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Abstract

Achievable rates are characterized for successive refinement in the Wyner—Ziv scenario, namely,
in the presence of correlated side information (SI) at the receiver. In this setting, the encoder is
assumed to operate in two stages, where the first corresponds to relatively low rate and high distortion,
and the second, comprising a refinement code on top of the first code, is aimed at reproduction at
reduced distortion. Both decoders (for low-rate/high-distortion and for high-rate/low-distortion) are
equipped with SI streams, correlated to the source, but unavailable to the encoder. Furthermore, it
is assumed that the decoder that receives the higher rate bitstream, i.e., the additional refinement
bits, accesses also SI of better quality (in a sense that will be defined later) than that of the lower
resolution decoder. For a memoryless joint process (that includes the source to be encoded and its
instantaneously correlated SI streams), necessary and sufficient conditions are furnished, in terms of
single—letter formulas, for the achievability of a pair of rates, corresponding to two given distortion
levels. Special attention is devoted to the degenerate, but important, case where the two SI streams,
at the two decoders, are identical. For this case, conditions are provided for successive refinability in
the sense of the existence of codes that asymptotically achieve the Wyner—Ziv rate—distortion function,
simultaneously at both distortion levels. In this context, the doubly symmetric binary source (with
the Hamming distortion measure) and the jointly Gaussian source (with the squared error distortion
measure) are shown to be successively refinable in the Wyner—Ziv setting. It is also demonstrated
that a source that is not successively refinable in the ordinary sense (i.e., without SI) may become
successively refinable in the presence of SI at the decoders.

Index terms — Side information, successive refinement, scalable coding, progressive coding, mul-

tiple description, Wyner-Ziv problem.
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1 Introduction

The problem of successive refinement of information was originally formulated by Koshelev [7], and
by Equitz and Cover [4], who viewed this problem as a special case of the more general multiple
description problem. In their original setting, a source X is to be encoded and transmitted to its
destination over a rate-limited channel. To this end, due to the fact that the channel is rate-limited,
the encoder produces a compressed bit string S at rate R;, from which the decoder produces X , an
approximation of the original source at distortion level D, according to some distortion measure
d(-,-). Rate—distortion theory tells us, as is well known, that the minimal rate R; that is needed in
order to enable reproduction of the source at accuracy Dy is given by Rx(D;), the rate-distortion
function of the source at distortion level Di. At a later stage, a more accurate description of the
source is needed, and the encoder sends a secondary string of compressed bits, Sa, at rate AR, to
the destination. The decoder, having at hand both strings S and Sa, produces a more accurate
reproduction of the source, X, at distortion level Dy (D9 < D1). Invoking again the fundamental
limits of rate-distortion theory, the total rate R; + AR cannot be lower than Rx (D2), the rate—
distortion function evaluated at the corresponding distortion level. The best one can hope for,

then, is that the two rates simultaneously lie on the rate-distortion curve, i.e.,
Ry :Rx(Dl), and R1+AR:RX(D2). (1)

This, however, is not always possible. In general, some penalty might have to be paid for suc-
cessive coding. In the ideal situation, where successive coding, in two or more stages, can be
made rate-distortion optimal simultaneously at all stages, the source is called successively refin-
able. Koshelev [7], [8], and Equitz and Cover [4], have shown that a necessary and sufficient con-
dition for a source to be successively refinable is that the conditional distributions PX\  and PX\ x
that achieve the rate distortion function at distortion levels Do and D1, respectively, are Markov
compatible in the sense that they can be represented as a Markov chain X o X o X. Equitz and
Cover have shown a few examples of successively refinable sources. In particular, it was shown that
Gaussian sources with the squared error distortion measure, general discrete memoryless sources
(DMS’s) with the Hamming distortion measure, and Laplacian sources with the absolute distortion
measure, are all successively refinable. Moreover, an example of a source that does not satisfy the
Markov condition was given, thus showing that the problem is not redundant, i.e., not every source

is successively refinable.



Clearly, the theoretical and practical value of successive coding is not limited to successively
refinable sources. Successive coding is suitable to any application where a relatively coarse de-
scription of the source suffices at the first use of the data, and fine details are needed only at
some later stage. Transmission of the fine details, which comprises the refinement stage, may take
place upon user request or upon availability of additional system resources, like free time slots or
extra bandwidth in a network communication environment, reduction of cost of channel use, etc.
In [7],! Koshelev characterized the set of all quadruples (R;, Ry + AR, Dy, Ds) that are achievable
via successive coding for a general DMS (that is not necessarily successively refinable). From this
more general characterization, the Markov condition for successive refinability is readily obtained

as a byproduct.

The above description of earlier work on successive refinement of information serves as one part
of the background for this work. The other part has to do with rate-distortion coding with side
information (SI) at the decoder, which is well-known as the Wyner—Ziv problem [12], the lossy
counterpart of a certain version of the Slepian—Wolf setting. In some source coding applications, it
is plausible to assume that the decoder has some knowledge about the encoded source, which is not
available to the encoder. For example, consider an airplane taking aerial photographs of a certain
area, for the purpose of later processing (e.g., updating maps) on the ground. The photographs
are encoded and transmitted to a base-station, and on the ground, the decoder reconstructs the
aerial photos. For that purpose, the decoder takes advantage of previously existing data about
the photographed area — for example, previous photographs, maps, etc. Since the equipment on
the plane should be light and compact, the encoder is kept as simple as possible, and thus it does
not utilize previous photographs or maps of the area in the encoding process. Another application
of source coding with SI at the decoder is that of systematic source/channel coding, suggested
by Shamai and Verdd for lossless coding [10], and extended later to lossy coding in [11]. In their
setting, an analog information source is to be transmitted to the receiver and reconstructed at some
distortion level D. For that purpose, the sender has access to two channels: an analog channel, over
which the source is transmitted uncodedly (the systematic part), and a digital channel, over which
digital, coded information about the source is sent. The receiver has access to the two outputs.
The output of the analog channel is the original analog source corrupted by noise. By contrast,
essentially no errors are introduced by the digital channel, as the information is channel-coded.

Such a model arises, for example, when an analog communication system is upgraded with a digital

!See also Rimoldi [9].



system, but back—compatibility for users utilizing only the analog part is being kept. Now, observe
that the output of the analog channel serves as SI about the source, which is accessible to the

decoder but not to the encoder.

