=
i=
S S
W2J—| _OzwzJ—l
and:
(EQ 36)
r(g;)=g*(s,i,tHg*(s,J,t)J=
J>
S A kT N I b L
W2’ W2'"

108 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



Group Interleaving Properties

We look now at the non-integer binary representation of g* which is graphically shown in Figure 4.18 on
page 109 and Figure 4.19 on page 109 for j>0 and j=0 respectively.

FIGURE 4.18 - Binary representation of g* (j>0)

I-1 I-j 0

g*: t 1/o0|lo0|lo0|lo0]oO S

FIGURE 4.19 - Binary representation of g* (j=0)

Asan example, in Figure 4.20 on page 109 we see the representation for a packet from group 2. For G equal
to 48 (J=4, W=3) and subscription level 3.

(EQ 37)
_gsit)_ 2 2

g (Sj’t)_ w2 37 6

*

The figure shows the meaning of the j, s and t components of the representation. We see that this packet is
sent in channel 0 from the fact thereis no bit set beyond the range occupied by sin the binary representation.

FIGURE 4.20 - Binary representation Example: G=48 (J=4, W=3), I=3 and g=2

31 0

g:lo|o]|o0 s=2/6 t=0
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Figure 4.21 on page 110 shows the representation for g=25. In this case:

(EQ 38)
dsit)_ 25 gt

g*(S j’t) = w2 3[24—3 - 6

Aswe see, the packet is from channel 1. Thisisclearly identified by the fact that the first bit set beyond the
range occupied by sisthe MSb of the representation.

FIGURE 4.21 - Binary representation Example: G=48 (J=4, W=3), I=3 and g=25

31 0

g:{1/0fo0 s=1/6 t=0

Finally, in Figure 4.22 on page 110 we see an example for g=35.Which turns to be a packet from channel 3.

FIGURE 4.22 - Binary representation Example: G=48 (J=4, W=3), I=3 and g=35

31 o, =3

g:|l1|0]1 s=5/6
t=2

Using the presented binary representation, we prove the following lemma by comparing the binary coeffi-
cients and the non-integer parts of two group indexes within the allowed range of parameters s;j and t.

Lemma 4.6 - Uniqueness of thej,st representation of g* within arange of G packets at any subscrip-
tion level I.

If g*(Sp,j1.t1)=0% (S2j2,10) then s;=s, j1=], and y=t;.

Proof: given in Appendix A on page 205.
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We can now prove the desired property:

Theorem 4.4 - Group Interleaving when G=W2’ and Sarting Slot zisO.
For every subscription level |

(EQ 39)
0<l<

if we take any consecutive G packets that were transmitted starting at slot 0 (z=0), then each one of these
packets belongs to a different group g, where G= w2?.

Proof:
We have shown that in the range defined by

(EQ 40)
so{oL-- w2 -3
jofox,---,1}
to{o1,-,2" -3 j>0

to{d j=0

there are exactly G packets and that all those packets belong to different groups (Lemma 4.6 - on page 110).
We thus have proved that we have sent each group exactly once.

ged
The extension to any starting slot z follows:
Theorem 4.5 - - Group Interleaving when G=w2? (for any Starting Slot).
For every subscription level |
(EQ 41)
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if we take any consecutive G packets that were transmitted starting at a any slot boundary (z), then each one
of these packets belongs to a different group g, where G=W2.

Proof:
When starting at atime slot z other than O the domain for sin our representation becomes:

(EQ 42)

sD{z, z+1 - zH W2 —i

Let us define g# to be g-z. Then for g# our proof above holds and there is exactly one packet of each group
within the G packets defined by the parameters domain. Clearly by adding the same z to every g# after
applying modulo G we still have G different groups.

ged

We have thus proved the group interleaving property of the proposed “Cumulative Exponential Multi-chan-

nel Packet-Schedule” on page 95 for any G=W2” (any file size), any subscription level® | up to and including
J, and any starting time.

4.4 - Packet Index Interleaving Properties

The Packet I nterleaving Theorem

In Theorem 4.5 - on page 111 we have proved that groups are interleaved in our schedule scheme as required
for optimal results from a client’s perspective. |f the FEC encoding would have been capable of generating
an unlimited number of coded packets per group, then the packet selection within each group would have
been trivial. For each channel, every time that a specific group is scheduled, we could have picked a differ-
ent packet (since we are assuming an unlimited supply of them). In such a case, since al packets are differ-
ent, this would guarantee different packets at any subscription level as desired. However, as we have already
seen, practical implementations of publicly available codes cannot provide an unlimited number of coded
packets. Therefore, for optimal reception time, the schedul e needs to make sure that the packet streams at all

5. We prove in afuture section optimal interleaving for I=J+1 and show near optimal results for higher subscription lev-
es.
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subscription levels are such that all available coded packets are sent before any one of them is sent again
(and so on). The fact that this property has to be maintained for all subscription levels simultaneously makes
the solution non-trivial.

We have aready proved that if this property is attained, such a schedule scheme behaves as close as possible
to the ideal case for which there are infinite packets per group. We showed that when a finite amount of
packets are scheduled in away that each client never sees the same packet again unless he has already seen
all the packets, then the results are the closest to the infinite coded packets case. The proof for this was based
on the trivial observation that it is obviously better for a client to see a packet he has not yet seen than to
receive one he might already have achieved (which would not bring him closer to completion). Moreover, as
we will show in future sections, if this packet interleaving property is attained, for virtually all practical
cases, the file reception will be completed by the receiver long before the same packet is scheduled again in
its subscribed channels. We will conclude then that from the client’s perspective, the situation is equivalent
to the case where there are infinite code packets per group.

We wish to prove then that: Given G=w2’ (the number of FEC groups into which the file was divided for
encoding) and N=2M (the number of code packets per FEC group), then for every subscription level |

(EQ 43)
0<l<min(J,M)

each NG consecutively scheduled packets are all different ones.

Before the proof which is given in Theorem 4.6 - on page 118 we need the following definitions and auxil-
iary Lemmas.

We define a superdlot to be the time that takes to transmit G packets on the slowest channel. We number the
superdlots starting from 0 and denote the super slot number with ss.

FIGURE 4.23 - superslot and mini-superslot definition

mini-superslot
G=4

______ slot s+t3ygots+4  dot st
coel [ NPT [ [ [ [
= \ =
.. WT g 0 i
- supersliot ss superslot ss+1

time
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We define aj-mini-super dot to be the time that takes to transmit G packets on channel j.

From the definitions above, there are 21 j-mini-superslots per superslot in channel j (0<j<=I). And asingle

j-mini-superdlot in channel 0. We number the 21‘1j-mini-superslots within a superslot in channel j from O
and denote the mini-supersiot number with:

(EQ 44)
ttfot-2%-3  j>0
and
(EQ 45)

tfd j=0

As defined, there are G packets per j-mini-superslot for al j in the allowed range. Let use denote each of
these with:

(EQ 46)
go{01-.G-} O<j<l

As depicted in Figure 4.24 on page 115, clearly g (the packet position within a channel) can be written as:
(EQ 47)
q= 2j'1ss+tt)+gg j>0
and:

(EQ 48)
q=Glsstgg =0
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FIGURE 4.24 - packet position (q) asa function of ss, tt and gg

G=4 .
9=G(20 Vssttt)+gg=6

P =1 =1 *1 =1
ol PR L]

j=1 00=0 | gg=1 | gg=2 | gu=3
OT j=0 9070 | og71 [ go=2 | oo=3

i o o -
superslot ss=0 superslot ss=1
g=Gsst+gg=5
time

We start by calculating the number of superdlots needed to transmit GN packets at level |.

Lemma 4.7 - Number of supersiotsfor GN packets

The number of superslots required to receive exactly GN packetsis M

Proof: givenin Appendix A on page 209.

FIGURE 4.25 -superslotsfor NG packetsat level |

G=4 (=2 W=1)

) | |

N TP PRl f]

T
o~
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( superslot ss=zz ( superslot ss=zz+2M1-1=72+3 (

time
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We can then rewrite the packet index equation (Eg. 3 on page 95) for j> 0 as:

(EQ 49)
— q + E + max| 1 N il =
P=l = || 2 2=l [ 6 (00|
G s+ tt)+ 0 |, -y , yu-rer | GRS +1t)+ gg
Gt G 27ty
and for j=0 as:
(EQ 50)

p:

q N N q
=T || o7 |TMX| Lome  g

{GES+QQJ+N+N GE‘ss+ggJ
G G

zmax(o,jq) N

ZUN

_ [G (Bs+ ggJ
G

N

We aim to prove that the GN packets in the shaded region of Figure 4.25 on page 115 include exactly one
instance of each packet index per group. In other words, we prove that if we start receiving packets a a
superslot boundary, then we will not see the same packet for a second time before we have received all the
possible different packets once. We prove this property for every subscription level | for which:

(EQ 51)
0<l<min(J,M)

The proof is based on considering a j-mini-superslot (which contains G consecutive packets in a channel) as
ablock for which a single packet index is assigned (same one to all packets in the block). We first show in
Lemma 4.8 - on page 117 that this is the case. The motivation is then to regard the j-mini-superslots as if
they were “packets’ to which packet indexes were assigned using the same technique as for the group inter-
leaving property to hold. We do a parameter transformation in Lemma 4.9 - on page 117 that enables us to
use the group interleaving theorem (Theorem 4.5 - on page 111) that shows that the packet index assigned to
each j-mini-superdot is such that out of N consecutive j-mini-superdots, each is assigned a different packet
index. Finally we yet need to show that the G packets within each j-mini-superslot (that received the same
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packet index) belong to G distinct groups. Thisis done in Lemma 4.11 - on page 118 after proving Lemma
4.10 - on page 118.

Lemma 4.8 - All packets have the same packet index within a j-mini-superslot.
For any specific channel j, gg can be eliminated from the packet index formula within a j-mini-supersot

which means that all packets within the j-mini-super slot have the same packet index. What we wish to
proveisformally expressed in (Eg. 52 on page 117) and (Eg. 53 on page 117).

(EQ 52)
i>0 qgg D{O,l,---,G —]}
p= G(Zj_155+_tt)+ 99 | 4 pM-i 4 om-int G2 ss+1t)+ gg -
G G 27y
-1
= {MLZM"' +2"TI R s+t
2]—1 217
N
(EQ 53)
j=0 ggofol.,G-3
G [5s + gg
=| — = |SS
p [ G JN ‘ ‘N

Proof: givenin Appendix A on page 209.

We prove now using Lemma 4.8 - on page 117 and Theorem 4.5 - on page 111 the following Lemma:

Lemma 4.9 - Each packet index is sent exactly G times (and in the same j-mini-superslot) during GN
packets starting at a superslot boundary.

We wish to prove that out of GN packets sent at level |, starting at a superslot boundary, every packet index
is sent exactly G times and that these G times are within the same single j-mini-superslot®.

Proof: given in Appendix A on page 211.

6. sincethe G times are within the same mini-superslot then it meansthey are al in the same channel (since each mini-
superslot belongs to one of the channelsin the level)
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We must still prove that these G occurrences of a packet index correspond to different groups. We do so
with the help of the next two Lemmas.

Lemma 4.10 - Every j-mini-superdlot beginsat a slot boundary

Proof: given in Appendix A on page 212.

Using Lemma4.10 - on page 118 we prove the following Lemma.

Lemma 4.11 - Within a j-mini-superslot thereis exactly one packet from every group.

Proof: given in Appendix A on page 213.

We can now prove the desired packet interleaving property

Theorem 4.6 - Packet Interleaving when starting at a superdot boundary

Let G=W2” (the number of FEC groups into which the file was divided for encoding) and N=2M (the num-
ber of code packets per FEC group). Then, for every subscription level |

(EQ 54)
0<l<min(J,M)

each NG consecutively scheduled packets7 starting at a superslot boundary are all different ones. In other
words, the packet index that accompanies the group index for every packetsis such that within NG consecu-
tive packets starting at a supersiot boundary at any subscription level in the allowed range there is no packet
that has been scheduled twice.

Proof:

Lemma4.9 - on page 117 and Lemma4.11 - on page 118

ged

7. inthe union of channels that forms subscription level | namely: O..|
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Packet Interleaving when Sarting Reception at Any Slot Boundary

We have proved that by starting reception at a superslot boundary, areceiver at any subscription level will
see every different packet once before any packet is received for the second time. Thisis a desired property
since we desire to mimic the case at which there are infinite code packets for every FEC group. The Packet
Interleaving Theorem (Theorem 4.6 - on page 118) showed that when starting at a superslot boundary our
schedule scheme behaves as close as possible to the ideal case at which there are infinite packets per group
(where there is no client for which the same packetsis scheduled twice during the whole file reception).

In some practical cases the superslot boundary requirement may be somewhat restrictive. For very large
files, G becomes large and the distance between superslot boundaries grows proportionally. It is one of our
goals to provide a scheme where individual receivers may join the transmission at any point in time. In this
section we show the packet index interleaving properties of the proposed schedule when areceiver joins the
transmission between supersiot boundaries.

Theorem 4.7 - on page 119 proves that when starting at a slot boundary that is not a superslot boundary, a
receiver still get at least N/2 different packets per group before seeing arepetition. Thisis avery satisfactory

result considering that N is typically one order of magnitude higher than K&. It follows from results of the
previous chapter that virtually al receivers would have been completed their reception, way before the N/2
different packets per group were transmitted which means that N/2 different packets per group isfor all prac-
tical cases equivalent to infinite.

Theorem 4.7 - - At least N/2 different packets per group when starting at any slot boundary

With this theorem, we prove that when starting at ANY slot boundary (as opposed to a superslot boundary),
for any subscription level:

(EQ 55)
o<l <min(J,M -1)

aclient will receive at least N/2 different packets per group before seeing a packet for the second time.
Proof:

From the Packet Interleaving Theorem (Theorem 4.6 - on page 118) we know that when starting at a super-
dot boundary, N different packets per group will be seen before a repetition occurs. We also know that

within a superslot there are 2! packet indexes.

8. i.eK=32 and N=256
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The total number of supersiots until complete reception of NG packets at subscription level | (Lemma 4.7 -

on page 115) is 2 In the remaini ng complete superslots (excluding the one we started in the middle of)
there are then:

(EQ 56)
22 -1)=2" -2
different packet indexes.
Since <M then the smallest number of packet indexesis given by:
(EQ 57)
2 gri=graN
2
ged

Figure 4.26 on page 120 gives a graphical representation of Theorem 4.7 - on page 119. The figure depicts
the situation wherein a receiver joins the transmission at a slot boundary which is not a supersiot boundary.
We claim this property to be very significant for virtually all practical cases. In area scenario, N ison the
order of 10 timesK and thereforeit is highly unlikely (as we have shown in our simulation results) that a cli-
ent will need to remain tuned for more than half of the total amount of available packets in order to receive
K different ones from each group which isall it needs.

