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Abstract

This paper examines the problem of retrieving from a
database of three-dimensional objects the most similar
objects to a given object. We present two novel geo-
metric signatures for 3D retrieval. We also show how
to enrich these signatures with a topological signature.
Finally, we describe an experimental study comparing
the quality of various signatures using several estima-
tion measures, and draw conclusions.

CR Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; I.3.8
[Computer Graphics]: Applications; H.3.3 [Infor-
mation Systems]: Information Search and Retrieval

1 Introduction

Large repositories of digital 3D objects have become in-
creasingly common in many fields, including e-commerce,
medicine, entertainment, molecular biology, CAD and
manufacturing. The existence of large databases cre-
ates a need for efficient techniques of shape-based re-
trieval of 3D models.

Shape-based retrieval is usually done in two steps.
First, each object in the database is compactly rep-
resented by a signature. Second, a retrieval algorithm
compares signatures and ranks objects according to the
similarity of their signatures. In this paper we focus on
developing representative signatures.

In the last few years, several papers dealing with
3D object retrieval appeared. In [4] a vector of preset
order shape moments is used as a signature. In [12]
an object is represented by a probability distribution
sampled from a shape function measuring global geo-
metric properties, such as the distribution of Euclidean
distances between pairs of randomly selected surface
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points. In [6], a topological matching method is pro-
posed, where a multi-resolution Reeb Graph is com-
puted and considered a signature. In [13] descriptors
based on cords, moments and wavelets are described.
In [16] spherical harmonics are used, where a spheri-
cal function is sampled in many points, yet the map
is characterized by a few parameters. In [9] a shape
descriptor that represents a measure of reflective sym-
metry for an arbitrary 3D voxel model for all planes
through the model’s center of mass, is proposed.

This paper proposes two novel geometric signatures:
a sphere projection signature and an Octree signature.
The sphere projection signature attempts to capture
the global characteristics of a 3D object by computing
the amount of “energy” required to deform it into a
pre-defined shape. The Octree signature provides a
hierarchical representation of an object. The paper also
shows how to enrich the above geometric signatures
with a topological signature.

An important issue is how to assess the quality of
signatures. Typically, each technique is tested on dif-
ferent databases using different criteria, which makes it
hard to compare signatures. In this paper we discuss a
few general measures for evaluating signatures. These
measures are based on the work done in the field of
information retrieval [1, 2, 8, 15].

Finally, we describe a comparative study we con-
ducted. We collected from the Internet a database
containing 1850 objects. Our proposed signatures were
compared to other signatures discussed in the litera-
ture [4, 12] using various estimation measures.

The rest of this paper is organized as follows. Sec-
tion 2 introduces our novel signatures and shows how
to enrich them with topological properties. Section 3
describes methods for achieving invariances to resam-
pling, simplification and rigid deformations. Section 4
presents retrieval performance evaluation techniques.
Section 5 presents our experimental study. Finally,
Section 6 concludes this paper.
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2 Signatures

The goal of shape-based object retrieval is to rank ob-
jects according to their similarity to a given object. To
make this scheme feasible for large databases, instead
of comparing the objects themselves, signatures asso-
ciated with each object are compared. Signatures are
generated off-line, during a preprocessing step, while
a retrieval query is processed on-line, as illustrated
in Figure 1.

(a) Preprocessing (b) On-line retrieval query

Figure 1: 3D Object retrieval using signatures

A signature should be a compact representation of
an object which suffices to uniquely identify it, yet re-
flects similarities and dissimilarities between objects.

We assume that objects are given in VRML or in
any other format that represents a surfaces of an object
by a set of vertices and a set of planar polygonal faces
embedded in three dimensions.

We propose below two novel signatures : a sphere
projection signature and an Octree signature. Then
we show how to enrich the above geometric signatures
with a topological signature.

2.1 Sphere Projection Signature

The sphere projection signature attempts to capture
the global characteristics of the object by computing
the amount of “energy” required to deform it into a pre-
defined three-dimensional shape, in our case a sphere.