The main result of Wyner and Ziv [12] is as follows: Let Z be the SI, available to the decoder
only, and having joint distribution Py 7 with the encoded source X. The encoder, although ignorant

of the specific realization of the SI, has full knowledge of this joint distribution. Let Rﬁq ,(D) stand

for the minimal achievable rate for coding with SI. Wyner and Ziv have shown that
Ri(D) = minI(X;U|2), (2)

where the minimization is over all random variables U such that Ue X e Z is a Markov chain and

such that there exists a function f of U and Z such that

Ed(X, f(U, Z)) < D. (3)

This work is a joint extension of the results of [7], [8], and [9] on the one hand, and the results of
[12] on the other hand. Analogously to the previous works on successive coding, where classical rate-
distortion theory forms the base of reference, here this role is played by the Wyner—Ziv result (2),
(3). In particular, let Ry, AR, and Dj, Dy be the rates and distortion levels of the coarse and
refinement stages, respectively, as defined for the classical successive refinement above. Let Z, Y
be the SI available to the decoder at the coarse and at the refinement stages, respectively (see Fig.
1). The natural question that may be asked, in this setting, is what is the set of all achievable
quadruples (Ry, AR, Dy, D) and how to achieve every such quadruple. Note that for a general
joint source, (X,Y, Z), there is no guarantee that Dy < D; since the SI available at the first stage,
Z, may be better than the SI available at the second stage, Y. Indeed, this seems to be quite a
difficult problem, and we have not been able to fully characterize the achievable rates and distortion
levels when no structure is imposed on the joint distribution of the source and SI. However, we
have been able to fully characterize the set of all achievable quadruples (Ry, AR, D1, Dy) for the
special case where the Markov relation X e Y e Z hold, namely, the ST Y can be considered to be
of better quality than Z. From the practical point of view, this structure is not too restrictive.
To illustrate this point, let Z, ZA be the SI received at the destination at the coarse and at the
refinement stages, respectively, and assume that for the purpose of decoding at the refinement
stage, the decoder has at hand both Z and Za, ie., Y = (Z,ZA). Then the Markov structure
XY e Z does hold.
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Figure 1: Successive refinement with side information (SI) at the decoder.

As an application of successive coding with increasing levels of SI, consider again the setup
of [11]: We have an analog communication channel, which was upgraded with a digital channel.
Since back—compatibility for subscribers utilizing only the analog part is kept, coded source-words
are sent over the digital channel and, simultaneously, the source is sent uncodedly over the analog
channel. The output of the analog channel serves as SI at the decoder. In this setup, whenever
refinement information is sent over the digital channel (by user request, or by availability of digital
channel resources), additional SI Z A arrives as well at the decoder via the analog channel. If all
past SI is being stored at the destination, we have a Wyner—Ziv successive coding scheme with the

Markov structure XeY & Z.

Analogously to (1), a source is successively refinable if
R, = R}‘Z(Dl), and Ry +AR= R§(|Y(D2) (4)

Note, however, that the codewords sent at the first stage are supposed to be decoded with the
“weak” SI Z, and thus some rate might be lost relative to the case where the vector Y is available
to the decoder already at the first stage. In such case, the source cannot be successively refinable.
We show later that a necessary condition for successive refinability to hold, is that the SI Y is
equivalent (in a sense that will be made clear in Section 3.2) to the SI Z at distortion level D;. One
special case of such equivalence is when the SI random vectors are identical, i.e., Y = Z. However,
there are also other cases where successive refinability holds, and the concept of equivalence of SI

turns out to be more general than the requirement ¥ = Z.



A problem related to successive coding with SI is that of coding when SI may be present (or
absent), which was studied by Heegard and Berger [5] and independently by Kaspi [6]. Specifically,
suppose that in the classical Wyner—Ziv setting (i.e., no successive refinement), two levels of SI
may be available to the decoder: Z, or a “better” description Y. The encoder strives to guarantee
two levels of distortion: D, if only Z is available, and Dy < D; if the better SI Y is available.
Heegard and Berger [5] derived a single-letter formula for the minimal rate needed to guarantee
the pair of distortion levels (Dy, D2). Clearly, this model is a special case of the model considered
here with Ry = Ry (cf. Fig. 1), and it should be pointed out that even in this case, Heegard and
Berger could find full characterization of achievable performance only under the assumption of a
Markov structure X e Yo Z, and the general case, of a joint distribution of (X, Y, Z), was left open.

A—fortiori, it would then be hard to expect a complete characterization for Ry > R;.

This paper is organized as follows: Notation and definitions are provided in Section 2. The
main results are presented and discussed in Section 3. Examples of sources which are successively
refinable with SI are given in Section 4. In Section 5, we present an extension of part of the results
of Section 3 to multistage successive coding schemes. Finally, the proofs of the main theorems are

given in Section 6.

2 Notation and Preliminaries

We begin by setting up the notation. Let & be a finite set and let X" be the set of all n-vectors

with components in X. A member of X" will be written as " = (z1, 2, -, z,), and substrings

! = (24, Tit1,...,x;) for i < j. When i = 1, the subscript will be omitted.

of 2™ are written as x
When the dimension is clear from the context, vectors will be denoted by boldface letters, e.g.,
x € X". A similar convention is used for random variables and vectors, which are denoted by
upper case letters. A discrete memoryless source (DMS) (X, Px) is an infinite sequence {X;}°, of

independent copies of a random variable X taking values in X with a generic distribution Py, i.e.,
n
i=1

Similarly, a triple source (XYY Z, Pxyz) is an infinite sequence of independent copies of the triplet

of random variables (X,Y,Z) taking values in the finite sets X, Y, and Z, respectively, with

generic joint distribution Pyxyz. The induced marginals and conditional distributions are denoted



by the corresponding subscripts, e.g., Px, Pyz, Pz|x, etc. Whenever clear from the context, these
subscripts will be omitted, e.g., Pxz(x, z) will sometimes be denoted simply by P(z,z). Also, with
a slight abuse of notation, and when there is no room for ambiguity, we will denote a source (X', Px)

by referring to its generic distribution Px or random variable X.

