
Precomputation Schemes for QoS Routing

Ariel Orda Alexander Sprintson
Department of Electrical Engineering

Technion—Israel Institute of Technology
Haifa 32000, Israel

Abstract

Precomputation-based methods have recently been proposed as an instrument to facili-
tate scalability, improve response time and reduce computation load on network elements.
The key idea is to effectively reduce the time needed to handle an event by performing a
certain amount of computations inadvance, i.e., prior to the event’s arrival. Such computa-
tions are performed as background processes, thus enabling to promptlyprovide a solution
upon a request, through a simple, fast procedure.

In this report, we investigate precomputation methods in the context of QoS routing.
Precomputation is highly desirable for QoS routing schemes due to the high computation
complexity of selecting QoS paths on the one hand, and the need to promptly provide a
satisfactory path upon a request on the other hand. We consider two majorsettings of QoS
routing. The first is the case where the QoS constraint is of the “bottleneck” type, e.g., a
bandwidth requirement, and network optimization is sought through hop minimization. The
second is the more general setting of “additive” QoS constraints (e.g., delay) and general
link costs.

The report mainly focuses on the first setting. First, we show that, by exploiting the typi-
cal hierarchical structure of large-scale networks, one can achievea substantial improvement
in terms of computational complexity. Next, we consider networks with topology aggrega-
tion. We indicate that precomputation is a necessary element for any QoS routing scheme
and establish a precomputation scheme appropriate for such settings. Finally, we consider
the case of “additive” QoS constraints (e.g., delay) and general link costs. As the routing
problem becomesNP-hard, we focus onε-optimal approximations, and derive a precom-
putation scheme that offers a major improvement over the standard approach.

Keywords–QoS, Routing, Precomputaiton, Hierarchical networks, Topology aggregation.

lesley
CCCCCCCCCCCC

lesley
CCIT Report #417
March 2003

1 Introduction

In recent years we have witnessed considerable accomplishments in the design, development and deploy-
ment of broadband communication networks. Network capabilities, in particular those of the Internet,
grow at a remarkable rate. At the same time, a phenomenal growth in data traffic and a wide range of
new requirements of emerging applications, call for new mechanisms for the control and management of
communication networks. This poses some major challenges. Not only are manyproblems intrinsically
difficult, but there are also additional constraints, such as limitations on the computational capabilities
of network elements. In addition, any such control and management mechanism must scale well with
network growth, and provide fast response to internal (e.g., link failure) and external (e.g., connection
request) events.

Precomputation-based methods have recently been proposed as an instrument for facilitating scalabil-
ity, improving response time and reducing the computational load on network elements. The key idea is
to effectively reduce the time needed to handle an event, by performing a certain amount of computations
in advance, i.e., prior to the event’s arrival. Such advance computations are performedas background
processes,i.e., when a network element is idle or underutilized, thus resulting in better utilizationof the
computational capabilities of network elements. In addition, when the rate of external events is high, a
considerable reduction in overall computational load is achieved.

Precomputation is performed by means of a two-phase procedure, which we refer to as aprecomputa-
tion scheme. The first phase is executed in advance and its purpose is to precompute solutionsa priori for
a wide set of possible event parameters. The computations performed at this phase are then summarized
in a database for later usage. The second phase is activated when an event arrives and its purpose is to
promptly provide an adequate solution for the event’s parameters. The second phase either selects one of
the solutions precomputed at the first phase, or, if necessary, performs a few additional computations. For
instance, when handling connection requests with delay constraints, the first phase may precompute paths
for a wide range of possible delay constraints, while the second phase just needs to select a suitable path
from the precomputed database,i.e., one that satisfies the particular delay constraints of the connection.
The execution time of the second phase has an immediate impact on network performance, hence it is
highly desirable to keep its computational complexity as low as possible. In the above example, the less
time consumed in finding the proper path, the less time is consumed in establishing thenew connection.

We conclude that precomputation is a highly desirable scheme and, at times, a necessary component
for the efficient control and management of broadband networks. We proceed to discuss its major benefits
in some more detail.

Enhancing scalability. As networks grow in size, appropriate control mechanisms must scale well with
network growth. The two major strategies for achieving scalability are limiting the amount of link
state information, and reducing the computational load of network elements. Precomputation methods
constitute a useful tool for both strategies. Indeed, in many typical settings, where the rate of event
arrivals is high, precomputation allows reduction of the overall computational load. Furthermore, as
shall be discussed below, precomputation methods are necessary for handling topology aggregation, a
major technique for obtaining scalability.

Improving fault tolerance. A failure of a network element (e.g., link or node) must be handled prop-
erly, for example, by re-routing the existing connections to alternative routes. Failures are handled
much faster if some computations are performed in advance. For instance, an alternative path can be
precomputed for each possible link failure.

Improving performance in bursty conditions. Under bursty conditions, a new connection request might
arrive before the handling of a previous request has been completed.Computations performed prior to
the burst reduce the time needed for handling a request.

Improving load balancing. In a precomputation scheme, a number of potential requests are processed
through the same procedure. This facilitates distribution of available resources among different requests

2

in an efficient manner. For example, consider a setting in which packets aresent along shortest (or
almost-shortest) paths, determined by the source node. For such a setting,a precomputation scheme
would identify a number of shortest and near-shortest paths in advanceand supply different paths to
different connection requests, effectively facilitating load balancing.

In fact, several existing network mechanisms employ some form of precomputation. As a straightfor-
ward example, consider standard IP routing, where each packet is forwarded by a router according to its
precomputedrouting table.

As shall be demonstrated, many of the algorithmic tools that are often proposed as building blocks
for network control and management were not designed with precomputation in mind, and better results
can be obtained when such a scheme is considered. The problem of how toefficiently precompute a set of
solutions for a wide range of parameters effectively opens a new area of research. We note that the running
time of the precomputation scheme is important due to the following reasons. First,the time available
for precomputation is limited because the network element has other off-line tasks. A second limitation
arises from the need to invoke the precomputation scheme upon changes in the link state, because such
changes may invalidate the precomputed solutions.

In this report, we focus on the precomputation perspective of QoS routing. QoS routing is, undoubt-
edly, one of the major building blocks for supporting QoS, and hence a necessary component of future
communication networks. Indeed, it has been the subject of several recent studies and proposals (see,
e.g., [6, 7, 9, 12, 17, 20, 22, 24, 25, 27, 28] and references therein).

QoS routing is, in general, a complex problem, due to several reasons. One complication is the need to
deal with several QoS requirements, each potentially imposing some constraints on the path choice. Then,
beyond the need to address the requirements of individual connections,QoS routing needs to consider also
the global use of network resources. The above obstacles notwithstanding, QoS routing is facilitated in
many practical settings by the following. First, while a connection may pose several QoS requirements,
it turns out that these often translate mainly into abandwidthrequirement [1, 2]. Bandwidth, in turn,
belongs to the class of “bottleneck” path requirements, which are much easier to handle than “additive”
requirements, such as delay, loss or jitter [12, 17, 18]. As for global network optimization, often it turns
out that much can be achieved by employing the simple criterion ofhop minimization[1, 3]; indeed, a
consequence of the need to reserve resources such as bandwidth oneachlink of the connection’s path is
that with fewer hops, one consumes fewer resources. As a result, hop-constrained path optimization has
emerged as an important component of several recent proposals for IP-oriented QoS routing protocols
[9]. Luckily, hop minimization turns out to be an optimization criterion that is relatively easy to handle.

The high complexity associated with QoS routing on the one hand, and the requirement of fast path
selection on the other hand, make precomputation highly desirable for QoS routing schemes. Accord-
ingly, this report mainly focuses on the problem of precomputing paths of maximal bandwidth for each
possible hop-count value. This problem was initially investigated in [13], and was termed there as theAll-
Hops Optimal Pathproblem (AHOP). While a trivial solution to that problem is offered by the standard
Bellman-Ford algorithm [8], in [13] an algorithm with a lower worst case bound is presented; yet, the
improvement is achieved only in dense (highly connected) topologies, while communication networks
usually have a sparse topology. In this study, we show that, by exploiting thehierarchical structure,
typical of large-scale networks, a better solution in terms of computation complexity can be obtained.

Next, we turn to consider QoS routing in networks with topology aggregation,which improves the
scalability of link state protocols by effectively limiting the amount of link state information stored at
a node. With topology aggregation, subnetworks, orrouting domains, do not reveal the details of their
internal structure, but rather supply the aggregated representation to the outside world. The aggregated
representation summarizes traversal characteristics of a routing domain. It may include, for example,
the description of paths available across the domain. The aggregated representation is not computed
for a specific event parameter, such as required path delay, but for awide range thereof; therefore, as
we shall see, precomputation techniques are an efficient tool for calculating aggregated representations.
We indicate that precomputation is a necessary element for performing QoS routing in such settings and

3

establish an appropriate precomputation scheme.
Finally, we demonstrate the (wide) scope of problems that can benefit fromprecomptuation tech-

niques by considering the harder case ofadditiveQoS requirements andgeneral(additive) path opti-
mization criteria (i.e., other than hop minimization). The respective problem becomes a variant ofthe
Restricted Shortest Path (RSP)problem, which is known to beNP-hard [11]. Some general approxi-
mation schemes that areε-optimal have been proposed (see,e.g., [26] and references therein). However,
those schemes have not been designed with precomputation in mind, and, consequently, are not adequate
when precomputation is sought. Accordingly, in the present study we establish an approximation scheme,
which offers both efficient solutions as well as efficient performance,for precomputing “optimal” (mini-
mum cost) paths for all possible values of an additive QoS requirement.

The rest of the report is organized as follows. First, in Section 2, we formulate the network model
and formally state the considered problems. In Section 3, we consider the problem of hop minimization
with bottleneck QoS constraints in hierarchical networks, and present and analyze our precomputation
scheme. In Section 4, we extend our scheme for networks with topology aggregation. In Section 5, we
consider additive QoS constraints and general (additive) path costs; we present and analyze our precom-
putation scheme, and demonstrate its advantages over standard alternatives. Finally, conclusions appear
in Section 6.

2 Model and Problem Formulation

This section formulates the general model and main problems addressed in thisreport.

2.1 Network Model

We begin with a definition of ageneralcommunication network; definitions of some specific classes,
namelyhierarchicalandaggregatednetworks, will be introduced in the following sections.

A networkis represented by a directed graphG(V, E), whereV is the set of nodes andE is the set
of links. We denote byN andM the number of network nodes and links, respectively,i.e., N = |V |
andM = |E|. An (s, t)-path is a finite sequence of distinct nodesP = {s = v0, v1, ..., t = vh}, such
that, for0 ≤ i ≤ h− 1, (vi, vi+1) ∈ E; h = |P| is then said to be thenumber of hops(or hop count) of
P. The subpath ofP that extends fromvi to vj is denoted byP(vi,vj). LetP1 be a(u1, u2)-path andP2

be a(u2, u3)-path; then,P1 ◦ P2 denotes the(u1, u3)-path formed by concatenation ofP1 andP2. We
denote byH be the maximum possible hop count of any pathP in G that may be considered for routing
purposes. Obviously,H ≤ N − 1, and it is much smaller in many typical network topologies.

Each linke ∈ E is assigned a positiveweightwe, whose significance depends on the type of con-
sidered QoS requirement. For example, when the QoS requirement is an upper bound on the end-to-end
delay, the link weight is its delay; whereas when a bandwidth requirement is considered, the link weight
we is reciprocal to its available bandwidth. Accordingly, thepath weightW (P) of a pathP is defined
differently for additive metrics, such as delay, than for bottleneck metrics,such as bandwidth. When link
weights constitute anadditivemetric, theweightW (P) of a pathP is defined as the sum of weights of
its links, i.e., W (P) =

∑

e∈P we. When link weights constitute abottleneckmetric, theweightW (P) of
a pathP is defined as the weight of its worst link,i.e., W (P) = maxe∈P we.