FIGURE 4.26 - starting at a non-superslot boundary

2M=N different packet indexes
2! different packet indexes 2M-2! different packet indexes
o slot s=z
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- . | } I !
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starting slot time ( /
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4.5 - Evaluation of the Cumulative Exponential
Channels Scheme

Checking the Scheduler with a Simulated M odel

Due to the complexity of the proof, we have simulated the" Cumulative Exponential Multi-channel Packet-
Schedule” on page 95 and compared the obtained results to those calculated based on the model developed
in the previous chapter. As expected, the results match.

In Figure 4.27 on page 121 we show some examplesfor G that is not a power of 2. We plot in the same chart
the optimal calculated results. The results for the proposed schedule clearly match the optimal ones as
expected from the proof above. We use G =W2’ where J=3 and W runs from 64 to 72. We see that for sub-
scription levels up to 3 the results are optimal as expected for all the plotted values of G. We further relax
this restriction and analyze the results for higher rate channels in aforecoming section.

FIGURE 4.27 - Multilayer schedule- G not a power of 2

K 32 - Loss 0.05

720

700 T —
o levelO
~ 680 T
3 I [evell
§ 660 + Cdlevel2
%) 640 L C—level3
= —m— optimal

620 T

600 -
512 520 528 536 544 552 560 568 576

Higher Subscription Levels

We have proved so far that for subscription levels up to (and including) J, the schedule results are optimal.
In this section we analyze the effect of higher subscription levels. A higher subscription level resultsin an
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increase in the packet rate perceived by the client. On the other hand if the additional packets received are
such that provide no help in recovering the file (i.e. same packets in the added channel as the ones already
received in the other channels) then the subscription level increase is not useful. We have shown so far that
the full benefits of the subscription level increase are achieved up to level J. In this section we show that
beyond this subscription level the results are very close to optimal aswell.

1=J+1

We have shown that given G=W2’ our schedule is optimal in terms of group interleaving for every subscrip-
tion level smaller than or equal to J. In this section we show that for 1=J+1 the results are very close to opti-
mal as well.

The results so far hold for any W, however the results in this section are clearly relevant for W which is an
odd number (since otherwise we can keep diving it by two and incrementing J to use our previous optimality
proof for higher subscription levels).

The number of dots needed for G packets at level J+1is:

(EQ 58)

G W2 w

2772
However since we are assuming W to be an odd number we have no way of receiving the G packets with an
integer number of dots. We will therefore move forward to receive a total of 2G packets which can clearly

be received with W slots. We wish to show that these 2G packets are exactly 2 of each group. We prove this
in Theorem 4.8 - on page 125 after the following definitions and intermediate Lemmas.

Lemma4.12 - G packetsof different groups at channel j=J+1 imply 2 of each group at level I=J+1

If the G packets sent in channel j=J+1 starting at any slot boundary belong to G different FEC groups, then
the 2G packets sent at subscription level [=J+1 (which is the combination of channelsj=0,1,...,J+1) starting
at the same slot boundary include 2 packets from each FEC group.

Proof:

We have aready shown that for |=J thereis exactly one of each of the G groupsin W slots (Theorem 4.5 - on
page 111). It follows that by adding one of each group (with channel j=J+1) we get 2 of each as desired

ged
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Clearly from hereit is enough for usto show that the G packets in channel J+1 are distinct (see Figure 4.28,
“2G Packets at level 1I=3+1," on page 123).

FIGURE 4.28 -2G Packets at level [=J+1
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time

We need to show then that the G packets in channel J+1 all belong to different groups.

oo ol S | o]
2 2 2

Once again we prove this for O as a starting slot (which can be extended in the same manner as done for the
general case in Theorem 4.5 - on page 111).

(EQ 59)

g:

j=J+1

G G

Moreover, since

(EQ 60)

isaconstant, it can beignored as well during the proof.
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Lemma4.13 - - Modulo Elimination (1=J+1)

(EQ 61)
g =s+WI

j=4

Proof: given in Appendix A on page 214.

We next proceed to show that there are no two packets belonging to the same group within the range defined
above that contains G packets and therefore the G different packets ought to be from G distinct groups.

W isaconstant in our proof. It is then equivalent to prove that:
(EQ 62)

\ _dsJ+y)
g(s3+1g)==20 =

are al different within the allowed range of parameters (that spans G values).

Using the same definitions for the integers and non-integers parts of g* as in the previous section we obtain:

g(s i,t)J=F+W[ﬂJ :LE +tJtD;NtV3VJ+tS§Nt

ioa T lwow || w

(EQ 63)

And:

(EQ 64)

rjggﬂ) =g'(sJ +lt)—Lg* (53 +1t)J :V_T/ +t—t :V_?/

We now prove that the j,st representation of g* is unique within the range of the parameters that spans G
groups in the following Lemma.
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Lemma 4.14 - Uniqueness of the j,st representation of g* within a range of G packets at channel
j=3+1.

If g*(s1,d+ L,t)=0g*(sS,,J+ L) then s;=s, and t1=t,.

Proof: given in Appendix A on page 215.

We can finaly prove the desired property.

Theorem 4.8 - - 2 packetsper group every 2G packets at level |=J+1

Let G=W2’ be the number of FEC groups into which the file was divided for transmission. Then, any
sequence of 2G consecutive packets transmitted at subscription level 1=J+1 that begins at a slot boundary
contains exactly two packets from each FEC group.

Proof:
Lemma4.12 - on page 122 and Lemma 4.14 - on page 125

ged

Higher Subscription-L evel Simulations

Figure 4.29 on page 126 shows the average amount of packets (divided by K which is a constant) sent by the
server before the successful reception of the file by a receiver as a function of G (which is a direct conse-
guence of file size) for various subscription levels. In this figure we can see the impact of subscribing to lev-

€ls higher than the maximum one allowed for optimal interleaving. We use G =W2J where J=2 and W runs
from 64 to 72. We see that for subscription levels up to 2 the results are optimal as expected. For level 3 we
get optimal results as well. This matches the results of Theorem 4.8 - on page 125. For levels higher than 4
the results are not optimal (except for those values of G for which W has 2 as a factor and thus the results of
Theorem 4.5 - on page 111 apply). However we see that the results degrade rather gracefully with the
increase of the subscription level.
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FIGURE 4.29 - Multilayer schedule - Rates beyond the optimal range

K 32 - Loss 0.05

704
« 1 level 2
= o ]
% 640 o g ! 1T =level 3
2 —1level4
T 576 —level5
>
< —m— optimal
512 : : : : : : : :

512 516 520 524 528 532 536 540 544
G

As can be seen, this non-optimality is mostly negligible (~1%). Moreover, it only affects receivers at the
most higher rates where the reception time is extremely short anyway. We show this in Figure 4.30 on

page 126, where we see that the average reception time attained by this fastest clientsis barely distinguish-
ablefrom the ideal case.

FIGURE 4.30 - Multilayer schedule - Rates beyond the optimal range
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We further claim that it is far more important to provide perfectly optimal results to the lower subscription
levelssince clientsreceiving at these slower rates are those that are more impacted by small non-optimalities
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in the schedule (in absolute time measures). A main property of our schedule is that these slower receivers
achieve optimal results and are not affected whatsoever by faster clients that may trade slightly non-optimal
schedule for a yet faster reception rate. We show an interesting property of this slight non-optimality in
Figure 4.31 on page 127. In this figure we show that the negative effect decreases when the loss probability
increases. Thisis aso reasonable as the higher the loss probability the less the impact of a slight non-opti-
mality in the packet schedule (more packets to cover for errors are needed anyway).

FIGURE 4.31 - Multilayer schedule - Rates beyond the optimal range

K 32 - G540 (J=2 W=135)

1.16

2.4
.
1.14 ?'ﬁ‘ 2.2
112 ,{ 1. o
i 2 g i/opt
§ 11 18 & |- IvBlopt
g 1.08 - £ |—¢—optimal
3 1061 16 § —m—level7
level
1.04 14 ® evel5
1.02 1.2
1 , : : 1
0 0.1 0.2 03 0.4

Avg Loss Rate

Srictly Optimal Schedules

Some alternative approaches can be followed if strictly optimal schedules are desired for an arbitrary G. A
possible one would be to use the next closest value of G for which the schedule is optimal at all the desired
levels. Then at the packet times corresponding to groups that do not exist in thereal file the server would just
not send anything. The effect of this approach is that of a virtual reduction in the rate of al channels by the
ratio G/G* where G* isthe next closest value of G that was used. This approach has the benefit of being self
regulated. Receivers perceive a slower rate per channel and therefore would possibly subscribe to more
channels to account for the difference®.

9. With exponential channels and a cumulative approach like the one evaluated in this chapter, thisis not likely to hap-
pen. Every jump in subscription level multipliesthe rate by 2 and since the rate reduction caused by going to the next
Gisrarely 50% (unless we desire to support amax rate that is equal to G timesthe slower rate), receivers will likely
stay at the same level. In chapters to follow we enhance the rate selection resolution and in that scenario receivers
may get to increase their level in response to this approach.
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A second alternative would be to divide the file prior to transmission so that the resulting smaller files result
in values of G that match the desired maximum rate. The main drawback of this approach is related to net-
work resources utilization. Different clients located close by in the multicast routing tree will be getting the
separate file segments in an uncoordinated fashion. Then we will have links in the tree for which thereis no
single client downstream receiving all the file related data that is flowing through it.

Finally, athird alternative would be to tune the packet size and thus achieve a G that suits the needs of the
maximum desired rate. A disadvantage of this approach is related to the fact that the packet size is com-
monly determined by lower protocol layers and changing it may involve some extra implementation issues.
Apart from this, packets cannot be always enlarged since its size is limited from above by the Maximum
Transfer Unit (MTU) of the network. Moreover increases in packet size augment the per packet loss proba-
bility. Reducing the packet size is on the other hand always possible. The problem with this is that smaller
packets result in higher network overhead because of the fixed per packet price that is paid for its headers
and trailers.

Related Work

Thereis an unpublished related work on thisfield [29] where a multilayer schedule scheme is proposed. The
suggested scheme allegedly provides maximum group interleaving for subscription levels up to J where

G=W2’. The unpublished work does not contain any proofs whatsoever so for the sake of comparison we
implemented the proposed alternative mechanism and simulated its results.

The simulated results showed to be similar to those of our proposed scheme when the subscription level is
smaller than or equal to J. However, the alternative scheme does not allow higher subscription levels. Thisis
an important limitation as we have seen in previous sections. Arbitrary values of G (as mandated by the size
of the file being transmitted) restrict the alternative scheme to a small range of subscription levels.

Figure 4.32 on page 129 shows the file reception time as a function of the attainable rate for our proposed

scheme and the one in [29]. The ideal situation™® is also shown for the sake of comparison. As we said
above, the aternative scheme does not allow rates higher than those that result from a subscription level
equal to J. Therefore, the curve showing its result is constant from that point and on meaning it can not take
advantage of the increased attainable rate. In contrast, our scheme allows any rate as we can seein the chart.
We can as well appreciate again that the non-optimality of our packet schedule for levels beyond J+1 is
barely perceptible.

10.by ideal we mean that thefile isreceived in time proportional to the attainable rate assuming a perfectly interleaved
packet schedule
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FIGURE 4.32 - Attainable Rate
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Another salient drawback of the alternative scheme is the fact that the schedule for packets at each channel
depends on the total amount of channels that are being used for the transmission. This is an undesirable
property since it implies that once transmission has started there is no possibility of adding channels without
affecting the schedule on the channels that were being used so far. Our schedule is independent of the total
number of channels used.

We have shown that our scheme gracefully degrades when channels beyond the ones with optimal schedule
are added. A key feature of our schedule is that this degradation affects exclusively those clients that are
subscribing to these higher rate channels. Receivers that subscribe to levels up to and including J+1 were not
affected in any way by the non-optimality of the added high rate channels. To the contrary, if [29] wasto be
trivially extended to support additional channels (beyond the allowed ones) then the slower channels would
be greatly affected. The addition of channels beyond the optimal range would results in a performance deg-
radation that would mostly affects the slower receivers. This is a highly non-desirable feature since these
slower receivers are precisely those that are mostly adversely affected (in absolute terms) by a packet sched-
ule non-optimality.
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CHAPTER 5 RaIe Ra)l Utl On
Enhancementsfor
Layered Multicast

5.1 - Fine-Grain Rate Resolution for Layered
Multicast

In the previous chapter, we presented a multichannel scheme and a cumulative subscription policy for
receiver driven flow controlled multicast transmission of bulk data. We presented a per channel packet
schedule mechanism that resulted in optimal reception time from the standpoint of each client for any of the
allowed subscription rates and regardless of its starting time. The proposed schedule was developed over
what we defined as exponential channels (where every channel rate is double the rate of the previous one).

FIGURE 5.1 - Cumulative Exponential Channels
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The exponential nature of the channels combined with the cumulative subscription policy result in arestric-
tion in the choice of available rates. Figure 5.1 on page 131 depicts this situation. The available rates are the
integer powers of two multiplied by the base rate (which is the rate of the slowest channel Cg). With such a
scheme, clients subscribe to alevel that is the closest integer power of 2 smaller than or equal to their maxi-
mum attainable rate.

This restriction can be significant. The difference between the attainable rate and the obtained subscription
level can be perceived by a client as a loss in performance. This is particularly relevant for the slowest
receivers. In absolute terms, the slower receivers pay a high price for the rate selection restriction. As an
example, areceiver with an attainable rate equal to 3 times the base rate that could have gotten thefilein T
seconds will receive it in about 1.5 times T seconds because it is limited to subscription level 1 where the
rateis 2 timesthe base rate (since it cannot reach level 2). Clearly, this 50% increase in reception time can be
noteworthy when the reception time is long as is the case with the slow clients. For faster receivers, even
though the increase in reception time can approximate 100% in the worst case, its effect becomes negligible
because of the very short reception times.

Related work on this field includes [30] where non-cumulative subscription policies are combined with
channels whose rates are not exponential to achieve fine grain resolution. However, [30] is based on the use
of proprietary error correction codes such as those presented in [28] and assumes that the whole file can be
entirely encoded without partitioning. In contrast, our solution applies to publicly available erasure correct-
ing codes. [16] suggests a router based filtering mechanism for congestion control and deals with the rate
selection resolution as well. We suggest in this chapter two techniques that do not involve any change to the
network infrastructure and are therefore easier to deploy.

In this chapter we extend our own scheme to provide more flexibility in the choice of the desired rate. We
explore two alternatives in order to accomplish this goal namely: channel sampling and non-cumulative
subscription.

With the first approach, we achieve higher resolution in the subscription rates by generating slower channels
out of the exponential channels of the previous chapter. We show that the sender can generate a new set of
channels al of the same rate by “sampling” our previously optimal exponential channels. These channels,
together with a cumulative subscription policy, behave very close to the optimal case shown in the previous
chapter while at the same time provide complete freedom in the rate selection. By “sampling” in this chapter
we mean the generation at the sender of new channels with lower rates than the original ones. This should
not be confused with the sampling that could be attempted by a receiver that is not able to cope with its
received data rate (athing that would waste val uable network resources).

