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Abstract – Motivated by motion compensated filtering in image processing we con-
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1 Introduction

Motivated by the problem of motion compensated filtering in video processing and super

resolution problems (see e.g. [1]), we consider the following problem: Let I0 (x) be a Wx-

band limited signal, namely

Î0 (ωx) = 0 for |ωx| >
Wx

2
(1)

where Î0 (ωx) denotes the Fourier transform of I0 (x). Suppose that I0 (x) is sampled

at intervals ∆x where ∆x > 2π
Wx

. It is well known that, in this case, I0 (x) cannot

be reconstructed from the data {I0 (ℓ∆x)}ℓ∈Z. Here we assume that the signal can be

’moved’ and through this motion a temporal dimension is added to the problem. Namely,

we generate a two dimensional signal given by

I (x, t) = I0 (x − f (t)) (2)

where f (t) represents the motion. Initially, we consider general motion. All we require

is that f (0) = 0. Suppose now the data we generate results from sampling both in the x

direction (with the same sampling interval ∆x as before) and in the temporal direction

with sampling interval ∆t. Hence the data we have now is {I (ℓ∆x, n∆t)}(ℓ,n)∈Z×Z.

The problem we address in this paper is, under what conditions can one reconstruct I0 (x)

from the data {I (ℓ∆x, n∆t)}(ℓ,n)∈Z×Z. We provide a general reconstruction formula

which is applicable to all cases treated here. Our main thrust is on existence and not

on the associated question of practical reconstruction. Note that, since we assume the

knowledge of f (t), once I0 (x) is reconstructed, I (x, t) can be reconstructed as well by

using (2).

Previous work on this problem includes the special case of constant velocity motion [5]

and [4]. Also, some results have been reported on constant acceleration motion in [5] and

[5]. However, in the latter case, the question of whether or not reconstruction is actually

possible has not been addressed. Here we give necessary and sufficient conditions for

reconstruction with general global motion. Constant velocity or acceleration are special

cases of our result.



2 The General Case

We establish first the result for the general case as posed in the previous section and

then relate the results to some specific types of motions.

Before proceeding let us introduce some notation which we will use in the sequel (this

notation is common in Number Theory, see e.g. [6]). For integers m,n ∈ Z, m|n means

that m divides into n, gcd (m,n) refers to the greatest common devisor of m and n and

m ≡ n (mod Q), for Q ∈ N, means that Q| (m − n) and is called congruence relationship.

Given Q ∈ N, n denotes the set of all integers congruent to n and the set {0, 1, ..., Q − 1}

is called the set of least (nonnegative) residues modulo Q and the set
{
0, 1, ..., Q − 1

}
is

the least residue system modulo Q.

Let us also denote

N =

⌈
Wx∆x

2π

⌉
(3)

c =
2π

∆x
(4)

and the mapping F : Z → [0, 1) defined by

F [n] =

⌈
f (n∆t)

∆x

⌉
−

f (n∆t)

∆x
(5)

where ⌊a⌋ denotes the largest integer smaller than a and ⌈a⌉ denotes the smallest integer

larger than a. Then, clearly

0 ≤ ∆xF [n] < ∆x for all n ∈ Z (6)

We next introduce:

Definition Denote by nF the set of integers which result in the same value under the

mapping F (namely, F (n) = F (n1) for all n, n1 ∈ nF ) and let NF denote the set NF =

{nm}
M

m=1
such that (nm)F are all disjoint and

M⋃

m=1

(nm)F = Z. Then, the Resolution

Gain Factor (RGF) MF is the number of elements in NF .

We note that by the definition of f (t) we can assume that always 0 ∈ NF and arbitrarily

choose n1 = 0.