We can define the notion of a path that is “best” when only path weights are considered. Aminimum-
weight(s, t)-path is a pathP = {s, ..., t} whose weight is no larger than that of any other(s, t)-path.

Obviously, a minimum-weight path has the best performance with respect to theQoS requirement
that is captured by the link weight metric; for instance, it is a path with minimum delayor maximum
bandwidth. Minimum-weight paths can be efficiently found by Dijkstra’s shortest-path algorithm, in
O(M + N log N) computational complexity [8]. Obviously, if the minimum-weight path fails to meet
the connection’s QoS requirement, then so does any other path. However, when the minimum-weight

4

path does meet the QoS requirement, it is often not the “right” choice, as it maybe wasteful in terms of
global network usage,e.g., it may have a large number of hops, or it may use “expensive” links.

Therefore, the goal of QoS routing is to identify a path that satisfies a given QoS requirement while
consuming as few resources as possible. Since the amount of the resources consumed on a path depends to
a large extent on its number of links, the path hop count is considered to be agood criterion for estimating
the path quality in terms of global resource utilization. When the hop count criterion is not satisfactory,
one can define somelink costmetricce > 0 that estimates the quality of each linke in terms of resource
utilization; such a cost may depend on various factors,e.g., the link’s available bandwidth, its location,
etc. ThecostC(P) of pathP is defined to be the sum of the costs of its links,i.e., C(P) =

∑

e∈Pce.
In the present study we shall consider both cases of global utilization criteria, namely hop count and

general (integer) link costs. Note that the former is a special case of the latter. For clarity, we say that
a pathP is a w-weight constrained if its weight is no more thanw; similar definitions apply toh-hop
constrained paths andc-cost constrained paths.

2.2 Problem Formulation

We are now ready to formulate the main problems that are considered in this study. Given a connection
request between a source nodes ∈ V to a destination nodet ∈ V with a given QoS requirement̂w,
and given the network utilization preferences as captured by some link costs, the goal of the QoS routing
scheme is to identify an(s, t)-pathP, which meets the QoS requirement at minimum cost. This can be
formulated as arestricted shortest path (RSP)problem:

Problem RSP (Restricted Shortest Path)Given are a source nodes, a destination nodet and aQoS
requirement̂w, find a minimum cost patĥP betweens andt such thatW (P̂) ≤ ŵ.

We refer to a solution of Problem RSP as aŵ-weight constrained optimum(s, t)-path.
For additive weights and general costs, Problem RSP is intractable,i.e., NP-hard [11]. However,

there exist pseudo-polynomial solutions, based on dynamic programming, which give rise to fully poly-
nomial approximation schemes (FPAS), whose computational complexity is reasonable (see,e.g., [26]
and references therein).

As mentioned above, many QoS routing problems consist of identifying, for each connection request,
a path of minimum hop count that still meets the connection’s bandwidth requirement. In other words,
the path weight is a “bottleneck” metric, and its cost is equal to its number of hops. Effectively, these
problems can be formulated as variants of Problem RSP, for which (i) weights are of the bottleneck type
and (ii) links have equal costs; each of these two simplifications renders Problem RSP to be tractable. The
first goal of this study is to provide efficient precomputation schemes for this class of problems, whose
formal definition is presented next.

Problem BH-RSP (Bottleneck weight Hop cost RSP)Given are a source nodes, a destination nodet

and a bottleneckQoS requirement̂w, find a pathP̂ betweens and t of minimum hop count such that

W (P̂) ≤ ŵ.

As mentioned in the Introduction, QoS routing can often be considerably facilitated by means of
employing aprecomputation scheme, which performs the path searcha priori for any possible connection
request. Such a scheme comprises of two phases: the first phase prepares a database with precomputed
paths for any possible QoS requirement; the second phase promptly retrieves the required path from the
database upon a connection request.

Precomputation schemes for equal link costs (i.e., minimum hops) were investigated in [1] and [13],
both for bottleneck as well as additive weights. A simple precomputation scheme, which “inverts” the
roles of the constraint (QoS requirement) and the optimization criterion (hops), was proposed in [1]. In
particular, that scheme computes a minimum weight for each possible hop count; upon a connection

5

request, then, one would choose the minimum hop value for which the corresponding path meets the
connection’s QoS requirement. Accordingly, we define anh-hop constrained optimal(s, t)-path to be a
path of minimum weight among all(s, t)-paths with hop count of at mosth. The All Hops Optimum Path
problem was then formulated in [13] as follows.

Problem AHOP (All Hops Optimal Path) Given are a graphG = (V, E), a source nodes ∈ V and a
maximum hop countH. Find, for each hop valueh, 1 ≤ h ≤ H, and each destination nodet ∈ V , an
h-hop constrained optimal(s, t)-path.

We shall contrast our precomputation scheme with schemes that are based on solving Problem AHOP.
In addition, we shall consider the precomputation perspective in the context of additiveQoS requirements
andgeneralpath costs. Obviously, in this case, precomputation of exact solutions is intractable, since so
is the basic underlying (RSP) problem. Therefore, in Section 5 we resortto precomputingapproximated
(ε-optimal) solutions.

3 Precomputation Scheme for Problem BH-RSP in Hierar-
chical Networks

In this section we present and analyze our precomputation scheme for the problem of hop minimization
with “bottleneck” QoS constraints,i.e., Problem BH-RSP, in hierarchical networks.

A possible approach for devising a precomputation scheme is to fully precompute all solutions dur-
ing the first phase. With this approach, the second phase just consists ofsearching for the solution in
the database produced by the first phase, according to the specific QoSrequirement of the connection
request. Such is indeed the precomputation scheme for Problem BH-RSP proposed in [13], which con-
sists of precomputing all paths for all possible bandwidth requirements,i.e., solving Problem AHOP.
The Bellman-Ford shortest path algorithm provides a simple precomputation scheme for solving Prob-
lem AHOP, with a computational complexity ofO(MH); for a general (dense) topology, that bound
can grow to be as large asO(N2H). In [13], an alternative scheme is described, whose computational
complexity isO(N2H/ log N); evidently, the latter outperforms Bellman-Ford’s in dense topologies,
i.e., whenM > N2/ log N , but not in sparse topologies, which are the typical case of communica-
tion networks. The computational complexity incurred by the second phase of both schemes is just

O(log H + |P̂|), where|P̂| is the hop count of the identified solution.
It thus remained an open question whether one can devise a faster precomputation scheme for typical

network topologies. In the following, we demonstrate that, by exploiting the hierarchical structure that is
typical of large-scale networks, one can establish a precomputation scheme for Problem BH-RSP, which
offers a significant improvement upon the above solutions.

We begin with a formulation of the hierarchical model.

3.1 Hierarchical Model Formulation

A routing algorithm may be presented with a hierarchical topology due to two possible reasons. First, the
(actual) topology intrinsically has a hierarchical structure, as is often the case with large-scale networks.
Alternatively, the (actual) topology was hierarchically aggregated, as in the ATM PNNI recommendations
[25].

We begin with the first case, assuming alink staterouting environment, where the source node has
a detailed image of the entire network. Beside being an interesting frameworkper se, it provides the
required foundations for an extension that deals with the second case, which shall be considered in Sec-
tion 4.

We assume that the network has a certainhierarchical structure. In order to state the precise meaning
of the last term, we need to introduce some additional terminology.

6

A

C
B

A.1

A.2

A.3

A.4

B.1

B.3

B.2

C.1

C.2
 C.3

Figure 1: An example of a hierarchical network

The networkG = (V, E) is referred to as theactual network. Suppose that we partition the actual
network nodes into some disjoint set oflayer-1 peer groups(or clusters). Furthermore, suppose that we
repeat the above process, such that, for eachk > 1, layer-k peer groups are combined into layer-(k+1)
peer groups. We repeat this process until, for someK, we end up with a single layer-K peer group.
Having performed such a (K-stage) partition, we say that nodes that form a layer-1 peer groupΓ are its
childrenandΓ is theirparent. Similarly, layer-(k−1) peer groups that form a layer-k peer groupΓ are
referred to as the children ofΓ; Γ is referred to as their parent. We denote byHΓ the maximum hop count
of a path in a peer groupΓ that can be considered for routing purposes. As we shall see,HΓ plays an
important role in our scheme.

A node in a peer groupΓ, which has a neighbor that does not belong toΓ, is called abordernode of
Γ. For each peer groupΓ that includes the source nodes, we considers to be a border node ofΓ. We
also assume that a path between two nodes of a peer group does not cross the peer group’s boundary.

We are now ready to define the concept ofhierarchical structure. Intuitively, it means that the network
can be partitioned into peer groups, according to the above process, such that, for allk, 1 ≤ k ≤ K, each
layer-k peer group has a small number (at mostd) of children, and, at the same time, the number of border
nodes in a peer group is also small (at mostb). Formally:

Definition 1 A networkG(V, E) is said to be(d, b)-hierarchicalif it can be iteratively clustered into
someK layers of peer groups, according to the process described above, such that all the following hold:

1. For 1 ≤ k ≤ K, each layer-k peer group is a union of at least 2 and at mostd children.

2. The number of border nodes of each peer group is at mostb.

Note that, since each layer-(k+1) peer group has at least2 children, we have thatK = O(log M) =
O(log N).

Let us illustrate the above terminology through an example. Fig. 1 depicts a(6, 2)-hierarchical net-
work. A.1, · · · , A.4 ,B.1, · · · , B.3 ,C.1, · · · , C.3 are layer-2 peer groups, whileA, B, C are layer-3 peer
groups. In this example,K = 3.

We assume that the hierarchical structure of the network,i.e., partition into peer groups, is given. The
next lemma establishes a “sparsity” property of hierarchical networks.

7

w
e
ig

h
t

hop count
1
 2
 3
 4
 5
 6
 7
 8

2

4

6

8

10

12

Figure 2: A typical traversal functionF Γ
(bi,bj)

(h)

Lemma 1 The number of links in a(d, b)-hierarchical network is at mostM = O(b2dN).

Proof: We divide the setE of actual network links into the following subsetsEk, k = 0, ..., K − 1.

1. E0 includes all links inE that connect nodes of the same layer-1 peer group;

2. Ek, for k = 1, ..., K − 1, includes all links inE that connect layer-k peer groups.

Each nodev is connected to at mostd nodes of its layer-1 peer group. Thus,|E0| = O(dN). Since
each layer-k peer group comprises of at least2 children, the number of layer-k peer groups isO(N/2k).
Note that each layer-k peer group,k ≥ 1, is connected to at mostd layer-k peer groups. Note also
that each two layer-k peer groups are connected by at mostb2 links. Hence, fork ≥ 1, it holds that

|Ek| = O(b2dN/2k). We conclude thatM =
∑K−1

k=0 |Ek| ≤ O(dN + b2d
∑K−1

k=1 N/2k) = O(b2dN)
and the lemma follows.

In practical settings,d andb are small values. Typically, a network grows as a flat topology until its
size reaches a certain threshold, which triggers the creation of a new peer group. As the network grows
larger, more peer groups are added, but the size of each peer groupremains bounded. Thus, the size of
a peer group does not depend on the size of the network, hence we canassume thatd = O(1). Border
nodes connect a peer group to its neighbors; in typical settings, the number of neighbors does not depend
on the network network size,i.e., b = O(1). Hence, in such settings, we haveO(b2d) = O(1) and
M = O(N).

