CCIT Report #417

March 2003

Precomputation Schemes for QoS Routing

Ariel Orda Alexander Sprintson
Department of Electrical Engineering
Technion—Israel Institute of Technology

Haifa 32000, Israel

Abstract

Precomputation-based methods have recently been proposed as anenstiw facili-
tate scalability, improve response time and reduce computation load on neteorrgs.
The key idea is to effectively reduce the time needed to handle an evemrfoyrping a
certain amount of computations &lvancei.e., prior to the event’s arrival. Such computa-
tions are performed as background processes, thus enabling to prgmaptige a solution
upon a request, through a simple, fast procedure.

In this report, we investigate precomputation methods in the context of Qda®gou
Precomputation is highly desirable for QoS routing schemes due to the highutatiop
complexity of selecting QoS paths on the one hand, and the need to promptigiepeo
satisfactory path upon a request on the other hand. We consider twosatjogs of QoS
routing. The first is the case where the QoS constraint is of the “bottlemgo, e.g, a
bandwidth requirement, and network optimization is sought through hop minirmzdtie
second is the more general setting of “additive” QoS constragts (elay) and general
link costs.

The report mainly focuses on the first setting. First, we show that, by ixgjthe typi-
cal hierarchical structure of large-scale networks, one can achigviestantial improvement
in terms of computational complexity. Next, we consider networks with topolggyema-
tion. We indicate that precomputation is a necessary element for any Qti&grecheme
and establish a precomputation scheme appropriate for such settings. , Meatlgnsider
the case of “additive” QoS constraints.g, delay) and general link costs. As the routing
problem becomed/P-hard, we focus om-optimal approximations, and derive a precom-
putation scheme that offers a major improvement over the standard approac

Keywords—QoS, Routing, Precomputaiton, Hierarchical networks, Topology gg¢jos.

lesley
CCCCCCCCCCCC

lesley
CCIT Report #417
March 2003

1 Introduction

In recent years we have witnessed considerable accomplishments irsitpe, dievelopment and deploy-
ment of broadband communication networks. Network capabilities, in pantitwdae of the Internet,
grow at a remarkable rate. At the same time, a phenomenal growth in data aradfia wide range of
new requirements of emerging applications, call for new mechanisms foottietand management of
communication networks. This poses some major challenges. Not only arepmaigms intrinsically
difficult, but there are also additional constraints, such as limitations on th@wational capabilities
of network elements. In addition, any such control and management mschanst scale well with
network growth, and provide fast response to intereal,(link failure) and externalg.g, connection
request) events.

Precomputatiorbased methods have recently been proposed as an instrument fortfagititalabil-
ity, improving response time and reducing the computational load on netwarlests. The key idea is
to effectively reduce the time needed to handle an event, by performintgancamount of computations
in advancei.e., prior to the event's arrival. Such advance computations are perfoasiédckground
processes,e., when a network element is idle or underutilized, thus resulting in better utilizafitdre
computational capabilities of network elements. In addition, when the ratetefek events is high, a
considerable reduction in overall computational load is achieved.

Precomputation is performed by means of a two-phase procedure, whiafev to as precomputa-
tion schemeThe first phase is executed in advance and its purpose is to precorojutiesa priori for
a wide set of possible event parameters. The computations performesl glidlse are then summarized
in a database for later usage. The second phase is activated wheenaamives and its purpose is to
promptly provide an adequate solution for the event's parameters. Thedsphase either selects one of
the solutions precomputed at the first phase, or, if necessary, peréofew additional computations. For
instance, when handling connection requests with delay constraints stihfise may precompute paths
for a wide range of possible delay constraints, while the second phasepds to select a suitable path
from the precomputed databasge,, one that satisfies the particular delay constraints of the connection.
The execution time of the second phase has an immediate impact on netwankr@erée, hence it is
highly desirable to keep its computational complexity as low as possible. In tve &xample, the less
time consumed in finding the proper path, the less time is consumed in establishireyvicennection.

We conclude that precomputation is a highly desirable scheme and, at timeessary component
for the efficient control and management of broadband networks.r@deed to discuss its major benefits
in some more detail.

Enhancing scalability. As networks grow in size, appropriate control mechanisms must scale itkell w
network growth. The two major strategies for achieving scalability are limiting theuat of link
state information, and reducing the computational load of network elemeetoiputation methods
constitute a useful tool for both strategies. Indeed, in many typical settivigsre the rate of event
arrivals is high, precomputation allows reduction of the overall computdtioad. Furthermore, as
shall be discussed below, precomputation methods are necessarpdting#opology aggregationa
major technique for obtaining scalability.

Improving fault tolerance. A failure of a network elemente(g, link or node) must be handled prop-
erly, for example, by re-routing the existing connections to alternativeesouFailures are handled
much faster if some computations are performed in advance. For instanakemnative path can be
precomputed for each possible link failure.

Improving performance in bursty conditions. Under bursty conditions, a new connection request might
arrive before the handling of a previous request has been compladetputations performed prior to
the burst reduce the time needed for handling a request.

Improving load balancing. In a precomputation scheme, a number of potential requests are pecesse
through the same procedure. This facilitates distribution of available re=®among different requests

in an efficient manner. For example, consider a setting in which packeteatealong shortest (or
almost-shortest) paths, determined by the source node. For such a seftiegomputation scheme
would identify a number of shortest and near-shortest paths in adatceupply different paths to
different connection requests, effectively facilitating load balancing.

In fact, several existing network mechanisms employ some form of predatigru As a straightfor-
ward example, consider standard IP routing, where each packetwiarfted by a router according to its
precomputedouting table.

As shall be demonstrated, many of the algorithmic tools that are often ppsdauilding blocks
for network control and management were not designed with precomputatinind, and better results
can be obtained when such a scheme is considered. The problem of &ffieigmtly precompute a set of
solutions for a wide range of parameters effectively opens a new airesearch. We note that the running
time of the precomputation scheme is important due to the following reasons. tké&dime available
for precomputation is limited because the network element has other off-like tAssecond limitation
arises from the need to invoke the precomputation scheme upon changediink tstate, because such
changes may invalidate the precomputed solutions.

In this report, we focus on the precomputation perspective of QoS rou@ia§ routing is, undoubt-
edly, one of the major building blocks for supporting QoS, and hence esaary component of future
communication networks. Indeed, it has been the subject of seveedtrsitidies and proposals (see,
e.g,[6,7,9,12,17, 20, 22, 24, 25, 27, 28] and references therein)

QoS routing is, in general, a complex problem, due to several reasoaxodmplication is the need to
deal with several QoS requirements, each potentially imposing some cotsstrathe path choice. Then,
beyond the need to address the requirements of individual conne€o8sputing needs to consider also
the global use of network resources. The above obstacles notwithgja@bS routing is facilitated in
many practical settings by the following. First, while a connection may posFae®oS requirements,
it turns out that these often translate mainly intbandwidthrequirement [1, 2]. Bandwidth, in turn,
belongs to the class of “bottleneck” path requirements, which are muchr éasiandle than “additive”
requirements, such as delay, loss or jitter [12, 17, 18]. As for gloktalark optimization, often it turns
out that much can be achieved by employing the simple criteridmopfminimizatior{1, 3]; indeed, a
consequence of the need to reserve resources such as bandwédithtink of the connection’s path is
that with fewer hops, one consumes fewer resources. As a resulcdmgrained path optimization has
emerged as an important component of several recent proposaR-foiehted QoS routing protocols
[9]. Luckily, hop minimization turns out to be an optimization criterion that is reédyivasy to handle.

The high complexity associated with QoS routing on the one hand, and thiesregut of fast path
selection on the other hand, make precomputation highly desirable for @iSgschemes. Accord-
ingly, this report mainly focuses on the problem of precomputing paths ofmadsbandwidth for each
possible hop-count value. This problem was initially investigated in [13] veas termed there as tiAd-
Hops Optimal Pattproblem (AHOP). While a trivial solution to that problem is offered by thexdtad
Bellman-Ford algorithm [8], in [13] an algorithm with a lower worst caseribis presented; yet, the
improvement is achieved only in dense (highly connected) topologies, wdntencinication networks
usually have a sparse topology. In this study, we show that, by exploitingi¢narchical structure
typical of large-scale networks, a better solution in terms of computation caitypbdan be obtained.

Next, we turn to consider QoS routing in networks with topology aggregatibich improves the
scalability of link state protocols by effectively limiting the amount of link state infation stored at
a node. With topology aggregation, subnetworkstouting domainsdo not reveal the details of their
internal structure, but rather supply the aggregated representatioa twt$ide world. The aggregated
representation summarizes traversal characteristics of a routing dorbairay linclude, for example,
the description of paths available across the domain. The aggregatedaefation is not computed
for a specific event parameter, such as required path delay, butwatearange thereof; therefore, as
we shall see, precomputation techniques are an efficient tool for cihguiggregated representations.
We indicate that precomputation is a hecessary element for performingd@ogin such settings and

establish an appropriate precomputation scheme.

Finally, we demonstrate the (wide) scope of problems that can benefitdreaomptuation tech-
niques by considering the harder caseadtlitive QoS requirements angeneral (additive) path opti-
mization criteria (.e., other than hop minimization). The respective problem becomes a varidime of
Restricted Shortest Path (RSpYpoblem, which is known to b&/P-hard [11]. Some general approxi-
mation schemes that areoptimal have been proposed (seey, [26] and references therein). However,
those schemes have not been designed with precomputation in mind, aseljeently, are not adequate
when precomputation is sought. Accordingly, in the present study welisktah approximation scheme,
which offers both efficient solutions as well as efficient performafarggrecomputing “optimal” (mini-
mum cost) paths for all possible values of an additive QoS requirement.

The rest of the report is organized as follows. First, in Section 2, waltate the network model
and formally state the considered problems. In Section 3, we considerablepr of hop minimization
with bottleneck QoS constraints in hierarchical networks, and presenaralyze our precomputation
scheme. In Section 4, we extend our scheme for networks with topologggagmn. In Section 5, we
consider additive QoS constraints and general (additive) path costsresent and analyze our precom-
putation scheme, and demonstrate its advantages over standard altsrritiedly, conclusions appear
in Section 6.

2 Model and Problem Formulation

This section formulates the general model and main problems addressed aptiris

2.1 Network Model

We begin with a definition of @eneralcommunication network; definitions of some specific classes,
namelyhierarchicalandaggregatechetworks, will be introduced in the following sections.