We are interested in coding the source X. Let X stand for a finite reconstruction alphabet, and
let
d: XxX—[0,00)

be a single-letter distortion measure. The vector distortion measure is defined, in the usual way,

as

d(z,z) =

S

n
> d(zi,#;) Ve A", &€ A
=1

Definition 1 An (n, My, Ms, Dy, Ds) successive refinement (SR) code for the source X with SI
(Y, Z) consists of a first—stage encoder—decoder pair (¢1,1):

¢1: Xn—>{1,2,...,M1}

Yo {1,2,..., M} x 2" — A", (5)
and a second-stage (or refinement) encoder—decoder pair (g, 1)2):

¢2: Xn—>{1,2,...,M2}

Yo {1,2,..., M} x {1,2,..., Mo} x Y" — X", (6)
such that
Ed(X",¢1(¢1(X"), Z")) < Dy (7)
and
Ed(X"™,12(¢1(X"), p2(X"),Y")) < Do, (8)

where IE stands for the expectation operation.

Remark 1 One may consider a slightly more general definition, without any difficulty in the
analysis, where different distortion measures are used in the two stages, i.e., d in (7) and d in (8).

For the sake of simplicity, however, we use the same distortion measure at both stages.



The rate pair (R, Rg) of the (n, My, Ms, D1, D3) SR code is
1
Ry = _longa
n
1
R2 = E lOg(MlMZ) (9)

Given a distortion pair D = (Dq, Ds), a rate pair (Ry, R2) is said to be D -achievable for X with ST
(Y, Z) if, for any 6 > 0, € > 0, and sufficiently large n, there exists an (n, exp[n(R; +0)], exp[n(Ra2 —
Ri+6)],D1+¢€,Ds+¢€) SR code for the source X with SI (Y, Z). The collection of all D-achievable
rate pairs is the achievable SR region for coding with SI, and is denoted by R(D).

In the sequel, special attention will be given to the case where the SI, available at the two
stages, is identical, i.e., Y = Z and Pxy = Pxz. Therefore, for convenience, we will denote the

achievable SR region for coding with identical SI in the two stages by R;(D).

An immediate consequence of Definition 1 is that R(D) depends on the joint distribution Pxy z
only via the marginals Pxy and Pxyz. Following the terminology in [5] (and also common in the
context of broadcast channels [1]), a source Pxyz is said to be stochastically degraded if exists a
source Pygy 5 such that XeYeZis a Markov chain, P;; = Pxy, and Pg; = Pxz. Since the
achievable rate region R(D) depends only on the pair marginals, no distinction has to be made
between physically degraded (Markov structured) sources and stochastically degraded sources. In
particular, in the case of identical SI, that was mentioned in the previous paragraph, we might as
well assume that Y = Z with probability one, without loss of generality. For a general stochastically

degraded source, we will occasionally use the terms good and bad SI to signify Y and Z, respectively.

3 Main Results

In this section, we present a single-letter characterization of the region of achievable rates for
successive coding with Markov structured SI. Based on this characterization, we derive necessary

and sufficient conditions for successive refinability.



3.1 The Achievable Region

Let a distortion pair D = (D1, D2) be given. Define R*(D) to be the set of all rate pairs (R, R2)
for which there exists a triple of random variables (U, V, W), taking values in finite alphabets, U,
V, W, respectively, such that the following conditions are satisfied:

1. (U, V,W)e XeY e Z is a Markov chain.

2. There exist deterministic maps

fi: UXZ—=X (10)
fa: WxY-= X, (11)
such that

Ed(X, f1(U,Z)) < Di (12)
Ed(X, f(W,Y)) < D, (13)

3. The alphabets U, V, W satisfy:
Ul < |xX|+2, (14)
VI < (1x1+1)% (15)
Wl < |X(1X] +2) (18] + 1) + 1. (16)

4. The rates Ry and Ro satisfy

R > I(X;U|Z)+I(X;V|U,Y), (17)
Ry— Ry > I(X;W|U,V,Y). (18)

Our main result is the following:

Theorem 1 For any discrete memoryless stochastically degraded source, XY o Z,

R(D) = R*(D).

The proof appears in Section 6.



Remark 2 We take this opportunity to point out an inaccuracy in the presentation of the main

results of [7] and [9]. Koshelev and Rimoldi present the achievable rates as

R, > I(X;X)), TEd(X,X,)<D,

R2 > I(X;Xng), Ed(X,XQ)SDZ

Observe, however, that such a presentation includes in the achievable region rate pairs (Ry, Rs)
for which Ry > Rs. This is impossible by the very definition of our coding setup, as R;, ¢ =
1,2 stand for cummulative rates, and thus loss of rate caused by poor design of the first stage,
cannot be compensated for at the second, refinement stage. Note that in [9, Lemma 3], the direct
(achievability) part is proved for R; and the differential rate Ry — Ry, and has the form of our
result with degenerate side information (Y, Z). The upper bound, on the other hand, is proved
for the cummulative rates [9, Lemma 1]. The crux of the problem lies in Lemma 4 there, where

achievability of the cummulative rates is claimed, based on the (correct) result on differential rates.

Remark 3 Due to the conditioning on U in (17) and on U and V in (18), we can add structure

to the auxiliary random variables in the above definition of R*(D), at the expense of increased

alphabet sizes. Specifically, define V =UV, W = UVW. Then we have, instead of condition 1 in
the definition of R*(D), the following structure

UsVeWeXeYolZ (19)

and the bounds on the rates are now read

R > I(X;U|Z)+I(X;V|U,Y), (20)

Ry— R, > I(X;W|V,Y). (21)

It is easy to verify that the distortion levels are not altered by this substitution. Adding this
Markov structure results in increased alphabet sizes [V| = |U| - |V|, and |W| = U] - |V| - [WV|.

Discussion: Observe that if Ry = Ry, i.e., there is no excess rate in the refinement stage, R*(D)
coincides with the region given in [5, Theorem 3]. The random variables U and V in egs. (17)
and (18) represent the information about X that is sent to the decoder at the first stage, at rates

I(X;U|Z) and I(X; V|U,Y ), respectively. Due to the conditioning on Y, the codewords represented

10



by V can be decoded only at the refinement stage. For a given choice of (U, V, W) that satisfies

the above conditions, let us write

Ri=Ri1+ Rip (22)

where
Rl,l == I(X,U|Z) (23)
Rip = I(X;V|U)Y). (24)

Thus, for given Ry, there is a tradeoff between the part of the rate that can be utilized at the first
stage, Ry, 1, and the part that must wait to be decoded at the refinement stage, R . This tradeoff is
controlled by the choice of the random variables U and V. One may question the wisdom of sending
at the first stage information that can be decoded only at the refinement stage. Note, however,
that coding rate can be better utilized at the second stage due to the presence of better SI, Y.
Therefore, coding with R; 2 > 0 is beneficial whenever we want to utilize Y beyond what is possible
with the limited refinement rate Ro — R;. Since V can be decoded only at the second stage, there is
a degree of freedom in deciding whether to send it in the first or the second stage. This can be seen
from eq. (17) as follows: Let (Ry, Ra, D1, D3) be achievable with a certain triplet (U, V, W), and
decompose R; as in (22)-(24). Define W = VW, let V be a null random variable (e.g., constant),

and let (Ry, Ry, Dy, Dy) be the rates and distortion levels achievable with the triplet (U, V,W).