3.2 Traversal functions

The precomputation scheme proposed in [13] consists of precomputing all paths for all possible band-
width requirements. Our precomputation scheme is based on a different approach. Rather than explicitly
precomputing a set of paths for each destination, our scheme computestraversal functions(defined be-
low) for each peer group at each hierarchical layer. The traversalfunctions summarize the ability of a
peer group to support QoS connections that may be established across it.Such an approach allows to
exploit the network’s hierarchical structure, and yields an efficient precomputation scheme. In addition,
this approach is useful in networks with topology aggregation, as shall beshown in the next section.

Definition 2 Given a peer groupΓ and two border nodes,b1 andb2 ofΓ, thetraversal functionFΓ
(b1,b2)(h)

is defined to be the minimum weight of a(b1, b2)-path whose hop count is at mosth.

8

Algorithm BH-HIE (G, s)
input:

G- actual network;
s ∈ G- source node.

1 for k ← 1 to K−1
2 do for each layer-k peer groupΓ
3 do for each border nodebi of Γ
4 do invoke Procedure CLUSTER for (G,Γ, bi)

Figure 3: Algorithm BH-HIE

A typical traversal functionFΓ
(bi,bj)

(h) is depicted in Fig. 2. In this example, the minimum weight of

a5-hop constrained(bi, bj)-path acrossΓ is 1, while the minimum weight of3-hop constrained path is7.

3.3 First phase: Algorithm BH-HIE

We proceed to describe Algorithm BH-HIE, which implements the first phase of our precomputation
scheme. For each peer groupΓ and for each pair(bi, bj) of Γ’s border nodes, the algorithm computes the

corresponding traversal functionFΓ
(bi,bj)

(h).

The key idea is to compute the traversal function of a peer group out of thetraversal functions of its
childen. Accordingly, Algorithm BH-HIE runs across the hierarchical layers in a “bottom-up” manner,
processing first peer groups of layer-1, then peer groups of layer-2, and so on, up the last,K ’s layer.
For each peer groupΓ and for each border nodeb0 of Γ, the algorithm invokes Procedure CLUSTER,
described in Section 3.3.1. The formal specification of Algorithm BH-HIE appears in Fig. 3.

3.3.1 Procedure CLUSTER

We proceed to describe Procedure CLUSTER, the main building block of Algorithm BH-HIE. Proce-
dure CLUSTER receives, as input, some layer-k peer groupΓ and a nodeb0, which is one ofΓ’s border
nodes. It then (pre-)computes the traversal functionFΓ

(b0,b)(h) for each border nodeb of Γ. The order of

processing of peer groups by Algorithm BH-HIE implies that, when Procedure CLUSTER is applied to a

layer-k peer groupΓ, it already has available the traversal functions
{

FΓi

(·,·)(h)
}

for each childrenΓi of

Γ.
Since layer-1 peer groups have flat topologies we can employ the standard Bellman-Fordscheme.

For all higher layers peer groups, however, we need more elaborate methods, in order to exploit their
hierarchical structure.

The procedure starts by constructing the following auxiliary graphΓ̄(V̄ , Ē), whose purpose is to
provide a concise representation of children and the connectivity among them. Each childΓi of Γ is
represented in̄Γ by the set{bij} of its border nodes. Each pair(bij , bij′) of Γi’s border nodes is connected
by several links, each corresponding to a different hop count constraint. Specifically, for eachh =

1, · · · , HΓi
, we add a linke betweenbij andbij′ in Γ̄, with costce = h and weightwe = FΓi

(bij ,bij′)
(h). In

addition, for each actual network linke(bij , bi′j′) that connects children ofΓ, we add a linke′(bij , bi′j′)

to Γ̄, with weightwe′ = we and costce′ = 1. Fig. 4 illustrates the construction of the auxiliary graph for
a layer-3 peer group.

The lemma below follows from the construction ofΓ̄ and from the validity of traversal functions of
the childrenΓi of Γ.

9

(a) peer groupΓ (b) auxiliary graph̄Γ

Figure 4: Construction of auxiliary graph̄Γ.

Lemma 2 Let (bi, bj) be a pair ofΓ’s border nodes. Then:

1. For each(bi, bj)-pathP in Γ, there exists a(bi, bj)-path P̄ in Γ̄ such thatW (P̄) ≤ W (P) and
C(P̄) ≤ |P|.

2. For each(bi, bj)-path in Γ̄, there exists a(bi, bj)-pathP in Γ such thatW (P) = W (P̄) and
|P| ≤ C(P̄).

The lemma implies that we can use the auxiliary graphΓ̄ for computing the traversal functions ofΓ.
Specifically, we need to find, for each border nodebi of Γ and for each1 ≤ c ≤ HΓ, a minimum weight
c-cost constrained(b0, bi)-path inΓ̄. The key idea is to first remove (temporarily) all links from̄Γ and
then add them back tōΓ by increasing order of the weight values. During this process, we maintainthe
tree of minimum cost paths in̄Γ from the source nodeb0; we update the tree after each insertion of a link
to Γ̄.

More specifically, for eachv ∈ Γ̄, we maintain the minimum costcv of a(b0, v)-path inΓ̄. In addition,
we maintain an arrayTΓ

(b0,v), such that:

• TΓ
(b0,v)[c].w keeps the weight of ac-cost constrained optimum(b0, v)-pathP̂ in Γ̄,

• TΓ
(b0,v)[c].p keeps the predecessoru of v on P̂,

• TΓ
(b0,v)[c].c keeps the cost of the last link(u, v) of P̂.

When we add a linke(u, v) to Γ̄, we check whether the valuecv decreases; if it does, we updatecv and
set:

TΓ
(b0,v)[cv].w ← we,

TΓ
(b0,v)[cv].p← u,

TΓ
(b0,v)[cv].c← ce.

We perform a similar process for each nodex for which cx decreases as a result of adding linke. Upon
completion, for each border nodebi of Γ, the traversal functionFΓ

(b0,bi)
(h) is stored in the arrayTΓ

(b0,bi)
,

i.e., for eachh, 1 ≤ h ≤ HΓ:

10

FΓ
(b0,bi)

(h) = TΓ
(b0,bi)

[h].c.

The formal specification of Procedure CLUSTER appears in Fig. 5.

3.4 Procedure FIND

We proceed to present Procedure FIND. This procedure is invoked upon each new connection request,

and its goal is to identify a minimum hop̂w-weight constrained(s, t)-pathP̂.

For clarity, we denote byΓ1 the parent oft, by Γ2 the parent ofΓ1, etc; up to some peer groupΓk̂

for which s is a border node. First, the procedure identifies, for each border node bi of each peer group
Γk, the minimum hop countH(bi,t) of a ŵ-weight constrained optimal(bi, t)-path inΓk. Next, a suitable
path is determined by Procedure PATH, described in the Appendix A.

We begin with a layer-1 peer groupΓ1. We prune each linke ∈ Γ1 for whichwe > ŵ, and then apply
a Breadth First Search (BFS) algorithm [8] to the reversed graph,i.e., a graph in which each link appears
in the reverse direction. This yields, for each border nodebi of Γ1, a ŵ-weight constrained optimal
(bi, t)-path inΓ1 and its hop countH(bi,t).

For a layer-k peer groupΓk, k ≥ 2, we construct the following auxiliary graph̄Γk. Each childΓi of
Γk is represented in̄Γ by the set{bij} of its border nodes. Each pair(bij , bij′) of Γi’s border nodes is
connected a linke, whose cost is set to:

ce ← min
{

h
∣

∣

∣
FΓi

(bij ,bij′)
(h) ≤ ŵ

}

. (1)

In addition, for each actual network linke(bij , bi′j′) that connects children ofΓk and whose weight is
no more thanŵ, we add a linke′(bij , bi′j′) to Γ̄ with costce = 1. Finally, we connect by a link each

border nodebj of Γk−1 and the destination nodet. The cost of such a link is set to theH(bj ,t); the

value ofH(bj ,t) was computed in the previous iteration. We note that a minimum cost(bi, bj)-path inΓ̄k

corresponds to âw-weight constrained path in the actual network. Having constructed the auxiliary graph

Γ̄k, we identify, for each border nodebi of Γk, the minimum cost(bi, t)-pathP̄Γk

(bi, t) in Γ̄k, by applying

Dijkstra’s algorithm on the reverse graph ofΓ̄k. Then, we setH(bi,t) = C(P̄Γk

(bi, t)). In the last step,

Procedure FIND invokes Procedure PATH that identifies, for a peer groupΓk and a border nodebi ∈ Γk, a
ŵ-weight constrained optimal(bi, t)-path. The formal specification of Procedure FIND appears in Fig. 6.

3.5 Analysis of the precomputation scheme

First, we establish the following properties of Procedure CLUSTER.

Lemma 3 Suppose that the (correct) traversal functionFΓi

(bij ,bij′)
(h) is available for each pair(bij , bij′)

of border nodes of each childΓi of Γ. Then, ProcedureCLUSTER, applied onΓ and a border nodeb0 of
Γ, computes the traversal functionFΓ

(b0,bi)
(h) for each border nodebi of Γ.

Proof: See Appendix B.
In the next lemma we analyze the complexity of Procedure CLUSTER.

Lemma 4 The computational complexity of ProcedureCLUSTER for a layer-k peer group is
O(b2d2(HΓ + log(bd))).

Proof: First, let us count the number of links inS. For each pair of border nodes of a childΓi of
Γ we add at mostHΓi

≤ HΓ links. Since each child has at mostb border nodes and there are at most

11

Procedure CLUSTER (G, Γ, b0)
input:

G- network
Γ- layer-k peer group
b0 - Γ’s border node

1 Γ̄(V̄ , Ē)←INITIALIZE ()
2 for all v ∈ V̄ do
3 cv ← HΓ + 1
4 cb0 ← 0

5 TΓ
(b0,b0)

[0].w ← 0, TΓ
(b0,b0)

[0].p← nil

6 S ← Ē
7 Ē ← ∅
8 for each linke(v, u) ∈ S by increasing order ofwe do
9 if exists a linke′ betweenv andu in Ē then

10 removee′ from Ē
11 adde to Ē
12 PROPAGATE(e(v, u))

13 return TΓ
(b0,b) for each border nodeb of Γ

PROPAGATE(e(u, v))
1 if (cu + ce) < cv then
2 for c← (cu + ce) to (cv − 1) do
3 TΓ

(b0,v)[c].w ← we, TΓ
(b0,v)[c].p← u, TΓ

(b0,v)[c].c← ce

4 cv ← (cu + ce)

5 for each linke′(v, x) ∈ Ē do
6 PROPAGATE(e′(v, x))

INITIALIZE()
1 V̄ ← ∅, Ē ← ∅
2 if k = 1 then
3 for each linke(v, u) ∈ Γ do
4 add a new linke′ betweenv andu to Ē
5 ce′ ← 1, we′ ← we.
6 else
7 for each childΓi of Γ do
8 add each border nodebij of Γi to V̄ .
9 for each pair(bij , bij′) of Γi’s border nodesdo

10 for c← 1 to HΓi
do

11 add a new linke betweenbij andbij′ to Ē

12 ce ← c, we ← FΓi

(bij ,bij′)
(c)

13 for each linke(bij , bi′j′) ∈ G that connects childrenΓi andΓi′ of Γ do
14 add a linke′ betweenbij andbi′j′ to Ē
15 ce′ ← 1, we′ ← we

16 return Γ̄(V̄ , Ē)

Figure 5: Procedure CLUSTER

12

Procedure FIND (G, s, t, ŵ)
input:

G(V,E)- actual network
s ∈ G- source node
t ∈ G- destination node
ŵ- (bottleneck) QoS requirement

1 Γ1 ← parent oft
2 remove fromΓ1 all links e for whichwe > ŵ;
3 apply a Breadth First Search (BFS) algorithm [8] to the

reversed graph̄Γ1 of Γ1a

4 for each border nodebi of Γ1 store the hop count of
(bi, t)-path inΓ̄1 computed in Line 3 intoH(bi,t)

5 for k ← 1 to K do
6 Γk ← parent ofΓk−1

7 for each childΓi of Γk do
8 add each border nodebij of Γi to Γ̄k

9 for each pair(bij , bij′) of Γi’s border nodesdo
10 add a new linke betweenbij andbij′ to Ē

11 ce ← min{h | FΓi

(bij ,bij′)
(h) ≤ ŵ}

12 for each linke = (bij , bi′j′) ∈ G that connects childrenΓi andΓi′ of Γk do
13 if we ≤ ŵ then
14 add a linke′ betweenbij andbi′j′ to Γ̄k

15 ce′ ← 1
16 for each border nodebj of Γk−1 do
17 add a linke betweenbj andt
18 ce ← H(bj ,t)

19 apply Dijkstra’s algorithm [8] for the reversed graph ofΓ̄k

20 for each border nodebi of Γk store the cost of
(bi, t)-path inΓ̄k computed in Line 19 intoH(bi,t)

21 if s is a border node ofΓk then
22 letP̄ be path returned by Dijkstra’s algorithm
23 P̂ ←PATH(Γk, P̄)

24 return P̂

aΓ̄1 includes a link̄e(u, v) for each linke(v, u) ∈ Γ1.