A networkis represented by a directed graBlV, E'), whereV is the set of nodes anfl is the set
of links. We denote byV and M the number of network nodes and links, respectivety, N = |V|
andM = |E|. An (s,t)-pathis a finite sequence of distinct nod®s= {s = vy, v1,...,t = v}, such
that, for0 <i < h — 1, (v;,vi41) € E; h = |P| is then said to be theumber of hopgor hop coun} of
P. The subpath oP that extends from; to v; is denoted byP,, .,y LetP1 be a(u1, uz)-path andP,
be a(uz,us)-path; then,P; o P, denotes thé¢u,, us)-path formed by concatenation & and?P,. We
denote byH be the maximum possible hop count of any pAtin G that may be considered for routing
purposes. Obvioushyif < N — 1, and it is much smaller in many typical network topologies.

Each linke € E' is assigned a positiveeightw,, whose significance depends on the type of con-
sidered QoS requirement. For example, when the QoS requirement is enbagymnd on the end-to-end
delay, the link weight is its delay; whereas when a bandwidth requiremeohgdered, the link weight
we IS reciprocal to its available bandwidth. Accordingly, iheth weightiV (P) of a pathP is defined
differently for additive metrics, such as delay, than for bottleneck mesigs) as bandwidth. When link
weights constitute aadditivemetric, theweight1V (P) of a pathP is defined as the sum of weights of
its links,i.e, W(P) = >_..p we. When link weights constitutezottieneckmetric, theweightV (P) of
a pathP is defined as the weight of its worst linke., W (P) = maxecp we.

We can define the notion of a path that is “best” when only path weights asdayed. Aminimum-
weight(s, t)-path is a pattP = {s, ..., t} whose weight is no larger than that of any othert)-path.

Obviously, a minimum-weight path has the best performance with respect @a8eequirement
that is captured by the link weight metric; for instance, it is a path with minimum dalagaximum
bandwidth. Minimum-weight paths can be efficiently found by Dijkstra’s sstrpath algorithm, in
O(M + Nlog N) computational complexity [8]. Obviously, if the minimum-weight path fails to meet
the connection’s QoS requirement, then so does any other path. Howder the minimum-weight

path does meet the QoS requirement, it is often not the “right” choice, as ibmasasteful in terms of
global network usage.g, it may have a large number of hops, or it may use “expensive” links.

Therefore, the goal of QoS routing is to identify a path that satisfies & @S requirement while
consuming as few resources as possible. Since the amount of thecessocomsumed on a path depends to
a large extent on its number of links, the path hop count is considered tgdmariterion for estimating
the path quality in terms of global resource utilization. When the hop countionites not satisfactory,
one can define sonmk costmetricc. > 0 that estimates the quality of each linkn terms of resource
utilization; such a cost may depend on various facterg, the link’s available bandwidth, its location,
etc ThecostC(P) of pathP is defined to be the sum of the costs of its links, C'(P) = > cpce.

In the present study we shall consider both cases of global utilizatiomiaritemely hop count and
general (integer) link costs. Note that the former is a special case ofttee Igor clarity, we say that
a path’P is aw-weight constrained if its weight is no more than similar definitions apply td:-hop
constrained paths anrdcost constrained paths.

2.2 Problem Formulation

We are now ready to formulate the main problems that are considered in thys &iwvdn a connection
request between a source nade V to a destination nodée € V with a given QoS requiremeni,

and given the network utilization preferences as captured by some litd tos goal of the QoS routing
scheme is to identify afis, t)-pathP, which meets the QoS requirement at minimum cost. This can be
formulated as &estricted shortest path (RSBjoblem:

Problem RSP (Restricted Shortest Path)Given are a source nodg a destination nodeé and aQoS
requirementd, find a minimum cost patR betweers andt such thatiV (P) < .

We refer to a solution of Problem RSP agaveight constrained optimuis, t)-path

For additive weights and general costs, Problem RSP is intractahle)/P-hard [11]. However,
there exist pseudo-polynomial solutions, based on dynamic programmiig}) give rise to fully poly-
nomial approximation schemes (FPAS), whose computational complexity isnadzle (seee.g, [26]
and references therein).

As mentioned above, many QoS routing problems consist of identifyingaftr eonnection request,
a path of minimum hop count that still meets the connection’s bandwidth requitermeother words,
the path weight is a “bottleneck” metric, and its cost is equal to its number «f. hBffectively, these
problems can be formulated as variants of Problem RSP, for which (i) tesdgh of the bottleneck type
and (i) links have equal costs; each of these two simplifications rendeioselit RSP to be tractable. The
first goal of this study is to provide efficient precomputation schemes i®ictass of problems, whose
formal definition is presented next.

Problem BH-RSP (Bottleneck weight Hop cost RSP)Given are a source nodg a destination node
and a bottleneckQoS requirements, find a path? betweens and ¢ of minimum hop count such that

W (P) < 1.

As mentioned in the Introduction, QoS routing can often be considerabilitefted by means of
employing gprecomputation schemehich performs the path searalpriori for any possible connection
request. Such a scheme comprises of two phases: the first phasegpr@gatabase with precomputed
paths for any possible QoS requirement; the second phase promptlyestiievrequired path from the
database upon a connection request.

Precomputation schemes for equal link cogs, (minimum hops) were investigated in [1] and [13],
both for bottleneck as well as additive weights. A simple precomputation s¢helnieh “inverts” the
roles of the constraint (QoS requirement) and the optimization criterion \hps proposed in [1]. In
particular, that scheme computes a minimum weight for each possible hop cmam a connection

request, then, one would choose the minimum hop value for which the por@isg path meets the
connection’s QoS requirement. Accordingly, we defineé:.amp constrained optiméls, ¢)-pathto be a
path of minimum weight among alk, t)-paths with hop count of at moat The All Hops Optimum Path
problem was then formulated in [13] as follows.

Problem AHOP (All Hops Optimal Path) Given are a graphG = (V, E), a source node € V and a
maximum hop count!. Find, for each hop valué, 1 < h < H, and each destination nodec V, an
h-hop constrained optimdls, ¢)-path.

We shall contrast our precomputation scheme with schemes that are bas#ding Problem AHOP.
In addition, we shall consider the precomputation perspective in the ¢arfitectditive QoS requirements
andgeneralpath costs. Obviously, in this case, precomputation of exact solutions istatita, since so
is the basic underlying (RSP) problem. Therefore, in Section 5 we resprecomputingipproximated
(e-optimal) solutions.

3 Precomputation Scheme for Problem BH-RSP in Hierar-
chical Networks

In this section we present and analyze our precomputation scheme fawotiierp of hop minimization
with “bottleneck” QoS constraintsge., Problem BH-RSP, in hierarchical networks.

A possible approach for devising a precomputation scheme is to fully pragerap solutions dur-
ing the first phase. With this approach, the second phase just conssgarching for the solution in
the database produced by the first phase, according to the specificeQui&ment of the connection
request. Such is indeed the precomputation scheme for Problem BH-Rf&sed in [13], which con-
sists of precomputing all paths for all possible bandwidth requireméstssolving Problem AHOP.
The Bellman-Ford shortest path algorithm provides a simple precomputatiemscfor solving Prob-
lem AHOP, with a computational complexity 6¥(M H); for a general (dense) topology, that bound
can grow to be as large &@(N?H). In [13], an alternative scheme is described, whose computational
complexity isO(N2H/log N); evidently, the latter outperforms Bellman-Ford’s in dense topologies,
i.e, whenM > N?2/log N, but not in sparse topologies, which are the typical case of communica-
tion networks. The computational complexity incurred by the second phHaletto schemes is just

O(log H + |P|), where|P| is the hop count of the identified solution.

It thus remained an open question whether one can devise a fastemprgation scheme for typical
network topologies. In the following, we demonstrate that, by exploiting thatdkical structure that is
typical of large-scale networks, one can establish a precomputatiomedbe Problem BH-RSP, which
offers a significant improvement upon the above solutions.

We begin with a formulation of the hierarchical model.

3.1 Hierarchical Model Formulation

A routing algorithm may be presented with a hierarchical topology due to twsilple reasons. First, the
(actual) topology intrinsically has a hierarchical structure, as is oftenabe with large-scale networks.
Alternatively, the (actual) topology was hierarchically aggregated, agiATIM PNNI recommendations
[25].

We begin with the first case, assumingjr staterouting environment, where the source node has
a detailed image of the entire network. Beside being an interesting frameugore it provides the
required foundations for an extension that deals with the second chi, shall be considered in Sec-
tion 4.

We assume that the network has a certa@marchical structure In order to state the precise meaning
of the last term, we need to introduce some additional terminology.

6

Figure 1: An example of a hierarchical network

The networkG = (V, E) is referred to as thactual network Suppose that we partition the actual
network nodes into some disjoint setlafer-1 peer groupgor clusterg. Furthermore, suppose that we
repeat the above process, such that, for dach1, layer& peer groups are combined into layér+ 1)
peer groups. We repeat this process until, for sdiheve end up with a single laydk- peer group.
Having performed such &(-stage) partition, we say that nodes that form a laypeer groud" are its
childrenandT is theirparent Similarly, layer{k — 1) peer groups that form a layérpeer groud" are
referred to as the children of, I" is referred to as their parent. We denoteHby the maximum hop count
of a path in a peer group that can be considered for routing purposes. As we shallBeglays an
important role in our scheme.

A node in a peer group, which has a neighbor that does not belond't@s called abordernode of
I'. For each peer group that includes the source nodewe consider to be a border node df. We
also assume that a path between two nodes of a peer group does Bdherpser group’s boundary.

We are now ready to define the concephi@rarchical structure Intuitively, it means that the network
can be partitioned into peer groups, according to the above procebghst, for allk, 1 < k < K, each
layer+ peer group has a small number (at m@sdf children, and, at the same time, the number of border
nodes in a peer group is also small (at mgstFormally:

Definition 1 A networkG(V, E) is said to be(d, b)-hierarchicalif it can be iteratively clustered into
somekK layers of peer groups, according to the process described abogle tat all the following hold:

1. Forl < k < K, each layerk peer group is a union of at least 2 and at mdsthildren.
2. The number of border nodes of each peer group is at most

Note that, since each layék—1) peer group has at leagtchildren, we have thak’ = O(log M) =
O(log N).

Let us illustrate the above terminology through an example. Fig. 1 depiét2#hierarchical net-
work. A.1,--- ,A4,B.1,--- ,B.3,C.1,--- ,C.3 are layer2 peer groups, whilel, B, C are layer3 peer
groups. In this exampldy = 3.

We assume that the hierarchical structure of the netwarkpartition into peer groups, is given. The
next lemma establishes a “sparsity” property of hierarchical networks.