The main drawback of the channel sampling technique suggested in the previous paragraph isthe increasein
the overall amount of multicast channels used. Our second approach to rate resolution enhancement uses a
different technique that keeps the number of multicast channels to the same amount as in the original cumu-
lative exponential scheme developed in the previous chapter. For this, we relax the restriction of cumulative
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channels and evaluate a selective (non-cumulative) approach. With this approach, every receiver is free to
select among the exponential channels, the desired combination that best matches its attainable reception
rate. We test this selective (non-cumulative) approach using our proposed exponential channels with their
packet schedule and show results that are very close to optimal. As expected, under a non-cumulative sub-
scription scheme like this, clients may pick any combination of the transmitted channels and that may result
in a non-optimal utilization of network resources. We show that for our suggested non-cumulative scheme,
the network over utilization is bounded by a very small number, and analyze the implications of this fact for
practical cases.

We further evolve our exponential non-cumulative scheme into a combined approach where intermediate
nodes in the distribution tree (such as routers) consolidate the channel requirements from downstream agents
in order to achieve optimal network utilization. This is done at the expense of not satisfying in some cases
the exact requirement of one or more of the downstream agents. We present a consolidation heuristic that
guarantees to each client at least the same rate as the one that would have been achieved under the exponen-
tial cumulative scheme. Our heuristics are based on an attempt to satisfy the slower receivers as close as pos-
sible to their exact requirement. This is motivated by the observation that these receivers are the ones that
will mostly benefit (in absolute reception time) from an increase in their reception rate. Unlike the previous
simulations where results were analyzed from a single receiver standpoint, for the router consolidation heu-
ristics, we build a simulation infrastructure that enables us to mimic the effect of multiple receiversin aran-
domly generated multicast tree. We then apply our proposed heuristics to very large sets of receivers and
show the improvement achieved over the exponential cumulative scheme of the previous chapter.

5.2 - Channel Sampling for Resolution
Enhancements with Cumulative Layers

I ntroduction

In this section we propose a mechanism where the server constructs the transmission channels by regular
sampling of the exponentia channels that we presented in the previous chapter. We refer to this technique as
channel sampling. The attained channels all have the same transmission rate. In this way, using a cumula
tive subscription policy, every transmission rate that is a multiple of the base rate can be attained by any
receiver.

This is done at the expense of having to use more multicast channels in order to attain the same reception
rate and some optimality loss in the aggregated packet schedule. In this section we show that the loss of per-
formance that results from this non-optimality is negligible. With regards to the number of multicast chan-
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nels used, we address this issue in “ Selective Channel Sampling” on page 141 where we suggest a trade-off
between rate resolution and number of multicast channels required.

Cumulative Sampled Exponential Channels

In this section we use the exponential channels of the previous chapter to generate channels of a unique rate
(the rate of Cp). When combined with acumulative subscription policy, these channels result in performance
close to the optimal proven for the exponential channels. The added benefit is that clients have much higher
freedom in the selection of their reception rate. With exponential channels, only rates that are powers of 2
could be achieved. The channels presented below allow aclient to subscribe to any desired rate.

Figure 5.2 on page 134 depicts a schematic view of the sampled channel construction and the corresponding
attainable subscription rates.

FIGURE 5.2 - Cumulative Sampled Exponential Channels
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In order to obtain sampled channels of the same rate, each exponential channel j is used to generate 21 sam-
pled channels denoted j.t where:

(EQ 1)
t=01---2*-1
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Definition 5.1 - Sampled Channels Packet Schedule
For channel j.t the packet in position g is from the FEC group given by:

g:

g™ +t| | G G oo,
{W g [ b gt || I s

q+BJ+ma>{lpaf(31)JH

and its packet index is given by:

max(0, j-1) max(0,j-1)
qr2 _ +t + E rmad 1 N _ ql2 +t
G mmax(o, i-1) 2i 2’"3)((0'1‘1) G

G

p:

zmax((),rl) N

(EQ2)

(EQ3)

Figure 5.3 on page 136 shows a graphical representation of the channel sampling for 4 exponential channels
when G (the number of FEC groups) is 8. The numbers in the packets denote the FEC group to which they
belong. Channels 0 and 1 are not changed. Channel 2 is used to generate Channels 2.0 and 2.1. Out of chan-

nel 3, channels 3.0, 3.1, 3.2 and 3.3 are generated.
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FIGURE 5.3 - Exponential Channels Sampling
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We now combine the sampled channels with the cumulative subscription policy and thus attain a scheme
where each client can subscribe to any multiple of the base rate.

Our packet schedule was carefully built in the previous chapter so to attain optimal interleaving with expo-
nential channels. Clearly when areceiver’s subscription rate is equal to an integer power of 2 multiplied by
the base rate the results will be the same as before as can be easily inferred from Figure 5.2 on page 134.
However when thisis not the case (as with a client with a subscription rate equal to 5) we expect the packet
stream received by the client to lack some of the optimal interleaving properties. In the following section we
show that as an additional property of the exponential channel schedule, the results of the presented scheme
are very close to those of the optimal case.

Sampled Channels Simulation Results

The following charts show the results of the presented approach. We want to asses the impact of channel
sampling on the per receiver performance. For this, we plot the normalized file reception time as a function
of the subscription rate. The normalized reception time is obtained from simulation. We desire this measure-
ment to behave proportionally to one over the subscription rate. Thiswould be theideal case. Because of the
sub-optimality introduced in the received stream packet schedule when the rates are different from an inte-
ger power of 2 times the base rate, the actual results are expected to be somewhat higher than the ideal case.
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In order to isolate the degradation of the optimal multilayer schedule when sampling is applied to achieve
finer grain rate selection, wefirst run our simulator with loss rate equal to zero. We count the total number of
packets seen by areceiver until successful reception of the whole file as a function of its subscription rate.
Since the error rate is set to zero the only cause for a result higher than the optimal is the non optimality
introduced by sampling. We show the same simulation for different FEC configurations (different values of
K,N) to show that even with very little redundancy (N slightly higher than K) the results of the sampling
scheme are very satisfactory. We moreover claim that this measurement of the sampling performance for
loss rate 0 shows the worst case scenario. We later show that as expected when the loss rate is higher than
zero the sampling has ayet smaller effect on the final result. The normalized time shown in the figuresisthe
time that takes to complete the reception of 32 packets assuming each packet takes 1 unit of time to be trans-
mitted at the base rate.

FIGURE 5.4 - Channel Sampling - Schedule Degradation Check (norm time)
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Figure 5.4 on page 137 shows this results for loss rate 0. The simulation is run for 3 different FEC configu-
rations namely: no FEC (K=N), very little redundancy (N=32, K=28) and easy’* FEC (N=32, K=16). We
also plot the ideal behavior that would have been attained had the sampling resulted in an optimal packet
schedule. As expected, when the rate is equal to an integer power of 2, the results coincide with those of the
ideal case. As can be seen, theworst case results are obtained when no FEC is used. Thiswas expected, with

1. Wecal this“easy” FEC because practical implementations allow N to be much higher than K which makes results
even better.
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no FEC, every single packet is required for completion and the non-optimality introduced causes some spe-
cific packets to be seen by the receiver at a later point in time. Even in such a case, the results are never
worse than what would have been if the closest smaller integer power of 2 were picked. Thisisatrivial con-
seguence of the cumulative subscription policy. The interesting result isthat for very small redundancy con-
figurations (N dightly higher than K) the normalized time behaves close to the ideal. Moreover for typical
redundancy configurations such as the ones presented so far in this work the sampled scheduleis barely dis-
tinguishable from the ideal case. Note that N is typically one order of magnitude greater than K in practical
FEC implementations discussed so far while we attain results very close to optimal when N isonly 2 times
K.

We now simulate the more real case in which the loss rate is not zero and attain even better results as
expected. Figure 5.5 on page 138 shows the time reduction achieved as a function of the subscription rate
when the average loss rate is 5% and N=2K. Asit can be seen, the results are indistinguishable from those of
theideal case.

FIGURE 5.5 -Channe Sampling - FEC
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In Figure 5.6 on page 139 we show that practical results (when the loss rate is not 0), even when no FEC is
applied, are very satisfactory as compared to their corresponding ideal case?.

2. which istrivially worse than the ideal case when FEC is applied and thisis something we already investigated in a
previous chapter
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FIGURE 5.6 - Channd Sampling - No FEC
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Sampled Channels Discussion

The results shown above for the sampled channels are really satisfactory. The performance is very close to
that of the optimal schedule presented in the previous chapter for the exponential channels. The source for
this achievement isin the original schedule itself. Packets are scheduled in the original exponential channels
in away that even when sampled the group interleaving properties are to a great extent preserved.

Figure 5.7 on page 140 depicts the intuition behind this preservation. Four exponential channels of a multi-
layer transmission scheme are shown with the corresponding sampling of the highest rate channel that pro-
duces channels 3.0, 3.1, 3.2 and 3.3. The numbers in the packets denote the group to which the packet
belongs. The packet schedule formulas were built so that when sampling is applied the resulting channels
are as interleaved as possible themselves as it can be seen in Figure 5.7 on page 140. This is attained by the

fact that the packet stream within each channel is cyclic with aperiod that is 2-1g,

The theorem below proves the group interleaving property for the sampled channels.
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FIGURE 5.7 - Group Interleaving for Channel Sampling
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Theorem 5.1 - : Sampled Channels Group Interleaving

Any G subsequent packets from a sampled channel j.t belong to G different FEC groups.
Proof:

This property follows from the group index formula:

(EQ4)

g= q+{EJ+max(l,{—G(.—_TD[ﬂ
2] 2max 0,j-1

G
clearly, qisthe only element that varies. We can then remove al the other constant components to get:
(EQ5)
g* = al,
which clearly resultsin G different values for any range of q of length G

Finally, the addition of the constants that we removed will till leave uswith G different val ues.

140 Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data



Channel Sampling for Resolution Enhancements with Cumulative Layers

ged

Selective Channedl Sampling

One drawback of the presented sampled channels technique is the increase in the number of multicast chan-
nels that need to be used to transmit the file. Multicast channels (and its group management infrastructure)
can be a scarce resource in aglobal network such as the Internet. With exponential channels, the number of
multicast channels needed for transmission is proportional to the log of the maximum desired transmission

rate. With sampled channels, the number is proportional to the maximum rate’.

We suggest that a trade-off can be attained between the amount of multicast channels used and the granular-
ity in the selection of the subscription rate. A reasonable configuration would use sampled channels for the
lower rates so that the slower receivers can subscribe to their exact attainable rate and |eave a coarse resol u-
tion at the higher levels where clients are less impacted (in absolute terms) from a slower than attainable
subscription rate.

FIGURE 5.8 - Trade-off between Number of Channels and Rate Resolution
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Figure 5.8 on page 141 shows an example of a such atrade-off. Under this scheme, the available rates are 1,
2,3,5and 8.

3. we assume that the minimum rate and the desired resolution are equal to the base rate.
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5.3 - Non-cumulative Exponential Channels for
Enhanced Rate Resolution

I ntroduction

In this section we devel op an additional approach to the rate resolution enhancement problem. Thistime, we
relax the restriction of cumulative channels and evaluate a selective (non-cumulative) approach. Every
receiver is free to select among the exponential channels, the desired combination that best matches its
attainable reception rate. Clearly, given exponential channels, every multiple of the base rate can be attained
by selecting the channels whose sum of ratesis the desired value.

The packet schedule developed in the previous chapter was carefully built for a cumulative subscription
rule. By using a selective approach, we expect to see packet streams, that for rates that are not an integer
power of 2 multiplied by the base rate, do not comply with perfect interleaving as required for optimal
results. In this section, we nonetheless show that this selective (non-cumulative) approach combined with
our proposed exponential channel schedule obtains results that are very close to optimal from a receiver’'s

perspective.

As expected, under a non-cumulative subscription scheme like this, clients may pick any combination of the
transmitted channels and that may result in a non-optimal utilization of network resources as discussed in the
previous chapter. We show below that for our suggested non-cumulative scheme, the network over utiliza-
tion is bounded and very small and analyze the implications of this fact for practical cases.

Non-Cumulative Exponential Channels

Since our exponential channelsinclude 2 channels at which the rateis equal to the base rate (channels 0 and
1), there exists two possible subscription combinations for each desired rate”. Since we want receivers to be
as coordinated as possible in the selection of the channels® we pick one of the possible combinations for
each rate. Our choice isfor the one that includes channel 0. The reason for thisisrelated to the fact that when
aclient's attainable rate is equal to an integer power of 2 times the base rate, we desire its results to be those
of the optimal case of the previous chapter. By requiring the selection of channel 0 in al cases we clearly
achieve this result.

Figure 5.9 on page 143 depicts the described subscription rule for an example with 4 exponential channels.

4. For each rate, there is one channel combination that includes channel 0 and another one that does not.
5. For optimal network utilization
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FIGURE 5.9 - Selective Exponential Channels
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With the non-cumulative subscription, when a receiver subscribes to a rate that is not equal to an integer
power of 2, we expect the packet stream received to lack some of the optimal interleaving properties. In the
following section we show by simulation that as an additional property of the exponential channel packet
schedule, the results of the suggested non-cumulative scheme are very close to those of the optimal case.

Non-cumulative Subscription Simulation Results

The following charts show the results of the presented approach. We want to asses the impact of non-cumu-
lative subscription on the per receiver performance. For this, we plot the average normalized file reception
time as a function of the subscription rate. The normalized reception time is obtained from simulation. We
simulate the reception of 32 packets where each packet takes one unit of time at the base rate.

As in the previous section where the channel sampling method was evaluated, we first run our simulator
with loss rate equal to zero in order to isolate the degradation of the optimal multilayer schedule when anon-
cumulative subscription policy is applied to achieve finer grain rate selection. We count the total number of
packets seen by areceiver until successful reception of the whole file as a function of its subscription rate.
Since the error rate is set to zero the only cause for a result higher than the optimal is the non optimality
introduced by the non-cumulative subscription. We show the same simulation for different FEC configura-
tions (different values of K,N) to show that even with very little redundancy (N slightly higher than K) the
results of the non-cumulative scheme are very satisfactory. We moreover claim that this measurement of the
non-cumulative performance for loss rate O shows the worst case scenario. We later show that as expected
when the loss rate is higher than zero the non-cumulative approach has a yet smaller effect on the final
result.
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Figure 5.10 on page 144 shows this results for lossrate 0. The simulation isrun for 3 different FEC configu-
rations namely: no FEC (K=N), very little redundancy (N=32, K=28) and easy6 FEC (N=32, K=16). We
also plot theideal behavior that would have been attained should the non-cumulative scheme had resulted in
an optimal packet schedule. As expected, when therate is equal to an integer power of 2, the results coincide
with those of theideal case. Asit can be seen, the worst case results are obtained when no FEC isused. This
was expected, with no FEC, every single packet is required for completion and the non-optimality intro-
duced causes some specific packetsto be seen by the receiver at alater point in time. The interesting resultis
that for very small redundancy configurations (N slightly higher than K) the normalized time behaves close
to the ideal. Moreover for typical redundancy configurations such as the ones presented so far in this work
the non-cumulative method is barely distinguishable from the ideal case. Note that N is typically one order
of magnitude greater than K in practical FEC implementations discussed in a previous chapter while we
attain results very close to optima when Nisonly 2 timesK.