Figure 6: Procedure FIND

13

d children, the total number of such links isO(b2dHΓ). In addition, we addO(b2d2) links that connect
border nodes of different children. Thus, the total number of links inS isO(b2d(HΓ+d)). Consequently,
the complexity of Procedure INITIALIZE and of lines 2-11 of Procedure CLUSTER isO(b2d(HΓ + d)).

For sorting the elements ofS we can use techniques for searching in arrays with sorted columns [10].
Since the elements ofS are constructed from at mostb2d ordered sets and an additional set of at most
b2d2 elements, such a sorting can be performed inO(b2d(HΓ + d) log(bd)) time.

We proceed to count the computational complexity incurred by recursive invocations of Proce-
dure PROPAGATE. Note that it is sufficient to count invocations in which the condition(cv + ce) < cu

is satisfied. In each invocation,cu decreases by at least1 for someu ∈ Γ̄. Sincecu is initially set to
HΓ +1 and never increases, we conclude that Procedure PROPAGATE is invoked at mostHΓ +1 times for
each nodeu ∈ Γ̄. Each invocation of the procedure incursO(dout(u)) steps, wheredout(u) is the output
degree ofu in Γ̄. Since during the execution of the algorithm, any two nodes ofΓ are connected by at
most one link, the number of links in̄Γ isO(b2d2). Hence, the total running time for all invocations of
Procedure PROPAGATE is at mostO(HΓ

∑

u∈Γ̄ dout(u)) = O(b2d2HΓ).

We conclude that the total running time of Procedure CLUSTER is O(b2d2HΓ + b2d log(bd)(HΓ +

d))=O(b2d2(HΓ + log(bd))).
We proceed to establish the following properties of Algorithm BH-HIE.

Theorem 1 AlgorithmBH-HIE determines, for each peer groupΓ at each hierarchical layer, the traver-
sal functionFΓ

(bi,bj)
(h) for each pair(bi, bj) of border nodes ofΓ.

Proof: Straightforward by induction on hierarchical layers and application of Lemma 3.

Lemma 5 The computational complexity of AlgorithmBH-HIE isO(b2d2NK).

Proof: Let us count the time required to process all layer-k peer groups. For each layer-k peer
groupΓi, Procedure CLUSTER is invoked. By Lemma 4, the running time of Procedure CLUSTER is
O(b2d2(HΓi

+ log(bd))). Since the expressionHΓi
+ log(bd) is upper bounded by the number of nodes

in Γi and the total number of nodes in layer-k peer groups isN , processing all layer-k peer groups requires
O(b2d2N) time. Since there areK hierarchical layers, the algorithm’s complexity isO(b2d2KN).

Lemma 6 ProcedureFIND, invoked for a sources, destinationt and QoS constraint̂w, returns the
minimum hop count of âw-weight constrained(s, t)-path.

Proof: See Appendix C.
We proceed to analyze the computational complexity of Procedure FIND.

Lemma 7 The computational complexity of ProcedureFIND isO(b2dK(d + log H) + |P̂|).

Proof: Note that, for each1 ≤ k ≤ K, the graph̄Γk contains at mostO(bd) nodes andO(b2d2)
links. The execution of all lines in the procedure, except from lines 11 and 19, requires only a fixed
number of steps per link, orO(b2d2) per layer. Line 11 may be implemented inO(log H) running
time per link, by a binary search. This line is executed at mostO(b2d) times for each layer, hence it

incursO(b2d log H) steps per layer. Since the auxiliary graphΓ̂ comprises ofO(bd) nodes andO(b2d2)

links, the execution of Dijkstra’s algorithm in line 19 requiresO(b2d2) time. As a result, the procedure
performsO(b2d(d+log H)) operations per layer, orO(b2dK(d+log H)) operations overall. In addition,

Procedure PATH needsO(|P̂|)) time to report path|P̂|.
The above results are summarized in the following theorem.

Theorem 2 ProcedureFIND provides anO(b2dK(d + log H) + |P̂|) solution to Problem BH-RSP,i.e.:
given a connection request with source nodes, destination nodet, and (bottleneck) QoS constraint̂w,

and given the output of AlgorithmBH-HIE, ProcedureFIND identifies, inO(b2dK(d + log H) + |P̂|)

steps, aŵ-weight optimal(s, t)-pathP̂ in G.

14

Note 1 In some settings the detailed path is not required. For example, in order to decide whether to
admit a connection, we only need to know the minimum hop count of a QoS path. Then, the computational
complexity of ProcedureFIND is justO(b2dK(d + log H)).

3.6 Discussion

We conclude this section with a performance comparison between our schemeand some alternatives.
Consider first the “standard” precomputation scheme proposed in [1, 13], which was based on solving

Problem AHOP through Bellman-Ford’s shortest path algorithm. Lemma 1 implies that hierarchical
networks are sparse, in the sense thatM = O(b2dN). This, in turn, implies that the standard scheme
incurs a computational complexity ofO(b2dNH) for its first phase,i.e., it is Ω(H/(dK)) times slower
than ours. SinceK = O(log N), our scheme offers a significant improvement over the standard solution.
The difference is particularly significant whend = O(1) andK << H,1 which is a typical case.

Considering the second phase, the standard scheme (as well as any other which is based on fully

solving Problem AHOP in the first phase) yields a computational complexity of justO(log H + |P̂|),

where P̂ is the path identified by the scheme. This is somewhat less than that of our scheme, i.e.,

O(b2dK(d + log H) + |P̂|). However, in typical settings, whereb = O(1), d = O(1) andK << H,
our scheme is justΩ(log H) times slower than the standard solution. Moreover, the difference is not

significant when|P̂| is the dominating component.
Next, let us compare between our precomputation scheme and an alternativewhere no precompu-

tation is performed at all. In such a “single-phase” scheme, the required path can be identified by
applying a Breadth-First Search algorithm [8], which, forM = O(b2dN), incursO(b2dN) running

time compared toO(b2dK(d + log H) + |P̂|) of our scheme. SinceK = O(log N), our solution is

Ω(N/(log N(d + log H) + |P̂|)) times faster. Typically,|P̂| << N andd = O(1), hence the difference
is significant.

It is interesting to compare between the two approaches also in the related context of connection
admission, where one needs to decide whether a connection request should be admitted, based on its
QoS requirement and the cost it incurs; to that end, one needs to identify the (best) cost of a path over
which the connection can be established, however there is no need to explicitly specify the path itself.
This means that our scheme allows to obtain an admission decision upon a connection request in just
O(b2dK(d + log H)) time (see Note 1), whereas the “single-phase” scheme still incursO(b2dN) time.
Thus, our solution isΩ((N/(log N(d + log H))) times faster. The difference is significant in typical
settings whered = O(1).

4 Precomputation Scheme for Aggregated Networks

In the previous section we assumed that each node has full and unabridged information about link states,
which is stored in its topology database. However, such an approach suffers from scalability problems.
Indeed, as the network grows in size, significant resources are consumed for flooding and recording the
changes in the link state throughout the network. With topology aggregation,subnetworks, orrouting do-
mains, do not reveal the details of their internal structure, but rather supply the aggregated representation
to the outside world [16]. Such an approach could also be mandated by security and administrative needs.
Topology aggregation is useful for ATM [25] and IP networks [21].

A key issue in topology aggregation is how to provide the routing information ofa domain to the
outside world. Constructing an accurateaggregated representationposes several complex challenges.
First, there is a need to identify thetraversal characteristicsof a routing domain,i.e., its ability to support

1Recall thatH is the maximum hop count of a path inG and, in the worst case,H = O(N), while K =

O(log N).

15

connections with different QoS requirements. Second, each domain, in turn, comprises of aggregated sub-
domains, whose traversal characteristics are available only through aggregated representation. Finally,
each sub-domain may use a different method for representing its routing information.

In this section we establish that precomputation is a useful (virtually necessary) tool for constructing
accurate aggregated representations. In particular, we show that, by using precomputation schemes, the
traversal characteristics of a peer group can be computed efficiently. We employ the concept oftraversal
functions, introduced in Section 3, in order to accurately represent the traversalcharacteristics. Further,
we adapt our algorithmic techniques in order to cope with aggregated networks, i.e., networks in which
each link represents an aggregated sub-domain.

In this section we consider a generic model for multi-level aggregated networks. The model can be
used, for example, in conjunction with the ATM PNNI protocol [25], in whichpeer groups are represented
by structures termedcomplex nodes.2

Similarly to the previous section, we focus on bottleneck QoS requirements anduse hop minimization
for optimizing resource utilization.

4.1 Aggregated Representation of a Peer Group

A significant body of research has been devoted to the area of topologyaggregation; we proceed to
quote a few relevant references. A compactO(b) representation for undirected networks and a single
bottleneck QoS requirement was presented in [16]. For additive QoS constraints, [23] shows that an
accurate representation of a peer group requiresO(b2) links in the worst case. AnO(b) representation
that achieves a bounded distortion is presented in [4].

Devising a topology aggregation scheme that takes into account both the QoSconstraints and the
use of network resources is still an open research issue. A practical approach is to associate each pair
of border nodes with two values: the first corresponds to a (bottleneck)weight and the second to a cost
value (e.g., hop count). This approach provides a compact representation, but suffers from high distor-
tion. In order to reduce distortion, some studies [5, 15, 19] present schemes that resemble the traversal
functions introduced in Section 3. Specifically, [5] proposes to use bandwidth-cost functions,i.e., func-
tions that specify the available bandwidth for several cost values; [15]and [19] propose to approximate
the bandwidth-cost functions by using curves and link segments, respectively. We note that the methods
presented in the following for efficiently computing traversal functions canbe used in order to compute
the curves in [15] and line segments in [19], hence resulting in a more efficient scheme.

4.2 Aggregated Model

In multi-level aggregated topologies, a domain comprises of aggregated sub-domains. This gives rise to
the followingaggregated network model.

The actual network topology (i.e., with no aggregation) is represented by a directed graphG. The

aggregated network is represented by a directed graphĜ, in which each linke(v, u) ∈ Ĝ represents an
aggregated sub-domainΓe of G. Fig. 7 depicts an example of an actual network and its corresponding

aggregated topology. We assume that a node only knows the aggregated topologyĜ. We denote byH the
maximum hop count of a path that can be considered for routing purposesin the actual networkG. Each

link e(v, u) ∈ Ĝ is associated with a traversal functionF(v,u)(c), which provides the minimum weight
value that can be supported byΓe for each hop count limitationc. More specifically, for0 ≤ c ≤ HΓe

,
F(v,u)(c) is the minimum weight of ac-hop constrained(v, u)-path across the sub-domainΓe, whereHΓe

is a maximum hop count of a path acrossΓe that can be considered for routing purposes.