Let ~F be the applied force and let dist be the dis-
tance between the enclosing sphere and the object sur-
face. The energy required to deform an object is given
by

E =

∫

dist

~F ·d~r. (1)

We assume that the force is constant along this dis-
tance and is also constant for all the points on the
object’s surface. Therefore, the energy is proportional
to the average distance between the sphere and the
object.

We define the sphere projection signature as a con-
catenation of three sub-signatures: the distance from
the sphere to the object D1, the distance from the ob-
ject to the sphere D2 and the variance of radii D3.

The first distance, D1, is a bi-variate function which
represents the minimal distance from the enclosing sphere
to the object’s surface. Let R be the radius of the en-
closing sphere, (θ, φ, R) be spherical coordinates, P(θ,φ,R)

be a point on the enclosing sphere, and O be the set of
points on the object’s surface. Then:

D1(θ, φ) = min
o∈O

(||P(θ,φ,R) − o||). (2)

D1 is not sufficient for describing non star-shaped
objects. Consider, for instance, a sphere with a cylin-
drical hole from one pole to another. Had the signature
consisted only of D1, the signature of this object would
be identical to the signature of the ball with dents on
the poles.

To solve this problem, we consider D2, a bi-variate
function which represents the distance to a sphere. We
denote the set of object points having the same spheri-
cal coordinates (θ, φ) by G(θ, φ), and the size of G(θ, φ)
by |G(θ, φ)|. Then

D2(θ, φ) =

∑
r∈G(θ,φ)(R − r)

|G(θ, φ)| , (3)

where r is the radius of a point in G(θ, φ). If the size of
G(θ, φ) is infinite, the sum is replaced by an integral.

In practice, in order to calculate the distances, the
sphere’s surface is first sampled, producing a 2D mesh,
M, of points distributed on the sphere’s surface, as il-
lustrated in Figure 2. Let R be the radius of the sphere
and m and n be parameters defining the size of the sig-
nature, then for 1 ≤ i ≤ m, 1 ≤ j ≤ n, the ijth sample
point is defined as:

(
2π(i − 0.5)

m
,−0.5π +

π(j − 0.5)

n
,R

)
. (4)

Figure 2: Sampling the sphere

Next, a set of points O, distributed uniformly over
the object’s surface, is drawn. The number of points
drawn from each object’s face is proportional to its
relative surface area.



The entries of the distance matrix D1 are defined
by:

Dij
1 = min

o∈O
(||Mij − o||). (5)

Similarly, for each sampled point o = (θ, φ, r) ∈ O,
a sample point on the sphere having the most similar
angles θ and φ is found. Thus, for each sphere sample
point, a corresponding set of object points, Gij , is pro-
duced. The entries of the distance matrix D2 are then
defined by:

Dij
2 =

∑
r∈Gij

(R − r)

| Gij | . (6)

Finally, D3, the variance of radii, is calculated. While
D1 and D2 describe either an average or an extreme
property of a spherical angle, D3 describes the local
properties of spherical angles. It represents the simi-
larity (or deviation) within a specific angle to the sur-
face of a sphere. Let mij be the mean of the radii, r, of
the points in the set Gij . The entries of the signature
matrix D3 are defined by:

Dij
3 =

∑
r∈Gij

(r − mij)
2

|Gij |
, (7)

The final signature of a given object is defined as a
matrix D whose entries Dij each consists of a concate-
nation of three entries: Dij

1 , Dij
2 and Dij

3 .
Given two signatures, a simple way to compare them

is to reorder each signature matrix into a vector and
use an L2 metric (i.e. a Euclidean distance). The
advantages of an L2 metric is its simplicity and its
low complexity. Its drawback is that it does not take
into consideration the positions of the signature entries.
To overcome this limitation a Quadratic Form Dis-
tance [5, 7] function or an Earth Mover’s Distance [14]
algorithm can be used. Our experimentations revealed,
however, that the latter do not achieve drastic improve-
ments in the retrieval results, yet increase the retrieval
running time considerably.

2.2 Octree Signature

An Octree is a common way to represent three-dimen-
sional objects. The key idea behind the Octrees signa-
ture is to represent an object hierarchically, so that a
coarse-to-fine comparison can be applied to determine
similarity.