7

ight
>

- Wel
n

® o

. . . " . . . -
1 2345 6 7 8 hopcount
Figure 2: A typical traversal functiofi, , (%)

Lemma 1 The number of links in &, b)-hierarchical network is at most/ = O(b*dN).
Proof. We divide the seE of actual network links into the following subsedi®, k. =0,..., K — 1.
1. Ejyincludes all links inE that connect nodes of the same laygreer group;
2. Ep, fork =1,..., K — 1, includes all links inE' that connect layek-peer groups.

Each node is connected to at mosgtnodes of its layet- peer group. ThugEy| = O(dN). Since
each layerk peer group comprises of at leasthildren, the number of layer-peer groups i€ (N/2%).
Note that each layek-peer groupk > 1, is connected to at most layer# peer groups. Note also
that each two layek- peer groups are connected by at mistinks. Hence, fork > 1, it holds that
|Ex| = O(b?dN/2%). We conclude thadl = S 7' |Er| < O(dN + 02d Y ' N/2F) = O(b%dN)
and the lemma follows. |

In practical settingsg andb are small values. Typically, a network grows as a flat topology until its
size reaches a certain threshold, which triggers the creation of a newynoe@. As the network grows
larger, more peer groups are added, but the size of each peerrgroams bounded. Thus, the size of
a peer group does not depend on the size of the network, hence vessiame that = O(1). Border
nodes connect a peer group to its neighbors; in typical settings, the nofmeEghbors does not depend
on the network network size.e, b = O(1). Hence, in such settings, we hag@b’d) = O(1) and
M = O(N).

3.2 Traversal functions

The precomputation scheme proposed in [13] consists of precomputingtid for all possible band-
width requirements. Our precomputation scheme is based on a differenaappRather than explicitly
precomputing a set of paths for each destination, our scheme conmauersal functiongdefined be-
low) for each peer group at each hierarchical layer. The travéssations summarize the ability of a
peer group to support QoS connections that may be established acr8sglit.an approach allows to
exploit the network’s hierarchical structure, and yields an efficieat@mputation scheme. In addition,
this approach is useful in networks with topology aggregation, as shaliden in the next section.

Definition 2 Given a peer groufp' and two border node$; andb, of I, thetraversal functiorF(I;1 bz)(h)
is defined to be the minimum weight ofta, b2)-path whose hop count is at mdst

8

Algorithm BH-HIE (G, s)
input:
G- actual network;
s € G- source node.

1 fork—1to K—1

2 do for each layerk peer groud”

3 do for each border nodg of I"

4 do invoke Procedure QusTeRfor (G, T, b;)

Figure 3: Algorithm BH-HIE

A typical traversal functiodT(I;i bj)(h) is depicted in Fig. 2. In this example, the minimum weight of
ab5-hop constrainedb;, b;)-path acros$' is 1, while the minimum weight o$-hop constrained path &

3.3 First phase: Algorithm BH-HIE

We proceed to describe Algorithm BH-HIE, which implements the first phaseioprecomputation
scheme. For each peer groli@nd for each paifb;, b;) of I'’s border nodes, the algorithm computes the

corresponding traversal functidfﬁi bj)(h).

The key idea is to compute the traversal function of a peer group out dfathersal functions of its
childen. Accordingly, Algorithm BH-HIE runs across the hierarchicgkls in a “bottom-up” manner,
processing first peer groups of laykerthen peer groups of lay&i-and so on, up the lask’s layer.
For each peer group and for each border nodg of I', the algorithm invokes Procedure. GSTER,
described in Section 3.3.1. The formal specification of Algorithm BH-HIRgeaps in Fig. 3.

3.3.1 Procedure QUSTER

We proceed to describe ProcedureUSTER, the main building block of Algorithm BH-HIE. Proce-
dure G_USTERTeceives, as input, some layempeer groud” and a nodé,, which is one ofl’s border
nodes. It then (pre-)computes the traversal funcE@;g b)(h) for each border nodeof I'. The order of

processing of peer groups by Algorithm BH-HIE implies that, when Proee@ USTER s applied to a
layer peer groud’, it already has available the traversal functic{rE(F_f)(h)} for each childrerl’; of

I.

Since layert peer groups have flat topologies we can employ the standard Bellmarsétoeche.
For all higher layers peer groups, however, we need more elabor#ét@adsein order to exploit their
hierarchical structure.

The procedure starts by constructing the following auxiliary gripW, £'), whose purpose is to
provide a concise representation of children and the connectivity ameng tiEach childl’; of T is
represented iiv by the sef{b;;} of its border nodes. Each pdtr;;, b;;) of I';'s border nodes is connected
by several links, each corresponding to a different hop counttins Specifically, for eacth =
1,---, Hr,, we add a linke betweerb;; andb, ; in I, with costc, = h and weightw, = F(E;,bij,)(h)' In

addition, for each actual network linkb;;, b ;) that connects children df, we add a linke’ (b;;, by’)
to I, with weightw,, = w, and cost,, = 1. Fig. 4 illustrates the construction of the auxiliary graph for
a layer3 peer group.

The lemma below follows from the constructionlofand from the validity of traversal functions of
the childrenl’; of I".

(a) peer grouf’ (b) auxiliary grapi’

Figure 4: Construction of auxiliary gragh

Lemma 2 Let(b;,b;) be a pair ofl’'s border nodes. Then:

1. For each(b;,b;)-path P in T, there exists db;, b;)-path P in T such thati (P) < W (P) and
C(P) < |P|.

2. For each(b;, b;)-path inT', there exists &b;, b;)-path P in ' such thatW (P) = W(P) and
P| < C(P).

The lemma implies that we can use the auxiliary grigbr computing the traversal functions Bf
Specifically, we need to find, for each border négef I and for each < ¢ < Hyp, a minimum weight
c-cost constrainedby, b;)-path inT. The key idea is to first remove (temporarily) all links frdimand
then add them back tb by increasing order of the weight values. During this process, we maittain

tree of minimum cost paths in from the source nodk); we update the tree after each insertion of a link

toT.
More specifically, for each € T', we maintain the minimum cost of a(bg, v)-path inl. In addition,
we maintain an arraT(ll:0 o) such that:

. T(I;O v) [c].w keeps the weight of acost constrained optimuf(b, v)-path75 inT,

o TL

(bo,0) [c].p keeps the predecessopf v on P,

o TL

.0] keeps the cost of the last lirfle, v) of P.

When we add a link(u, v) to I', we check whether the valug decreases; if it does, we updateand
set:

T(I;mv)[cv].w — We,
T(IZ)M) [cv].p — u,

T(I;O,U) [cy].c — ce.

We perform a similar process for each nadéor which ¢, decreases as a result of adding lmkUpon
completion, for each border nodgof I, the traversal functiom?(ll;O b_)(h) is stored in the arragr(g0 bi)

i.e, foreachh,1 < h < Hr:

10

F(I;’mbi)(h) - T(1;70,bi) [h].c.

The formal specification of Procedure @GSTER appears in Fig. 5.

3.4 Procedure AND

We proceed to present Procedunel. This procedure is invoked upon each new connection request,
and its goal is to identify a minimum hap-weight constraineds, ¢)-path?.

For clarity, we denote by'! the parent ot, by I'? the parent of*!, etc, up to some peer grou‘D’%
for which s is a border node. First, the procedure identifies, for each bordertnad each peer group
I'*, the minimum hop countl;, ;) of atw-weight constrained optimab;, t)-path inT*. Next, a suitable
path is determined by ProcedureTR, described in the Appendix A.

We begin with a layet- peer groud™!. We prune each link € I'! for whichw, > 1, and then apply
a Breadth First Search (BFS) algorithm [8] to the reversed gliagha graph in which each link appears
in the reverse direction. This yields, for each border nbdef I'!, a w-weight constrained optimal
(bs, t)-path inT"! and its hop county, 4.

For a layerk peer groud™*, k > 2, we construct the following auxiliary gragff. Each childl’; of
I'* is represented i’ by the set{b;;} of its border nodes. Each pdib;;, b;;) of I';'s border nodes is
connected a link, whose cost is set to:

e min {h ‘ Fi sy () <). (1)

In addition, for each actual network linkb;;, b;1;) that connects children df* and whose weight is
no more thanb, we add a linke’(b;;, by7j-) to T" with costc, = 1. Finally, we connect by a link each
border nodeb; of T'*~! and the destination node The cost of such a link is set to thié,, +); the
value ofH,, ;) was computed in the previous iteration. We note that a minimum(épgt)-path in[*
corresponds to @-weight constrained path in the actual network. Having constructed #ikéeay graph
'*, we identify, for each border nodeof I'*, the minimum costb;, ¢)-pathPr" (b;, ¢) in T, by applying
Dijkstra’s algorithm on the reverse graphIof. Then, we sef{;, ;) = C(PT" (bi,t)). In the last step,

Procedure FD invokes Procedures?H that identifies, for a peer grodpf and a border nod € I'*, a
w-weight constrained optimab;, ¢)-path. The formal specification of Proceduneib appears in Fig. 6.

3.5 Analysis of the precomputation scheme

First, we establish the following properties of Procedut® €TER.

Lemma 3 Suppose that the (correct) traversal functiﬁﬁ?j b)(h) is available for each paifb;;, b;;)
VRN

of border nodes of each child; of I". Then, Procedur€LUSTER, applied onl* and a border nodé, of
I', computes the traversal functid"(’fbO bi)(h) for each border nodé; of I".

Proof. See Appendix B. |
In the next lemma we analyze the complexity of ProcedureIer.

Lemma 4 The computational complexity of ProcedufeLusTER for a layer« peer group is
O(V2d?(Hy + log(bd))).

Proof: First, let us count the number of links B For each pair of border nodes of a child of
I we add at mosH, < Hr links. Since each child has at mdsborder nodes and there are at most

11

Procedure CLUSTER (G, T, by)
input:
G- network
I'- layer+# peer group
bo - I''s border node

1 T(V,E) «INITIALIZE ()

2 forallveVdo

3 Cy Hr‘ + 1

4 Chy 0

5 T(lzo’bo)[O].w —0, T(lzo’bo)[O].p — nil

6 S—FE

7 E—0

8 for each linke(v,u) € S by increasing order of), do
9 if exists a linke’ betweery andw in E then

10 remove:’ from E

11 addeto £

12 PROPAGATHe(v,u))

13 return T(l;)o,b) for each border nodeof I'

PROPAGATE((u, v))
if (cy + ce) < ¢, then
for ¢ — (¢y +ce) to (¢, — 1) do

=

2
3 T(Fbo,v) [c]w — w,, T(I;O’v)[c].p — u, T(Fbo’v) [c].c < c.
4 ¢y — (cyFce)

5 for eachlinke’(v,z) € E do

6 PROPAGATHe' (v, x))

NITIALIZE()

1 V—0E—10

2 if k=1then

3 for each linke(v,u) € T' do

4 add a new linke’ betweerv andwu to F

5 Cer — 1, Wer — We.

6 else

7 for each childl’; of I" do

8 add each border nodg; of T'; to V.