Each pathP̂ in Ĝ can support several QoS constraints at different costs. Accordingly, we define the

costC(P̂, ŵ) of supporting the QoS constraint̂w by P̂.

2This requires a mild extension of the complex node structure. Specifically, we allow parallel bypass links, each
link corresponds to a different value of the QoS constraint.

16

(a) actual network (b) aggregated network

Figure 7: Actual and aggregated networks.

Definition 3 Given a pathP̂ = {s = v0, v1, · · · , vh = t} in Ĝ and a QoS constraint̂w, we define, for

each linke(vi−1, vi) ∈ P̂, the local costof supportingŵ to bec(e,ŵ) = min{c | F(vi−1,vi)(c) ≤ ŵ}. The

cost of satisfying the QoS constraintŵ along the pathP̂ is then defined to be:

C(P̂, ŵ) =
∑

e∈P̂

c(e,ŵ).

A traversal function in an aggregated network is defined as follows:

Definition 4 Given an aggregated network̂G, a source nodes ∈ Ĝ and a destination nodet ∈ Ĝ,

we define theaggregated traversal functionF Ĝ
(s,t)(c), 1 ≤ c ≤ H, to be the minimum weightw of an

(s, t)-pathP in Ĝ for whichC(P, w) ≤ c. If no such path exists,F Ĝ
(s,t)(c) is defined as∞.

Intuitively, the aggregated traversal function in̂G is identical to the traversal function in the actual

networkG. Furthermore, the traversal functionF(v,u)(c) that is associated with each link(v, u) ∈ Ĝ is,
in fact, the aggregated traversal function of the sub-domainΓe. Note thatΓe may, in turn, comprise of
aggregated sub-domains.

We proceed to formulate the aggregated version of Problem AHOP.

Problem Agg-AHOP (Aggregated All Hops Optimal Path) Let Ĝ be an aggregated network, where

each linke(v, u) ∈ Ĝ is associated with a traversal functionF(v,u)(c). For a source nodes ∈ Ĝ and

each destination nodet ∈ Ĝ, find the aggregated traversal functionF Ĝ
(s,t)(c).

Problem Agg-AHOP can be solved by substituting each linke ∈ Ĝ with several links, each link(v, u)
being associated with a single weightw and cost valuec, such thatF(v,u)(c) = w, and then applying the
Bellman-Ford algorithm on the resulting graph. However, as the resulting graph includesO(MH) links,
this approach incurs a high computational complexity ofO(MH2). By using the algorithmic methods
developed in the previous section, we can devise an alternative scheme for Problem Agg-AHOP, whose
computational complexity is significantly lower.

17

4.3 Precomputation Scheme

Consider first a simple case, in whicĥG comprises of just links(u, v) and (v, w), and our goal is to

compute a traversal functionF Ĝ
(v,w)(c). We refer to this operation asmergingthe functionsF(v,u)(c) and

F(u,w)(c) into a single functionF Ĝ
(v,w)(c). The merge operation essentially amounts to computing, for

each budgetc, 1 ≤ c ≤ H, the partition(c1, c2) of the budget between the links(u, v) and(v, w) that
minimizes the weight of a(u, w)-path in the actual network,i.e.,

F Ĝ
(v,w)(c) = min

c1+c2≤c

{

max
{

F(u,v)(c
1), F(v,w)(c

2)
}}

.

Our main observation is that, in the case of bottleneck QoS parameters, the merge operation can be
performed in justO(H) steps, through the following inductive process. Clearly, for budgetc0 = 2,
the optimal partition is(1, 1). Having computed the optimal partition(c1

i−1, c
2
i−1) for a budgetci−1, the

optimal partition for a budgetci = ci−1 + 1 is then either(c1
i−1 + 1, c2

i−1) or (c1
i−1, c

2
i−1 + 1):

F(u,w)(ci) = min
{

max
{

F(u,v)(c
1
i−1 + 1), F(v,w)(c

2
i−1)

}

,

max
{

F(u,v)(c
1
i−1), F(v,w)(c

2
i−1 + 1)

}}

.

The merge operation allows to solve Problem Agg-AHOP in acyclic directed graphs inO(MH) time.
For general directed graphs, we present a more elaborated algorithm that utilizes that same idea, and
whose running time isO(MH log N). The algorithm, referred to as Algorithm AGG-AHOP, is, in fact,
an adaptation of Procedure CLUSTER (Section 3) for networks with topology aggregation.

The algorithm starts by constructing the following auxiliary graphḠ(V̄ , Ē), whose purpose is to
represent traversal characteristics of sub-domains and the connectivity among them. Each linke(v, u)

of Ĝ is represented in̄G by several links, each corresponding to a different cost constraint.Specifically,
for eachc = 1, · · · , HΓe , we add a linke′ betweenv andu in Ḡ, with costce′ = c and weightwe′ =

F(v,u)(c), whereΓe is the aggregated sub-domain represented bye. For eachv ∈ Ḡ, we maintain the

minimum costcv of an(s, v)-path inḠ. In addition, we maintain arrayT Ĝ
(s,v), such that:

• T Ĝ
(s,v)[c].w keeps the minimum weight of ac-cost constrained(s, v)-pathP̂ in Ḡ,

• T Ĝ
(s,v)[c].p keeps the predecessor ofv on P̂,

• TΓ
(b0,v)[c].c keeps the cost of the last link(u, v) of P̂.

The key idea is to first remove (temporary) all links from̄G and then add them back tōG by increasing
order of the weight values. When we add a linke(u, v) to Ḡ, we check whether the valuecv decreases;
and, if it does, we updatecv and set

T Ĝ
(s,v)[cv].w ← we, T Ĝ

(s,v)[cv].p← u, TΓ
(s,v)[cv].c← ce.

We perform a similar process for each nodex for which cx decreases as a result of adding linke. Upon

completion, for each nodev of Γ, the traversal functionF Ĝ
(s,v)(c) is stored in the arrayT Ĝ

(s,v)[c]. The

formal specification of Algorithm AGG-AHOP appears in Fig. 8.

Given a QoS constraint̂w and a destination nodet, we determine a suitable patĥP through the

following procedure. First, we determine the minimum costĉ of a (s, t)-path is Ĝ that supportsŵ

by settingĉ = min
{

c
∣

∣

∣
T Ĝ

(s,t)[c].w ≤ ŵ
}

. Next, pathP̂ is identified by iteratively discovering the

predecessor of each node, beginning witht. The predecessorvi−1 of vi is determined by setting

18

Algorithm A GG-AHOP (G, s)
input:

Ĝ- aggregated network
s - source node

1 Ḡ(V̄ , Ē)←INITIALIZE ()
2 for all v ∈ V̄ do
3 cv ← H + 1
4 cs ← 0

5 T Ĝ
(s,s)[0].w ← 0, T Ĝ

(s,s)[0].p← nil

6 S ← Ē
7 Ē ← ∅
8 for each linke(v, u) ∈ S by increasing order ofwe do
9 if exists a linke′ betweenv andu in Ē then

10 removee′ from Ē
11 adde to Ē
12 PROPAGATE(e(v, u))

13 return T Ĝ
(s,v) for each nodev in Ĝ

PROPAGATE(e(u, v))
1 if (cu + ce) < cv then
2 for c← (cu + ce) to (cv − 1) do

3 T Ĝ
(s,v)[c].w ← we, T Ĝ

(s,v)[c].p← u, T Ĝ
(s,v)[c].c← ce

4 cv ← (cu + ce)

5 for eache′(v, x) ∈ Ē do
6 PROPAGATE(e′(v, x))

INITIALIZE ()
1 V̄ ← V , Ē ← ∅

2 for eache = (v, u) ∈ Ĝ do
3 for c← 1 to HΓe do
4 add a new linke′ betweenv andu to Ē
5 ce′ ← c, we′ ← F(v,u)(c)

6 return Ḡ(V̄ , Ē)

Figure 8: Algorithm AGG-AHOP

19

vi−1 = T Ĝ
(s,vi)

[ĉ − C(P̂(vi,t), ŵ)].p, whereC(P̂(vi,t), ŵ) is the cost of supportinĝw by the subpath of̂P

identified so far. The budgetce allocated to linke(vi−1, vi) of P̂ is set toce = T Ĝ
(s,vi)

[ĉ−C(P̂(vi,t), ŵ)].c.

We note that the identification of̂P requiresO(log H + |P̂|) time.

4.4 Analysis of the precomputation scheme.

We proceed to state the following properties of Algorithm AGG-AHOP.

Lemma 8 AlgorithmAGG-AHOP computes the aggregate traversal functionF Ĝ
(s,t)(c) for each nodet of

Ĝ.

Proof: See Appendix D.

Lemma 9 The computational complexity of AlgorithmAGG-AHOP isO(MH log N).

Proof: First, let us count the number of links inS. For link e ∈ Ĝ we add at mostHΓe ≤ H
links. Thus, the total number of links inS is O(MH). Consequently, the complexity of Procedure
INITIALIZE and of lines 2-11 of Algorithm AGG-AHOP isO(MH).

For sorting the elements ofS we can use techniques for searching in arrays with sorted columns [10].
Since the elements ofS are constructed from at mostM ordered sets, such a sorting can be performed in
O(MH log N) time.

We proceed to count the computational complexity incurred by recursive invocations of Proce-
dure PROPAGATE. Note that it is sufficient to count invocations in which the condition(cv + ce) < cu

is satisfied. In each invocation,cu decreases by at least1 for someu ∈ Γ̄. Sincecu is initially set to
H + 1 and never increases, we conclude that Procedure PROPAGATE is invoked at mostH + 1 times for
each nodeu ∈ Γ̄. Each invocation of the procedure incursO(dout(u)) steps, wheredout(u) is the output
degree ofu in Ḡ. Since during the execution of the algorithm, any two nodes ofΓ are connected by at
most one link, the number of links in̄G is O(M). Hence, the total running time for all invocations of
Procedure PROPAGATE is at mostO(H

∑

u∈Ḡ dout(u)) = O(MH).
We conclude that the total running time of Algorithm AGG-AHOP isO(MH log N) and the lemma

follows.
The above results are summarized in the following theorem.

Theorem 3 AlgorithmAGG-AHOP determines, inO(MH log N) time the aggregate traversal function

F Ĝ
(s,t)(c) for each nodet ∈ Ĝ.

4.5 Discussion

We presented anO(MH log N) algorithm for computing traversal functions in an aggregated environ-
ment. As previously noted, a straightforward approach would be to substitute each link byO(H) links
and execute Bellman-Ford algorithm in the resulting graph. Since the Bellman-Ford algorithm would
then be applied to a graph withO(MH) links, its computational complexity would beO(MH2), which
is Ω(H/ log N) times higher than that of our scheme. Recall thatH is the maximum hop count in the
actualnetwork, whereasN is the number of nodes in theaggregatednetwork, hence our improvement is
significant.

Next, let us compare between our precomputation scheme and an alternativewhere no precomputation
is performed at all. In such a “single-phase” scheme, the required path can be identified by computing, for

each linke(v, u) ∈ Ĝ, the costce of supporting the QoS constraintŵ (i.e., ce = min{c | F(v,u)(c) ≤ ŵ}),
and then applying Dijkstra’s shortest path algorithm [8] to a graph with link costsce. This scheme incurs

O(M log H + N log N) running time, compared toO(log H + |P̂|) in our scheme. Hence, our scheme
allows to significantly reduce the time required for the identification of a suitable path.