Since the functions f;, fo do not depend on V', the distortion levels do not change, that is

(D1, Dy) = (D1, Dy) (25)
and for the new rates, we have
R = R —Rips=Ri, (26)
Ry = R, (27)
RQ — Rl = Ry—R;+ Rl,g. (28)

We now turn to the important special case of identical SI. Let us define R} (D) similarly as

R*(D) where Y = Z, the bounds on the alphabet sizes (14) and (16) are replaced by

Ul < |x[+2 (29)
Wl < XX +2) +1 (30)

11



and the rate inequalities (17) and (18) are replaced by the following inequalities:
Ry > I(X;U[Y), (31)

Ry— R, > I(X;W|UY). (32)

Defining R;(D) analogously to R(D) with the restriction of identical SI, we now have the following

corollary to Theorem 1:

Corollary 1 For a discrete memoryless joint source (X,Y):

Ri(D) = R;i(D).
Proof. In view of Theorem 1, we have to show that when Y = Z, the characterization of R*(D)
reduces to that of R} (D). Indeed, if Y = Z, by (17), (18) we can write

R, > I(X;U|Z)+I(X;V|U,Y)=I(X;UV|Y) (33)

Ry— R, > I(X;W|UVY). (34)

Observe that the auxiliary random variables U and V appear in the mutual information functions

in (33), (34) always as a pair. The functions f; and fs do not depend on V. Thus we can define a

new auxiliary random variable U = UV and a new function f1(U) = f1(U), without altering the
distortions or the rates. This proves the corollary with the only exception that the alphabet size

of W is given by (16) instead of (30), and that of I{ is given by
U = |-V (35)

instead of the right hand side of (29). The fact that we can restrict the alphabet sizes to those
given by (29) and (30) follows from Carathéodory’s theorem, in a manner similar to the bounds on

the alphabet sizes in the proof of Theorem 1. We omit these details here. ]

3.2 Successive Refinability
The notion of successive refinability with SI is now defined.
Definition 2 A source X is said to be successively refinable from Dy to Dy (D1 > Do) with SI if

(R |z(D1), Ry (D2)) € R(D1, D2). (36)

12



Similarly, a source X is said to be successively refinable from Dy to Dy (D1 > D) with identical
S1Y if
(Rx |y (D1), Rx |y (D2)) € Ri(D1, Da). (37)

A characterization of sources which are successively refinable with SI, in the spirit of the results of

Koshelev and Equitz and Cover, is given next.

Theorem 2 A source X with degraded SI (Y, Z) is successively refinable from D; to Dy if and only
if there exist a pair of random variables (U, W) and a pair of deterministic maps fi : U x Z — X,

and fo : W x )Y — X, such that the following conditions simultaneously hold:

L. Ry ,(D1) = I(X;U|Z) and  Ed(X, f1(U,Z2)) < Dy,

2. R}

X|Y(D2) =I(X;W|Y) and Ed(X,f2(W,)Y)) <Dy,

3. (U,W)e XeYeZ form a Markov chain,
4. Ue (W,Y)e X form a Markov chain.

5. I(U;Y|Z) =0.

Remark 4 Recall that we can use the alternative characterization of R*(D), according to Re-
mark 3, where the auxiliary random variables have the Markov structure Ue Ve W e XeoY e Z,
and increased alphabet sizes. In such a case, conditions 3 and 4 in Theorem 2 are replaced by one
condition Ue We Xe Y e Z. Furthermore, any Markov chain Ue W e XY e Z satisfies condi-

tions 3 and 4 of Theorem 2. We will make use of this fact in the examples in Section 4.

Condition 3 of Theorem 2 implies the Markov structure Ue Y e Z, whereas Condition 5 requires
that the roles of Y and Z can be interchanged, i.e., Ue Ze Y. Note that this condition, in general,
depends on the distortion measure and on the distortion level (via U), hence it is more general
than just requiring that the side information at the two stages be identical: Pxy = Pxz. We give

an example of such source and side information in Section 4.

The random variable V' does not play any role in the conditions of Theorem 2. As discussed

in the paragraphs following Theorem 1, V' is used to encode, at the first stage, information that

13



can be decoded only at the second stage. It turns out that such a coding scheme is suboptimal
for successively refinable sources — if the rate-distortion function can be achieved simultaneously at
both distortion levels, then the first stage should transmitt information that can be decoded as a

whole by the first decoder.

Proof of Theorem 2. We begin with the necessity part. Assume that (37) holds. From Theorem 1,

there exists a triple of random variables (U, V, W) and a pair of maps f1 : UXZ — X, fo: WX Y —

X, such that
(U,V,W)e XeYeoZ (38)
is a Markov chain, and moreover
Ry z(D1) =z I(X;U]2) + I(X;V|U,Y), (39a)
Ed(X, f1(U,Z)) < Dx, (39b)
and
Rx\y(D2) > Ry z(D1)+I(X;W[UVY)
> I(X;U|Z) + 1I(X; VW|UY), (40a)
Ed(X, f,(W,)Y)) < D,. (40Db)
By definition of R, 4(D1), we conclude that
I(X;V|U,Y)=0 (41)

and, in addition, (39a) is satisfied with equality. Thus condition 1 of Theorem 2 holds. The rate

bound (40a) can be written as

Ryy(D2) = I(X;U|Z2) + I(X;VWI|UY)

I(X;UY)+I(X;VWIUY) + [[(X;U|Z) — I(X; U|Y)]

—~

a

= I(X;UVW|Y)+1(U;Y|2)

Nag

> I(X;WIY) +I(U;Y|Z)

®

> Ryy(D2) +1(U;Y]2). (42)
where in (a) we used the Markov structure (38), and (b) holds since knowledge of W suffices to
satisfy the distortion constraint (see (40b)). Hence, the inequalities in (42) can be replaced by

14



equalities, and we conclude that

I(U;Y|Z) = 0. (43)

Therefore, conditions 2 and 5 of the theorem hold. Moreover, from (42) we also conclude that
H(X|U,V,W,Y) = H(X|W,Y), (44)

which can hold only if (U,V)e (W,Y)e X. Hence condition 4 is satisfied. Condition 3 follows
from (38). This completes the proof of the necessity part.