Recall that in an Octree, the root of the tree repre-
sents the axis aligned bounding box of the object. Each
node is recursively divided into eight equal sub-boxes,
until the whole sub-space of the box is either entirely
inside or entirely outside the object.

To determine the similarity between Octree signa-
tures, the volumes of the nodes are compared bottom
up. At each step of the recursion, the difference be-
tween the filled volumes of every two corresponding

nodes (one from each Octree) is calculated. Let Vi be
an Octree internal node, having eight children Vij , 1 ≤
j ≤ 8. The unweighted volume difference ∆Vi is defined
as ∆Vi = Σ8

j=1|∆Vij |. For instance, for the Quadtree

in Figure 3, ∆V1 = ∆V2 = 0, |∆V3| = |∆V4| = 1
4 ,

thus the difference between the parents is defined as
∆V = |∆V1| + |∆V2| + |∆V3| + |∆V4| = 1

2 .

Figure 3: Volume difference calculation

To distinguish between objects having a similar Oc-
tree structure but different bounding boxes we define
S, the similarity between Octrees nodes to be a func-
tion of the weighted volume difference:

S = (1 −△V ) cos α, (8)

where α is an angle between the two diagonal vectors of
the objects’ bounding boxes, originating from the box
centers to a corners, as illustrated in Figure 4. Note
that two identical Octrees have S = 1 whereas as the
Octrees become less similar, S decreases towards zero.

(a) Unwighted volume difference (b) Similarity
∆V = 0 S = (1 − ∆V ) cos α

Figure 4: Nodes having the same structure but differ-
ent bounding boxes

To decrease the search time, the comparison of Oc-
tree signatures is performed in a coarse-to-fine manner.
During the initial search, over the whole database, only
a few levels of the Octree are compared. Then, a more
precise search, using more levels, is applied to the set
of most similar objects of the coarse search.

The main disadvantage of the Octree signature is
that even when only a few levels are considered, gener-
ating the signature takes a relatively long time and the
storage needed is relatively high (as will be discussed
in Section 5). Another disadvantage is the difficulty in
applying relevance feedback techniques which require
the signatures to be represented as feature vectors.

2.3 Topological Signature

We describe how to enrich geometric signatures by in-
cluding topological properties. Given an object in R

3,



its Betti numbers provide some important properties [3,
10]. Betti zero, β0, is the number of connected com-
ponents; Betti one, β1, is the number of independent
tunnels; Betti two, β2, is the number of closed regions
in space.

We assume that each object consists of one or more
two-manifold components. To find the number of con-
nected components β0, a BFS or a DFS is applied to the
dual graph of the object. In the dual graph, each ver-
tex represents a face in the model, and there is an arc
between two vertices if their corresponding faces are
adjacent. Next, each connected component is tested
for closedness (β2) by checking that each triangular
face has three neighbors. To calculate β1, the Euler
number, χ, is used.

χ = β0 − β1 + β2, (9)

or equivalently:
χ = v − e + f, (10)

where v, e, f are the number of vertices, edges and
faces respectively. Thus β1 is given by:

β1 = β0 + β2 − χ = β0 + β2 − v + e − f. (11)

The simplest way to compare Betti number signa-
ture vectors is to use either an L1 or an L2 metric. The
problem, however, is that there is a substantial differ-
ence between the comparison of small and large Betti
numbers. For instance, the difference between 2 and
3 connected components is more significant than the
difference between 3298 and 3299. Thus, a logarithm
function, which is a slowly increasing function, is used.

Figure 5 compares the results of two queries when
using only the sphere projections signature, only the
topological signature, and a combination of the two.
For a calf, the geometric signature achieves good re-
sults, but not the topological signature. This is be-
cause all 4-legged animals are similar geometrically, but
there are many other objects resembling the calf topo-
logically. Trees, however, are not necessarily similar
geometrically. Yet, they are usually modeled similarly
by designing one element (e.g., a leaf) and copying it
multiple times, thus they all have a large number of
components (branches, leafs). Therefore, in this case
the topological signature achieves good results. In both
examples, the best results are achieved when a combi-
nation of topological and geometric signatures is used.