FIGURE 5.10 - Non-cumulative - Schedule Degradation Check (norm time)
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We now simulate the more real case in which the loss rate is not zero and attain even better results as
expected. Figure 5.11 on page 145 shows the time reduction achieved as a function of the subscription rate
when the average loss rate is 5% and N=2K. Asit can be seen, the results are indistinguishable from those of
theideal case.

6. We call this“easy” FEC because practical implementations allow N to be much higher than K which makes results
even better.
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FIGURE 5.11 - Non-cumulative - FEC - (norm time)
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In Figure 5.12 on page 145 we show that practical results (when the lossrate is not 0), even when no FEC is
applied, are very satisfactory as compared to their corresponding ideal case’.

FIGURE 5.12 - Non-cumulative - No FEC - (norm time)

80
70
60 -
50
40 4
30
20
10
0 — 77—
2 3 456 7 8 910111

—e— k=32 n=32

—m— ideal 32/32

Avg Normalized Time

21314151

Subscription Rate

7. which istrivially worse than the ideal case when FEC is applied and thisis something we aready investigated in a
previous chapter
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Link Over-utilization with Non-cumulative Exponential Channels
As expected, with a non-cumulative subscription rule, two close clients with different attainable rates may
cause non-optimal network utilization. This was extensively explained in the previous chapter. Figure 5.14

on page 147 shows an example of this situation.

FIGURE 5.13 - Network Resources Over-utilization Example

Server 6=1+1+4

Q 1+1+4+8=14

We define the over-utilization of alink to be the ratio between the sum of the rates of the channels being
transmitted over the link and the subscription rate of the fastest of the receivers downstream that link.

sum of bw of channelsdelivered through link

over — utilization = —— -
subscripti onrate of fastest receiver

In the previous approaches we used cumulative schemes that guaranteed optimal network utilization. We
trade-off optimal network utilization for rate selection resolution with the non-cumulative scheme suggested
in this section. In the theorem that follows we bound the link over-utilization for the suggested scheme.
Theorem 5.2 - Link Over-utilization for Non-cumulative Exponential Channels

The link over-utilization for the non-cumulative exponential channels approach described above is smaller
than 2.

Proof:

The worst case over-utilization is attained when the fastest receiver subscribes to Cq and Cj41 to obtain an
overall rate of 21+1 while the channels requested by its neighbors downstream the considered link include all
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channels from Cq to C; inclusive. This follows from the fact that the numerator of the over-utilization ratiois

highest when all channels up to the maximum taken are present. Under that condition, the smallest denomi-
nator is achieved when the highest rate receiver takes Cq (which all receivers take) and Cj,1 which is neces-

sarily taken by the one with the highest rate. (since the rate of Cj,4 is equal to the sum of that of all the
channels below and then if taken by one then that one is the one with the highest rate).

Figure 5.14 on page 147 shows an example of such a scenario.

FIGURE 5.14 - Link over-utilization bound for non-cumulative exp channels
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ged

The bound on the over-utilization is very satisfactory. An over-utilization smaller than 2 may be perfectly
reasonable for a multicast transmission. Remember we desire optimal network utilization to behave in a
friendly manner towards other network traffic, and in this case an over-utilization of 2 may be completely
justified by the fact that the packets are being received by multiple receivers®. In adightly different context,

the comment that it is reasonable for multicast flows to over-utilize the links up to a certain extent was
pointed out in [31].

8. In fact many more than 2 clients will receive the same packet in most relevant cases. The extreme case where two
close receivers subscribe in away that the over-utilization is close to 2 and each packet is used by asingle receiver is
very rare.
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5.4 - Router Consolidation for Optimal Utilization
with Non-cumulative Channels

I ntroduction

We further evolve our exponential non-cumulative scheme into a combined approach whereby intermediate
nodes in the distribution tree (such as routers) consolidate the channel requirements from downstream agents
in order to achieve optimal network utilization.

Remark: The resultsin this section are also relevant to single group FEC schemes (such as those based on
tornado codes for example [28]). Multicast distribution techniques that make use of proprietary codes which
enable the whole file to be sent using asingle FEC group still need to cope with the heterogeneity of the cli-
ent rates. For this, multiple multicast groups can be used as described in the previous chapter. Exponential
channels are a good candidate for this purpose since, combined with a non-cumulative subscription rule,
they alow every rate to be selected while keeping the number of channels small (log of the max rate). The
consolidation heuristics presented below are applicable to this case in order to eliminate the network
resources over-utilization that stems from a non-cumul ative scheme.

Optimum Networ k Usage with Non-Cumulative Exponential Channels

As we have seen in the previous section, with a non-cumulative subscription policy there are cases at which
two receivers may cause non-optimal network utilization. We have shown that the over-utilization in such a
case is bounded by 2 and that this results may be completely justified by the nature of multicast transmis-
sions. In this section we develop a method for solving this small over-utilization that is suitable for cases
where optimal utilization is desired by all means. Thisis done at the expense of achievable rate for some of
the receivers which will not be satisfied to their total extent. We show that no receiver will get less than half
of what it would have gotten on an equivalent unicast connection to the server. From the receiver perspec-
tive this is not worse than the cumulative approach and in practical cases could be much better as we will
show below. Since network resources are optimally utilized we conclude this method to be better than the
strictly cumulative one presented in the previous chapter.

The proposed algorithm is based on the intermediate routers consolidating the channel requests from their
downstream agents. By definition, the maximum downstream requirement will never exceed the upstream
capabilities since every receiver never requires more than what could be reaching it in an equivalent unicast
connection to the server. The router’s task is to consolidate the downstream requirements so that network
resources are optimally utilized. We remind that optimal network resources utilization for alink is defined
as a channel subscription scheme that results in at least one receiver downstream requiring all the packets
flowing through the link.
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The router consolidation problem has more than one possible solution. In order to develop the motivations
for the proposed solution, let uslook at the example in Figure 5.15 on page 149 wherein arouter has to con-
solidate the channel requirements from two receivers so that the resulting subscription achieves optimal net-
work utilization.

FIGURE 5.15 - Router Consolidation Example

Ra
Server Router 3 Q
—>
Q 2 -

50 Q

The numbers along the links represent the available link capacities for the file multicast in question.
Receiver Ra will clearly require 3 units of bandwidth and Rb will require 26 (even though his directly
attached link has 50 units of available bandwidth, receivers request according to what is available al the
way up to the server).

According to our scheme for non-cumulative exponential channels, for its 3 required units of bandwidth, Ra
needs Cy and C,. Rb needs C,C4,C,4 and Cs. The router needs to consolidate them in away that thereis at
least one of them receiving al channels.

In this case, the router cannot simply require the union of the two requirement sets. Thisis firstly because it
would simply not fit the link limitation from the Server to the Router and secondly because the resulting sub-
scription would not be network resource optimal. So clearly some requested channels will need to be
dropped.

It doesn’t make a lot of sense for the router to drop Cg since it is required by both Ra and Rb (according to
our channel selection per rate Cy is always required). A possible approach would be for the router to drop the
requirement of Rafor C,. The resulting set does fit within the upstream bandwidth and indeed complies to
the optimal network resource condition. One problem with this approach is that we penalized the weakest
receiver. Theresults asfar as Rais concerned have been worsened by afactor of 3. From adifferent perspec-
tive the sower receiver penalization has another undesired result. In alarge heterogeneous network it looks
like it would be better for the router to keep slower channels since those give more freedom on the desired
rate selection. In other words the lower the rate of a channel that is requested upstream, the higher the odds
the request will go through and not be dropped by an intermediate router.
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If the router is going to drop a channel other than C, then Rb will get less than what he asked for. However,

if faced with a channel restriction, Rb could take advantage of other channels that could be made available
still complying to the rate limitation and network optimality conditions. So in our second approach and
motivated by the heuristics suggested in the previous paragraph, the router will drop C, and notify Rb he

should subscribe to C, in exchange whereby keeping network utilization optimal. Under this subscription

scheme, Ra will get its desired 3 units and Rb will get 20 instead of 26. This solution looks better than the
previous one. The faster receiver was penalized but will receive at about 80% its desired rate which is not as
bad as compared to the previous impact on Ra.

There is still more to be done by our consolidating router. Once C,4 has been marked for dropping it is clear
from the exponential nature of our channels that Rb could subscribe to all channels below C,4. Therefore
upon notification that C, has been dropped Rb will get subscription to C3 and C, (C; and Cy were aready on

its list). With this scheme, Rb will get 24 units of bandwidth which is over 90% of its required 26. We show
below that in the worst case, a receiver will get more than or equal to 50% of its requested units of band-
width.

Let us look at the following example in Figure 5.16 on page 150 to further emphasize the properties of the
suggested method:

FIGURE 5.16 - Router Consolidation Example
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From the previous example we know that Router1 will consolidate the requests from Raand Rb dropping C4
and adding C5 to the consolidated request. Rc will request Cq and C,. Following our agorithm, Router2 will
need to drop the request from Routerl for Cg and send him C,4 instead (Cg, Co, C; and Cy were aready
requested by Routerl anyway). Summarizing, Rc will get its requested 9 units of bandwidth. Rawill also be
completely satisfied with its 3. Rb will get in this case 16 (out of its required 26). We can see again that opti-
mality is achieved at the expense of the faster receivers and that the worst case reduction does not go over
50% of the attainable bandwidth for any receiver.
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By looking at the previous example from a qualitative standpoint we can appreciate an interesting conse-
guence of the proposed scheme. High speed receivers sort of pave the way for channels to flow where
slower branches attached to the high speed tree have more freedom in selecting their desired connection rate.

There are still some more interesting insights to be noted. Let us examine an example in Figure 5.17 on
page 151 which isintentionally similar to the last one:

FIGURE 5.17 - Router Consolidation Example
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Now Rahas alimit on 9 units of bandwidth and Rc is the one with 3. Applying the same ideas we have been
developing so far Routerl does not need to drop any channel request from either Ra or Rb. Routerl will then
request Cy,C4,C,4 and Cg (this is what Rb requires where Ra requires Cy and C,). Then Router2 faces the
same exact situation as the single router in our first example. We decided then to drop C, and to send C5 and
C, in exchange. By applying the same decision to this new situation we will slightly penalize both Ra and
Rb. Rawill get Cq,C, and Cy (7 units out of its desired 9) and Rb will get C,C4,C5,C3 and Cg (24 units out
of 26). The result in itself does not look that bad however the scenario in the previous example resulted in a
different result which may be regarded as better in the sense that the slower receivers were not penalized at
al. A possible extension to our consolidation heuristics that addresses this issue and guarantees that the
slower receivers are never penalized involves a full round-trip from the leaves up the tree to the source and
back. Our goal isto keep the algorithm simple and limit to the minimum the number of control packets that
are used to make it work. We leave the development of the consolidation heuristics so that in ALL casesthe
slower receivers are never penalized while minimizing the control overhead as an interesting case for future
work.

Server

In the following section we formalize the definition of the described heuristics and further elaborate on some
of their features.

The Router Consolidation Algorithm
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Our consolidation algorithm is naturally distributed. Every router does its part according to the rules
described below.

The algorithm works in two stages. In the first stage, called upwards consolidation, agents notify their
channel requests to their immediate upstream router. Upon reception of requests from all its directly con-
nected downstream agents, each router consolidates these requests. The consolidated request becomes the
channel request for the router itself and thisisin turn submitted to its own next upstream router. This distrib-
uted process continues until the source (root of the tree) is reached.

The second stage is the downwar ds update process. In this stage that starts at the source when the upwards
consolidation is completed, a router notifies its directly connected downstream agents the list of available
channels after upwards consolidation and update. Each of these agents then updates (if needed) its own con-
solidated request and sends the updated list to all its own directly connected downstream agents. The down-
wards update process is completed when all the clients (leaves of the tree) have updated their channel
requests.

The next sections describe in detail the algorithms implemented for upwards consolidation and down-
war ds update.

Upwards Consolidation Algorithm

We denote with consolidated request the resulting request for the router in question. The algorithm below
builds the consolidated request out of the requests of the individual directly connected downstream agents.
Once calculated, the consolidated request is in turn requested from the next upstream router and so on up
till the source.
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upon reception of channel requests fromall directly connected downstream agents:

sort all directly connected downstream agents according to their total requested rate in descending order.

1
2
3
4
5 the starting consolidated request is that of its highest requiring-rate directly connected downstream agent.
6
7 mark this agent as already consolidated.

8

9

while there are yet agents not yet consolidated.

10

1 pick the highest reguiring-rate not-yet-consolidated agent. denote this agent with current agent.

12

13 pick highest rate channel requested by current agent which does not appear in the consolidated request.

14

15 if there is not such a channel

16 we are done with the current agent since all its requirements are already fulfilled by the consolidated request
17 else

18 denote this channel with c.

19 pick lowest rate channel higher than c in the consolidated request which is not requested by the current agent.
20 denote this channel with d.

21 remove channel d from the consolidated request.

22 add all channels slower than d to the consolidated request that were not there so far.

23

24 mark current agent as already consolidated

25

26  askfor consolidated request to next router upstream

27

Once al directly connected downstream agents are marked as consolidated the obtained consolidated
request is the desired one and as such it is sent to the next upstream router for the distributed algorithm to
continue.

Downwards Update

After the upstream consolidation algorithm is run by each router upwards in the tree up to the root, a down-
ward update algorithm has to be run in order to notify the changes that the consolidation process may have
produced. Thisisasimple procedure by which each router notifiesits directly connected downstream agents
of which isthefinal list of channels that are available after consolidation. We call thislist the updated con-
solidated request and is generated by each router using the one received from its next upstream router and
the algorithm below. The root has nothing to update so it simply renames its consolidated request into
updated consolidated request and starts the downwards process by sending it to all its directly connected
downstream agents. These in turn update their consolidated requests and continue the process down
towards the leaves of the tree.
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The downward update algorithm is described below:

28 upon reception of the upstream updated consolidated request from the next upstream router:

29

30 if thereisachannel in the consolidated request that is not present in the upstream updated consolidated request
31 drop channel that is not present from consolidated request

32 add all channels® below the one that was not present which are not already in the consolidated request

33

34  send the updated consolidated request to all directly connected downstream agents.

35

Correctness of the Algorithm

For the upwar ds consolidation agorithm above to work, we need to prove that: given that there is a chan-
nel (denoted with c) requested by the current agent that is not in the consolidated request, then there has
to be a channel (denoted with d) with a rate higher than c, that is in the consolidated request and is not
requested by the current agent.

In order to prove that channel d exists we need to prove first the following intermediate properties.

We denote with consolidation step the part of the consolidation algorithm above that is within the while
loop.

Lemma 5.1 - consolidated request rate after consolidation step that dropped a channel is never lower
than that of current agent

Assuming that the channel to be dropped (denoted d) as defined by the upwards consolidation algorithm
exists for a specific consolidation step where a channel ends up being dropped, the rate of the consolidated
request after the consolidation step is never lower than the rate required by the current agent involved in
the consolidation step.