We proceed to prove the sufficiency part. Assume that there exist a pair of random variables
(U, W) and deterministic maps fi, fo, satisfying conditions 1 to 5 of Theorem 2. By the definition
of R*(D1, D2), it remains to show that there exists a random variable V' such that (38) holds, and

Rxz(D1) > I(X;U|Z2)+I(X;V|U,Y), (45)

Ry (D2) — Ry y(D1) > I(X;WIU,V,Y). (46)

Indeed, let V' be a null random variable (i.e., a constant). Then Condition 3 implies (38). Condition

1 of the theorem implies (45). And for the differential rate we have

—~

a

Ryy(D2) — Ry z(D1) = I(X;W|Y)-I(X;U|2)

Nag

D (X, WIY) - I(X;U|Y)

= H(X|UY)- H(X|WY)

9 H(X|UY) - H(X|UWY)

= I(X;W|UY)

9 I(X;W|UVY), (47)
where (a) follows from Conditions 1 and 2 of Theorem 2, (b) follows from Condition 5, (¢) follows

from Condition 3, and (d) holds since V' is independent of all the random variables in the problem.

This completes the proof of the sufficiency part. L]

When there is no SI, the conditions of Theorem 2 reduce to those obtained in [7] and [4] for
successive refinability without SI. To see this, let Y be deterministic and define fl(U) 2 f1(UY)

and fo(W) 2 f2(W,Y). Conditions 1 and 2 of Theorem 2 become the classical rate-distortion
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functions. Conditions 3 and 5 become redundant, and Condition 4 is read Ue W-e X. It remains
to show that whenever X is successively refinable, fg is a one-to-one map (so that Ue W e X results

in f1(U)e fo(W)e X). Notice that for successively refinable source (40b) and (42) imply

R(Dy) = I(X;W) (48)

Ed(X, f2(W)) < Dy, (49)
hence fg must be one-to-one as otherwise, from the data processing theorem
I(X; W) > I(X; fo(W)), (50)

and the coding rate can be reduced to below the rate distortion function R(Ds), which is a contra-

diction.

It is an easy matter to construct quadruples (U, W, X,Y) where no Markov structure holds
for (U, W, X), yet U= (W,Y)e X, i.e., Markovity does hold once SI is introduced. Therefore, the
presence of Y in condition 4 indicates that a source, that is not successively refinable in the absence
of SI, may turn out to be successively refinable when SI is present. We give an example of such a

source in Section 4.

4 Examples of Successively Refinable Sources

In this section, we provide three examples of successively refinable sources in the presence of the
same SI at both decoders. The first example is the Gaussian source with quadratic distortion
measure, the second is the doubly—symmetric binary source with the Hamming distortion measure,
and the third example is of a DMS that is not successively refinable in the absence of SI [4], which
becomes successively refinable in the presence of SI. In the first two examples, we will use Theorem 2
in conjunction with Remark 4, i.e., we demonstrate a Markov chain Ue We XeY that meets the
conditions of Theorem 2. In addition, for the doubly-symmetric binary source, we construct a
degraded SI component, Z, such that Ue Ze Y holds, therefore it is succesively refinable, although
the ST at the two stages is not strictly identical.
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4.1 The Gaussian Source with Quadratic Distortion

The Wyner-Ziv rate-distortion function of this source is mentioned somewhat briefly in [12]. Before
we show that this source is successive refinable, we first describe, in some more detail, the calculation
of this rate-distortion function, and then generalize it into two stages. Let X ~ AN(0,0%) and
N ~ N(O,U]QV) be independent, ¥ = X + N, and let the distortion measure be quadratic, i.e.,
d(z,%) = (z — 2)2. To calculate the Wyner-Ziv rate-distortion function R}‘Y(D), consider the
decomposition? of X as X = W + S, where W ~ N(0,0%,) and S ~ N(0,0%) are independent,
thus, 0% = 0% + 0% It is this decomposition of 0% that controls the tradeoff between rate
and distortion. Considering W as the auxiliary random variable, one readily obtains, from the

Markovity of We X< Y, the following expression for the Wyner—Ziv rate:

IX;WY) = I(X;W) —I(Y; W)

1 o2 1 o2
= Zlog|1+LX)—Zlog|1+ L], 51
20g< +0§> 20g< +0§(> ( )

Thus, to minimize I(X;W|Y) over all choices of W, in this class, one should maximize o% under
the distortion constraint ming E(X — f(W,Y))? < D. Since (W, X,Y) are jointly Gaussian, the
best estimator f is linear, i.e., f(W,Y) = aW + BY. Upon solving for the optimum coefficients, «

and (3, the following relation is found between U?g and D:

2
O'ND D <0_2
o =4 oy P T (52)
ox D >o%y
where
2 2
2 OXON
o = 53
XY 0—%( +U]2\[ ( )

On substituting this expression into (51), one obtains

1 U§(|Y 2
(x;wiy)y=4{ 2165 D<oxy (54)
0 D> U§(|Y

*In this decomposition, W can be represented as W = 6X + S’, where 6 = o}, Jox and S’ ~ N(0,0}, (6% —

o3;)/o%) is independent of X.
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whose optimality, as a solution to the Wyner—Ziv problem, is evident from the fact this is also the

conditional rate—distortion function when Y is available to the encoder as well.

Turning now to two stages, let W be the auxiliary random variable corresponding to distortion
level D = D, and let us further decompose W as the sum of two independent Gaussian random
variables W = U + T, U being the other auxiliary random variable of Theorem 2 , thus keeping
the Markov structure Ue We X oY (cf. Fig. 2). Since W achieves Ry = I(X;W|Y) = }‘Y(Dg),

it remains to show that U achieves Ry = I(X;U|Y) = RfY|Y(D1) for a proper decomposition of W.