20

5 Precomputation Schemes for Additive Metrics

In this section we consider the routing problem withadditiveQoS constraints andgenerallinks costs.
We assume a link state environment,i.e., the source node has a full image of the network. We consider
general networks,i.e., we do not assume that the network has a specific (e.g., hierarchical) structure. Our
purpose is to devise a scheme that (pre)computes, for each cost0 ≤ c ≤ C and for each destination node
t ∈ G, ac-cost constrained(s, t)-path of minimum weight, whereC is maximal cost of a path that can be
considered for routing purposes. Accordingly, we introduce ProblemACOP, which is a generalization of
Problem AHOP for general link costs.

Problem ACOP (All Costs Optimal Path) Given are a graphG = (V, E), a source nodes ∈ V and
a maximum costC. Find, for each costc, 1 ≤ c ≤ C, and each destination nodet ∈ G, a c-cost
constrained(s, t)-path of minimum weight.

Problem ACOP is computationally intractable since it contains Problem RSP, which isNP-hard.
Accordingly, we resort to precomputation schemes that offerapproximatesolutions,i.e.:

Definition 5 Given an instance of Problem ACOP, with source nodes, maximum costC, and approxi-
mate ratioε, 0 < ε ≤ 1, an ε-approximate solutionis a set of pathsS, such that, for each0 ≤ c ≤ C

andt ∈ G, there exists an(s, t)-pathP̂ ∈ S that satisfies :

1. W (P̂) ≤W (P), for anyc-cost constrained(s, t)-pathP;

2. C(P̂) ≤ (1 + ε)c.

We note that an approximate solution for Problem ACOP can be constructed on the basis of existing
approximation algorithms for Problem RSP (e.g., [14], [26]), i.e., by sequentially executing them for
various values of the cost constraint. However, as we shall see, sucha simplistic approach results in a
(overly) high computational complexity. Therefore, in this section we propose a scheme that precomputes
a set of suitable paths withinO(1

εHM log C) computational complexity. Upon a connection request, a

suitable path is chosen from a set of precomputed path withinO(log(1
εH log C)) time.

The section is organized as follows. First, we present a simple precomputation scheme whose running
time isO(MC), which is pseudo-polynomial. Next, by using alogarithmic scalingtechnique, we estab-
lish aO(1

εHM log C) precomputation scheme that offers anε-approximate solution for Problem ACOP.

5.1 Pseudo-polynomial Solution for Problem RSP

As a first step, we present a simple precomputation scheme, whose computational complexity is pseudo-
polynomial. The scheme is based on dynamic programming and is an extension ofthe standard Bellman-
Ford’s algorithm. For each nodev ∈ G we maintain arrayT(s,v)[c] such thatT(s,v)[c].w keeps the
minimum weight of ac-cost constrained(s, v)-path inG andT(s,v)[c].p keeps the predecessor ofv in
that path. The algorithm iterates over “budget” valuesc = 0, 1, · · · , C. At each iteration, the algorithm
repeatedly selects a linke ∈ G and relaxes it. The process of relaxing a linke(v, u) consists of testing
whether the minimum weight of(v, u)-path can be improved by going throughv under the current budget
restrictionc and, if so, updatingT(s,u)[c]. Since for eachc, 1 ≤ c ≤ C, the algorithm performsO(M)

operations, its complexity isO(MC). The formal specification of Algorithm PP-RSP appears in Fig. 9.

Upon arrival of a connection request for âw-weight constrained optimal(s, t)-pathP̂, we first find

the minimum cost̂c of P̂ by settingĉ = min
{

c| T(s,t)[c].w ≤ ŵ
}

. Then, we identify the patĥP by using

the information stored in the arrays{T(s,v)[c]|v ∈ G}. Specifically, the predecessorvh−1 of t in P̂ is
determined by settingvh−1 = T(s,t)[ĉ].p. Generally, the predecessorvi−1 of vi is determined by setting

vi−1 = T(s,vi)

[

ĉ− C(P̂(vi,t))
]

.p, whereP̂(vi,t) is the subpath of̂P, discovered so far. The algorithm

outputs the resulting patĥP = {s = v0, · · · , vh = t}.

21

Algorithm PP-RSP (G(V,E), s, C)
input :

G(V,E) - network
s ∈ G - source node
C- the maximum cost of a path

variables:
c - the “budget”;
for all v ∈ V

T(s,v)[c] - auxiliary array

1 for all v ∈ V do
2 T(s,v)[0].w ←∞

3 T(s,s)[0].w ← 0, T(s,s)[0].p← nil

4 for c← 1 to C do
5 for eachv ∈ V do
6 T(s,v)[c].w ← T(s,v)[c− 1].w

7 T(s,v)[c].p← T(s,v)[c− 1].p

8 for each linke(v, u) ∈ E do
9 if (ce ≤ c) then

10 if T(s,v)[c− ce].w + we ≤ T(s,u)[c].w then
11 T(s,u)[c].w ← T(s,v)[c− ce].w + we

12 T(s,u)[c].p← v

Figure 9: Algorithm PP-RSP

5.2 Polynomial Precomputation (Approximation) Scheme

We proceed to present an efficient precomputation scheme that providesan ε-approximate solution to
Problem ACOP. The scheme is based on the pseudo-polynomial solution anduses alogarithmic scaling
approach. Specifically, it considers only a limited number of budget values, namely1, c1, c2, · · · , cimax ,
whereci = δi, imax = min{i | δi ≥ C} andδ = (1 + ε

6H). For each nodev ∈ G we maintain array
T(s,v)[c] such that, for0 ≤ i ≤ imax, T(s,v)[ci].w keeps the minimum weight of aci-cost constrained
(s, v)-path in G and T(s,v)[ci].p keeps the predecessor ofv in that path. The algorithm iterates over
“budget” valuesci = 1, c1, c2, · · · , cimax . At each iteration, the algorithm repeatedly selects a linke ∈ G
and relaxes it. The process of relaxing a link(v, u) consists of testing whether the minimum weight
of (v, u)-path can be improved by going throughv under the current budget restrictionci and, if so,
updatingT(s,u)[ci]. As shall be shown below, the set of such paths constitutes aε-optimal solution for
Problem ACOP. The formal specification of Algorithm RSP-GEN appears inFig. 10.

We will demonstrate the precomputation process by using the networkG depicted on Fig. 11. Al-
gorithm RSP-GEN is invoked forG,s, ε = 1 andH = 5. Thus,δ = 1.1. We consider a request for a

(s, t)-path that satisfies a QoS constraintŵ = 15. For this request,̂P = {s, v1, v2, t} ∈ G is an optimal
path. We show that the algorithm identifies a path whose weight is at mostŵ and whose cost is at most

(1 + ε)C(P̂). First, after executing line4, we haveT(s,s)[0].w = 0. Next, consider the execution of the

main loop,i.e., the loop that begins at line 6, fori = 12. Sinceδi = 3.138 > 3, the condition of line
12 is satisfied, hence, upon completion of the iteration, it holds thatT(s,v1)[3.138].w ≤ 2. Next, consider
the iteration of the main loop fori = 23 and the iteration of the sub-loop at line11 for e = (v1, v2). In
line 13 we setc = 3.797, which is the highest degree ofδ that is lower thanci − ce = 3.954, where
ci = δi = 8.945. In the next lines we check whetherT(s,v1)[3.797].w + we ≤ T(s,v2)[8.954].w and, if
so, we assignT(s,v2)[8.954].w = T(s,v1)[3.945].w + we. Thus, after completion of the iteration of the
main loop fori = 23, we haveT(s,v2)[8.954].w ≤ 9. Finally after the completion of the iteration for

22

Algorithm RSP-GEN (G(V,E), s, ε, C)
input :

G(V,E) - network
s ∈ G - source node
ε, 0 < ε ≤ 1- approximation ratio
C - the maximum allowed cost of a path

1 δ ← (1 + ε
6H

)

2 for all v ∈ V do
3 T(s,v)[0].w←∞

4 T(s,s)[0].w← 0, T(s,s)[0].p← nil

5 imax ← min
i=1,2,···

{i | C ≤ δi}

6 for i← 1 to imax do
7 ci ← δi

8 for all v ∈ V do
9 T(s,v)[ci].w ← T(s,v)[ci−1].w

10 T(s,v)[ci].p← T(s,v)[ci−1].p

11 for each linke(v, u) ∈ E do
12 if(ce ≤ ci) then
13 c← max

j=1,2,···
{δj | δj ≤ ci − ce}

14 if T(s,v)[c].w + we ≤ T(s,u)[ci].w then
15 T(s,u)[ci].w ← T(s,v)[c].w + we

16 T(s,u)[ci].p← v

Figure 10: Algorithm RSP-GEN

i = 27 we haveT(s,t)[ci].w ≤ 15, whereci = δi = 13.11. We conclude that the algorithm identifies a

path whose weight is at most̂w = 15, and whose cost is at most13.11 ≤ (1 + ε)C(P̂) = 22. In fact,
Algorithm RSP-GEN applied forG, s, ε = 2 andŵ = 15, yields a path{s, u1, u2, t} whose cost is13,
which is1.18 times more than the optimum (11).

Algorithm RSP-GEN constitutes the first phase of our precomputation scheme, and its output,i.e.,
the arraysT(s,v)[c], is used by the second phase. That phase is invoked upon a connectionrequest between
s and a destination nodet ∈ V, with a QoS requirement̂w.

Upon arrival of a connection request for an(s, t)-path P̂ with a QoS requirement̂w, we first find

the cost̂c of P̂ by settingĉ = min{ci | T(s,t)[ci].w ≤ ŵ}, whereci = δi. This operation is performed

through a binary search onO(1
εH log C) values ofci, and requiresO(log(1

εH log C)) time. The running

time can be improved by considering onlyO(1
ε log C) values ofci, namelyci = min{δj | δi

1 ≤ δj},

whereδ1 = (1 + ε/3). This improvement yields a running time ofO(log(1
ε log C)), and, as we prove

below, does not introduces a penalty in terms of approximation’s accuracy.

Next, we identify a suitable patĥP = {s = v0, · · · , vh = t} by using the information stored in

the arrays{T(s,v)[c] | v ∈ G}. Specifically, the predecessorvh−1 of t in P̂ is determined by setting
vh = T(s,t)[ĉ].p. Generally, the predecessorvi−1 of vi is determined by settingvi−1 = T(s,vi)[xi].p,

wherexi = max
j=1,2,··· ,imax

{δj | δj ≤ ĉ− C(P̂(vi,t))} andC(P̂(vi,t)) is the cost of the subpatĥP(vi,t) of P̂

discovered so far.

23

4/10

6.1/1

5/7

3/6

3/2

5/10
2/2

1/20

2.2/12

4.7/1

s

u

1

v

1

v

2

u

2

t

Figure 11: Execution of Algorithm RSP-GEN. For each linke the upper number showsce and
the lower number showswe.

5.2.1 Analysis of the Precomputation Scheme

Lemma 10 Given are a graphG, a source nodes and an approximation parameterε. For a (arbitrary)
valueŵ and a (arbitrary) destination nodet ∈ G, let copt be the cost of âw-weight constrained optimal

(s, t)-path, and letP̂ be the path identified by using the arrays{T(s,v)[c]}, as described above. Then,
C(P̂)−copt

copt ≤ ε.

Proof: See Appendix E.

Lemma 11 The computational complexity of AlgorithmRSP-GENisO(1
εMH log C).

Proof: Let us count the number of iterationsimax of the algorithm’s main loop (i.e., the loop

beginning on line 6). Clearly,δimax−1 ≤ C, thusimax ≤
log C
log(δ) + 1. Since for allx ≥ 0 it holds that

log(1 + x) ≥ x
(1+x) , we have thatlog(δ) = log(1 + ε

6H) ≥ ε
6H+ε . Thus,imax ≤

(6H+ε) log C
ε + 1 =

O(H log C
ε). Each iteration of the main loop requiresO(M) time, hence the complexity of the algorithm

isO(1
εMH log C).