Proof:

If achannel isdropped (denoted d), then all channels higher than c that were requested by the current agent
were not dropped (because the dropped channel d is by definition not requested by the current agent) and
all channels higher than c by the current agent were by definition part of the consolidated request aready.
In addition, all channels lower than c, are part of the consolidation requets for sure because of the dropping
of d (which is higher than c) and results in the addition of al channels lower than d to the consolidated
request. Therefore, the channelsin the consolidated request after aconsolidation step include all channels

9. we prove later that these channels must be part of the upstream updated consolidated request
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requested by the current agent. Since al channels requested by the current agent are present in the consol-
idated request after the consolidation step then the rate of the consolidated request is higher than or equal
to that of the current agent.

ged

Lemma 5.2 - consolidated request rate higher than that of the current agent implies that channel d
exists.

Given that the rate of the consolidated request is higher than that of the current agent. If thereis aneed to
drop a channel (denoted d) in the consolidation step that involves the current agent then the channel exists.

Proof:

Since thereis aneed to drop one, then thereis achannel (denoted c) which is requested by the current agent
and is not present at the consolidated request. However we know that the rate of the consolidated request is
higher than that of the current agent so there must be one (or maybe more) channel in the consolidated
request which is not requested by the current agent whose rate (or sum of rates) are greater than the rate of
c¢. From the exponential nature of the channels, the sum of the rates of all channels below cisequal to that of
c. Then for the rate of the consolidated request to be higher than that of the current agent there hasto bea
channel d with rate higher than c that is part of the consolidated request and is not requested by the current
agent.

ged
We can now prove the existence of d with the following theorem:
Theorem 5.3 - Correctness of the Upwards Consolidation Algorithm
Given that there is a channel (denoted c) requested by the current agent which is not part of the consoli-
dated request, then there is another channel (denoted d) in the consolidated request with higher rate than ¢
such that d is not requested by the current agent.
Proof:
We prove by induction on the consolidation step that needs to drop a channel.
Let us first prove for the first such consolidation step. By definition the rate of the initial consolidated
request is greater than or equal to that of the first current agent. For as long as the requests of the subse-

guent current agents (that are taken in descending order of rates) are such that no channel drop is required
in their respective consolidation step, the consolidated request does not change and therefore it remains
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being greater than or equal to the rate of the subsequent current agents. Then at the first consolidation step
for which achannel is dropped, the rate of the consolidated request is greater than that of the current agent
(cannot be equal otherwise a channel would not have been dropped) and the conditions of Lemma 5.2 - on
page 155 are met so channel d exists and the base case is proved.

Let us assume now that the hypothesis holds after a consolidation step, we show that it will still hold after
the next one.

Assuming then that channel d exigts, if there is no further consolidation step where a channel needs to be
dropped then the proof is done. If thereis, then by Lemma 5.1 - on page 154, (which can be applied since
we are assuming that d exists) the rate of the attained new consolidated request (after the channel drop) is
greater than or equal to that of the current agent involved in the consolidation step. Then, from the
descending order of rate at which the current agent is selected, the rate of the consolidated request is
greater than or equal to that of the next current agent. This brings usto the same situation as proved for the
initial step of the induction.

ged

We now wish to prove an additional property of the presented heuristics. We desire to show that the consol-
idation algorithm never results in the dropping of more than one channel of those requested by its directly
connected agents.

Lemma 5.3 - Dropped channel rate never decreasesin subsequent consolidation steps

Given there are two consolidation steps i and j where a channel was dropped. Assuming with no loss of
generality that i>j then the rate of the dropped channel in consolidation step i is greater than that of that in
consolidation step j.

Proof:

When a channel is dropped in consolidation step j al channels below the dropped one are added to the con-
solidated request. Therefore, in the subsequent consolidation step i, when picking the highest rate channel
requested by the current agent (denoted c) which is not part of the consolidated request, none of the chan-
nels from the lowest one up to (and including) one less of the one dropped in step j will satisfy this condition
(since they are all already part of the consolidated request). We conclude then that ¢ has to be higher than
or equal to the channel that was dropped in consolidation step j. Since the channel dropped in each consoli-
dation step is higher than the one picked from the current agent, then the channel dropped in consolidation
step i hasto be higher than the one dropped in consolidation step j.

ged
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Theorem 5.4 - A Single channel isdropped by consolidation algorithm

The upwards consolidation algorithm at any given agent drops at most one single channel from those in the
requests of al itsdirectly connected agents.

Proof:

The proof is by induction on the consolidation steps that result in a channel being dropped.. At the begin-
ning there are no channels dropped. There is nothing to prove if none or only one channel is ever dropped by
the consolidation algorithm. Let us assume that one single channel is currently dropped and see what is the
result after a consolidation step where an additional channel is picked to be dropped.

By definition of the algorithm, when the first channel was dropped, al the channels below were taken. If in
a subsequent step another channel happens to be dropped, this will be of higher rate than the one that was
dropped before as follows from Lemma 5.3 - on page 156 which in turn will result in the channel dropped
before to be added again to the consolidated request. This will leave us again with just one single channel
dropped.

ged

The downwards update process is based on the assumption that the upstream updated consolidated
request received from the next upstream router includes all channels in the consolidated request except
possibly one. It further assumes that if there is one channel missing, then all channels with alower rate than
that one are present in the upstream updated consolidated request. We prove these propertiesin Theorem
5.5 - on page 158. For its proof, we need the following Lemma:

Lemma 5.4 - Dropped channel rate never decreasesin subsequent consolidations of upstream routers

Given two routers denoted Router1 and Router2 such that Routerl is upstream from Router2. If both drop a
channel during their upwards consolidation, then the rate of the channel dropped in Routerl is higher than
the one dropped in Router2.

Proof:

At the end of its consolidation, Router2 dropped at most one channel as proved by Theorem 5.4 - on
page 157. When Router2 drops its channel, it adds al the channels with rate lower than the one dropped.
Applying induction now on the subsequent consolidation steps until Routerl, it is clearly seen that the
channels below the one dropped by Router2 are all present and therefore channel d (candidate for dropping)
will never be one of them.

ged
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We can now prove the desired property.

Theorem 5.5 - At most one single channel is dropped by whole upwar ds/downwar ds process at each
agent

After the whole upwards consolidation process and the subsequent portion of the downwards update that
occurs until an agent is reached for its own downwards update, there is at most one single channel from its
own consolidated request that was dropped. Moreover, if a channel was dropped, then all channels slower
than that one, are present in the updated channels list received from the next upstream router in the down-
wards update process.

Proof:

Theorem 5.4 - on page 157 proves that at most one channel is dropped by the consolidation algorithm of the
agent immediately above in the upwards consolidation stage. From the consolidation algorithm, it follows
that if one channel was dropped then all slower channels were added. Again through the use of induction,
assuming there is one channel that was dropped at some point above our agent during the upwards consoli-
dation, if there is anew channel that is going to be dropped by arouter higher in the tree this channel will be
higher than the one that was dropped before (as follows from Lemma 5.4 - on page 157). Once this new
channel is dropped, all lower channels are added so the previous one is restored leaving us again with just
one dropped.

During the downwards update process no channels are effectively dropped. The update is done based on
what was already dropped during the upwards consolidation stage.

ged

We have proved the correctness of both the upwards consolidation stage and the downwards update process.
We have thus proved the correctness of the presented consolidation algorithm.

Properties of the Algorithm

The motivation for the presented consolidation heuristics is to obtain a scheme where network resources are
optimally utilized while enabling receiversto obtain a higher resolution in the selection of their subscription
rate as compared to what can be achieved with a strictly cumulative scheme such as the one presented in the
previous chapter. In order for the router consolidation mechanism to satisfy its requirements, the following
two conditions have to be met:

* Therouter consolidation algorithm resultsin optimal network utilization

* Under the router consolidation algorithm, all receivers achieve at least the rate that would have attained if
the strictly cumulative subscription scheme of the previous chapter would have been used.
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We prove this two propertiesin Theorem 5.6 - on page 159 and Theorem 5.7 - on page 160.
Theorem 5.6 - Therouter consolidation algorithm resultsin optimal network utilization

The channel subscription obtained with the router consolidation algorithm is such that for al links in the
tree, thereis at least one client that is subscribed to al channels that flow through the link.

Proof:

Let us prove by induction on the distance from the leaves (clients). For this we start with the routers all of
whose directly attached downstream agents are clients (as opposed to other routers). The construction of the
upwards consolidation algorithm is such that the directly connected agent with the highest request rate will
always subscribe to the consolidated request of the router. Thisis because itsrateis either equal to the rate
it requires (since its request is used as the initial consolidated request) or it is smaller (because of some
channel drop during the consolidation process). As for the update that happens during the downwards update
process, this never increases the consolidated request so the highest capable client will keep receiving all
channels that remain. We have shown then that for this last hop routers there is at least one client that
receives al the channels that flow through the link.

Let us now assume that the theorem holds for all the intermediate agents which are the ones directly con-
nected downstream agents of another router. From the assumption, all the agent’s updated consolidated
requests are being received by at least one client downstream. The situation is therefore equivalent to that in
the previous paragraph (if we replace the agents are the receivers at the end of their chain that subscribe to
all their updated consolidated request) which means that the updated consolidated request of the router
in question is also received by at least one client downstream.

ged
For the proof of the second property we need the following intermediate lemma.
Lemma 5.5 - Adjacent channels are never dropped

Let us define adjacent channels to be a set of channels whose indexes are consecutive. Adjacent channels
that start at channel O are never picked to be dropped by the consolidation a gorithm.

Proof:

The consolidation algorithm picks the channel to be dropped (denoted d) by selecting the lowest rate channel
that is part of the consolidated request whose rate is higher than that of a channel (denoted c) that does not
appear on the consolidated request and is part of the current agent request. From that, it follows that there
isa“hole” in the consolidated request (channel ¢) so channel d cannot be part of adjacent channels from
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previously consolidated agents. In particular since channel d is not present in the request from the current
agent it cannot be part of adjacent channelsin its request either.

ged
Theorem 5.7 - No receiver will get lessthan what would have gotten on a strictly cumulative approach

The consolidation mechanism never results in areceiver obtaining a rate which is less than the closest inte-
ger power of 2 that islower than its desired rate.

Proof:

When areceiver requests an integer power of 2 then by the exponential nature of the channels there are no
“holes’ in the subscription request. In such a case, no channel will be dropped by the consolidation algo-
rithm as follows from Lemma 5.5 - on page 159.

We have already proved that for each client at most one single channel is dropped from its request. The
worst caseis then when the highest rate channel isthe one dropped. In such a case, from the definition of the
downstream consolidation algorithm, all channels below the one dropped are added to the request thus mak-
ing an adjacent set of channels up to channel 0. From the exponential nature of the channels, the sum of rates
of this adjacent channelsis equal to the closest power of 2 lower than the originally requested rate

ged

The Tree Generator

In order to simulate the proposed consolidation algorithm, the previous techniques that were used along this
work are not suitable anymore. So far, in order to asses the performance perceived by a receiver we had to
model the behavior of asingle client. For this case we need a mechanism that models the interaction among
a vast number of receivers with different attainable rates. We wish to evaluate the consolidation process
using arich scenario. For this we developed a random tree generator that is described with more details in
Section B.1, “Tree Generation Algorithm,” on page 217. The fanout of each node is randomly generated
with auniform distribution over a programmable range. An example of the output of the generator is shown
in Figure 5.18 on page 161.
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FIGURE 5.18 - Random Tree Generation Example
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The capacity of the links are also uniformly distributed with a programmable parameter. The rate requested
by each receiver (leaves in the tree) is then the minimum capacity found on the path up the tree towards the
source (root of the tree). An additional control implemented in the generator is that of the maximum tree
depth.

1]

We used this generator to create scenarios where the consolidation heuristics were tried. The simulation
results are shown in the next section.
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Simulation Results

Using the tree generator presented above, we generated several distribution trees and simulated our algo-
rithm. The results presented below correspond to an average over 100 generated trees totalling about 1 mil-
lion receivers. Figure 5.19 on page 162 shows how far these receivers are from the server in units of hops.

FIGURE 5.19 - Distancefrom Server Histogram
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Theresultsin Figure 5.20 on page 163 show the main advantage of using the proposed consolidation heuris-
tics. Asit can be seen, the slower receivers, those with low desired rates, achieve pretty much exactly what
they requested.
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FIGURE 5.20 - Consolidation Heuristics - Attained Rate vs. Desired Rate
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Asdesired rate grows, in favor of optimal network resources utilization, there are some receivers that do not
get their exact request. However, as we proved above, thereis no receiver that will get less than what would
have gotten under the cumulative subscription approach described in the previous chapter (which isthe clos-
est integer power of 2 times smaller than the desired rate).

Figure 5.21 on page 164 compares the histogram of the number of receivers per ratio between desired and
attained rates between the consolidation heuristics and the strictly cumulative subscription system of the pre-
vious chapter. As it can be appreciated, the number of receivers that obtain from 90% to 100% of the their
desired rate is more than doubled with the consolidation agorithm.

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 163



Rate Resolution Enhancements for Layered Multicast

FIGURE 5.21 - Consolidation Heuristics- Customer “ Satisfaction” Histogram
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Finaly, in Figure 5.22 on page 165 we show the benefits of the consolidation mechanism as compared to the
strictly cumulative scheme of the previous chapter from the server’s perspective. We calculate for thisfigure
the sum of the total avg transmission times for all the receivers. We do this for the ideal desired rates (as if
each client could receive the file using its desired rate), for the rates attained through the use of the presented
consolidation heuristics and finally for the case where the attained rates are the closest smaller integer pow-
ers of two as in the previous chapter. We plot then the ratio between the two approaches (heuristics and
strictly cumulative) and the ideal case. We do this for different receiver sets. For example, the second set of
columns represents the data that follows from the analysis of al receivers whose attainable rates do not
exceed 50. As it can be seen, the consolidation mechanism results in better results. As expected the better
results are more salient when the slower receivers (which are those contributing the highest to the total aver-
age reception time) are considered.
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FIGURE 5.22 - Consolidation Heuristics- The Server’s Per spective
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Conclusions

We have presented a distributed consolidation algorithm and proved that it improves the results of our previ-
ous scheme from a client perspective by allowing some clients to attain rates closer to their available ones.
We have also proved that the presented algorithm achieves optimal network utilization.

We do not claim the presented heuristics to be an optimal solution to the problem of assigning subscription
rates to a set of heterogeneous clients so that network resources are optimaly utilized while minimizing the
overall reception time for the set of receivers. We believe the optimal solution to be a problem of non-tracta-
ble complexity, prove is beyond the scope of thiswork.

As an additional remark, dynamic application of the consolidation algorithm can lead to subscription
changes even if the network conditions remain static. Consider the case where one client joins the transmis-
sion when some others have already been receiving the file for awhile. This subscription change scenario is
equivaent from areceiver’s perspective to the one that results from changes in the congestion status of the
network. A evaluation of the network dynamics scenario is presented in “Network Dynamics’ on page 167.
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5.5 - Fine Grain Rate Resolution Conclusions

We have developed in this chapter methods for increasing the resolution in the selection of a subscription
rate by areceiver of a multi-rate cyclic multicast. Two techniques where presented namely: channel sam-
pling and non-cumulative subscription. Both techniques achieve near-optimal results from areceiver’s per-
spective. The difference among the two methods is related to the utilization of network resources.