Let

xm = ∆xF [ni] for every nm ∈ NF (7)

Then we can state our main result:

Theorem I0 (x) can be reconstructed from the data {I (ℓ∆x, n∆t)}(ℓ,n)∈Z×Z if and only

if

MF ≥ N (8)

The reconstruction formula is:

I0 (x) =
∞∑

k=−∞

N∑

m=1

I

((
k +

⌈
f (nm∆t)

∆x

⌉)
∆x, nm∆t

)
ϕm (x − k∆x) (9)

where xm = ∆xF [nm] , nm ∈ NF ,

ϕm (x) =
1

c

∫ −
c(N−2)

2

− cN
2

Φm (ωx, x) ejxωxdωx (10)

and {Φm (ωx, x)}N

m=1 are the solutions of the following set of linear equations

N∑

m=1

ej(ωx+rc)xmΦm (ωx, x) = ejrcx for r = 1, ..., N (11)

in which x is arbitrary and ωx ∈
(
− cN

2
,− c(N−2)

2

)
.

Proof: First we note that (8) ensures that (11) can indeed be written with distinct

xm’s. Furthermore, the matrix of coefficients of the equations in (11) has the form




1 ejωxx2 ejωxx3 · · · ejωxxN−

1 ej(ωx+c)x2 ej(ωx+c)x3 · · · ej(ωx+c)xN

1 ej(ωx+2c)x2 ej(ωx+2c)x3 · · · ej(ωx+2c)xN

...
...

...
. . .

...
1 ej(ωx+Nc)x2 ej(ωx+Nc)x3 · · · ej(ωx+Nc)xN




=




1 1 1 · · · 1
1 ejcx2 ejcx3 · · · ejcxN

1 ej2cx2 ej2cx3 · · · ej2cxN

...
...

...
. . .

...
1 ejNcx2 ejNcx3 · · · ejNcxN



· diag

{
1, ejωxx2 , ..., ejωxxN

}



Since 0 ≤ xm 6= xr < ∆x , from (4) we have ejcxm 6= ejcxr . Then, recognizing that the

first matrix is a Vandermonde matrix, this implies that it is nonsingular and so is the

whole coefficient matrix. Hence, (8) ensures the existence of {Φm (ωx, x)}N

m=1.

Once this is established we have converted the problem to a special case of a result due

to Papoulis (see e.g. [3] or [2]) and (9) follows.

An immediate observation from (9) is that one does not need the whole data set in order

to reconstruct the signal. Furthermore, when we look at the data available as samples of

I0 (x) we note that in fact we have generated a periodic (or recurrent) sampling pattern

with MF irregularly spaced (in general) samples in each period. As the above theorem

states, in order to be able to reconstruct I0 (x) we need to make sure that f (t) and ∆t are

such that (8) is satisfied. From an implementation point of view, if MF > N , one would

want to choose the subset of N values {xm} which are closest to being uniformly spaced

in the interval [0, ∆x). This will result in the best conditioned matrix of coefficients in

(11).

Remark The reconstruction functions ϕm (x − k∆x) in (9) can be viewed as impulse

responses of reconstruction filters. This approach has been described in [8] where these

same functions have been derived in a somewhat different way. However, the conditions

for their existence, and hence, the conditions for reconstruction, are the same. This is

our main interest in this paper.

Next, we investigate some special cases of interest.

3 Special Cases

In this section we look at motions with constant velocity or constant acceleration which

have been considered in the literature. We also look at periodic motions, which we feel

are of practical interest. For each motion we determine the conditions on the motion

parameters in relation to the sampling rates ∆x, ∆t so that (8) is satisfied.



3.1 Motion with constant velocity

Let us consider the case

f (t) = V t (12)

Then, clearly, if F [n1] = F [n2] for some n1 < n2 we must have

V ∆t

∆x
=

m

n2 − n1

for some integer m. Hence, if V ∆t
∆x

is an irrational number F [n1] 6= F [n2] for any n1 6= n2,

which means that NF = Z. Hence, MF = ∞ and reconstruction (at least theoretically)

is possible for any bandwidth signal.

Let us assume now that V ∆t
∆x

is a rational number. Then we make the claim:

Claim 1 Let V ∆t
∆x

= R
Q

such that gcd (R,Q) = 1. Then

MF = Q (13)

Proof: As we already observed, F [n2] = F [n1] iff

m

n2 − n1

=
V ∆t

∆x
=

R

Q
(14)

Since R and Q are coprime integers this will hold iff Q| (n2 − n1) (namely, Q divides

n2 − n1). Or

F [n2] = F [n1] ⇔ n2 ≡ n1 (mod Q) (15)

This means that NF is the set of least residues (as mentioned earlier), namely, is equal

to {0, 1, ..., Q − 1} which completes the proof.