Often, Betti numbers can also help for retrieving
objects which are non-rigid deformations of each other,
such as people in different motions. This is so because
these objects are modeled using the same prototype
and changing the position and orientation of different
parts. Thus, they have the same Betti numbers.

3 Desirable Properties

This section discusses how to achieve invariance to re-
sampling, simplification and rigid transformations. To
accomplish invariance to resampling and simplification,
points are distributed uniformly on the surface of the
model and the signatures are computed for these points.
This is done as follows.

The area of each triangle is first stored in an array
along with the cumulative area of triangles visited so
far. Next, a triangle is drawn with probability propor-
tional to its area. Finally, a point on this triangle is
drawn.

Let (A,B,C) denote the vertices (A,B,C) of the tri-
angle. In [12] it is proposed to generate two random
numbers, r1 and r2, 0 ≤ r1, r2 ≤ 1, and to generate a
point by evaluating the following equation:

P = (1 −√
r1)A +

√
r1(1 − r2)B +

√
r1r2C. (12)

Another alternative is to use Barycentric coordi-
nates. A random number s, 0 ≤ s ≤ 1, is drawn fol-
lowed by drawing a random number t, 0 ≤ t ≤ (1− s).
The point is defined as P = A + (B −A)s + (C −A)t.

We implemented the following method which is less
costly than [12], yet distributes the points uniformly,
as demonstrated in Figure 6. Two random numbers, s
and t, 0 ≤ s, t ≤ 1, are drawn. A point above the line
l : s = 1− t is reflected about l, i.e. s←1−t, t←1−s, for
all s+t>1.

(a) Osada et al (b) Barycentric (c) Our method

Figure 6: Distributing 1000 points

To achieve invariance to rigid transformations, each
object is normalized prior to signature computation.
This is done using surface moments [4]. The (p, q, r)-
th moment is defined as

mpqr =

∫

∂D

xpyqzrdxdydz, (13)

where ∂D is the object’s surface. Instead of analyti-
cally evaluating this integral, it is approximated by uni-
formly distributing points over the object’s surface, as
described above. Given this set of points, {xi, yi, xi}N

i=1,
the (p, q, r)-th moment is approximated by:

m̂pqr =
1

N

N∑

i=1

xp
i y

q
i zr

i (14)

The first order moments m100,m010,m001 represent
the object’s center of mass. Consequently, subtracting



(a) Calf query - geometry (b) Tree query - geometry

(c) Calf query - topology (d) Tree query - topology

(e) Calf query - geometry + topology (f) Tree query - geometry + topology

Figure 5: Queries using geometric signatures, topological signatures and combinations

them from each point achieves invariance to transla-
tion. After applying a Singular Value Decomposition,
U∇UT = SV D(M̂) on the second order moment ma-

trix, M̂ , the orthogonal matrix U , represents the ro-
tation and the diagonal matrix ∇ represents the scale
in each axis, ordered in decreasing order. Multiplying
each surface point by U rotates the object to its canon-
ical position and dividing each surface point by ∇(1,1)

re-scales the object.
As shown in Figure 7, most 4-legged animals are

normalized in the same manner.

(a) Before normalization (b) After normalization

Figure 7: Object Normalization: 4-legged animals

4 Performance Evaluation

A fundamental issue in Information Retrieval (IR) is
the performance evaluation of retrieval algorithms. An
analytical evaluation is difficult since relevancy can-
not be described mathematically. Instead, benchmarks
are used to evaluate system effectiveness. We describe
several evaluation criteria common in information re-
trieval [1, 2, 8, 15].

We assume that the database consists of several
classes and we expect that given an object, other ob-
jects belonging to the same class, will be retrieved.
The criteria we propose are: nearest neighbor, Preci-
sion/Recall based measurements, first tier, second tier
and cumulated gain based measurements.

1. Nearest Neighbor [6, 12]: Check whether the
second ranked result (assuming the first result is the
object itself) belongs to the same class as the query
object. The final result is an average over all the object
queries.

2. Precision/Recall Based Measurements [1, 11]:
Let C be the set of objects that belong to the same class



as the query, S be the set of all retrieved objects and
I = C ∩ S be the set of retrieved objects that belong
to the same class as the query, as illustrated in Figure
8.