The channel sampling technique maintains the optimal network resource utilization through its use of a
cumulative subscription policy. This technique is suitable to cases where the extra number of multicast
channels used does not present a serious problem.

Alternatively, when the number of available multicast channels is scarce, the non-cumulative subscription
technique is a good option. Its only drawback isin the small over-utilization of network resources that may
result from itsinherently non-coordinated subscriptions. Finally when even a small over-utilization becomes
a problem, the presented router consolidation technique can be applied to attain optimal network utilization
results.
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6.1 - Introduction

In previous chapters we presented a packet schedule mechanism for receiver driven rate control multicast
distribution of bulk data. In this chapter we deal with the effects of network dynamics.

Congestion control in computer networks is usually implemented by means of injection rate control asserted
at the transmission endpoints. Upon detection of congestion (either by perceived loss rate or through explicit
notification) endpoints reduce their injection rate according to a predefined scheme. With this, congestion is
alleviated. The congestion control protocol defines as well the recovery mechanism by which the rate may
be increased when no congestion is detected.

Thisis basically the way most traffic is controlled in the | P Internet. The success of this scheme is based on
consistent behavior of al intervening agents. The term TCP friendly is usually used to describe a congestion
control mechanism that competes fairly for bandwidth with TCP streamsin the |P internet.

In our scenario, the server is not capable of controlling the injection as described above. For that purpose we
showed a receiver driven mechanism that works by means of subscription to different multicast groups
(channels) that form a transmission. When congestion is detected (packets are lost) our clients decrease their
reception rate by dropping subscriptions to one or more multicast channels. The multicast pruning mecha-
nism results in effective rate reduction as a consequence of the subscription drops. In turn, a client sub-
scribes to more channel s when no packet losses have been detected during a programmed amount of time.
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Research that has taken place recently on techniques for achieving TCP fairness with receiver driven multi-
cast schemes as described above include [15] and [17].

In this chapter we show the impact of network dynamics on the performance perceived by mulitcast receiv-
ers that use the channel subscription schemes presented so far. We model the rate changes using a probabi-
listic approach.

6.2 - The Effect of Network Dynamics

The Dynamic Network M odel

As stated above, in practical cases, the network conditions vary over time. It is therefore expected that acli-
ent will be subject to many different attainable rates during the reception of along file. In order to evaluate
the behavior of the presented techniques under such a dynamic scenario, we simulated the rate changes and
measured itsimpact in the file reception time.

FIGURE 6.1 - Subscription Rate Changes
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We adapted our simulator so that every programmable amount of time the reception rate may be changed.
We use a uniformly distributed random variable with three programmabl e ranges to determine at the end of
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each of these time intervals, whether the rate is increased, decreased or left unchanged. This model resem-

bles the situation in real networks' as can be seen in Figure 6.1 on page 168. In this figure we show the sub-
scription rate as a function of time for 3 different clients that started at different rates. Clearly, the overall
reception time for a faster receiver is shorter and hence its time-line terminates before that of the sower
ones.

In the example of Figure6.1 on page 168, the uniformly distributed random variable that controls the
dynamic rate changes obtains values between 0 and 1. If its value is lower than 0.45 then the rate is
increased. If it is greater than 0.45 but smaller than 0.9 the rate is decreased. Finally if the value is over 0.9
therateis not changed.

As a conseguence of rate changes, the packet stream received by each client is in a certain way distorted.
The packet scheduling presented in previous chapters was carefully tailored so that the combined packet
stream had some optimal interleaving properties (for all subscription rates simultaneously). When the rateis
changed during the file reception some of these properties are affected. In the following sections we measure
the impact of this effects in the performance results perceived by the clients.

Network Dynamics Simulations

We measurein this section the impact of rate changes in the performance perceived by the receivers. For this
we calculate the number of packets transmitted by the server during the reception process of a client taking
into account the different rates to which it subscribed. Since the subscription rate is changed during the
reception process, the packets counted include those that were sent on al the channels to which the receiver
subscribed while the subscription was in place. In other words, the packets counted are those that were
received by the client and those that would have been received if they would not have been lost in the net-
work. This number is divided by the one obtained when a single rate was used for the whole file reception.
The ratio attained is what we denominate the overhead of network dynamics which we show in the follow-
ing figures as afunction of al relevant parameters.

In Figure 6.2 on page 170 we show the overhead of network dynamics as afunction of the average lossrate.
Asit can be seen, for a very wide range of loss rates the results are fairly constant and around a very small

overhead of 2.5%2.

1. In TCP congestion control, additive increase and multiplicative decrease are used.

2. Thedlight decreasein overhead perceived asthe lossrateincreases is clearly aconsequence of the fact that the higher
the error-rate, the lesser the effect of acarefully tuned packet scheduling. When lots of packets are lost (such aswith
arate of 40%), amost every packet is useful.
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FIGURE 6.2 - Network Dynamics - Function of L oss Rate
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Figure 6.3 on page 170 shows the network dynamics overhead as a function of the file size. We see again the
same qualitative behavior. The overhead is practically constant and around 2.5%.

FIGURE 6.3 - Network Dynamics - Function of File Size
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In Figure 6.4 on page 171 we show the network dynamics overhead as a function of the probability of rate
change at the end of every time dot. As stated above, al the previous simulations were done using a high
probability for the rate change (0.45+0.45=0.9). Even with this high amount of changes, the results shown in
the figures above are very satisfactory. As expected, when we lower the rate change probability, the over-
head becomes even smaller

FIGURE 6.4 - Network Dynamics - Function of Rate Changes
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Finally, we show in Figure 6.5 on page 172 the effect of the initial subscription rate in the dynamic network
overhead. We plot the results for both the sampled channel scheme (cumulative) and the selective (non-
cumulative) approaches.

As can be seen, the sampled channels give somewhat better results (lower overhead) than the non-cumula-
tive ones since on the sampled channels when adding or removing one unit of bandwidth the new received
stream is pretty close to the previous one. With non-cum exponential channels, a change in the reception rate
by one unit (such as from 8 to 9) implies changing aimost al channels and therefore the impact on the over-
al received packet scheduleis bigger.

An additional property that can be appreciated in Figure 6.5 on page 172 is that results are better when the
average subscription rate is higher. Thisisrelated to the fact that in such cases the impact of the rate changes
is smaller. When changing from rate 1 to rate 2 and back we are halving or duplicating the rate. When mov-
ing among higher rates the relative change is smaller and therefore the impact on the scheduling is reduced.
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FIGURE 6.5 - Network Dynamics- Function of I nitial Rate
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We finally conclude that the overhead in reception time that results from network dynamics is reasonable
and therefore our presented schemes are suitable for practical implementations where attainable rate varies
with time during the file reception.
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In this work we dealt with the problem of multicast distribution of very large bulk data files to a large and
number of concurrent, non-synchronized, heterogeneous receivers. Our goal was to devise a mechanism
that, from the perspective of every receiver, achieves results comparable to those of a unicast reliable trans-
mission in the sense that the number of packets received by any given client until it can reconstruct the entire
file should be equal to that of a private reliable point-to-point scheme, or nearly so. At the same time, our
objective was to develop solutions that result in optimal network utilization. We looked for transmission
schemes for which the load in each link of the multicast routing tree would never be greater than what it
would have been if only the fastest receiver downstream that link were downloading the file using a point-
to-point reliable protocol.

For scalability reasons, our proposed schemes do not involve any kind of feedback from clients to server.
Packet loss is handled through the use of redundancy in the transmission. We analyzed the simplest of those
no-feedback schemes as seen from a client. We proved that cyclic scheduling of all the packetsin thefileis
the best possible approach when error correction techniques are not available. We devised an approximation
for the expressions that model the performance, from which it can be appreciated that the file sizeis asignif-
icant factor affecting the results. We backed our statistical models with simulations, and compared the
results for this simple approach to those of an ideal selective retransmission point-to-point protocol. We
have also shown that burst type correlation among packet losses improves the results of the simple cyclic
scheme.

We then analyzed a more advanced scheme that involves the use of publicly available forward error correc-
tion (FEC) techniques for overcoming packet loss. For practical reasons, related to the implementation of
these codes, the file was divided into groups, each with a tractable number of packets. We proved that the
best packet schedule under such a scheme is one whereby the coded packets are sent in a cyclic group-inter-
leaved manner. Using a statistical model, we have shown the significant benefits attained by the use of FEC
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as compared to the previous simple approach. We have also shown that the packet schedule has a large
impact on the performance. This was done by comparing the results attained with the group interleaving
schedule to those of arandom schedule of packets.

We backed our statistical model with simulations, and also compared the results attained by this technique to
those of an ideal unicast reliable protocol. We showed comparable performance for awide relevant range of
file sizes and average loss rates. We showed that, for files of tens of Megabytes and average loss rates
around 8%, the time needed by a receiver to complete reception of a file under the proposed scheme is
greater than the time that would have taken it to complete with an ideal reliable unicast protocol by no more
than 20%. We claim these results to be highly satisfactory considering that in practice, the reliable unicast
approach is not applicable as it would result in a collapse of the network when concurrently attempted by a
huge number of receivers. Alternative solutions achieving results similar to those of reliable unicast, such as
[23], involve the use of proprietary error correction codes. Our solutions, in contrast can be implemented
using publicly available codes and related hardware, thereby reducing cost and fostering interoperability and
openness.

We developed a bound for the mathematical expressions that model the performance of the described group
interleaving approach. These bounds are closer than the ones that can be attained using known methods such
as the DeMoivre-L aplace approximation. We further simplified this bound to achieve an approximation that
behaves very closely to the calculated expression and provides meaningful insights about the impact of the
different parameters on the performance results.

Next, we addressed the issues that stem from the heterogeneous characteristics of the receivers. Different
connection rates, locationsin the network and processing capabilities such aslocal storage accessrate, result
in different attainable effective rates for each of the clients. We used a scheme whereby the server sends the
file using multiple channels in a way that, by subscribing to a specific set of them, each client effectively
tunes its own reception rate. This so-called receiver driven flow control was combined with a cumulative
subscription policy, which we proved to attain optimal network utilization.

In order to maintain the interleaving properties of the combined packet stream as seen by all clients regard-
less of their current reception rate, we assigned a geometric sequence of transmission rates to the channels,
and co-developed carefully crafted packet schedules for every one of them. These co-designed per-channel
packet schedules are one of the main contributions of the present work. We proved the perfect interleaving
properties of our packet schedule for any number of clients concurrently receiving at different subscription
rates and regardless of their starting time. We have thus shown a scheme with comparabl e results to those of
unicast reliable transmission from areceiver's perspective, while attaining optimal network resource utiliza-
tion asdesired.

We compared the results of the presented packet schedule to those attainable using an unpublished scheme
defined in [29] that came to our attention lately. We observed our schedule to allow the selection of higher
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reception rates for arbitrary file sizes than the ones allowed by the scheme in [29]. We have aso shown our
scheme, unlike the other one, to have graceful degradation beyond the range for which it is proved optimal.

We then extended our multi-channel mechanism so that clients could obtain a higher resolution in the selec-
tion of their subscription rate. We presented a channel-sampling technique for our packet schedule. This
technique achieves near-optimal results (about 2% overhead) from a client's perspective while maintaining
the cumulative subscription rule that guarantees optimal network utilization. We explained the near optimal
results by proving a relaxed interleaving property of the packet schedule that is maintained after the sam-
pling. Alternatively, we proposed a non-cumulative policy for increasing the rate selection resolution that
also attains near optimal results (about 2% overhead) with far fewer channels. We proved that the network
resources over-utilization that results from using this non-cumulative subscription policy is bounded by a
factor of two, which is very reasonable in the framework of multicast transmissions to vast receiver groups
that share network resources with TCP-like point-to-point flows.

We further extended our non-cumulative subscription mode with the introduction of a router consolidation
heuristic that combines the channel subscription requests from downstream agents to attain optimal network
utilization. We described our consolidation algorithm and proved its main properties of optimal utilization
and rate-selection resolution improvements. The application of the presented consolidation mechanism is
not restricted to our packet schedule scheme. Rather, it is suitable to other multicast distribution methods
including those based on proprietary error correction codes [ 28] which need to provide away for receiversto
subscribe to different rates with optimal utilization of network resources. We built a random tree generator
and simulated the consolidation algorithm for very large receiver sets to show very satisfactory results that
back our analysis.

Lastly, we evaluated the impact of network dynamics on the performance results attained so far. We simu-
lated a scenario wherein the subscription rate for a client is changed during its reception time, and measured
the effect of this rate change on its perceived performance results. We have shown that the impact of rate
changes is considerably low (about 2.5%) and therefore claim that our proposed methods are applicable to
the practical case wherein network dynamics affect the rate selection.

Summarizing, we presented a receiver driven multi-rate bulk-data distribution scheme with the following
properties:

e Attains results comparable to those of reliable unicast protocols from areceiver's perspective.

* Scalesto any number of receivers as it makes no use of feedback.

e Optimal in the utilization of network resources.

* Uses standard publicly available erasure correction codes

* Supports dynamic changesin the subscription rate with no significant impact on the client's performance.

* Provides fine-grain resolution in the selection of the desired reception rate (allowing also TCP friendly
congestion control).
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APPENDIX A Aﬂ)rtaj PrOOfS

A.1 - Smple Cyclic Multicast Distribution of Bulk
Data

Optimality of the Simple Cyclic Schedule for the Whole Cycle Model

We denote with d.; the number of times that packet i has been sent after exactly c cycles. Clearly, d; fully
defines the transmission schedule. Our desireisto find the optimum schedule:

(EQ1)
d,, c0{012:--od id0L2--G-}
so that the average reception time for aclient:

(EQ2)
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is minimized.
Subject to:
(EQ3)
G1
[t >d,=clG
i=0
and:
(EQ 4)
Oc  d, =d..;

Theorem A.1- Optimality of Packet Interleaving for the Whole Cycle M odel

The optimal packet scheduling from a receiver perspective (the one that minimizes the average reception
time) is:

(EQ5)
d,; =c
Proof:
In order to use Lagrange Multipliers we define:
(EQ6)
co G-1 4. G-1
e 1)=3] (1 [ b)) -4 S e
c=0 1=0 i=0
For now we leave the second constraint out on purpose.
(EQT)

::flnqm* fl(l—q"“)-po 001 G-}ef{ 0l 9
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(EQ8)
G
A, =Inqg™ Eﬂ(l—qd“) i D{O,l---G—i},cE{ 0,l~~~°}>
(EQ9)
Ing o™ Eﬁ(l—qdc‘l):lnqm]d“* Eﬁ(l—qd“) kid{oL--G-3 cf o1
= 1
J# 7
clearly:
(EQ 10)
o - )=ql-o*) kic{os--G-} cfoL-
Assuming g isnot 1, we conclude:
(EQ11)
qu'i = qu'k = dc,i = dck = dc
Using the first constraint:
(EQ 12)
G1 G1
e de =ch =clG=d,=c
i=0 i=0
And our second constraint is satisfied as well.
ged

Optimality of the Simple Cyclic Schedule for the Partial Cycle M odel

To show the optimality of the proposed scheduling using the partia cycle model we use an aternative
approach. (the use of lagrange multipliers is not straightforward here since the variables cannot take non
integer values and thisiswhat would have resulted from the previous proof scheme applied in this case).
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Theorem A.2 - Optimality of Packet Interleaving for the Partial Cycle M odel

The packet schedule, denoted by O with Oi being the packet sent in position i, defined as:

(EQ 13)
O, =imodG =012
minimizes the average reception time for all clients regardless of their starting reception time.
Proof:
We will use two packet schedules in the proof denoted C and B.
We denote with:
(EQ 14)

Ng

the random variable that represents the number of packets transmitted until successful reception of the G
packetsin the file under scheduling S Where Sis one of: O (the optimal packet schedule), C or B.