Remark This type of motion has been extensively considered in the literature and the

reconstruction methods presented, typically use filters which are referred to as ’Motion

Compensated Filters’ (see e.g. [5]). The corresponding reconstruction formulae make

use of the whole data set hence, they are not unique. Indeed, there is some freedom

in the choice of these reconstruction filters. It can be shown that there exists a choice



of filter which results in exactly the formula given by (9). However, in most of the

existing literature, while recognizing that there are some ’critical velocities’ for which

reconstruction is not possible, no conditions have been presented. As far as we know,

these type of reconstruction conditions appeared first in [4] for the constant velocity case

only.

Using our terminology here, the condition given in [4] is

min
0<n≤⌊Wx∆x

2π ⌋
F [n] > 0 (16)

and can readily be shown to be equivalent to (13).

3.2 Motion with constant acceleration.

The study of this case is motivated, again, by related work in video processing (see e.g.

[5] and [1]). In these references the authors show that frequency domain insights are

not helpful here and propose to use short time Fourier transforms for the reconstruction.

However, the question whether reconstruction is possible, at all, has not been addressed.

We have here

f (t) = at2 (17)

where a is constant and, without loss of generality, we assume it is positive. Then,

F [n] =

⌈
a (∆t)2

∆x
n2

⌉
−

a (∆t)2

∆x
n2 (18)

and we observe again, that if a(∆t)2

∆x
is irrational F [n1] 6= F [n2] whenever n1 6= n2 , which

in turn means that MF = ∞ (recall that MF is the count of elements in NF ). Let us

then consider the case when a(∆t)2

∆x
= R

Q
is a rational number (gcd (Q , R) = 1). We can

readily show that F [n1] = F [n2] for any integer value R if and only if it is true for

R = 1, so from here on, without loss of generality, we will assume a(∆t)2

∆x
= 1

Q
.

We make the following claim:

Claim 2 Let a(∆t)2

∆x
= 1

Q
, Q > 0 be a given integer. Its unique factorization (see e.g. [6])



is given by

Q = 2mo

I∏

i=1

pmi

i (19)

where pi > 2 are distinct prime numbers mo ≥ 0 and mi > 0, . Then

MF = M0

I∏

i=1

((
pi − 1

2

)(
pmi−1 +

⌊
mi − 1

2

⌋)
+ 1

)
(20)

where

M0 =





1 for mo = 0
4+2mo−1

3
for mo even

5+2mo−1

3
for mo odd

(21)

Proof: (See Appendix A).

As an illustration, say Q = 360 = 23325, using the above formula, the RGF is MF = 36.

We recall that this result means that if a(∆t)2

∆x
= R

360
(R any natural number) we could

use the data generated to reconstruct a signal of bandwidth up to 36 2π
∆x

.

3.3 Periodic Motion

Perhaps the most interesting type of motion to consider for practical applications is

periodic motion where we assume that there exists a T > 0 for which f (t + T ) = f (t).

As is well known, sampling a periodic function does not necessarily result in a periodic

sequence unless ∆t
T

= R
Q

- a rational number. Obviously, in this case, f ((n + Q) ∆t) =

f (n∆t) and if the resulting period Q, is less than N , reconstruction will be impossible.

Hence, ∆t
T

irrational or Q ≥ N is a necessary condition for reconstruction in this case. To

generate necessary and sufficient conditions we need to consider more specific possible

choices for periodic f (t).

Case 1: f (t) = V
(⌈

t
T

⌉
− t

T

)
(See Fig. 1).



Figure 1: Periodic Motion - Case 1 (T = 20).