The above results are summarized in the following theorem.

Theorem 4 Algorithm RSP-GENcomputes, inO(1
εMH log C) time, anε-approximate solution of

Problem ACOP.

5.3 Discussion

We established a precomputation scheme for Problem RSP that providesε-optimal solutions within a
computational complexity ofO(1

εHM log C) for the first phase andO(log(1
ε)+log log C) for the second

phase.
Compared to an alternative single-phase (i.e., “no precomputation”) scheme, our scheme allows to

(significantly) reduce the time required for establishing a new connection. Indeed, in a single-phase
scheme, Problem RSP should be solved for each connection request, through anε-optimal approximation
to Problem RSP [26], which incurs a computational complexity ofO(MH(1

ε +log log H)). We conclude
that the second phase of our scheme allows to identify anε-optimal path upon a connection request
Ω(MH

ε(log(1/ε)+log log C)) times faster.

24

As previously noted, a precomputation scheme can be trivially constructed on the basis of existing
approximation algorithms for Problem RSP, such as [26], by sequentially executing them for various
weight values. In order to perform the precomputation for Problem RSP,this algorithm should be invoked
O

(

1
ε log C

)

timesper destination, with a total complexity ofO(1
ε2 NHM log C) for all destinations,

which is significantly (Ω(N/ε) times) higher than that of our solution.

6 Conclusion

QoS routing poses major challenges in terms of algorithmic design. On one hand, the path selection
process is a complex task, due to the need to concurrently deal with the connection’s QoS requirements,
as well as with the global utilization of network resources; on the other hand, connection requests need
to be handled promptly upon their arrival, hence there is limited time to spend on path selection. In many
practical cases, a precomputation scheme offers a suitable solution to the problem: a background process
(the “first phase”) prepares a database, which enables to identify a suitable path upon each connection
request, through a simple, fast, procedure (the “second phase”).

While much work has been done in terms of path selection algorithms for QoS routing, the precom-
putation perspective received little attention. As was demonstrated in this study, simplistic adaptations of
standard algorithms are usually inefficient.

Accordingly, this study investigated the precomputation perspective, considering two major settings
of QoS routing. First, we focused on the (practically important) special case where the QoS constraint is
of the “bottleneck” type,e.g., a bandwidth requirement, and network optimization is sought through hop
minimization. For this setting, the standard Bellman-Ford algorithm offers a straightforward precompu-
tation scheme. However, we showed that, by exploiting the typical hierarchical structure of large-scale
networks, one can achieve a substantial improvement in terms of computational complexity.

Next, we considered networks with topology aggregation, which is an inevitable tool for providing
scalable routing. We indicated that precomputation is an inherent componentof QoS routing schemes
in aggregated environments. Accordingly, we extended our precomputation scheme for bottleneck QoS
requirements, in a way that is suitable for topology aggregation. This specific extension indicates how
our precomputation techniques can be adapted to aggregated environmentsin general.

Then, we turned to consider the second setting, namely “additive” QoS constraints (i.e., delay) and
general link costs. As the related routing problem isNP-hard, we focused onε-optimal approximations,
and derived a precomputation scheme that offers a major improvement overthe “standard” approach.

Finally, we note that the precomputation concept is applicable to various areas of network control and
management, hence offering a rich ground for future research.

Appendix

A Detailed Description of Procedure PATH

We begin by presenting Procedure GET-PATH that retrieves the paths (pre)computed by Procedure CLUS-
TER. Next, we present Procedure PATH that identifies the required QoS path by concatenating paths
returned by Procedure GET-PATH.

A.1 Procedure GET-PATH

Procedure GET-PATH receives as input a layer-k peer groupΓ, a pair ofΓ’s border nodesbi, bj and a hop

constraint̂h. The procedure uses the output of Procedure CLUSTER to identify a(bi, bj)-pathP̂ such that

|P̂| ≤ ĥ andW (P̂) = FΓ
(bi,bj)

(ĥ).

25

Procedure GET-PATH (Γ, bi, bj, ĥ)
input:

Γ- layer-k peer group
bi, bj - Γ’s border nodes

ĥ- hop count constraint

1 v ← bj , P̂ ← ∅

2 while ĥ− |P̂| > 0 do
3 u = TΓ

(bi,v)[ĥ− |P̂|].p

4 h = TΓ
(bi,v)[ĥ− |P̂|].c

5 if u, v are border nodes of a childrenΓ′ of Γ then
6 P̂ ′ ←GET-PATH(Γ′, u, v, h)

7 P̂ ← P̂ ′ ◦ P̂
8 else
9 P̂ ← {u, v} ◦ P̂

10 v ← u
11 return P̂

Figure 12: Procedure GET-PATH

If Γ is a layer-1 peer group, then we use the following procedure. We first discover thepredecessor
v1 of bj , then the predecessorv2 of v1, etc. The predecessorvl+1 of vl is determined by settingvl+1 =

TΓ
(bi,vl)

[ĥ− l].p. The procedure returns the patĥP = {bi = vĥ, · · · , v1, bj}.

If Γ is a layer-k peer group, then we need a more elaborated procedure, becauseP̂ runs through

children ofΓ. We first identify the children through which the patĥP runs. Next, we recursively de-

termine the detailed path through each (layer-(k−1)) child crossed bŷP. Specifically, beginning with
bj , we iteratively discover the predecessoru of each nodev, such thatu ∈ Ḡ. This is done by setting

u = TΓ
(bi,v)[ĥ − C(P̂(v,bj))].p, whereP̂(v,bj) is the subpath of̂P identified so far. Ifu andv are border

nodes of some childΓ′ of G, then the subpatĥP(u,v) of P̂ is determined by invoking Procedure GET-

PATH on Γ′. Otherwise,P̂(u,v) comprises of the link(u, v) ∈ Γ. We continue this process till we reach
bi.

The formal specification of Procedure GET-PATH appears in Fig. 12.

A.2 Procedure PATH

Procedure PATH that identifies, for a peer groupΓk and a border nodebi ∈ Γk, a ŵ-weight constrained
optimal (bi, t)-path. If k = 1, i.e., Γ1 is a layer-1 peer group, such a path was identified by the BFS

algorithm. Fork > 1, Procedure FIND yields the minimum cost(bi, t)-pathP̄Γk

(bi, t) in the auxiliary

graphΓ̄k. Procedure PATH identifies a path inΓk that corresponds tōPΓk

(bi, t). For each linke ∈

P̄Γk

(bi, t), one of the following cases applies:

1. e connects border nodesbij andbi′j′ of different children ofΓk. In this case, linke is substituted

by a link (bij , bi′j′) ∈ Γk.

2. e connects border nodesbij andbij′ of the same childΓi of Γk. In this case, we substitutee with
the(bij , bij′)-path acrossΓi, which is identified by Procedure GET-PATH (Section A.1).

3. e connects a border nodebj of Γk−1 and the destinationt. In this case, Procedure PATH is applied

26

Procedure PATH (Γk, P̄)
input:

Γk - layer-k peer group
P̄- the path computed by Procedure FIND

1 if k = 1 then
2 return the path computed in Line 3
3 P̂ ← ∅
4 for each linke(ul, ul+1) ∈ P̄ in order of it appearance in the pathdo
5 if ul, ul+1 are border nodes ofΓk−1 then
6 let P̄ ′ be the path determined in Line 19 forΓk−1

7 P̂ ′ ←PATH(P̄ ′,Γk−1)

8 P̂ ← P̂ ◦ P̂ ′

9 else iful andul+1 are border nodes of a childΓ′ of Γ then
10 P̂ ′ ←GET-PATH(Γ′, ul, ul+1, ce)

11 P̂ ← P̂ ◦ P̂ ′

12 else
13 P̂ ← P̂ ◦ (ul, ul+1)

14 return P̂

Figure 13: Procedure PATH

recursively forΓk−1 and border nodebj ∈ Γk−1. The linke is then substituted by a path returned
by the recursive invocation of Procedure PATH.

The formal specification of Procedure PATH appears in Fig. 13.

B Proof of Lemma 3

Lemma 3Suppose that the (correct) traversal functionFΓi

(bij ,bij′)
(h) is available for each pair(bij , bij′) of

border nodes of each childΓi of Γ. Then, Procedure CLUSTER, applied onΓ and a border nodeb0 of Γ,
computes the traversal functionFΓ

(b0,bi)
(h) for each border nodebi of Γ.

Proof: Through Procedure GET-PATH we can identify, for each border nodebi of Γ and each

0 ≤ h ≤ HΓ, a pathP̂ ∈ Γ such that|P̂| ≤ h andW (P̂) = FΓ
(b0,bi)

[h].

Next, we prove that, for each(b0, v)-pathP̄ in Γ̄, it holds thatTΓ
(b0,v)[C(P̄)].w ≤ W (P̄). By way of

contradiction, assume that there exist paths for which this condition does not hold. LetP̄ = {b0, · · · , v}

be such a path of minimum hop count. We denote byu the last predecessor ofv in P̄ and bye the link
(v, u) of P̄. Since|P̄(b0,u)| < |P̄| it holds thatTΓ

(b0,u)[C(P̄(b0,u))].w ≤ W (P̄(b0,u)). We consider two

possible cases.

1. When procedure PROPAGATE is invoked with input e in line 12, it holds that
TΓ

(b0,u)[C(P̄(b0,u))].w ≤ W (P̄(b0,u)). In this case, after the execution of the procedure,

TΓ
(b0,v)[C(P̄)].w ≤W (P̄), hence resulting in a contradiction.

2. Otherwise, consider the step of the procedure in whichTΓ
(b0,u)[C(P̄(b0,u))].w was assigned the

valuew ≤ W (P̄(b0,u)). Since linke was already processed by the loop at line 8, this update leads

to a recursive invocation of the procedure PROPAGATE (line 6) for a linke′(u, v), wherece′ ≤ ce,
and, again, after this invocation,TΓ

(b0,v)[C(P̄)].w ≤W (P̄), resulting in a contradiction.

27

Let P̂ be a(b0, bi)-path inΓ. By Lemma 2 there exists a(b0, bi)-pathP̄ in Γ̄ such thatC(P̄) ≤ |P̂| and

W (P̄) ≤W (P̂). SinceTΓ
(b0,bi)

[C(P̄)].w ≤W (P̄), it holds thatTΓ
(b0,bi)

[|P̂|].w = FΓ
(b0,bi)

[|P̂|] ≤W (P̂),

which completes the proof of the lemma.

C Proof of Lemma 6

Lemma 6 Procedure FIND, invoked for a sources, destinationt and QoS constraint̂w, returns the mini-
mum hop count of âw-weight constrained(s, t)-path.

Proof: Let k̂ be the lowest hierarchical layer such that there exists a layer-k̂ peer groupΓk̂ for which
s andt are border nodes.

We prove the following assertion by induction onk: For each peer groupΓk, 1 ≤ k ≤ k̂, and for
each border nodeb of Γk, Procedure FIND determines the minimum hop countH(bi,t) of a ŵ-weight

constrained(bi, t) path inΓk.
As a base step, consider the parentΓ1 of t. After pruning fromΓ all links e such thatwe ≥ ŵ, each

path in the resulting graph satisfies the weight constraint. Thus, the assertion follows from the correctness
of the BFS algorithm.