Since X =U + S+ T, where U, S, and T are all independent, clearly, the sum (S + T') now plays
the previous role of S, and so the appropriate decomposition of W is readily obtained by choosing

the variance, 0%, of T such that

o2 Dy 2
N D<o
1=
0% +op =4 oy~ Xy (55)
Ox D1 > UX|Y’

which is always possible since (55) is never smaller than (52) with D = Dy. The rate R; =
I(X;U]Y) will then be as in (54) with D = D, namely, R}W(Dl). Thus, we have shown that
the Gaussian source with noisy SI is successively refinable with respect to the quadratic distortion

measure.

Figure 2: Successive refinement with side information for the Gaussian source with the quadratic

distortion measure.

4.2 The Doubly Symmetric Binary Source with Hamming Distortion

The Wyner—Ziv rate—distortion function of the doubly—symmetric binary source with the Hamming
distortion measure is calculated in detail in [12]. Roughly speaking, its calculation (as well as its
extension to two stages) is analogous to the Gaussian example of subsection 4.1, with the addition

operation being replaced by modulo-two addition. It is, however, somewhat more involved because
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beyond a certain distortion level, hereafter denoted by D, time—sharing with the zero-rate working

point must be employed.

As in subsection 4.1, for the sake of completeness, we begin with a description of the system of
random variables that corresponds to the solution of the Wyner—Ziv problem of this source, in the

ordinary, single-stage setting.

All random variables in this subsection are binary and their alphabet is {0,1}. Let X be the
binary symmetric source (BSS) and let Y = X & N, where @& denotes modulo-two addition, and N
is an independent random variable with Pr{N = 1} = py. We are interested in R}‘Y(D). Define

the function

g(D) = { g(pO * D) — h(D) ODSZI;0< Po (56)

where h(-) is the binary entropy function, and * denotes binary convolution, i.e., a * 8 = «a(1 —

B)+ B(1 — ). In [12], it is shown that RY ;. (D) = g*(D), the lower convex envelope of g(D). The

distortion level D, is defined as the largest distortion level for which g*(D) still agrees with ¢g(D),

namely, the solution to the equation
——— =4 (Do), (57)

where ¢’ is the derivative of g.

We now define the auxiliary random variable as follows. Let S be a random variable, inde-
pendent of (X, N), with Pr{S = 1} = min{D, D.}, and define W; = X & S. Further, let B; be
independent of (X, N, .S) with

—max{D, D.}
po — De

Pr{B =1} =2 (58)

and let Wy = By - Wi. The role of B is to create the time-sharing that is needed for distortion
levels above D.. Finally, define the auxiliary random variable W = (W5, By), and let

fWY) = f(W2,B1,Y) =B - Wa + (1 - By)-Y. (59)
It is then straightforward to show (cf. [12, Section II]) that for the Hamming distortion measure

Ed(X, f(W,Y)) = D, (60)
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and that
I(X; W) —I(Y; W) = g"(D) = Ry y (D). (61)

Moving on to two stages of successive refinement, consider the above construction of the aux-
iliary random variable W with correspondence to distortion level D = Dy. We next describe the
construction of the additional auxiliary random variable U corresponding to the lower rate, Ry (cf.

Fig. 3). Let T be a random variable, independent of (X, N, S, By) such that
Pr{T =1} « Pr{S = 1} = min{D,, D} (62)
and let Uy = Wy & T. Let Bs be independent of (X, N, S, By,T) with

po — max{D., D1}

Pr{By; =1} = po = max{ Do, Do}’ (63)
Finally, defining U = (Us, By - B), we clearly have Ue W e Xe Y. Letting,
f'(U,Y) =By By -Us+ (1 — By - By)Y. (64)
then, similarly as above, it is not difficult to show that
Ed(X, f'(U,Y)) = Dy, (65)
and that
I(X;U) = I(Y;U) = g"(D). (66)

Thus, the doubly symmetric binary source is successively refinable with respect to the Hamming

distortion measure.

Us Uy @ Ws .:‘ Wi @ @ Y

By T By S X N

Figure 3: Successive refinement for the doubly symmetric binary source with Hamming distortion
measure.

For this source, we now extend the example to include SI which is not strictly identical at the two

stages, and yet the source is successively refinable. It is convenient to re-define X to be a BSS
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taking values in {—1,1}. We define the SI Y to be
Y=X1n+Q (67)

where 7 is taking values in {—1,1}, P(n = —1) = «, and @ is a real random variable uniformly

distributed in the interval [—1,1]. Next, let the degraded random variable Z be defined as

Z = sign(Y). (68)
Thus Z is a quantization of Y. Moreover, note that the random variable X - n is equivalent to
the random variable Y defined above, and that () does not change its sign. Therefore, although
Z is the degraded component and Y and Z are not identical, we also have Ue X o Z= Y. Hence

I(U;Y|Z) = 0 and the source is succesively refinable with degraded side information.

4.3 The Equitz—Cover Source

Equitz and Cover [4] demonstrate a source that is not successively refinable in the ordinary setting,
without SI (see also [3] for more details). The Equitz—Cover example is of a ternary DMS with
X =X = {1,2,3}, a distribution given by Px(2) = p, Px(1) = Px(3) = (1 — p)/2, for some
p € [0,1], and a difference distortion measure d(z,%) = p(zr — =) where p is convex and satisfies
p(0) < p(z) whenever z # 0. It turns out that for some values of D and D, the Markov condition

does not hold and thus the source is not successively refinable.

We now show a simple example where in the presence of identical SI, this source becomes

successively refinable. Consider a SI variable defined according to

1 X #£2
Y_{2 Y5 (69)

Since Y is given by a deterministic function of X, the encoder can reproduce a copy of Y, and so,
the Wyner—Ziv rate distortion function must coincide with the conditional rate—distortion function
of X given Y at both encoder and decoder. Now, when Y = 2, X = Y, and so, X is available
at the decoder, error—free, without transmission at all. When Y = 1, the conditional distribution
of X is according to Px(1) = Px(3) = 1/2, which is actually again an Equitz—Cover source with
p = 0. Although the reproduction alphabet X is formally still ternary, it is shown in [3, Lemma

4.1.4] that the test channel corresponding to the rate—distortion function of this source induces
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Pr{X = 2} = 0, thus, effectively, the reproduction alphabet reduces to X = {1,3}. In other words,
given Y = 1, we have at hand the rate-distortion problem of the BSS with respect to the Hamming

distortion measure, which in turn is successively refinable [4].