Figure 8: Recall/Precision

Recall is defined as the proportion of the relevant

material actually retrieved: R = |I|
|C| . Precision is de-

fined as the proportion of the retrieved material ac-

tually relevant: P = |I|
|S| . Recall measures the ability

of the search to find all the relevant objects in the
database, while precision measures the ability to re-
trieve top-ranked objects that are mostly relevant.

Unlike classification, for which Recall and Precision
were originally defined, the goal of retrieval is to rank
the results. Therefore, the number of retrieved objects
|S| is not defined a-priori. In our experiments we as-
sume that the number of retrieved objects is the size of
the first screen presented to the user. This assumption
is acceptable since we are interested not in the absolute
Recall/Precision values, but rather in comparing their
values for different signatures.

Dissatisfaction with measuring effectiveness by a
pair of numbers which may co-vary in a loosely speci-
fied way has led to attempts to define composite mea-
sures. A common way to do this is to use the harmonic
mean F-Measure [15]:

F =
2PR

P + R
=

2

1/P + 1/R
. (15)

Unlike the arithmetic mean, the harmonic mean re-
quires both recall and precision values to be high in
order for the mean to be high.

The E-Measure, a variant of the F-measure, allows
different weighting of precision and recall [15]:

E =
b2PR + PR

b2P + R
=

1 + b2

b2/R + 1/P
, (16)

where b measures the relative importance of P or R.
When b = 1 precision and recall weigh equally (E =
F ), when b > 1 precision weighs more and when b < 1
recall weighs more.

3. First/Second Tier [6, 17]: The first tier is the suc-
cess (i.e. objects in the same class) percentage among
the first k retrieved objects, where k is the size of the
class the query object belongs to. The second tier cri-
terion is similar, but k = 2∗(size of the object’s class).
The final result is the average over all the queries.

4. Cumulated Gain Based Measurements: The
list of ranked retrieved objects is turned into a gained
value list by replacing objects’ IDs by their relevance
values [8].

Denote the value of the ith position in the gain vec-
tor G by Gi. Gi = 1 if the objects are in the same class
as the query object, whereas Gi = 0 otherwise. The
cumulated gain vector CG is defined recursively by:

CGi =

{
G1 i = 1
CGi−1 + Gi otherwise.

(17)

The cumulated gain vector with a discount factor,
DCG, is defined recursively by:

DCGi =

{
G1 i = 1
DCGi−1 + Gi/ log2 i otherwise.

(18)

Here, objects located further down the list are consid-
ered less relevant. This is done in order to accommo-
date for users who are typically “impatient” and are
less likely to examine results far down the list.

Comparing two DCG curves is not always conve-
nient, since the curves may intersect each other. To
remedy this problem, we assume that the number of re-
trieved objects equals the size of the first screen. Then,
the values of a predefined entry of CG or DCG vectors
are compared. Measuring the algorithm’s performance
with a single value for each query is done by normaliz-
ing by the best possible result:

DCG =
DCGk

1 +
∑|C|

j=2
1

log
2
(j)

, (19)

where k is the number of retrieved objects and |C | is
the size of the class the query belongs to. The overall
result is the average over all queries.

5 Experimental Results

This section describes our comparative study. We col-
lected a database containing 1850 objects from the In-
ternet. A subset of the database (725 objects) was clas-
sified into 25 different classes, each containing similar
objects. The remaining objects were not classified and
thus were not used as query objects. Table 1 describes
the classes of the objects.

We compare four signatures: (1) our sphere projec-
tion signature used jointly with the topological signa-
ture, (2) the Octree signature, (3) shape moments [4]



Class Size Class Size

4-legged animals 32 Airplanes 95
Bottles 15 Cars 57
Chairs 50 Chess 12
Couches 18 Doors 11
Faces 6 Glasses 5
Guitars (violins) 17 Helicopters 12
Knifes (swords) 38 Missiles 24
People 78 Plants 47
Race cars 20 Rifles 28
Space Ships 55 Submarines 10
Tanks 12 Teapots 11
Trees 53 Vases 9
Zeppelins 10

Non-Classified 1125
TOTAL 1850

Table 1: Database organization

and (4) shape distributions [12]. The moments signa-
ture is a vector of the (p,q,r)-th moments. The shape
distributions signature represents object by a probabil-
ity distribution sampled from a shape function such as
the distribution of Euclidean distances between pairs
of randomly selected surface points.