For this motion we get

F [n] =

⌈
V

(⌈
∆t
T

n
⌉
− ∆t

T
n
)

∆x

⌉
−

V
(⌈

∆t
T

n
⌉
− ∆t

T
n
)

∆x
(22)

We can then prove the following claim:

Claim 3 Let ∆t
T

= R1

Q1
and V

∆x
= R2

Q2
with gcd (Qi, Ri) = 1, i = 1, 2, and let g =

gcd (Q1, R2). Then the RGF is given by

MF = min

(
Q1,

Q1Q2

g

)
(23)

Proof: Define

F1 [n] =

⌈
R1

Q1

n

⌉
−

R1

Q1

n (24)

then 0 ≤ mn = Q1F1 [n] < Q1 are integers and since, F1 [n1] = F1 [n2] ⇔ R1n1 ≡

R1n2 (mod Q1) ⇔ n1 ≡ n2 (mod Q1) , we have a one to one correspondence between the

sets{0, 1, ..., Q1 − 1} and {m0, m1, ...,mQ1−1}. Furthermore, for any n1, n2 ∈ {0, 1, ..., Q1 − 1},

n1 ≡ n2 (mod Q1) ⇒ n1 = n2.



We can now rewrite F [n] as

F [n] =

⌈
R2

Q2

F1 [n]

⌉
−

R2

Q2

F1 [n]

or

F [n] =

⌈
R2

Q1Q2

Q1F1 [n]

⌉
−

R2

Q1Q2

Q1F1 [n]

=

⌈
R2

g

Q1Q2

g

mn

⌉
−

R2

g

Q1Q2

g

mn

where, by definition, gcd
(

Q1Q2

g
, R2

g

)
= 1. Hence, F [n1] = F [n2] ⇔ mn1 ≡ mn2

(
mod Q1Q2

g

)
⇒

the set of n ∈ {0, 1, ..., Q1 − 1} for which F [n1] 6= F [n2] (namely, the set NF ) is given

by {0, 1, ..., Q1 − 1} ∩
{

n : 0 ≤ mn < Q1Q2

g
− 1

}
⇒ MF = min

(
Q1,

Q1Q2

g

)
as claimed.

It can be observed from this claim that, if ∆t
T

= R1

Q1
while V

∆x
is irrational MF = Q1. On

the other hand, if ∆t
T

is irrational MF = ∞ no matter what V
∆x

is.

Case 2: f (t) = V
∣∣⌈ t

T
− 1

2

⌉
− t

T

∣∣ (See Fig. 2).

Here

F [n] =

⌈
V

∣∣⌈∆t
T

n − 1
2

⌉
− ∆t

T
n
∣∣

∆x

⌉
−

V
∣∣⌈∆t

T
n − 1

2

⌉
− ∆t

T
n
∣∣

∆x
(25)

For this case, we prove the following claim:

Claim 4 Let ∆t
T

= R1

Q1
and V

∆x
= R2

Q2
with gcd (Qi, Ri) = 1, i = 1, 2, and let g =

gcd (Q1, R2). Then the RGF is given by

MF = min

(⌊
Q1 − 1

2

⌋
+ 1,

Q1Q2

g

)
(26)

Proof: The proof is quite similar to the proof of Claim 3. Define

F1 [n] =

∣∣∣∣
⌈

R1

Q1

n −
1

2

⌉
−

R1

Q1

n

∣∣∣∣ (27)



Figure 2: Periodic Motion - Case 2 (T = 20).

then 0 ≤ mn = Q1F1 [n] ≤
⌊

Q1−1
2

⌋
are integers and since, F1 [n1] = F1 [n2] ⇔ R1n1 ≡

R1n2 (mod Q1) or R1n1 ≡ −R1n2 (mod Q1)

⇔ n1 ≡ n2 (mod Q1) or n1 ≡ −n2 (mod Q1), we have a one to one correspondence

between the sets
{
0, 1, ...,

⌊
Q1−1

2

⌋}
and

{
m0,m1, ..., m⌊Q1−1

2 ⌋

}
. Furthermore, for any

n1, n2 ∈
{
0, 1, ...,

⌊
Q1−1

2

⌋}
, n1 ≡ n2 (mod Q1) or n1 ≡ −n2 (mod Q1) ⇒ n1 = n2.