5 Multistage Successive Coding

The problem of successive coding can be naturally extended to any finite number of steps. Let

(X,Yr,Yk-1,...,Y1) be a memoryless, stochastically degraded source, i.e.,
XGYKGYK_le ...,9Y1, (70)

where Y}, is taking values in a finite set Vj, 1 < k < K. Denote by Pxy,vy_,-.y; its generic
distribution, and by Pxy,, 1 < k < K, the corresponding marginals. Let D = (D, Ds,...,Dg) be
a vector of distortion levels. The encoder-decoder pair of the £’th stage should provide a description
of the source with distortion level not exceeding Dy, To this end, the decoder of the k’th stage,

1 <k < K, is provided with the side information vector Y}, where
Yi= Vi1, Ye2, - s Yin) (71)

In addition, each decoder has access to the codewords sent to all its predecessors. We skip the
formal definition of a multistage successive code, as it is a straightforward extension of Definition 1
in Section 2. We use R (D) and Rk ;(D) to denote the region of achievable rates for stochastically

degraded ST and identical SI, respectively, as in the two stages case.

Let a vector D = (Dy,..., D) of distortion levels be given. Define R} (D) to be the set of all
vectors of rates (Ry, Ra, ..., Rx) for which there exists a collection of K (K +1)/2 random variables
{Viy, 1 <k <K, k<l <K}, where V},; is taking values in a finite set V}, ;, such that the following
conditions are satisfied
L ({Vig, 1<k<K, k<I<K})e XeYge,...oY; is a Markov chain.

2. There exist deterministic maps
o Ve x Ve = X, 1<k<K, (72)

such that
Ed(X, fy(Vig, Yi) <D, 1<k<K. (73)
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3. The rates (R1, Ra, ..., Rg) satisfy

K
Ry > I(X;Via|Y1) + ) I(X;ViVig, Vag, ..., Vi1, Y) (74)
=2

Ry, —Rry > I(X5Vipl{Vig, 1<i<k, 1<j<k}Y)

K
+ 3 X Vigl{Vij, 1 <i<k, i<j<k}, V), 2<k<K. (75)
I=k+1

Recall that in the case of two stages, the first stage transmits information that can be decoded
only with the better SI Y. In the single letter characterization of the region of achievable rates,
this information was presented by the random variable V. Similarly, in the multistage case, the
encoder of the k’th stage can transmit information to all the successor decoders. Thus, interpreting
the above characterization, for 1 < &k < K, and k¥ <[ < K, the random variable Vj; stands for
the information encoded by the k’th encoder, to be decoded by the I’th decoder, using Y;. Since
the source is stochastically degraded, Vj; can be decoded also by any of the successor decoders,

I+1,... K.

Theorem 3 For any discrete, memoryless, stochastically degraded K + 1 source (X, Yx,...,Y7),

Rk (D) C Rk (D).

Proof. The proof employs a hierarchy of random codes, as in the proof of Theorem 1. Although
technically involved, it is a straightforward extension of the proof presented in Section 6, and is

omitted. ]

Unfortunately, we have not been able to prove a converse of Theorem 3 for general stochastically
degraded source. However, we have been able to prove a full coding theorem for identical SI (i.e.,
Pxy, = Pxy Vk), in which case the achievable rate region admits a much simpler form. Define

k.i(D) to be the set of all vectors of rates (R, Ry,..., Rk) for which there exists a K-tuple
of random variables (U1, Us,...,Ugk), where Uy is taking values in a finite set Uy, such that the

following conditions are satisfied

1. (U,Us,...,Ug)e XeY is a Markov chain.
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2. There exist deterministic maps
frillyxY =X, 1<k<K, (76)

such that

3. The rates (Ry, Ra, ..., Rxg) satisfy

Ry > I(X;U4]Y), (78)
Ry—Rp 1 > I(X;U|Ui,Us,...,Up 1,Yy) for k=23,... K. (79)

Then we have

Theorem 4 For any discrete, memoryless, joint source (X,Y),

Rk,i(D) =Rk ;(D).

The proof is presented in Section 6.

A joint source (X,Y) is K-step successively refinable for a given vector of distortion levels D =

(D1, Dy,...,Dg), if
(R}‘Y(Dl),Rﬁqy(DZ), - ,R}|Y(D[{)) S RK’i(DI,DQ, - ,DK). (80)

A by-product of Theorem 4, is a set of necessary and sufficient conditions for (80) to be satisfied.

Theorem 5 A source X with identical side information Y is K-steps successively refinable with

distortion levels D = (Dy, D3, ..., D), if and only if there exist a K-vector of random variables

(U1, Us, ..., Ug), and K deterministic functions f : U, x Y — X, 1 < k < K, such that the

following conditions simultaneously hold:

L Ry (Dg) = I(X;U[Y)  and Ed(X, fi(Ug,Y)) < Dy, 1<k<K
2. (Uy,...,Ux)e XeY

3. (U, Us,...,Up_1)e (U, Y)o X, k=23,... K.
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It is worth pointing out that, in the examples given in Secs. 4.1 and 4.2 (Gaussian source with
quadratic distortion measure, and doubly symmetric binary source with Hamming distortion mea-
sure, resp.), the construction of auxiliary random variables U and W can be extended to any

number of stages, thus these sources are K-step successively refinable.

Proof of Theorem 5. We start with necessity. Assume that (80) holds. From Theorem 4, there
exists a K-tuple (Uy,Us,...,Ux) and K deterministic maps f : U x Y — X, 1 < k < K, such
that

Ryy(D) 2 I(X;0h|Y), (81a)
Ed(Xafl(UbY)) < Dla (81b)
similarly,
Ryy(D2) > Riy(D1) + I(XGT|ULY) 2 I(X; Ui DY), (82a)
Ed(X, f2(U2,Y)) < Dy, (82b)
and, in general
Ry\y(Dg) > I(X;Ur...UglY), (83a)

By the definition of Rﬁ(‘Y(D), (81a) must be satisfied with equality. For (83) we have
Ry (D) =2 I(X;Ur ... UglY) > I(X;Ug|Y) > Ry (D), (84)

where the last inequality is due to the fact that knowledge of U, and Y suffices to satisfy the
distortion constraint (see (83)). Hence equality in (84) must hold, and Conditions 1 and 2 of the
theorem hold. For equality hold in (84), we must have

H(X|U1Uy... Ug_1Uy,Y) = HX|U,Y), k=23,...,K, (85)
implying Condition 3 of the theorem. This concludes the proof of necessity.