9 for each pair(b;;, b;;+) of I';’s border nodeslo

0

1 for ¢ — 1to Hr, do
11 add a new link betweerb;; andb;; to E
12 Ce = c,we — Fp' ()

(le’bi,j’)

13 for each linke(b;;, by7;+) € G that connects childreli; andI’;, of I' do
14 add a linke’ betweerb;; andb; ;» to E
15 Cer — 1, Wer — we

16 return T(V, E)

Figure 5: Procedure STER

12

Procedure FND (G, s, t, w)
input:

N

© 00 ~N O Ul

10
11

12
13
14
15
16
17
18

19
20

21
22

23
24

G(V, E)- actual network

s € G- source node

t € G- destination node

w- (bottleneck) QoS requirement

I't « parent oft
remove fronT! all links e for whichw, > ;
apply a Breadth First Search (BFS) algorithm [8] to the
reversed graph'! of I''2
for each border nodg of I'! store the hop count of
(b, t)-path in['! computed in Line 3 intdd p,, 1)
for k — 1to K do
I'* — parent ofl%—1
for each childl’; of T* do
add each border nodg; of I'; to ¥
for each pair(b;;, b;;») of I';’s border nodeslo
add a new link betweerb;; andb; ;s to
Ce < min{h | F£Zj7bij/)(h) <}
for each linke = (b;;, biv;/) € G that connects childrefi; andT';, of I'* do
if w, < then
add a linke’ betweerb;; andb; ;» to T'*
Cer — 1
for each border node; of I'*~! do
add a linke betweerb; andt
Ce — Hp,)
apply Dijkstra’s algorithm [8] for the reversed graphldf
for each border node of I'* store the cost of
(bi, t)-path in[* computed in Line 19 intdd,, ;)
if sis a border node df* then
let? be path returned by Dijkstra’s algorithm
P —PATH(T*, P)
return P

'l includes a linke(u, v) for each linke(v, u) € T'.

Figure 6: ProcedureIND

13

d children, the total number of such links@(b*dHr). In addition, we add)(b*d?) links that connect
border nodes of different children. Thus, the total number of linksigmO (b2d(Hr +d)). Consequently,
the complexity of ProceduraNITIALIZE and of lines 2-11 of ProcedureLGSTERis O(b?d(Hr + d)).

For sorting the elements 6fwe can use techniques for searching in arrays with sorted columns [10].
Since the elements & are constructed from at mobtd ordered sets and an additional set of at most
b%d? elements, such a sorting can be performe@{h?d(Hr + d) log(bd)) time.

We proceed to count the computational complexity incurred by recursixacations of Proce-
dure RROPAGATE Note that it is sufficient to count invocations in which the conditien+ c.) < ¢,
is satisfied. In each invocation, decreases by at leastfor someu € I'. Sincec, is initially set to
Hr -+ 1 and never increases, we conclude that Procedeo®RGATE s invoked at mostit + 1 times for
each node: € T'. Each invocation of the procedure inc@$d,..(u)) steps, wherd,,;(u) is the output
degree ofu in I'. Since during the execution of the algorithm, any two nodeE afe connected by at
most one link, the number of links i is (’)(b2d2). Hence, the total running time for all invocations of
Procedure ROPAGATEIS at mostO(Hr Y1 dowt(u)) = O(b?d*Hr).

We conclude that the total running time of Procedute) €TER is O(b?d? Hr + b%d log(bd)(Hr +
d))=O(b*d?(Hr + log(bd))). [|

We proceed to establish the following properties of Algorithm BH-HIE.

Theorem 1 AlgorithmBH-HIE determines, for each peer grolipat each hierarchical layer, the traver-
sal functionF(E)i bj)(h) for each pair(b;, b;) of border nodes of.

Proof. Straightforward by induction on hierarchical layers and application aifiba 3. |
Lemma 5 The computational complexity of AlgoritlBH-HIE is O(b*d’NK).

Proof. Let us count the time required to process all laggreer groups. For each laykrpeer
groupT’;, Procedure CusTER s invoked. By Lemma 4, the running time of ProceduneuSTER is
O(b*d?(Hr, + log(bd))). Since the expressiaHr, + log(bd) is upper bounded by the number of nodes
in I'; and the total number of nodes in laylepeer groups iV, processing all layek-peer groups requires
O(b*d2N) time. Since there ar& hierarchical layers, the algorithm’s complexity@b*d>KN). H

Lemma 6 ProcedureFIND, invoked for a source, destinationt and Qo0S constraintd, returns the
minimum hop count of @-weight constraineds, ¢)-path.

Proof. See Appendix C. |
We proceed to analyze the computational complexity of Procedwe. F

Lemma 7 The computational complexity of Procedifid is O (b2dK (d + log H) + |P|).

Proof: Note that, for each < k < K, the graphl'* contains at most)(bd) nodes and)(bd?)
links. The execution of all lines in the procedure, except from lines 1l1&n requires only a fixed
number of steps per link, aP(b*d?) per layer. Line 11 may be implemented @ log H) running
time per link, by a binary search. This line is executed at nid@fd) times for each layer, hence it
incursO(b%d log H) steps per layer. Since the auxiliary graplsomprises of(bd) nodes and)(b2d?)
links, the execution of Dijkstra’s algorithm in line 19 requi@$b®d?) time. As a result, the procedure
performsO(b2d(d+log H)) operations per layer, @ (b>dK (d+log H)) operations overall. In addition,
Procedure RTH needs?(|P|)) time to report pathiP|. [|

The above results are summarized in the following theorem.

Theorem 2 ProcedureFIND provides an? (b2dK (d + log H) + |P|) solution to Problem BH-RSRe.:
given a connection request with source nadelestination node, and (bottleneck) QoS constraitit,

and given the output of Algorith®H-HIE, ProcedureFIND identifies, inO(b2dK (d + log H) + |P))
steps, av-weight optimal(s, t)—path75 inG.

14

Note 1 In some settings the detailed path is not required. For example, in ordeedwe whether to
admit a connection, we only need to know the minimum hop count of a QSTihen, the computational
complexity of ProcedurBIND is justO(b?>dK (d + log H)).

3.6 Discussion

We conclude this section with a performance comparison between our selneinseme alternatives.

Consider first the “standard” precomputation scheme proposed in]jwhigh was based on solving
Problem AHOP through Bellman-Ford’s shortest path algorithm. Lemma 1 implashtrarchical
networks are sparse, in the sense that= O(b?dN). This, in turn, implies that the standard scheme
incurs a computational complexity 6¥(b>dN H) for its first phasei.e, it is Q(H/(dK)) times slower
than ours. Sinc& = O(log), our scheme offers a significant improvement over the standard solution.
The difference is particularly significant whén= O(1) and K << H,! which is a typical case.

Considering the second phase, the standard scheme (as well as anylutieis based on fully
solving Problem AHOP in the first phase) yields a computational complexitysoiiilog H + |P|),
whereP is the path identified by the scheme. This is somewhat less than that of oumesdtes,
O(b*dK (d + log H) + |P]). However, in typical settings, whete= O(1), d = O(1) andK << H,
our scheme is jus®2(log H) times slower than the standard solution. Moreover, the difference is not
significant Whedﬁ\ is the dominating component.

Next, let us compare between our precomputation scheme and an altemiladire no precompu-
tation is performed at all. In such a “single-phase” scheme, the requattdgan be identified by
applying a Breadth-First Search algorithm [8], which, far = O(b?dN), incurs O(b>dN) running
time compared t@(b2dK (d + log H) + |P|) of our scheme. Sinc& = O(log N), our solution is
Q(N/(log N(d + log H) + |P|)) times faster. TypicallyjP| << N andd = O(1), hence the difference
is significant.

It is interesting to compare between the two approaches also in the relatiectooinconnection
admission where one needs to decide whether a connection request shoulanitteddbased on its
QoS requirement and the cost it incurs; to that end, one needs to idemtifpabt) cost of a path over
which the connection can be established, however there is no need tdatixppecify the path itself.
This means that our scheme allows to obtain an admission decision upon &ti@mmequest in just
O(b*dK (d + log H)) time (see Note 1), whereas the “single-phase” scheme still ir@(#&IN) time.
Thus, our solution i€2((/V/(log N(d + log H))) times faster. The difference is significant in typical
settings where = O(1).

4 Precomputation Scheme for Aggregated Networks

In the previous section we assumed that each node has full and urebiidgrmation about link states,
which is stored in its topology database. However, such an approdehnssindm scalability problems.
Indeed, as the network grows in size, significant resources aremeatsfor flooding and recording the
changes in the link state throughout the network. With topology aggregatibnetworks, orouting do-
mains do not reveal the details of their internal structure, but rather supelgdlgregated representation
to the outside world [16]. Such an approach could also be mandatedumjtgand administrative needs.
Topology aggregation is useful for ATM [25] and IP networks [21].

A Kkey issue in topology aggregation is how to provide the routing informatioa @émain to the
outside world. Constructing an accuratggregated representatigmoses several complex challenges.
First, there is a need to identify tiversal characteristicef a routing domaini.e., its ability to support

1Recall thatH is the maximum hop count of a path @ and, in the worst casdf = O(N), while K =
O(log N).

15

connections with different QoS requirements. Second, each domaimjrtaumprises of aggregated sub-
domains, whose traversal characteristics are available only througbgaggd representation. Finally,
each sub-domain may use a different method for representing its routorghaion.

In this section we establish that precomputation is a useful (virtually neggssal for constructing
accurate aggregated representations. In particular, we show thatingyprecomputation schemes, the
traversal characteristics of a peer group can be computed efficierglgnvgloy the concept dfaversal
functions introduced in Section 3, in order to accurately represent the travgraedcteristics. Further,
we adapt our algorithmic techniques in order to cope with aggregated tstwer, networks in which
each link represents an aggregated sub-domain.

In this section we consider a generic model for multi-level aggregated netwdhe model can be
used, for example, in conjunction with the ATM PNNI protocol [25], in whipeer groups are represented
by structures termedomplex node$

Similarly to the previous section, we focus on bottleneck QoS requirementssaritbp minimization
for optimizing resource utilization.

4.1 Aggregated Representation of a Peer Group

A significant body of research has been devoted to the area of topalgpgyegation; we proceed to
quote a few relevant references. A compéxb) representation for undirected networks and a single
bottleneck QoS requirement was presented in [16]. For additive QoS§raonts, [23] shows that an
accurate representation of a peer group requirég) links in the worst case. A (b) representation
that achieves a bounded distortion is presented in [4].