We further define F to be the number of times a specific packet g has been sent during the first k packet-
transmissions of the schedule S.

(EQ 15)

:9} 90{01 G- ic{ 013

(EQ 16)

FSo =319 g0{oL--G-3 k{01

I}
(=]

We will show that for any scheduling scheme C (the candidate schedule) with:
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(EQ17)
C D{O.lZ"-G—i i=012---0
different from O, there exists another scheduling B (the better schedul€) with:
(EQ 18)
B D{O,l2.~~~G—i i=012,--0
such that B resultsin asmaller average than C.:
(EQ 19)

oc#o 0B /E(NS)<E(NE)

Let us divide the scheduling scheme into cycles of G packets each. Since C is different from O there is at
least one cycle of G packetsfor whichin C thereis at least more than one instance of the same packet. Let us
pick the first such cycle.

(EQ 20)
C#O0=[hii, j,k/Cspj =Cogu =i c0{0123 04 i,j,k{ 012 --G-L

Case 1. (c=0) Thefirst cyclein which there is more than one instance of the same packet is thefirst transmit-
ted cycle. Let us look now at the first point in the proposed scheduling C at which for the first time all the
packets have been sent at least once. Let us denote the number of packets sent until this point with m.

(EQ21)
m=_min /0] ofo12,--G-F0k<i/C, =]

i{0,1,2,-

Note that if Cis such that m does not exist (i->infinite) then our suggested O is of course better than C since
E(C) isinfinite. So B will chosen to be equal to O in such a case.

If m exists, our suggested improved scheduling B will send the exact same packets as C after the first m
packets. For the first m our suggested improvement will reorder them so that the first G packets are one of
each and the remaining m-G are randomly ordered.
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(EQ 22)
k 0<k<G
B, =< anyorder fromthe packetsin Cnotusedinthe firstG. G<k<m
C m<k

The probability of success at or before packet i is received for i greater than or equal to mis the same for
both schemes. However for C the probability of success at or before packet i for i smaller than mis zero
where for the suggested improved scheme it is greater than zero for all i greater than or equal than G-1.

(EQ 23)
PNS <k)=P(NE <k)=0 0<k<G-1
PNS <k)>P(NE <k)=0 G-1s<k<m
PN <k)=P(NE <k) m < k

Case 2: (c<>0) The first cycle in which there is more than one instance of the same packet is not the first
transmitted cycle. Let us pick within cycle c thefirst time that a packet is transmitted for the second time and
denote its position in the packet stream with n.

(EQ 24)
/G D{c(G,cG+1cG+2,i -} /G =C,

n= min
i{cG cG+,CG+2, - G+G]

Let us go further down the packet stream and denote with m the first packet position after n for which a
packet that has not yet been sent on cycle cistransmitted in C.
(EQ 25)
m=_ min /0] O{cB,cB+LcG+2,+i-3/C £C,

i{n+1,n+2; 00}

(just for closeness: if C issuch that never sends a packet that has not yet been sent in the current cycle so that
position m does not exist then its resulting avg is infinite so our suggested optimal scheme is of course bet-
ter).

The improved scheduling B will 1ook exactly like C with packetsin positions m-1 and m interchanged.
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(EQ 26)
G kZm-1Lk#Zm
B =< C, k=m-1
Cra k=m

Since the packets sent so far are the same, the probability of success at or before packet i is received for i
other than m-1 is the same for both schemes.

(€Q 27)
P(NS <k)=P(NS <k) kzm-1

However, as proved by Lemma A.1 - on page 190, the probability of success at or before packet m-1 is
greater for B than for C.

We have shown then for both case 1 and case 2 that:

(EQ 28)
P(NS <k)2 P(NS <k) k=010
and also that thereis at least one k for which:
(EQ 29)
Tk /P(NS <k)>P(NS < k)
From this and from:
(EQ 30)
E(Ng)=3 (- P(Ne <)
We get:
(EQ 31)

E(NG)<ENE)
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We have shown so far that for every scheduling C other than O there is at least one scheduling B which
resultsin a better Avg. Since there are infinite schedules we yet need to show that our scheduling improve-
ment scheme converges to O when applied to the resulting improved scheduling on and on. This result fol-
lows from the construction of B.

Clearly when the original C is such that it is covered by case 1 the resulting B is such that if regarded as a
new C it will be covered by case 2. Therefore we only need to prove that the B proposed for case 2 con-
vergesto O.

From the construction of B we can see that if applying the same construction to B the resulting schedule
would have resulted in m being one less than the one before (until m becomes n+ 1, this can happen after the
first iteration) and then n would have advanced at least one position. After some more iterations n would
cross a cycle boundary thus incrementing ¢ and leaving the previous cycle equal to O in that range.

Finally, the scheduling of packets within each cycle follows from the fact that we desire a client to start
receiving at any point in time. Obviously the specific identity of each packet is not relevant. However once

the packets are named from 0 to G-1 then we need the packet order to be the same in all cycles so that the
same properties are achieved when starting at any point in time.

ged
LemmaA.l-
(EQ 32)

P(Né3 < m—1)> P(Ng < m—1)

Notation reminder: G isthe number of packetsinthefile, Cisthe candidate schedule and B is adifferent one
which we prove better than C (for any C different from O).

Proof:
The probability of success at or before k packets have been sent can be written as:

(EQ 33)

We can clearly see that:
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(EQ 34)

G-1 oo
P(NS <m-1)= H@—J”* e )i -e°)
g:g forC
gzCn |

where d>1. Thisfollowsfrom the definition of m because the packet sent at mwas not yet sent in cyclec and
the packet sent at m-1 was sent at least c+2 times.

And:
(EQ 35)
o for By,
P(NS <m-1)= M ﬁ—eFf'mgfl) fL-e)ifi-e)
=N B=
9#Bn
then:
(EQ 36)
(Ne <m- ): ( c+d)[(ﬂ c)
P(NG <m- 1 ( c+d 1)[ﬁ1 C+:
1+ 2c+d ec(l_ed)
1+ e2<:+d _ ec(e_ ed—l)
(EQ37)
2:11} = (1-e)>e'(l-¢)=
= @Q+el)>ere )=
= P(NS<m-1)>P(NS<m-1)
ged
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A.2 - Multicast with FEC for Bulk Data Distribution

Aver age Reception Time Analysis

LemmaA.2- Averagefor G=1

(EQ 38)
K
E(N™)=—
()=
Proof:
(EQ 39)
o 0
efv)=3 3 [+ g+ =3[y my] -
c=0 g=0
- 1 K 1 c-K +1 c!
- 3w ey
shifting the counting index and combining some of the terms:
(EQ 40)
1K 4 K (C_l)! R d
e )-3 o e g
(EQ 41)

Substituting the index according to
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(EQ 42)
c=j+K
we get:
(EQ 43)
K(L-0) & o (i +K) e i (i +K)
E(N )= j*K =K(1- J
( ) q< ;q KGN ( q),;q Kig!
Now let us look at the MacL aurin series for the function:
(EQ 44)
f(g)=(2-q) "
(EQ 45)
e
q
(EQ 46)
2
O
q
(EQ 47)
O f(a) (i +KYp  \ikeasd)
A/ = 1-
5 o -a)
(EQ 48)

f(q)=(L-o) " = i{ajf—@q—]} i Z{Mq_]}

then:
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(EQ 49)
BN )=K{a-q - ™ =K/p
ged
Optimality of the Group Interleaving Packet Schedule
LemmaA.3-
(EQ 50)

(NS <m-1)> P(NS* <m-1)

Notation reminder: G is the number of FEC groups into which the file was divided for transmission. K isthe
number of packet per FEC group (which means the file size in packet unitsis GK), C is the candidat sched-
ule and B is adifferent one which we prove better than C (for any C different from O).

Proof:
Clearly:
(EQ 51)
P(NSX <m-1)= P(NS* <m-2)+ P(NS* =m-1)
Since:
(EQ 52)
P(NS* <m-2)=P(NS¥ <m-2)
It is enough for usto prove that:
(EQ 53)

P(NS* =m-1)> P(NSX =m-1)

We know from the model that:
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(EQ 54)
6a forCp1
P(Ne* =m-1)=| [1P(NE* <& ) |P(NE = c+d)P(NL< < c)
i:O %f,—/
i#Cyy orCpy
i#Co
and:
(EQ 55)
forB,,;
G-1 .
PINS* =m-1)=| [TP(N: <FS,) IP(NE =c+1) PN <c+d-1)
::%M forB,,
i#B
Where d>1 (from the definition of m).
(EQ 56)
Plng*=ord) Plner<d

e e el ee |
NGK =m

< =m-1) T( d [EKc—ll( - e&HH ;::(C”f :, _J(l-e)ie“‘l‘i}

PN o) PN <ctd-1)

After sometrivial simplification:

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 195



(EQ57)
PN =) [t 11”@(]}(”}
R e
And after some more:
(EQ 58)
P(u@:fm)l(c« ik ifcﬁﬂ il
e i) a4
And yet abit more:
(EQ 59)

(c+d-1)ferd-2)-{c+1) Hz@@)}

P(NgvK=m—1)i(c—K+d)EGc—K+d—1)---(c—K+2) c

PINS* =m-1) {Cf( (c+d-D)rfc+d-2)---(c+1) (jJ(l_e)jec_j}

Z(c-j+d-c-j+d-2)--(c-j+lc

From here:
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(EQ 60)
(K<sj<c+d-1)=
(c+d-1)dc+d-2)---(c+1)
c-j+d-1)dc-j+d-2)(c-j+1)~
(c+d-1)c+d-2)---(c+1) -
“(c-K+d-1)Hc-K+d-2)---(c-K +1)

:[ crasdera-alerd (1) )}

JZK c-j+d-1)dc-j+d-2)--(c-j+1)lc
(c+d-1)c+d-2)-(c+1) {i@( )JeCJF

“(c-K+d-1)fc-K+d-2)---(c-K +1)

(c+d-1)dc+d-2)-(c+1) {Z;, '

(c-K+d-1)fc-K+d-2)---(c-K +1)
(c-K +1)

(c- K+d)D( K$;d1)é(?gcgid2)2)(c+l)r<+1){i(jJ(l_e)jec_j}:
{ (c+d-1)c+d-2)-(c+1) H

>

(c-K+d)fc-K+d-1)---(c-K +2)

T =
A
/_\\
Nl

=

\_/
I—I

ged

A.3 - Multi-rate Distribution to Heterogeneous
Clients

Group Interleaving Properties
Lemma4.1 - Number of Slotsneeded for G packetsat Level | (Page 98)

The number of dots required to receive exactly G packets under subscription level | is 2%,

Proof:
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The number of packets per slot is the sum of the number of packets at each channel up to channel | in one
slot:

(EQ 61)
| . _
1+y 2 142715
= 2_1
clearly then in 2! dotswe have:
(EQ 62)
227 =2=G
packets.
ged

Lemma4.2 - - Modulo Elimination (Page 99)

Starting at slot zero, when looking at G consecutive packets, the modulo in the group index formula above
can be eliminated. Therefore, the group index formula can be rewritten as follows.

Given z=0 then:

(EQ 63)

(EQ 64)
g =s+2°7+277" 1

O<j<l
Proof:

For (j=0): When starting at slot s=0, sistrivialy not smaller than 0. The maximum value that s can attain
when sending no more then G packetsis given by on page 197:
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(EQ 65)
sofor--,2" -1 o0s<lis<y

Clearly the maximum value for the expression above is attained when |=0. In such a case the maximum sis
20.1=G-1<G

then:
(EQ 66)
g=S.=s
9,
For (j>0): Provided we start at ot s=0 and send no more than G packets, from on page 197 and the defini-
tionsof jand t:

(EQ 67)
so{o1,. ,2°7" -1}
jof2,- 1}
tofoa, 27t -1

gisclearly not smaller than O.

Let us see what is the maximum value of g that can be attained given the restricted domain for the parame-
terss,j andt.

(EQ 68)
max(s+277 + 2771 1) =
— 931 _q 49371 4 iin [ﬁzj—l _1):
=) 49370 49I _9I-it =
=271 -1-271 427 =G -1+2" -2}
and since
(EQ 69)

IN
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then:
(EQ 70)
G-1+271 -2 <G-1<G
therefore:
(EQ 71)
g S[s+27+27MH =s+2"7 +2"
<j<l G
ged

Lemma 4.3 - Uniqueness of the j,st representation of g within a range of G packets at any subscrip-
tion level |. (Page 103)

For any group denoted with g, which can be represented as:

(EQ72)
gk={ o h =0
S t27 427, 0<j, <I
with parametersin the range:
(EQ 73)
s.0fo1-- 27 -
i 0{02,+-. 1}

Ofoa-2k-3 >0
0{d |

the representation above is unique which means that:
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(EQ 74)
S=S
(gl = gz) 1=,
t=t,
Proof:
For s:

From the binary representation, the coefficients of gy for i < J-l are the same as the ones of s, independent of
jk and tk:

(EQ 75)
Oji b b(gy.i)=Db(s,.i)
k=0,1 0<i<J-I
At the same time, since the binary representation of a number is unique:
(EQ 76)
(gl = gz) - b(gl'i): b(gzvi)
Osi<J
then:
(EQ77)
oty [b(a,i) =b(sz,i)} ~§=5
k=01 Osi<H
For j: (wewill show that if j;!=j, then g;!=0,)
Let us assume with no loss of generality that j;>,, from the binary decomposition above we get:
(EQ 78)

(i,>1i,) - (i,>0) -
- b(gle - jl):]'

Scalable Reliable Multi-rate Point to Multi-point Distribution of Bulk Data 201



Assorted Proofs

however for g,:

(EQ 79)
(0-1<3-j,<3-},) > b(g,,d-j,)=0
which resultsin:
(EQ 80)
[b(g,, 3 - i,) £ b(g,, 3 - i,)] - (9, % g.)
S0O:
(EQ 81)

(91 = 92) - (11 = Jz)

For t: We have already seen that j;=j, so we only need to prove t;=t, for j>1 (since for j=0 and j=1t is
always 0 so trivially t1=t,).