We used 72 bins for each distance in the sphere pro-
jection signature. Thus the length of this signature is
72 × 3 = 216. The height of the Octree signature we
used is 4. In the shape distributions signature, the
number of bins for each histogram for each measure
is 100. The maximum moment order in the moments
signature is 6.

Figure 9 shows some retrieval results. Visually, the
sphere projection signature outperforms the other sig-
natures. For instance, nine 4-legged animals were re-
trieved among the top ten using the sphere projection
signature, while only three, four and six were retrieved
using the Octree, shape distribution and moments, re-
spectively.

To compare the average performance, each object
from the above classes was used as a query object. A
retrieved object is considered relevant, if it belongs to
the same class of the query object.

Our results, averaged over all queries, are displayed
in Figure 10 where the evaluation measurements dis-
cussed in Section 4 are used. The graphs in Figure 10(a)-
(d) show the average performance for 9 classes. The
first 9 × 4 bars show the results for each class and the
last 4 bars show the total average of all the objects
within all 25 classes.

These results indicate that the sphere projection sig-
nature performs better than the other signatures. The
Octree signature fails to describe some classes, e.g.,

animals or trees, but overall, it fares reasonably well.
Moreover, these figures show that there is a very high
correlation between different evaluation criteria.

Figure 11 illustrates the average performance of the
topological, the geometric and the combined signatures
according to the Discount Cumulated Gain (DCG) mea-
surement. Seven classes are presented, where the first
five have a similar geometric structure and the last two
(plants and trees) do not. Using a combined signature
achieves a high performance for all the classes. Aver-
aging over all the queries (right column) shows that the
combined signature is more effective for a wide range
of queries.
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Figure 11: Average performance using topological, ge-
ometric and combined signatures

To illustrate the robustness to level of detail, con-
sider the Teapots class (Figure 12), which contains 11
different teapots, out of which 8 are full teapots with
different number of faces (256–40000) and 3 are partial
teapots (lacking a handle, lacking a lid and containing
the body only). Figure 13 compares the performance of
the signatures, where it is shown that the most robust
signature is the sphere projection. A possible explana-
tion is that this signature captures the global shape of
the teapot, and thus fares better than signatures based
on local characteristics.

Figure 12: The Teapot class

Finally, Table 2 compares the signature size and the
time needed to generate the signatures. The results are



(a) sphere projection (b) Octree

(c) shape distribution (d) moments
(1) Query object – Cow

(a) sphere projection (b) Octree

(c) shape distribution (d) moments
(2) Query object – Car

(a) sphere projection (b) Octree

(c) shape distribution (d) moments
(3) Query object – Chess

Figure 9: Retrieval results – the query object is at the left upper corner



(a) Nearest Neighbor (b) 2nd Tier

(c) DCG Measure (d) F-Measure
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Figure 10: Average performance using various evaluation criteria



Figure 13: Robustness to level of detail

calculated by averaging over the whole database, run-
ning the algorithms on a Pentium 4 1.6GHz, 256MB
RAM machine. It can be seen that both the stor-
age and the running-time of the sphere projection and
shape distribution are similar. The moments signature
is computationally the most efficient signature, while
the Octree is the least efficient one.

Signature Size Generation Time

Spheres 2.3k 2.1sec
Distributions 2.0k 1.9sec
Octrees 8.2k 2.6sec
Moments 0.4k 0.9sec

Table 2: Time and space complexity

6 Conclusions

This paper has introduced a couple of novel signatures
of 3D objects for content-based retrieval: a sphere pro-
jection and an Octree. It has also shown how geometric
signatures can be enriched by a simple topological sig-
nature. Finally, the paper has presented a comparative
study of signatures, using various evaluation measures
common in information retrieval. The sphere projec-
tion signature was shown to outperform the other sig-
natures considered in this study.

We are currently working on augmenting the sphere
projection signature with novel relevance feedback schemes.
We also intend to handle invariance to non-rigid trans-
formations
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