Devising a topology aggregation scheme that takes into account both thedpeBaints and the
use of network resources is still an open research issue. A pragbigedach is to associate each pair
of border nodes with two values: the first corresponds to a (bottlenegikjht and the second to a cost
value €.g, hop count). This approach provides a compact representationyffertssfrom high distor-
tion. In order to reduce distortion, some studies [5, 15, 19] presesnseh that resemble the traversal
functions introduced in Section 3. Specifically, [5] proposes to usewvadiit-cost functionsi.e., func-
tions that specify the available bandwidth for several cost values;di&]19] propose to approximate
the bandwidth-cost functions by using curves and link segments, tesgbecWe note that the methods
presented in the following for efficiently computing traversal functionslmanised in order to compute
the curves in [15] and line segments in [19], hence resulting in a more effstbeme.

4.2 Aggregated Model

In multi-level aggregated topologies, a domain comprises of aggregatetdbsugdins. This gives rise to
the followingaggregated network model

The actual network topology.€., with no aggregation) is represented by a directed g@pThe
aggregated network is represented by a directed gfgph which each linke(v,u) € G represents an
aggregated sub-domailif of G. Fig. 7 depicts an example of an actual network and its corresponding
aggregated topology. We assume that a node only knows the aggregatiedjyd>. We denote byH the
maximum hop count of a path that can be considered for routing purpodesactual networkz. Each
link e(v,u) € G is associated with a traversal functiéh, .,y (c), which provides the minimum weight
value that can be supported by for each hop count limitation. More specifically, fol0 < ¢ < Hr_,
Fly4)(c) is the minimum weight of a-hop constrainedv, v)-path across the sub-domdip, whereHr,
is a maximum hop count of a path acrdisthat can be considered for routing purposes.

Each pathP in GG can support several QoS constraints at different costs. Accdygdimg define the
costC(75, w) of supporting the QoS constraiitby P.

2This requires a mild extension of the complex node structBpecifically, we allow parallel bypass links, each
link corresponds to a different value of the QoS constraint.

16

(a) actual network (b) aggregated network

Figure 7: Actual and aggregated networks.

Definition 3 Given a path}5 = {s =vg,v1, - ,vp =t} In G and a QoS constrainf, we define, for
each linke(v;_1, v;) € P, thelocal costof supportingi to bec sy = min{c | F(,,_, v,)(c) < w}. The
cost of satisfying the QoS constraintalong the pathP is then defined to be:

C(ﬁ,@) = ZAC(e,ﬁJ)'
ecP

A traversal function in an aggregated network is defined as follows:

Definition 4 Given an aggregated networ®, a source node € G and a destination node € G,
we define theggregated traversal functidqft) (¢), 1 < ¢ < H, to be the minimum weight of an

(s, t)-pathP in G for whichC(P, w) < ¢. If no such path existsEgt) (c) is defined asx.

Intuitively, the aggregated traversal functionéhis identical to the traversal function in the actual
networkG. Furthermore, the traversal functidn, . (c) that is associated with each lirfk, u) € Gis,
in fact, the aggregated traversal function of the sub-dorfi&inNote thatl** may, in turn, comprise of
aggregated sub-domains.

We proceed to formulate the aggregated version of Problem AHOP.

Problem Agg-AHOP (Aggregated All Hops Optimal Path) Let G be an aggregated network, where
each linke(v,u) € G is associated with a traversal functidf, ,,)(c). For a source node € G and

each destination nodee G, find the aggregated traversal functid?gt)(c).

Problem Agg-AHOP can be solved by substituting eachdirk(with several links, each linkv, u)
being associated with a single weightand cost value, such that,, ,,(c) = w, and then applying the
Bellman-Ford algorithm on the resulting graph. However, as the resultaghgncludesO (M H) links,
this approach incurs a high computational complexityX¢f\/ H?). By using the algorithmic methods
developed in the previous section, we can devise an alternative scheRPm®lilem Agg-AHOP, whose
computational complexity is significantly lower.

17

4.3 Precomputation Scheme

Consider first a simple case, in whi¢h comprises of just linkgu, v) and (v, w), and our goal is to
compute a traversal functioﬁ((j) (c). We refer to this operation asergingthe functionsry, .,y (c) and

Fly,w)(c) into a single functionF(Cz w) (c). The merge operation essentially amounts to computing, for

each budget, 1 < ¢ < H, the partition(c!, ¢?) of the budget between the links, v) and (v, w) that
minimizes the weight of &, w)-path in the actual networkge.,
Fg,w) (¢) = min {max {F(u’v) (c), Flow) (02)}}

cl+c?2<c

Our main observation is that, in the case of bottleneck QoS parameters, the opengition can be
performed in justO(H) steps, through the following inductive process. Clearly, for budget 2,
the optimal partition i1, 1). Having computed the optimal partitidn,_,,c7 ;) for a budget;_,, the
optimal partition for a budget; = ¢;_1 + 1 is then eithefc!_; +1,¢? ;) or (c}_;,¢? ; +1):

F(u,w) (Cz) = min {max {F(u,v) (Czl—l + 1), F(v,w) (012_1)} ,
max {F(u,v)(czl_l)v F(%w) (012—1 + 1)}}

The merge operation allows to solve Problem Agg-AHOP in acyclic directepghgrinO(M H) time.
For general directed graphs, we present a more elaborated algorithmtilizes that same idea, and
whose running time i€ (M H log N). The algorithm, referred to as Algorithma&-AHOP, is, in fact,
an adaptation of Procedura. GSTER (Section 3) for networks with topology aggregation.

The algorithm starts by constructing the following auxiliary grapfi’, '), whose purpose is to
represent traversal characteristics of sub-domains and the coityemthong them. Each link(v, u)

of G is represented i by several links, each corresponding to a different cost consti@jrecifically,
for eachc = 1,--- , Hre, we add a linke’ betweenv andw in G, with costc,s = ¢ and weightw, =
Flyu)(c), wherel is the aggregated sub-domain represented. blfor eachv € G, we maintain the

minimum cost, of an(s, v)-path inG. In addition, we maintain array’gv), such that:
J Tgv) [c].w keeps the minimum weight of @acost constraineds, v)-pathP in G,
o T(C;f' v) [c].p keeps the predecessorobn P,

o T}, . lcl.c keeps the cost of the last lirflu, v) of .

The key idea is to first remove (temporary) all links fr@smand then add them back & by increasing
order of the weight values. When we add a lir{ke, v) to G, we check whether the valug decreases;
and, if it does, we updatg, and set

Tg’v) [cp]-w — we, Tg’v) [cv].p — u, T(l;’v) [cy].c — ce.

We perform a similar process for each nadéor which ¢, decreases as a result of adding linkUpon
completion, for each node of T, the traversal functiodfgjv) (c) is stored in the arragfgvv) [c]. The
formal specification of Algorithm &G-AHoP appears in Fig. 8.

Given a QoS constrainf and a destination node we determine a suitable paf through the
following procedure. First, we determine the minimum cesif a (s,t)-path isG that supportsi
by settinge = min{c) T(f’t) [c]w < w} Next, path? is identified by iteratively discovering the
predecessor of each node, beginning with The predecessar; _; of v; is determined by setting

18

Algorithm A GG-AHOP (G, s)
input:
G- aggregated network
s - source node

1 G(V,E) —INITIALIZE ()

2 forallveVdo

3 c¢—H+1

4 ¢, —0

5 T(C;s) [0].w « 0, Tg7s)[0} .p — nil

6 S—FE

7 E—0

8 for each linke(v,u) € S by increasing order of. do
9 if exists a linke’ betweery andu in E then

10 remove:’ from E
11 addeto E
12 PROPAGATHe(v,u))

13 return ngv) for each node in G

PROPAGATE (e(u, v))

1 if (cy +ce) < ¢y then
for ¢ «— (¢y +c.) 10 (¢, — 1) do
T(C;v) [c].w — w,, T(f’v)[c].p — u, T(C;v)[c].c —Ce

2

3

4 ¢y — (cutece)

5 for eache’(v,z) € E do

6 PROPAGATHe (v,))
INITIALIZE ()

1 V—V,E—0

2 for eache = (v,u) € G do

3 for ¢« 1to Hre do

4 add a new link’ betweerv andu to £

5 Cer € Wer — Fy) (c)

6 return G(V,E)

Figure 8: Algorithm AGG-AHOP

19

~

Vi1 = T(C;vi)[c — C(ﬁ(vm), w)].p, WhereC(ﬁ(w), W) is the cost of supporting) by the subpath oP
identified so far. The budget allocated to linke(v;_1, v;) of P is set toc, = T(C:jw) [6— C (P 1), 0)].c.
We note that the identification @? requires?(log H + |P|) time.

4.4 Analysis of the precomputation scheme.

We proceed to state the following properties of Algorithrm@&AHOP.

Lemma 8 Algorithm AcG-AHOP computes the aggregate traversal funct@@t) (c) for each node of

G.
Proof. See Appendix D. |
Lemma 9 The computational complexity of AlgorithhGG-AHOPiIs O(M H log N).

Proof: First, let us count the number of links . For linke € G we add at mosfre < H
links. Thus, the total number of links ifi is O(M H). Consequently, the complexity of Procedure
INITIALIZE and of lines 2-11 of Algorithm AG-AHOPiS O(MH).

For sorting the elements 6fwe can use techniques for searching in arrays with sorted columns [10].
Since the elements ¢f are constructed from at moaf ordered sets, such a sorting can be performed in
O(MH log N) time.

We proceed to count the computational complexity incurred by recursixacations of Proce-
dure RROPAGATE Note that it is sufficient to count invocations in which the conditien+ c.) < ¢,
is satisfied. In each invocation, decreases by at leastfor someu € T'. Sincec, is initially set to
H + 1 and never increases, we conclude that ProcedaoePRGATE s invoked at mostH + 1 times for
each node: € I'. Each invocation of the procedure inc@$d,..(u)) steps, wheré,,;(u) is the output
degree ofu in G. Since during the execution of the algorithm, any two nodeE afe connected by at
most one link, the number of links i@ is O(M). Hence, the total running time for all invocations of
Procedure ROPAGATEIs at mosStO(H) & dout(u)) = O(MH).

We conclude that the total running time of Algorithne&-AHoris O(M H log N) and the lemma
follows. |

The above results are summarized in the following theorem.

Theorem 3 Algorithm AGG-AHOP determines, irO(M H log N) time the aggregate traversal function

F{ () for each node € G.