Assume inductively that the procedure determines, for each border nodebj of Γk−1, the correct value

of H(bj ,t). Let bi be a border node ofΓk and letP̂ be the minimum hop count of âw-weight constrained

(bi, t)-path. LetP̄ be a(bi, t)-path in Γ̄ that corresponds tôP, i.e., P̄ = {bi = u0, u1, · · · , t}, where

u0 = bi andul is a first node inP̂ afterul−1 that belongs tōΓ. We show thatC(P̄) ≤ |P̂|. Let (ul−1, ul)

be a link inP̄. We consider several cases:

1. (ul−1, ul) connects two border nodes of some childΓ of Γk. Then, by Theorem 1,

FΓ
(ul−1,ul)

(|P̂(ul−1,ul)|) ≤ W (P̂(ul−1,ul)). Hence the cost of the link(ul−1, ul) is at most

|P̂(ul−1,ul)|.

2. (ul−1, ul) connects two border nodes of different children ofΓk. Then,(ul−1, ul) ∈ P̂. Since the

cost of link(ul−1, ul) is assigned a unit cost,c(ul−1,ul) ≤ |P̂(ul−1,ul)|.

3. (ul−1, ul) connects a border node ofΓk−1 and the destinationt, i.e., ul = t. Then, the inductive

argument implies thatc(ul−1,ul) = H(ul−1,ul) ≤ |P̂(ul−1,ul)|.

The above case analysis implies that, for each link(ul−1, ul) in P̄, it holds thatc(ul−1,ul) ≤

|P̂(ul−1,ul)|. Hence,C(P̄) ≤ |P̂|, and Dijksta’s algorithm returns a path̄P ′ whose cost is at most|P̂|. Let

P̂ ′ be a path in the actual network that corresponds toP̄ ′. Since|P̂ ′| ≤ C(P̄ ′) ≤ |P̂| andW (|P̂ ′|) ≤ ŵ,

we conclude that̂P ′ is a minimum hopŵ-weight constrained path, which implies the correctness of the
assertion and the lemma.

D Proof of Lemma 8

Lemma 8 Algorithm AGG-AHOP computes the aggregate traversal functionF Ĝ
(s,t)(c) for each nodet of

Ĝ.
Proof: Let ŵ be a (arbitrary) QoS constraint andv be a (arbitrary) node in̂G.

First, we note that there exists an(s, v)-pathP̂, such thatT Ĝ
(s,v)[C(P̂, ŵ)].w = ŵ. PathP̂ can be

identified by using arraysT Ĝ
(s,v), as described in Section 4.3.

28

Next, we prove that, for each(s, v)-pathP̂ in Ĝ, T Ĝ
(s,v)[C(P̂, ŵ)].w ≤ ŵ. By way of contradiction,

assume that there exist paths for which this condition does not hold. LetP̂ = {s, · · · , v} be such a path

of minimum cost. We denote byu the last predecessor ofv in P̂ and bye the link (u, v) of P̂. Since

C(P̂(s,u)) < C(P̂) it holds thatT Ĝ
(s,u)[C(P̂(s,u), ŵ)].w ≤ ŵ). We consider two possible cases.

1. When procedure PROPAGATE is invoked with inpute in line 12 of the algorithm, it holds

that T Ĝ
s,u)[C(P̂(s,u), ŵ)].w ≤ ŵ). In this case, after the execution of the procedure,

T Ĝ
(s,v)[C(P̂, ŵ)].w ≤ ŵ, hence resulting in a contradiction.

2. Otherwise, consider the step of the algorithm in whichT Ĝ
(s,u)[C(P̂(s,u), ŵ)].w was assigned the

value ˆ̂w ≤ ŵ). Since linke was already processed by the loop at line 8, this update leads to a
recursive invocation of the procedure PROPAGATE(line 6) for a linke′(u, v), wherece′ ≤ ce, and,

again, after this invocation,T Ĝ
(s,v)[C(P̂, ŵ)].w ≤ ŵ, resulting in a contradiction.

Sinceŵ andv are arbitrary, the lemma follows.

E Proof of Lemma 10

Lemma 10 Given are a graphG, a source nodes and an approximation parameterε. For a (arbitrary)
valueŵ and a (arbitrary) destination nodet ∈ G, let copt be the cost of âw-weight constrained optimal

(s, t)-path, and letP̂ be the path identified by using the arrays{T(s,v)}, as described above. Then,
C(P̂)−copt

copt ≤ ε.

Proof: Let Popt = {v0 = s, v1, ..., vh = t} be aŵ-weight constrained optimal(s, t)-path. We

denote bŷcvj
= min

i=1,2,...,imax

{

δi|T(s,vj)[δ
i].w ≤W (Popt

(s,vj)
)
}

.

We prove that, for1 ≤ j ≤ h, ĉvj
≤ δjC(Popt

(s,vj)
). The base step is straightforward, sinceC(Popt

(s,s)) =

ĉs = 0. For the inductive step, we assume thatĉvj
≤ δjC(Popt

(s,vj)
) holds for1, 2, .., j−1 and prove that it

holds forj. Let us consider the execution of the the main loop,i.e., the loop at line 6, fori = min{l|δl ≥
ĉvj−1

+ c(vj−1,vj)}. Sinceĉvj−1
< ci, the value ofT(s,vj−1)[ĉvj−1

].w was set at a previous iteration of

the main loop. As a result, and sinceT(s,vj−1)[ĉvj−1
].w ≤ W (Popt

(s,vj−1)), lines 14 and 15 assure that

T(s,vj)[ci].w ≤ W (Popt
(s,vj)

). Therefore,̂cvj
≤ ci ≤ δ · (ĉvj−1

+ ce) ≤ δ · (C(Popt
(s,vj−1)) · δ

j−1 + ce),

for e = (vj−1, vj), where the last inequality follows from the inductive assumption. SinceC(Popt
(s,vj)

) =

C(Popt
(s,vj−1)) + ce, we havêcvj

≤ C(Popt
(s,vj)

) · δj .

We proved that̂ct = C(P̂) ≤ δhC(Popt). From the relationlog(1+x) ≤ x for x ≥ 1, it follows that,
for xh ≤ 1, (1 + x)h ≤ 1

1−xh . Thus,δh = (1 + ε
6H)h ≤ 1

1−εh/(6H) ≤
1

1−ε/6 = 1 + ε
3(2−ε/3) ≤ 1 + ε/3,

where the last inequality follows from the fact thatε ≤ 1. Thus,ĉt ≤ (1 + ε/3)C(Popt). Sinceδ1 =

1+ε/3, we haveC(P̂) ≤ (1+ε/3)ĉt. We conclude thatC(P̂) ≤ (1+ε/3)2C(Popt) ≤ (1+ε)C(Popt).

Hence,C(P̂)−C(Popt)
C(Popt) ≤ ε, and the lemma follows.

29

References

[1] G. Apostolopoulos, R. Gúerin, S. Kamat, A. Orda, T. Przygienda, and D. Williams. QoS Routing
Mechanisms and OSPF Extensions. RFC No. 2676. Internet EngineeringTask Force, August 1999.

[2] G. Apostolopoulos, R. Gúerin, S. Kamat, A. Orda, and S. K. Tripathi. Intra-Domain QoS Routing in
IP Networks: A Feasibility and Cost/Benefit Analysis.IEEE Network (Special Issue on Integrated
and Differentiated Services for the Internet), 13(5):42–54, September-October 1999.

[3] G. Apostolopoulos, R. Gúerin, S. Kamat, and S. Tripathi. Quality of Service Based Routing: A
Performance Perspective. InProceedings of SIGCOMM, pages 17–28, Vancouver, Ontario, Canada,
September 1998.

[4] B. Awerbuch and Y. Shavitt. Topology Aggregation for Directed Graphs. IEEE/ACM Transactions
on Networking, 9(1):82–90, February 2001.

[5] D. Bauer, J.N. Daigle, I. Iliadis, and P. Scotton. Efficient Frontier Formulation for Additive and
Restrictive Metrics in Hierarchical Routing. InProceedings of IEEE ICC 2000, New Orleans, LA,
USA, June 2000.

[6] A. Bestavros and I. Matta. Load Profiling for Efficient Route Selection in Multi-Class Networks. In
Proceedings of IEEE ICNP’97, Atlanta, GA, USA, October 1997.

[7] J.-Y. Le Boudec and T. Przygienda. A Route Pre-Computation Algorithm for Integrated Services
Networks.Journal of Network and Systems Management, 3(4):427–449, December 1995.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT Press, Cambridge,
MA, USA, 1990.

[9] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Frameworkfor QoS-based Routing in the
Internet. RFC No. 2386. Internet Engineering Task Force, August 1998.

[10] G. Frederickson and D. Johnson. The Complexity of Selection and Ranking in X + Y and Matrices
with Sorted Columns.Journal of Computer and System Sciences, 24:197–208, 1982.

[11] M. R. Garey and D. S. Johnson.Computers and Intractability. Freeman, San Francisco, CA, USA,
1979.

[12] R. Gúerin and A. Orda. QoS-based Routing in Networks with Inaccurate State and Metrics In-
formation: Theory and algorithms.IEEE/ACM Transactions on Networking, 7(3):350–364, June
1999.

[13] R. Gúerin and A. Orda. Computing Shortest Paths for any Number of Hops.IEEE/ACM Transac-
tions on Networking, 10(5):613–620, October 2002.

[14] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem. Mathematics of
Operations Research, 17(1):36–42, February 1992.

[15] T. Korkmas and M. Krunz. Source-Oriented Topology Aggregation with Multiple QoS Parameters
in Hierarchical Networks.ACM Transactions on Modeling and Computer Simulation, 10(4):295–
325, October 2000.

[16] W. C. Lee. Topology Aggregation for Hierarchical Routing in ATM Networks. InProceedings of
ACM SIGCOMM’95, Cambridge, MA, USA, April 1995.

[17] D. H. Lorenz and A. Orda. QoS Routing in Networks with Uncertain Parameters. IEEE/ACM
Transactions on Networking, 6(6):768–778, December 1998.

30

[18] D. H. Lorenz and A. Orda. Optimal Partition of QoS Requirements on Unicast Paths and Multicast
Trees.IEEE/ACM Transactions on Networking, 10(1):102–114, February 2002.

[19] K.S. Lui and K. Nahrstedt. Topology Aggregation and Routing in Bandwidth-Delay Sensitive Net-
works. InProceedings of IEEE Globecom’2000, San Francisco, CA, USA, November-December
2000.

[20] Q. Ma and P. Steenkiste. Quality of Service Routing for Traffic with Performance Guarantees. In
Proceedings of IWQoS’97, Columbia University, New York, NY, May 1997.

[21] J. Moy. OSPF Version 2. RFC No. 2328. Internet Engineering Task Force, April 1998.

[22] A. Orda. Routing with End to End QoS Guarantees in Broadband Networks. IEEE/ACM Transac-
tions on Networking, 7(3):365–374, June 1999.

[23] D. Peleg and A.A. Shcaffer. Graph Spanners.Journal of Graph Theory, 13(1):99–116, 1989.

[24] C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS Based Routing Algorithm in Integrated Ser-
vices Packet Networks. InProceedings of IEEE ICNP’97, Atlanta, GA, USA, October 1997.

[25] Private Network-Network Interface Specification v1.0 (PNNI). ATM Forum Technical Committee,
March 1996.

[26] D. Raz and D. H. Lorenz. A Simple Efficient Approximation Scheme forthe Restricted Shortest
Path Problem.Operations Research Letters, 28(5):213–219, June 2001.

[27] A. Shaikh, J. Rexford, and K. Shin. Efficient Precomputation of Quality-of-Service Routes. In
Proceedings of Workshop on Network and Operating Systems Supportfor Audio and Video (NOSS-
DAV’98), Cambride, UK, June 1998.

[28] Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting Multimedia Applications.
IEEE Journal on Selected Areas in Communications, 14(7):1288–1234, September 1996.

31