We can now rewrite F [n] as

F [n] =

⌈
R2

Q2

F1 [n]

⌉
−

R2

Q2

F1 [n]

or

F [n] =

⌈
R2

Q1Q2

Q1F1 [n]

⌉
−

R2

Q1Q2

Q1F1 [n]

=

⌈
R2

g

Q1Q2

g

mn

⌉
−

R2

g

Q1Q2

g

mn



where, by definition, gcd
(

Q1Q2

g
, R2

g

)
= 1. Hence,

F [n1] = F [n2] ⇔ mn1 ≡ mn2

(
mod

Q1Q2

g

)
⇒

the set of n ∈
{
0, 1, ...,

⌊
Q1−1

2

⌋}
for which F [n1] 6= F [n2] (namely, the set NF ) is given

by
{
0, 1, ...,

⌊
Q1−1

2

⌋}
∩

{
n : 0 ≤ mn < Q1Q2

g
− 1

}
⇒ MF = min

(⌊
Q1−1

2

⌋
+ 1, Q1Q2

g

)
as

claimed.

Here too, it can be observed from the claim above that, if ∆t
T

= R1

Q1
while V

∆x
is irrational,

MF =
⌊

Q1−1
2

⌋
+ 1. On the other hand, if ∆t

T
is irrational, MF = ∞ no matter what

V
∆x

6= 0 is.

4 Conclusion

We have addressed the problem of using motion as a temporal enhancement of spatial

sampling rates. While a number of algorithms for reconstruction of signals from their

combined spatial and temporal samples have been previously described in the literature,

most current results do not address the question ’when is this reconstruction possible?’.

In this paper we analyze a number of typical motions, each with its own parameters, and

derive necessary and sufficient conditions which guarantee, in each case, the feasibility

of signal reconstruction.
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Appendix A

The proof of Claim 2

To prove Claim 2 we first define a set of integers Ñ

Ñ =
{
0 ≤ ñj < Q : (nj)

2 ≡ ñj (mod Q) , nj ∈ NF

}
(A.1)

Note that, from Definition 2 of NF , we can readily see that for every n ∈ Z, (n)2 is

congruent modulo Q to exactly one element in Ñ . This set is commonly referred to

as the set of (least ,nonnegative) quadratic residues (see e.g. [7]). Furthermore, since

by definition, for any nj, nk ∈ NF , j 6= k, (nj)
2 and (nk)

2are not congruent modulo Q,

we have ñj 6= ñk. Hence, there is a one-to-one correspondence between NF and Ñ

(namely, the two sets have the same number of elements, MF ). Next we need to prove

the following three preliminary results:

Claim A1 Let Q1, Q2, Q ∈ N , Ñ1, Ñ2, Ñ the corresponding sets of quadratic residues

and M1,F ,M2,F ,MF the respective element counts of these sets. Then, if Q1, Q2 are

(positive) coprime and Q = Q1Q2 we obtain

MF = M1,F · M2,F (A.2)

Proof: Let ñ1
j ∈ Ñ1 and ñ2

k ∈ Ñ2. Consider the following system of congruences:

(x)2 ≡ ñ1
j (mod Q1)

(x)2 ≡ ñ2
k (mod Q2) (A.3)

Then, by the Chinese Remainder Theorem (see e.g. [6] or [7]) and (A.1) we know that

this system always has solutions and the squares of any two solutions differ by a multiple

of Q. Define ñj,k as

ñj,k = min
r∈Z

{
(x)2 − rQ ≥ 0

}
(A.4)

then 0 ≤ ñj,k < Q and, since ñ1
j is not congruent to any other element of Ñ1 neither

is ñ2
k to any other element of Ñ2, ñj,k 6= ñℓ,m whenever (j, k) 6= (ℓ,m). Hence, the set



{ñj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F} contains exactly M1,F ·M2,F elements. Next we show

that

Ñ = {ñj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F} (A.5)

From (A.3) and (A.4) we have 0 ≤ ñj,k < Q and (x)2 ≡ ñj,k (mod Q) so ñj,k ∈ Ñ ⇒

Ñ ⊆ {ñj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F}.