4.5 Discussion

We presented a® (M H log N) algorithm for computing traversal functions in an aggregated environ-
ment. As previously noted, a straightforward approach would be to substitich link byO(H) links

and execute Bellman-Ford algorithm in the resulting graph. Since the Bellmahatgorithm would
then be applied to a graph with(M H) links, its computational complexity would k(A7 H?), which

is Q(H/log N) times higher than that of our scheme. Recall tHais the maximum hop count in the
actualnetwork, whereadv is the number of nodes in traggregatechetwork, hence our improvement is
significant.

Next, let us compare between our precomputation scheme and an altewtsigano precomputation
is performed at all. In such a “single-phase” scheme, the required gathecidentified by computing, for
each linke(v, u) € G, the cost, of supporting the QoS constrait(i.e., c. = min{c | Flpuy(c) <)),
and then applying Dijkstra’s shortest path algorithm [8] to a graph with lirdtszg. This scheme incurs
O(M log H + N log N) running time, compared t(log H + |P|) in our scheme. Hence, our scheme
allows to significantly reduce the time required for the identification of a suitadite p

20

5 Precomputation Schemes for Additive Metrics

In this section we consider the routing problem watthditive QoS constraints andgenerallinks costs.

We assume a link state environmei,, the source node has a full image of the network. We consider
general networkd,e., we do not assume that the network has a spedfu, hierarchical) structure. Our
purpose is to devise a scheme that (pre)computes, for each sost< C and for each destination node

t € G, ac-cost constraineds, t)-path of minimum weight, wheré€' is maximal cost of a path that can be
considered for routing purposes. Accordingly, we introduce ProBl€@P, which is a generalization of
Problem AHOP for general link costs.

Problem ACOP (All Costs Optimal Path) Given are a graphG = (V, E), a source node € V and
a maximum cos€. Find, for each cost, 1 < ¢ < (C, and each destination nodec G, a c-cost
constrained s, t)-path of minimum weight.

Problem ACOP is computationally intractable since it contains Problem RSPhghi¢ P-hard.
Accordingly, we resort to precomputation schemes that affgroximatesolutions,.e.:

Definition 5 Given an instance of Problem ACOP, with source nedmaximum cost’, and approxi-
mate ratioe, 0 < £ < 1, ane-approximate solutioiis a set of pathss, such that, for eaclh < ¢ < C

andt € G, there exists affis, t)-path P € S that satisfies :

1. W(P) < W(P), for anyc-cost constraineds, t)-pathP;

~

2. C(P) < (1+¢)e.

We note that an approximate solution for Problem ACOP can be constructbe dasis of existing
approximation algorithms for Problem RSe.d, [14], [26]), i.e., by sequentially executing them for
various values of the cost constraint. However, as we shall seeassiohplistic approach results in a
(overly) high computational complexity. Therefore, in this section we psegoscheme that precomputes
a set of suitable paths Withi@(éHM log C') computational complexity. Upon a connection request, a
suitable path is chosen from a set of precomputed path V\@hlg(%ﬂ log C')) time.

The section is organized as follows. First, we present a simple precompigetieme whose running
time isO(MC), which is pseudo-polynomial. Next, by usindogarithmic scalingtechnique, we estab-
lish aO(%HM log C') precomputation scheme that offers;aapproximate solution for Problem ACOP.

5.1 Pseudo-polynomial Solution for Problem RSP

As a first step, we present a simple precomputation scheme, whose comaltedimplexity is pseudo-
polynomial. The scheme is based on dynamic programming and is an extengierstdndard Bellman-
Ford's algorithm. For each node € G we maintain arrayl|, ,[c] such thatT(, ,)[c|.w keeps the
minimum weight of ac-cost constraineds, v)-path inG and T, ,,[c|.p keeps the predecessor ©fn
that path. The algorithm iterates over “budget” values 0,1, --- ,C. At each iteration, the algorithm
repeatedly selects a linke G and relaxes it. The process of relaxing a lirfk,) consists of testing
whether the minimum weight @b, «)-path can be improved by going througlunder the current budget
restrictionc and, if so, updatind’, ,,)[c|. Since for eachr,1 < ¢ < C, the algorithm performe (M)
operations, its complexity i©(M C). The formal specification of Algorithm PP-RSP appears in Fig. 9.
Upon arrival of a connection request foriaweight constrained optimdk, t)—path75, we first find
the minimum cost of P by settingé = min {c| Tispldw < w}. Then, we identify the patl® by using
the information stored in the arrayd7, ,)[c||v € G}. Specifically, the predecessog_; of ¢ in Pis
determined by setting, 1 = T{,)[¢].p. Generally, the predecessar ; of v; is determined by setting

Vi1 = Tiowy) [c — C(Pru,.1))| -p» WhereP,,, , is the subpath o, discovered so far. The algorithm

outputs the resulting path = {s = v, - - - , vy, = t}.

21

Algorithm PP-RSP (G(V, E), s, C)

input:

G(V, E) - network

s € G - source node

C'- the maximum cost of a path
variables:

¢ - the “budget”;

forallv e V

Ts,0)lc] - auxiliary array

1 forallveVdo

2 T [0]w o0

3 T(S’S) [O]IU — 0, T(&S)[O] P — nil
4 forc+—1toC do

5 for eachw € V do

6 T,y lc)w = T 0y [c — 1w
7 T(s,'u) [C] p T(s,v) [C — l]p
8 for each linke(v,u) € E do

9 if (c. <c¢)then

0

L if To,0lc — cew +we < T, u[c].w then
11 Ts,uylc]w — Tism)lc — celw + we
12 T(suyle)p v

Figure 9: Algorithm PP-RSP

5.2 Polynomial Precomputation (Approximation) Scheme

We proceed to present an efficient precomputation scheme that prandeapproximate solution to
Problem ACOP. The scheme is based on the pseudo-polynomial solutiais@sdogarithmic scaling
approach. Specifically, it considers only a limited number of budget vahaeselyl, ci, ca,- - , ¢, 00
wherec; = 6', imaz = min{i | 6" > C} andd = (1 + 55). For each node € G we maintain array
Tis) [c] such that, fol0 < i < iy, Tis) [ci].w keeps the minimum weight of @-cost constrained
(s,v)-path inG and 7|, ,[c;].p keeps the predecessor ofin that path. The algorithm iterates over
“budget” values:; = 1, ¢y, ¢, -+, ¢,,..- At €ach iteration, the algorithm repeatedly selects adirkG
and relaxes it. The process of relaxing a litkk u) consists of testing whether the minimum weight
of (v,u)-path can be improved by going throughunder the current budget restrictien and, if so,
updatingT(, .,[ci]. As shall be shown below, the set of such paths constitutesgimal solution for
Problem ACOP. The formal specification of Algorithm RSP-GEN appealfsgnl0.

We will demonstrate the precomputation process by using the net@at&picted on Fig. 11. Al-
gorithm RSP-GEN is invoked fof,s, e = 1 and H = 5. Thus,§ = 1.1. We consider a request for a
(s, t)-path that satisfies a QoS constraint= 15. For this requesTJ,5 = {s,v1,v9,t} € G is an optimal
path. We show that the algorithm identifies a path whose weight is atdnastl whose cost is at most

(14 ¢)C(P). First, after executing ling, we havel(, .[0].w = 0. Next, consider the execution of the
main loop,i.e., the loop that begins at line 6, for= 12. Sinced’ = 3.138 > 3, the condition of line
12 is satisfied, hence, upon completion of the iteration, it holdsThat,)[3.138].w < 2. Next, consider
the iteration of the main loop far= 23 and the iteration of the sub-loop at liné for e = (v, v2). In
line 13 we setc = 3.797, which is the highest degree éfthat is lower than:; — ¢, = 3.954, where
¢i = 0" = 8.945. In the next lines we check wheth@, ., 1[3.797].w + we < T ,,)[8.954].w and, if
SO, We assigl(, ,)[8.954].w = T(;,,)[3.945].w + we. Thus, after completion of the iteration of the
main loop fori = 23, we havel(, ,,)[8.954].w < 9. Finally after the completion of the iteration for

22

Algorithm RSP-GEN (G(V, E), s,¢,C)
input:
G(V, E) - network
s € G - source node
g, 0 < ¢ < 1- approximation ratio
C - the maximum allowed cost of a path

1 0« (1+57)
2 forallveVdo
3 T(sﬂ,)[()].w «— OO
4 T [0].w < 0, T(S’S)[O} .p < nil
5 imax — i_r?i2nm{i | C < 4§t}
6 for ¢ < 11t04,ay dO
7 c; — o
8 forallveVdo
9 T(s,'u) [Cz]w — T(s,v) [Ci—l}JU
10 T(s,'u) [Ci]'p — T(s,v) [Ci—l]-p
11 for each linke(v,u) € E do
12 if (ce < ¢;) then
13 c— max {07 |8 < ¢ —ce}
J=1,2,---
14 if Ts,0)[c].w 4+ we < T)ci]-w then
15 T(&u) [cl}w — T(s,'u) [C]’w + we
16 Ts,u) [¢i]lp— v

Figure 10: Algorithm RSP-GEN

1 = 27 we haveT(syt) [c;].w < 15, wherec; = 6° = 13.11. We conclude that the algorithm identifies a

path whose weight is at most = 15, and whose cost is at mos3.11 < (1 4+ ¢)C(P) = 22. In fact,
Algorithm RSP-GEN applied fof7, s, ¢ = 2 andw = 15, yields a pati{s, u1, us, t} whose cost i43,
which is1.18 times more than the optimuri).

Algorithm RSP-GEN constitutes the first phase of our precomputation s¢tardets outputi.e.,
the arrayd{, ,,y[c], is used by the second phase. That phase is invoked upon a conmeqtiest between
s and a destination nodec V, with a QoS requirement.

Upon arrival of a connection request for éumt)-patm5 with a QoS requirement, we first find
the costz of P by settingé = min{c¢; | T(s.plcil.w < W}, wheree; = §°. This operation is performed
through a binary search @(1 H log C) values ofc;, and require)(log(L H log C)) time. The running
time can be improved by considering or@(1 log C) values ofc;, namelyc; = min{é’ | 6} < 67},
whered; = (1 + /3). This improvement yields a running time 6f(log(1 log C)), and, as we prove
below, does not introduces a penalty in terms of approximation’s accuracy

Next, we identify a suitable patR = {s = vg,--- ,v, = t} by using the information stored in
the arrays{T,.[c] | v € G}. Specifically, the predecessog_; of ¢ in P is determined by setting
v, = T(slc].p. Generally, the predecessor ; of v; is determined by setting; 1 = T(, ,,)[%i].p,
wherez; = max {07 |/ < é— C(Py,)} andC(P,) is the cost of the subpath,, ;) of P

=L,2,tmax

discovered so far.