From the binary decomposition:

(EQ 82)
0j>1 b(gk’i):b(tk’i —J+] _l)
K

=0,1 J-j<i<d
at the ssmetime:

(gl = gz) - b(gl,i): b(gz,i) (EQ 83)

O<i<J

then:
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(EQ 84)
0 >1 {b(tl,i ~J+j-1)=hlt,i-J+] —1)} R
k=0,1 J-j<i<d
g [b(q,i)_:_b@z,i)} =,
O<i<j-1
ged

Lemma 4.5 - Modulo Elimination (Generalized G) (Page 106)

In asimilar manner as donein Lemma4.2 - on page 99, we wish to eliminate the modulo in the group index
expression. We prove here that when the starting dot is 0, for G consecutive packets, the modulo in the
group index formula above can be eliminated. Therefore, the group index formula can be rewritten as fol-
lows.

(EQ 85)

(EQ 86)
g =s+W2'7 +W2 "

o<j<l
Proof:

(For j=0) When starting at slot s=0, sistrivially not smaller than 0. The maximum value that s can attain
when sending no more then G packets isw2r-1. Clearly the maximum value for this expression is attained
when 1=0. In such a case the maximum sisW2*%-1=G-1<G

then:

(EQ 87)
jgo :|§fe =s
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(For j>0) Provided we start at slot s=0 and stop at slot W2™'-1 to send G packets, from the definitions of j
and t:
(EQ 88)
so{od, - w2 -1
jo{L2,--,1}
tofod, 21" -1

gisclearly not smaller than O.

Let us see what is the maximum value of g that can be attained given the restricted domain for the parame-
terss,j andt.

(EQ 89)
ma{s+ W2’ + W2 1) =
=W2H —1+W2'T W2 i 1) =
=W2 —1+W2 T + W2 W2l =
=W2' —1-W2 T W2 =G-1+W2M T W2’
and since
(EQ 90)
j<|
then:
(EQ 91)
G-1+W2" -W2 < G-1<G
therefore:
(EQ 92)

g =|stW2 AW =S+ 42

o<jd
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ged

Lemma 4.6 - Uniqueness of the j,st representation of g* within a range of G packets at any subscrip-
tion level I. (Page 110)

If g*(spi1nt)=0g% (S2i2.t0) then s1=sp, j1=], and ty=t.
Proof:

For s: If g (Spi1,t)=0" (Saijaty) then clearly:

(EQ 93)
r(gi(s. iut))=rld (s 1o t)
From the definition above:
(EQ 94)
|-l
For j:
Without loss of generality, if j1!=j2 let us assume j1>j2. Then:
(EQ 95)
o(g (s jut)} 3 -,)=1
and:
(EQ 96)
b(g' (s, jt.)} 3= 1,)=0
which means:
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(EQ97)
9'(5,12.t) 210 (80 )
But for g (syi1.4)=0* (521t we neect
(EQ 98)
9 (s iut) =10 (s 02 t,)]
and therefore:
(EQ 99)

L=z
For t: We have aready seen that j,=j, so we only need to prove t;=t, for j;=j»>1 (since for j=0 and j=1t is
always 0 so trivialy t;=t,).

From the binary representation above:

(EQ 100)

0 >1 b(g",i)=b(t,i -1 +j-1)

I=j<i<l
at the sametime:

(EQ 101)

lo'(sit)=0g(sit) - [b(g* (s.j.t)i)=blg'(s Ltz),i)}

O<i<l

then:
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Oj >1 {b(tl,i —1+]j —1|)_j:<i3(t2,i —+ ] -1)} R o
- blud)=pl )] - =,
ks
e
] “%’JJ%J{LSJJ+(b_c%JsH%J +(c;1>+(b‘cl)/ J
o=t
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LemmaA.b-
(EQ 105)
S
ble]| | ¢
Proof:
(EQ 106)
FZFH T3] T3l |l
b |b C C C C
ged
LemmaA.6-
(EQ 107)
LLJ |12
be| | c
Proof:
LemmaA.4 - on page 207 and LemmaA.5 - on page 208
ged
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Lemma4.7 - Number of supersiotsfor GN packets (Page 115)

The number of superslots required to receive exactly GN packetsis M
Proof:

The number of packets per superslot is the sum of the number of packets at each channel up to channel | in
one superslot:

(EQ 108)
mini superslots in channel 0 |
G 1 +> 2™ =
- ——
packets per mini —superslot j=1 mini super dotsinchannel j
I —
=G[ﬁl+2 1}=GD?'
2 —_
clearly then, in 2™ supersiots we have:
(EQ 109)
G2 2" =G2" =GN
packets.
ged

Lemma 4.8 - All packets have the same packet index within a j-mini-superslot. (Page 117)

For any specific channel j, gg can be eliminated from the packet index formula within a j-mini-superslot
which means that all packets within the j-mini-super slot have the same packet index. What we wish to
proveisformally expressed in (Eg. 110 on page 210) and (Eq. 111 on page 210).
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(EQ 110)
j>0 ggo{oL-,G-1
b= G(2H$ +.tt)+ 99 | pM-i 4 oM-int G(Zj’lss+tt)+ 99 _
Gt G 2y
-1
= {MJQM‘J + 2" P es +tt|
2i-1 2l
N
and:
(EQ 111)
i=0 ggofol--.G-%
G s + gg
= ———— = |ssS
p=| SEIE i,
Proof:
For j>0:
From LemmaA.6 - on page 208
(EQ 112)

Lbau:J ) Vi/b‘

then:
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(EQ 113)
o= G ss+tt)+ a9 |, Juri, puin | GR s +1t)+ g0 _
Gt G 2y
[G(Zj'lss+tt)+ ggJ
= G +2V7 4 MM I s + 4t | =
2]—1 2i-1
L N
i-1
= ZMJ +2M7 4 MM DI sg +
2]—1 2i-1
L N
which is clearly constant within the j-mini-superdot asit is not afunction of gg.
For j=0:
(EQ 114)
p:[Gm+ggJ :[$+%J :$+[ggJ :‘SS+O‘ :‘SS‘
G N G N G N N N
which is clearly constant within the j-mini-superdot asit is not afunction of gg.
ged

Lemma 4.9 - Each packet index is sent exactly G times (and in the same j-mini-superslot) during GN
packets starting at a superdot boundary. (Page 117)

We wish to prove that out of GN packets sent at level |, starting at a superslot boundary, every packet index
is sent exactly G times and that these G times are within the same single j-mini-supers| otl.

Proof:

From on page 209, for j=0:

1. sincethe G times are within the same mini-superslot then it means they are all in the same channel (since each mini-
superslot belongs to one of the channelsin the level)
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(EQ 115)

p = [ss|,

and for j>0:

(EQ 116)

217

i1 _ o
{—2 SSﬂtJ+2M‘J +2M_’+1EIQJ_1SS+tt‘ | o=
2l

N
=|ss+ 2"+ 2" ]

We can now apply the group interleaving theorem (Theorem 4.5 - on page 111) to the packet index of the
first packet in every j-mini-superslot where sstakes the place of s, tt takes the place of t, M takes the place of
Jand N takes the place of G

With the application of Theorem 4.5 - on page 111 we obtain that the packet indexes for the first packet sent
in aj-mini-superslot during G consecutive j-mini-superslots when starting at a superslot boundary are all dif-
ferent. And we already proved in on page 209 that within the j-mini-superslot the packet index is the same.

ged

Lemma 4.10 - Every j-mini-superslot begins at a dot boundary (Page 118)

Proof:

There are W2? packets per j-mini-supersiot and 21 packets per slot on channel j. So the number of dots per
j-mini-superdot is.

(EQ 117)

V\£ Wt
27

and since:
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(EQ 118)
0<j<l<min(J,N)

then the number of slots per j-mini-superdlot is an integer.
Therefore since the first j-mini-superslot starts at a slot boundary every subsequent one will do so aswell.

ged

Lemma 4.11 - Within aj-mini-superdot there is exactly one packet from every group. (Page 118)
Proof:

Since a j-mini-superslot contains G packets, all we need to proveisthat all these packets belong to different
groups.

For j=0, the proof for the group interleaving property (Theorem 4.5 - on page 111) with 1=0, proves the
Lemma (Theorem 4.5 - on page 111 is applicable since every j-mini-superslot starts at a slot boundary as
proved in on page 212).

For j>0 we split the j-mini-super slot in half so that we get two sections with G/2 packets each?® (Figure A.1
on page 214). For the first half, the conditions of the group interleaving property (Theorem 4.5 - on
page 111) hold (with I=j and z="first slot of the j-mini-supersiot”). So the packets in the first half all belong
to different groups. For the second half, the conditions for the group interleaving (Theorem 4.5 - on
page 111) hold as well (with I=j and z="first slot of the j-mini-supersiot’+2*)) and therefore the packets in

the second half belong to all different groups as desired. We yet need to show that there is no packet in the
first half that appears on the second one.

2. If j>0then| isfor sure greater than 0. This means Jis greater than 0 and then we can divide G by two.
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FIGURE A.1 - half aj-mini-superdlot

G/2 packets ~ J-mini-

_

Slots: z to z+W2H-1

G/2 packets

Slots: z+W2H to z+W2Hi*1.1

time

For that purpose, we resort to the group interleaving property once again. If we apply the group interleaving
theorem (Theorem 4.5 - on page 111) for I=j-1 we see that the groups of the G/2 packets sent in channels 0

to j-1 from slot z+W2 to slot z#W2H*1-1 ought to be different from those sent in channels O to j-1 from
slot zto slot zFW25-1. But these G/2 are in turn different from the G/2 packets in the first half of our j-mini-
superslot (which follows from applying the group interleaving theorem with 1=j). Then, the G/2 packetsin
the first half of our j-mini-superslot belong to the same groups as the G/2 packets in channels 0 to j-1 from
slot z#W2% to slot z+W2MHL-1. Fi nally, when applying the group interleaving theorem (Theorem 4.5 - on
page 111) with |=]j starting at slot z+W2%1 we reach the conclusion that the packets in the second half of our
j-mini-superdlot belong to different groups than those in channels 0 to j-1. Since these last packets belonged

to the same groups as those in the first half of our j-mini-supersiot then we proved that packets in the second
half of our j-mini-superdot are different from those in the first half.

ged
Higher Subscription Rates
Lemma4.13 - - Modulo Elimination (I=J+1) (Page 124)
(EQ 119)
g =s+Wi
j=+

Proof:

Provided we start at slot s=0 and stop at slot W-1 to send G packets, from the definitions of j and t:
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(EQ 120)
sofod, - w-3
j=J+1
tofox-- 2t -1=2" -3

gisclearly not smaller than O.

Let us see what is the maximum value of g that can be attained given the restricted domain for the parame-
terss,j andt.

(EQ 121)
max(s+W ) =W -1+W 2’ ~1)=
=W-14W2' W =W2’ ~1=G-1<G

ged

Lemma 4.14 - Uniqueness of the j,st representation of g* within a range of G packets at channel
j=J+1. (Page 125)

If g*(s,0+ Lt)=0g*(s,,J+ L,tp) then s;=s, and t)=t,.
Proof:
For s: If g*(s1,3+ 1,t)=0g*(S,,J+ 1,tp) then clearly:
(EQ 122)

rlg(s.941t) =rg(s. 3+t

From the definition above:

(EQ 123)
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For t:

(EQ 124)
lo'(s,3+1t) =g (s, I+1t,)| -
~losay)=lo(sa+1t)] -

-1 =t
qed
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APPENDIX B Snulation Issues

B.1 - Tree Generation Algorithm

Node Data Structure

—

ypedef struct stNode

-~

struct stNode * pUp;

struct stNode * pDown;

WORD wMaxCap; /Imax rate available (slowest link upstream)
WORD wRcvCap; IIrate received

WORD wRevCapCh[ MAX_CHANNELS];//for every channel rate currently being received
BYTE cLinks;

DWORD dwDwRecv;

BOOL bCons,

©O©oO~NOOsWNPRE

=
o

n}
12 NODE;
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Generate Tree

This function is the entry point for the tree generation agorithm. It allocates the memory space for the tree
database as a contiguous area.

13 void GenerateTree(MCTREE *pMCTree, BYTE cMaxDepth,BYTE cMaxLnk, WORD wMaxCap)
14 {

15

16  pRemNodes=(NODE *)malloc(MAX_NODES* sizeof(NODE));

17  dwRemNodes=MAX_NODES

18

19 pMCTree->bGen=TRUE;

20  pMCTree->cDepth=cMaxDepth;

21  pMCTree->pRoot=GetNodes(1);

22 GenerateNode(pMCTree->pRoot,(NODE *)0,wMaxCap,0,cMaxDepth,cMaxLnk,wMaxCap);

23

24 MyPrintf("Total Receivers:%09d \r\n",(pMCTree->pRoot)->dwDwRecv);
25}

GetNodes

26 static NODE * GetNodes(BYTE cNodes)
27 {

28 NODE * pDownNodes;

29

30 if (cNodes < dwRemNodes)

31 {

32 pDownNodes = pRemNodes;
33 pRemNodes += cNodes;

34 dwRemNodes -= cNodes;
3B}

36 dse

37 {

38 PrintError(FUNCTION_NAME,"No more nodes available");
39 pDownNodes = (NODE *) 0;
40 }

41

42 return pDownNodes;

43}
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GenerateNode

44 datic void GenerateNode(NODE * pNode, NODE * pParent, WORD wParCap, BYTE cDepth, BYTE cMaxDepth, BYTE cMaxLnk,
WORD wMaxCap)

45 {

46  BYTEN;

47  doubler;

48

49  pNode->dwDwRecv=0;

50  pNode->pUp = pParent;

51  r=((double)rand()/RAND_MAX);

52  pNode->wMaxCap = min(wParCap,(WORD)(r * wMaxCap)+1);

53  r=((double)rand()/RAND_MAX);

54  pNode->cLinks = (cDepth < cMaxDepth) ? (BYTE)(r * cMaxLnk) : 0;

55

56

57  pNode->pDown = GetNodes(pNode->cLinks);

58  //IREV need true error handling for the case when GetDownNodes completesin error
59  //because no more nodes are available

60 if(pNode->pDown == 0) pNode->cLinks=0;

61

62  //MyPrintf("L:%02d D:%02d C:%05d \r\n",pNode->cLinks,cDepth,pNode->wMaxCap);
63

64  if(pNode->cLinks == 0)

65 pNode->dwDwRecv=1,;

66

67  for(n=0;n<pNode->cLinks;n++)

68 {

69 GenerateNode((pNode->pDown)+ n,pNode,pNode->wMaxCap,cDepth+ 1,cMaxDepth,cMaxLnk,wMaxCapy);
70 pNode->dwDwRecv += ((pNode->pDown)+n)->dwDwRecv;,

7}

72}

73
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B.2 - Implementation Issues

F o= (i+ )
' i
Foj=Fo=1

_(iHLH ) (1)) (i +1+ )
T+ (+pmge i+ M
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