Let ñr ∈ Ñ . Hence, there exists n ∈ Z such that (n)2 ≡ ñr (mod Q). On the other hand,

by definition of Ñ1 and Ñ2, there exist ñ1
ℓ ∈ Ñ1 and ñ2

m ∈ Ñ2 such that

(n)2 ≡ ñ1
ℓ (mod Q1)

≡ ñ2
m (mod Q2)

Hence, for the corresponding ñℓ,mwe have (n)2 ≡ ñℓ,m (mod Q) ≡ ñr (mod Q) and since

0 ≤ ñr, ñℓ,m < Q we must have ñr = ñℓ,m. Hence, Ñ ⊇ {ñj,k : 0 ≤ j < M1,F , 0 ≤ k < M2,F},

which establishes (A.5). This completes the proof.

Claim A2 Let Q = 2mo.Then

Mo (= MF ) =





1 for mo = 0
4+2mo−1

3
for mo even

5+2mo−1

3
for mo odd

(A.6)

Proof: Considering the congruence relationship x2 ≡ ñi (mod Q) we use a result in [6]

which states that for odd ni an x satisfying the the congruence relationship exists iff

ñi ≡ 1 (mod g) where g is the greatest common devisor of Q = 2mo and 8. This means

that for the set {1, 3, ..., 2mo − 1} the number of integers for which an x exists is given

by

1 for mo = 1, 2

2mo−3 for mo ≥ 3 (A.7)

Next we observe that we can write

{0, 1, ..., 2mo − 1} = {0}
mo⋃

r=1

2mo−r {1, 3, ..., 2r − 1} (A.8)



and that only the sets where mo − r is even contain elements for which an x exists.

Hence we consider separately odd and even mo. For mo odd only the sets with odd

r (= 2ro + 1) are counted and we get (note that {0} counts for 1)

Mo = 2 +

mo−1
2∑

ro=1

2(2ro+1)−3

= 2 +
2mo−1 − 1

3

=
2mo−1 + 5

3

For mo even only the sets with even r (= 2ro) are counted and we get

Mo = 2 +

mo
2∑

ro=2

22ro−3

= 2 + 2
2mo−2 − 1

3

=
2mo−1 + 4

3

which completes the proof.

Claim A3 Let Q = pm where p > 2 is prime. Then

MF = 1 +
p − 1

2

(⌊
m − 1

2

⌋
+ pm−1

)

Proof: We consider the set {0, 1, ..., pm − 1} and want to find for how many of its

elements ñi, the congruence x2 ≡ ñi (mod Q) has solutions. Since we can write

{0, 1, ..., pm − 1} =
{
0, p, 2p, ..., p2, ..., pm − p

} ⋃
{1, 2, ..., p − 1, p + 1, ..., pm − 1}

where one set contains all the elements which are devisable by p, there are pm−1 of them,

and the second are the remaining elements, pm−1 (p − 1) of them. Or

{0, 1, ..., pm − 1} = {0}
m−1⋃

r=1

pr {1, 2, .., p − 1}

pm−1−1⋃

k=0

{kp + 1, ..., kp + p − 1}



As stated earlier, whether an element 0 ≤ ñ < pm belongs to Ñ is equivalent to whether

the congruence x2 ≡ ñ (mod pm) has a solution. From a result in [7] we have that if p does

not divide into ñ the above congruence has a solution iff the congruence x2 ≡ ñ (mod p)

has a solution. Furthermore, in the set {1, 2, ..., p − 1} there are exactly p−1
2

elements

for which the above congruence has a solution. Noting also that x2 ≡ (ñpr) (mod pm)

can have a solution iff r is even and if the congruence x2 ≡ ñ (mod pm−r) has a solution

and that kp + ñ ≡ ñ (mod p) we can conclude that (including the element 0 for which

the congruence has a trivial solution)

MF = 1 +

⌊
m − 1

2

⌋
p − 1

2
+ pm−1p − 1

2

= 1 +
p − 1

2

(⌊
m − 1

2

⌋
+ pm−1

)

which completes the proof.

The proof of Claim 2 then consists of recalling the factorization of a general Q as given

in (19) and applying the three claims above.