23

4/10

4.7/1
5/7

1/20

Figure 11: Execution of Algorithm RSP-GEN. For each linthe upper number shows and
the lower number shows..

5.2.1 Analysis of the Precomputation Scheme

Lemma 10 Given are a graph, a source node and an approximation parameter For a (arbitrary)
valuew and a (arbitrary) destination nodec G, let c°P* be the cost of a-weight constrained optimal

(s, t)-path, and letP be the path identified by using the arra{/g, ,[c|}, as described above. Then,
C(P)—c?

copt

Proof. See Appendix E. |
Lemma 11 The computational complexity of AlgoritHREP-GENis (’)(%MH log C).

Proof: Let us count the number of iterationg,, of the algorithm’s main loopif. the loop
beginning on line 6). Clearlyjime==1 < C, thuSimae: < 2% + 1. Since for allz > 0 it holds that

— log(4)
log(1 + #) > iz, we have thatog(6) = log(1 + 557) > gz ThUS,imas < (6Hte)logC 4 1 —
O(H5C) Each iteration of the main loop requir€% M) time, hence the complexity of the algorithm
is O(LMHlog O). [|

The above results are summarized in the following theorem.

Theorem 4 Algorithm RSP-GENcomputes, in(’)(%MHlog C) time, ane-approximate solution of
Problem ACOP.

5.3 Discussion

We established a precomputation scheme for Problem RSP that prevaf#snal solutions within a
computational complexity dD(éHM log C) for the first phase an@(log(é) +log log C) for the second
phase.

Compared to an alternative single-phaise.,(“no precomputation”) scheme, our scheme allows to
(significantly) reduce the time required for establishing a new connectindeeld, in a single-phase
scheme, Problem RSP should be solved for each connection requasgttlan:-optimal approximation
to Problem RSP [26], which incurs a computational complexit@@MH(% +loglog H)). We conclude
that the second phase of our scheme allows to identifg-aptimal path upon a connection request
Q times faster.

MH)
e(log(1/e)+loglog C)

24

As previously noted, a precomputation scheme can be trivially construntdtedbasis of existing
approximation algorithms for Problem RSP, such as [26], by sequentiadlguérg them for various
weight values. In order to perform the precomputation for Problem BRf&Palgorithm should be invoked
0 (% log C) times per destination with a total complexity ofO(S%NHM log C') for all destinations,
which is significantly (N /e) times) higher than that of our solution.

6 Conclusion

QoS routing poses major challenges in terms of algorithmic design. On one thenpath selection
process is a complex task, due to the need to concurrently deal with theatmm’s QoS requirements,
as well as with the global utilization of network resources; on the other,l@mhection requests need
to be handled promptly upon their arrival, hence there is limited time to spendlosgaction. In many
practical cases, a precomputation scheme offers a suitable solution t@kenpr a background process
(the “first phase”) prepares a database, which enables to identifyadleupath upon each connection
request, through a simple, fast, procedure (the “second phase”).

While much work has been done in terms of path selection algorithms for QdiSgptihe precom-
putation perspective received little attention. As was demonstrated in this sionhjistic adaptations of
standard algorithms are usually inefficient.

Accordingly, this study investigated the precomputation perspectivejdayitg) two major settings
of QoS routing. First, we focused on the (practically important) special waere the QoS constraint is
of the “bottleneck” typee.g, a bandwidth requirement, and network optimization is sought through hop
minimization. For this setting, the standard Bellman-Ford algorithm offers a lstfaigzard precompu-
tation scheme. However, we showed that, by exploiting the typical hieratctizicture of large-scale
networks, one can achieve a substantial improvement in terms of compultatomalexity.

Next, we considered networks with topology aggregation, which is an itditaol for providing
scalable routing. We indicated that precomputation is an inherent compoh&uS routing schemes
in aggregated environments. Accordingly, we extended our precomputatieme for bottleneck QoS
requirements, in a way that is suitable for topology aggregation. This spegtinsion indicates how
our precomputation techniques can be adapted to aggregated enviroimgsnteral.

Then, we turned to consider the second setting, namely “additive” QoSrearts {.e., delay) and
general link costs. As the related routing problemVi®-hard, we focused osroptimal approximations,
and derived a precomputation scheme that offers a major improvemernhevstandard” approach.

Finally, we note that the precomputation concept is applicable to various @ireatwork control and
management, hence offering a rich ground for future research.

Appendix

A Detailed Description of Procedure RATH

We begin by presenting Procedure GPATH that retrieves the paths (pre)computed by Procedures€
TER. Next, we present Procedurai® that identifies the required QoS path by concatenating paths
returned by Procedure&3-PATH.

A.1 Procedure GET-PATH

Procedure GT-PATH receives as input a layérpeer groud”, a pair ofl’s border nodes$;, b; and a hop
constraint:. The procedure uses the output of Procedure STeRto identify a(b;, bj)—path75 such that
[Pl < handW (P) = F, , \(h).

25

Procedure GET-PATH (T, b;,b;,)
input:
I'- layer+ peer group
b;, b; - I''s border nodes
h- hop count constraint

1 VUV — bj, 75 < @

2 while h — |P| > 0 do

3 u= T(l;,,y)[il —[Pll.p
4 h=T ,h—|P[.c
5 if u,v are border nodes of a childréh of I then
6 P’ —GET-PATH (I, u, v,)

7 PPop

8 else X

9 P —{u,v}oP

0 ve—u

1 return P

Figure 12: Procedure E&5-PATH

If I is a layeri peer group, then we use the following procedure. We first discoveprdaecessor
vy of b;, then the predecessos of v, etc The predecessor,, of v; is determined by setting,; =
T(I;m)[fz —1].p. The procedure returns the pah= {b; = v; - ,v1,b;}.

If T is a layerk peer group, then we need a more elaborated procedure, bePauses through
children of I'. We first identify the children through which the pathruns. Next, we recursively de-
termine the detailed path through each (lagfer- 1)) child crossed byP. Specifically, beginning with
bj, we iteratively discover the predecessoof each node, such that. € G. This is done by setting

u="Th [h — C(P(y p,))]-p, WhereP,, ., is the subpath of identified so far. Ifu andv are border
nodes of some child” of G, then the subpatf®,, . of P is determined by invoking ProcedureeG

PATH onT”. Otherwise,ﬁ(w) comprises of the linku, v) € T'. We continue this process till we reach
b;.
The formal specification of Proceduree@PATH appears in Fig. 12.

A.2 Procedure RrTH

Procedure RrH that identifies, for a peer grodpf and a border node € I'*, a«-weight constrained
optimal (b;, t)-path. Ifk = 1, i.e, I'! is a layerd peer group, such a path was identified by the BFS
algorithm. Fork > 1, Procedure WD yields the minimum cos([bi,t)-pathﬁrk(bi,t) in the auxiliary
graphI'*. Procedure RrH identifies a path i that corresponds t®'" (b;,¢). For each linke €
75Fk(bl-, t), one of the following cases applies:

1. e connects border nodeés; andb;;, of different children off'*. In this case, link is substituted
by a link (b;;, by ;1) € Tk

2. e connects border nodeés; andb;; of the same child’; of I'*. In this case, we substitutewith
the (b, b;;»)-path acros§’;, which is identified by Proceduree3-PATH (Section A.1).

3. e connects a border node of I'*~! and the destination In this case, ProcedurexfH is applied

26

Procedure PTH (%, P)
input:
I'* - layer& peer group
P- the path computed by Proceduranb

1 if k=1then

2 return the path computed in Line 3

3P0)

4 for each linke(u;,u;+1) € P in order of it appearance in the path
5 if u;,u;41 are border nodes daf*~! then

6 letP’ be the path determined in Line 19 fBF—!

7 P’ —PaATH(P', T+ 1)

8 PPop

9 else ifu; andu;,; are border nodes of a child of I" then
10 P’ —GET-PATH(I, uy, g4, Ce)

11 P—PoP

12 elsg R
13 P‘*,PO(UI,UZ_H)
14 return P

Figure 13: ProcedureaPH

recursively forl'*~! and border node; ¢ I'*~1. The linke is then substituted by a path returned
by the recursive invocation of ProcedursTB.

The formal specification of Procedurai® appears in Fig. 13.

B Proof of Lemma 3

Lemma 3 Suppose that the (correct) traversal funct@’ijj b)(h) is available for each paib;;, b;;) of
75595/

border nodes of each child of I". Then, Procedure WSTER, applied onl" and a border nodi, of T,
computes the traversal functidi?‘;o bi)(h) for each border nodg of I
Proof: Through Procedure &-PATH we can identify, for each border nodg of I and each

0 < h < Hp,apathP € ' such thatP| < handW (P) = Ff; , [h].

Next, we prove that, for eadlby, v)-path? in T, it holds thatT(Eoyv) [C(P)].w < W(P). By way of
contradiction, assume that there exist paths for which this condition doéslib Let? = {by,--- ,v}
be such a path of minimum hop count. We denote:lifie last predecessor ofin P and bye the link
(v,u) of P. Since[P,)| < |P| it holds thatTj, ,[C(Ppyw)]-w < W(Py,.)). We consider two
possible cases.

1. When procedure HOPAGATE is invoked with input e in line 12, it holds that
T [C(Pooup)]w < W(Ppyu). In this case, after the execution of the procedure,

T
T(bo,v

)[C(P)].w < W (P), hence resulting in a contradiction.

2. Otherwise, consider the step of the procedure in wmépu) [C(ﬁ(bo,u))]-w was assigned the

valuew < W(75(b07u)). Since linke was already processed by the loop at line 8, this update leads
to a recursive invocation of the proceduredAGATE (line 6) for a linke’(u, v), wherec., < ¢,
and, again, after this invocatio’rzT@O v) [C(P)].w < W(P), resulting in a contradiction.

27

Let P be a(by, b;)-path inl". By Lemma 2 there exists(&, b;)-pathP in T’ such thaC(75) < |P|and
W(P) < W(P). SinceT; ,\[C(P)].w < W(P), it holds thatl(, , [|P|l.w = Fj, ,,[IP[] < W(P),
which completes the proof of the lemma. [|

C Proof of Lemma 6

Lemma 6 Procedure WD, invoked for a source, destinatiort and QoS constrainb, returns the mini-
mum hop count of a-weight constraineds, ¢)-path.

Proof: Letk be the lowest hierarchical layer such that there exists a lapeer grou;f’% for which
s andt are border nodes. A
We prove the following assertion by induction én For each peer group®, 1 < k < k, and for

each border nodé of I'*, Procedure D determines the minimum hop COUAk,, ;) of a w-weight
constrainedb;, t) path inT*,

As a base step, consider the parBhof ¢. After pruning fromI" all links e such thatw, > 0, each
path in the resulting graph satisfies the weight constraint. Thus, the asgeltows from the correctness
of the BFS algorithm.

Assume inductively that the procedure determines, for each borderbpotﬂrk—l, the correct value

of Hy, 1). Letb; be a border node df* and letP be the minimum hop count of@-weight constrained
(b;, t)-path. LetP be a(b;, t)-path inT that corresponds t@, i.e, P = {b; = ug,u1,--- ,t}, where

up = b; anduy is a first node irP afteru;_; that belongs t&. We show that’(P) < |P|. Let (u;_1,w;)
be a link inP. We consider several cases:

1. (w—1,u;) connects two border nodes of some child of I'*. Then, by Theorem 1,
F(E”_l,ul)(|7)(m71»ul)|) < W(P,_,uw))- Hence the cost of the linKu;_1,;) is at most
’P(ulflvul)"

2. (u—1,u;) connects two border nodes of different childre6f Then, (u;_1,1;) € P. Since the
cost of link (w;_1, u;) is assigned a unit costy,, |) < [Pu_,.u)l-

3. (w_1,u;) connects a border node Bf~! and the destination, i.e., w; = t. Then, the inductive
argumentimplies that.,, | w) = Huw,_ 1) < [Pl yu)l-

The above case analysis implies that, for each link ,%;) in P, it holds thateqy,) <

]ﬁ(ul_hul)\. HenceC(P) < |P|, and Dijksta’s algorithm returns a pat whose cost is at mo$P|. Let
P’ be a path in the actual network that correspondg’taSince|P’| < C(P') < |P| andW (|P']) < @
we conclude thaP’ is a minimum hopi-weight constrained path, which implies the correctness of the

assertion and the lemma. [|

D Proof of Lemma 8

Lemma 8 Algorithm AGG-AHOP computes the aggregate traversal funcbﬁ‘ﬁmt ¢) for each node of

G.
Proof: Letw be a (arbitrary) QoS constraint ande a (arbitrary) node ig/.

First, we note that there exists &n v)-path P, such thatrgv) [C(P,w)].w = . PathP can be
identified by using array’sﬁgv), as described in Section 4.3.

28

Next, we prove that, for eadls, v)-path? in G, T(C;’U) [C(P,w)].w < . By way of contradiction,
assume that there exist paths for which this condition does not hold? ket{s, - - - , v} be such a path
of minimum cost. We denote by the last predecessor ofin P and bye the link (u,v) of P. Since

C(Pswy) < C(P) it holds thatT(G;u) [C(P(s.u), W)]-w < 1). We consider two possible cases.

1. When procedure BOPAGATE is invoked with inpute in line 12 of the algorithm, it holds
that Tfu)[C(ﬁ(&u),w)].w <). In this case, after the execution of the procedure,

T(fm) [C(P,w)].w < b, hence resulting in a contradiction.

2. Otherwise, consider the step of the algorithm in wrﬂ@u) [0(75(577”, w)].w was assigned the

valued < w). Since linke was already processed by the loop at line 8, this update leads to a
recursive invocation of the procedur@®PAGATE (line 6) for a linke’(u, v), wherec,s < ¢., and,

again, after this invocatioﬂ,’gv) [0(75, w)].w < w, resulting in a contradiction.

Sincew andwv are arbitrary, the lemma follows. |

E Proof of Lemma 10

Lemma 10 Given are a grapki/, a source node and an approximation parameter For a (arbitrary)
valuew and a (arbitrary) destination nodec G, let c°?* be the cost of ab-weight constrained optimal
(s,t)-path, and letP be the path identified by using the array s)}, as described above. Then,
C(P)—copt <e

copt

Proof: Let P’ = {vy = s,v1,...,u, = t} be aw-weight constrained optimals, ¢)-path. We
denote by¢,, = min {5 |T(sy [67]w < W(Poptj))}'

=12, yimaz (

We prove that, foll < j < h, &, < &/C(P”). The base step is straightforward, smié(é’"pt) =

(s,v5)
¢s = 0. For the inductive step, we assume that< 510(772’”)) holds for1, 2, .., s — 1 and prove that it

holds forj. Let us consider the execution of the the main laap, the loop at line 6, foi = min{l]ci’ >
Co; 1t Clo;_y)} SiNCECy, , < ¢, the value of(,,. ,)[¢,; ,].w was set at a previous iteration of

the main loop. As a result, and Sin@s,yj_l)[évj,l]-w < W(P(offj, 1)), lines 14 and 15 assure that
b _77

Ts il w < W(P("ptj)). Thereforeé,, < ¢; < 6 (Cy, , +co) <6 (c<7>g’5§)])8),

for e = (vj_1,v;), where the last inequality follows from the inductive assumption. %‘l@éofij) =
C(PY,) + ce, we haved,, < C(P{T 1) - 6.

(5,05 (s
We proved that; = C(P) < sho(Pert). From the relatiomog(1+x) <zforz > 1 it follows that,
forzh <1, (1+2)" < = Thus,d" = (1 + ¢57)" < vzpyem < 7 = L+ 327y < 1 +¢/3,

where the last inequallty foIIows from the fact tha< 1. Thus,é < (1 + &/3)C(P°P!). Sinced;
14¢/3, we haveC(P) < (1+4¢/3)é. We conclude thaf'(P) < (14¢&/3)2C(PP!) < (1+¢)C(PP).

C(P)—CPor)
CTPov)

l\-/ll

Hence, < g, and the lemma follows.

29

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G. Apostolopoulos, R. Garin, S. Kamat, A. Orda, T. Przygienda, and D. Williams. QoS Routing
Mechanisms and OSPF Extensions. RFC No. 2676. Internet Engindexiikg-orce, August 1999.

G. Apostolopoulos, R. Garin, S. Kamat, A. Orda, and S. K. Tripathi. Intra-Domain QoS Routingin
IP Networks: A Feasibility and Cost/Benefit AnalysiEEE Network (Special Issue on Integrated
and Differentiated Services for the Internetg(5):42-54, September-October 1999.

G. Apostolopoulos, R. Garin, S. Kamat, and S. Tripathi. Quality of Service Based Routing: A
Performance Perspective. Poceedings of SIGCOMMages 17—-28, Vancouver, Ontario, Canada,
September 1998.

B. Awerbuch and Y. Shavitt. Topology Aggregation for Directed @rs. IEEE/ACM Transactions
on Networking9(1):82—-90, February 2001.

D. Bauer, J.N. Daigle, I. lliadis, and P. Scotton. Efficient Frontierrrulation for Additive and
Restrictive Metrics in Hierarchical Routing. Proceedings of IEEE ICC 200M0ew Orleans, LA,
USA, June 2000.

A. Bestavros and |. Matta. Load Profiling for Efficient Route SelettioMulti-Class Networks. In
Proceedings of IEEE ICNP’9QAtlanta, GA, USA, October 1997.

J.-Y. Le Boudec and T. Przygienda. A Route Pre-Computation Algoritbr Integrated Services
Networks.Journal of Network and Systems Managemat):427-449, December 1995.

T.H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsMIT Press, Cambridge,
MA, USA, 1990.

E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framevorik)oS-based Routing in the
Internet. RFC No. 2386. Internet Engineering Task Force, Aug2@8.1

G. Frederickson and D. Johnson. The Complexity of Selection am#iRg in X + Y and Matrices
with Sorted ColumnsJournal of Computer and System Scien@#s197-208, 1982.

M. R. Garey and D. S. Johnso@omputers and IntractabilityFreeman, San Francisco, CA, USA,
1979.

R. Glerin and A. Orda. QoS-based Routing in Networks with Inaccurate StaltdViatrics In-
formation: Theory and algorithmsdEEE/ACM Transactions on Networking(3):350-364, June
1999.

R. GLlérin and A. Orda. Computing Shortest Paths for any Number of HEfiSE/ACM Transac-
tions on Networking10(5):613-620, October 2002.

R. Hassin. Approximation Schemes for the Restricted Shortest PaltileRr. Mathematics of
Operations Resear¢ii7(1):36—42, February 1992.

T. Korkmas and M. Krunz. Source-Oriented Topology Aggregatiith Multiple QoS Parameters
in Hierarchical Networks ACM Transactions on Modeling and Computer Simulatib®(4):295—
325, October 2000.

W. C. Lee. Topology Aggregation for Hierarchical Routing in ATMtorks. InProceedings of
ACM SIGCOMM’95 Cambridge, MA, USA, April 1995.

D. H. Lorenz and A. Orda. QoS Routing in Networks with UncertainaReeters. IEEE/ACM
Transactions on Networkin@(6):768—778, December 1998.

30

[18] D. H. Lorenz and A. Orda. Optimal Partition of QoS Requirements oicd$n Paths and Multicast
Trees.IEEE/ACM Transactions on Networking0(1):102—-114, February 2002.

[19] K.S. Lui and K. Nahrstedt. Topology Aggregation and Routing indeidth-Delay Sensitive Net-
works. InProceedings of IEEE Globecom’2008an Francisco, CA, USA, November-December
2000.

[20] Q. Ma and P. Steenkiste. Quality of Service Routing for Traffic witifd®enance Guarantees. In
Proceedings of IWQoS’9Tolumbia University, New York, NY, May 1997.

[21] J. Moy. OSPF Version 2. RFC No. 2328. Internet Engineerirgk Faorce, April 1998.

[22] A. Orda. Routing with End to End QoS Guarantees in Broadband NkswiEEE/ACM Transac-
tions on Networking7(3):365-374, June 1999.

[23] D. Peleg and A.A. Shcaffer. Graph Spanndaurnal of Graph Theoryl3(1):99-116, 1989.

[24] C. Pornavalai, G. Chakraborty, and N. Shiratori. QoS BasediRpAlgorithm in Integrated Ser-
vices Packet Networks. IRroceedings of IEEE ICNP’QAtlanta, GA, USA, October 1997.

[25] Private Network-Network Interface Specification v1.0 (PNNIT.M\Forum Technical Committee,
March 1996.

[26] D. Raz and D. H. Lorenz. A Simple Efficient Approximation Schemetlfier Restricted Shortest
Path ProblemQOperations Research Lettei23(5):213-219, June 2001.

[27] A. Shaikh, J. Rexford, and K. Shin. Efficient Precomputation ail@y-of-Service Routes. In
Proceedings of Workshop on Network and Operating Systems SdippArtdio and Video (NOSS-
DAV’'98), Cambride, UK, June 1998.

[28] Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supipg Multimedia Applications.
IEEE Journal on Selected Areas in Communicatjda7):1288-1234, September 1996.

31