To prove sufficiency, assume that there exist a K-tuple of random variables (Uy,...,Ux), and K
independent maps fi, ... fx such that Conditions 1 to 3 of the theorem are met. By the definition
of R ;(D), it remains to show that the differential rates satisfy the bounds

Ry (D) = Ryyy (D) > (X5 U0y .. . Up 1Y), k=2,3,...K. (86)
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Indeed, we can write

Ry (Dk) — Ry (Dg-1) I(X;U|Y) = I(X; Ug—1 )

= H(X|Ug-1,Y) - H(X|U,Y)
Y H(X|Up_1,Y) — HX|UUs... Uy, Y)

2 H(X|U\Us...Up_1,Y) — HX|U1U, ... Uy, Y)

I(X;Uk|U1U2...Uk,1,Y), (87)

where (a) and (b) are due to Condition 3 of the theorem. This concludes to proof of sufficiency. [J

6 Proofs of Theorems 1 and 4
6.1 Proof of Theorem 1

Converse part: Assume that we have an (n, My, My, D1, D3) SR code for the source X with SI
(Y, Z), as in Definition 1. We will show the existence of a triple (U, V, W) that satisfies conditions
1-4 in the definition of R*(D). Denote T; = ¢;(X™), i = 1,2. Then
nRy > H(T)) > I(X™Ti|Z") = (X", T\Y™Z") — [(X"; Y"|T\ Z")
n
= Y [y xTz) - (X Yim 2hy Y] (88)

=1

For notational convenience, we denote Z’*IZZ-”Jrl = Z™\', and use a similar notation for X and Y.

Since X;Z; and X' Z"\ are independent, we have, for the first term in the summand of (88):

I(X;;TyY™MX1 2% = H(X|Z:X7' 2™ — H(X;|Z; X7 27Ty
= H(X;|Z) — H(X;|Z; X' 2"V T Y ™)

= I(X; X7 Z2MNT Y| Z;). (89)
Next, due to the Markov structure

Yie (X;Z;)e (XN Y1 Z7\i) (90)
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we have, for the second term in the summand of (88):
I(X™Y,MZ"Y'" ) = HYTWZ"Y" ) — HY;| X "Ty Z"Y'" 1)
= HY;|T\ Z"Y" ) — H(Y;| X, T, Z"Y" 1)
= I(X;YiTWZ"Y' ). (91)

Substituting (89) and (91) in (88), we obtain

n
nRi > Y [1(X; X121 Y" Z,) - I(X; Vil 1127y )]

=1
n . . . . . .

= 3 [ 2N TY TN Z) + 1(Xs XY 2T 2N YY) — LG YT 2y )]
=1
n . . . . .

= 3 [ TZ™Y N Z) 41X XYL |2 2y ) (92)
=1

The Markovity of XY e Z implies
Zie Yie (X;T1 Z™MNY 1), (93)
and we have for the second term in (92)
I(X; X700 T Z2mYY)
= H(X;T\Z"V") — H(X;|T\ Z"Y"X"™")
= H(X;Z|T\Z"\'Y") — H(Z;|T, Z"V'Y?Y) — H(X,| Ty Z"Y" X' )
= H(Z|XT Z"NY?Y) + H(X| T ZMNYY) — H(Z| T Z"NY?) — H(XG| TV ZPY "X

= H(Xi|T1Z"NYY) — H(X| T Z"Y XY = [(Xy; ZiYR XN 27\ YY)

\Y

(X3 Y, XY T Z2m\VY) (94)

where (93) was used in (a). Substituting (94) in (92), we get
nRy >3 [1(X5 12"y = 25) + 106G Vi X T 2y )] (95)
=1

Before defining the auxiliary random variables, we bound the refinement rate from below as follows:

n
= Y I(X; | X' Ty 2"y ™). (96)
i=1
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Define the random variables

U, = T\Z2"Vy"! (97)
Vi = X"l (98)
W, = TV (99)

With these definitions, we have the Markov structure
Uie Ve W,o X;o Yo Z; (100)

and the bounds (95) and (96) become

n

1
Ry > EZ[I(Xi;UHZi)+I(Xz';Vi|Ui,Yi)] (101)
=1
1 n
Ry— R, > EZI(XZ-;WAUZ-,W,E) (102)
=1

where we have used (100) to drop the conditioning on Z; in (102).

Let J be a random variable, independent of X, Y, and Z, and uniformly distributed over the
set {1,2,...,n}. Define the random variables U = (J,Uy), V = (J,Vy), and W = (J,W;). The
Markov relations (100) still hold, that is

UeVeWeoeXeYeZ, (103)

and therefore the condition 1 in the definition of R*(D) is satisfied. We proceed to show the
existence of functions fi, fo satisfying (12), (13). Denote by 1; ;, the output of the i-th decoder at
time k, i = 1,2, 1 < k < n. The random variable U contains ¢;(X™)Z™\/. Similarly, W contains

$1(X™) o (X™) 2™\ Y™\ | Therefore, let us choose the functions f; and fo as follows

hv,z) = 4s((X"),27) (104)
oW Y) = o p($1(X"), d2(X™),¥7"). (105)

Then, for the distortions we have

BA(X.Fi(U.2)) = LY Ba(x.p(0(x7).2) < D, (106)
=1

BACXLOV.Y)) = & 3 Bd(X (41 (X7), 42(X7),¥7) < D, (107)
i=1
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Hence, condition 2 in the definition of R*(D) is satisfied. To prove that condition 4 of that definition
holds, we have to show that the bounds (101) and (102) can be written in a single letter form with
U, V,and W. The following chain of equalities holds

I(X;U|Z) = H(U|Z)-HU|XZ)=HU|Z)— HU|X)
= H(U)-HUIX)- (H{U) - HU|Z))
= I(U;X)-I(U; 2)
= H(X)- H(X|U)— H(Z)+ H(Z|U)
= H(X)-H(X|J,U;)—H(Z)+H(Z|J,Uy)

~ Lym —%Z (XlU) = " H(Z2) + - 3 H(ZiU)
=1 =1 =1 3

n

= %ZI(Xi;UHZi) (108)

i=1
where the last equality is due to (100). In a similar manner, we get

I(X;VIUY) = I(X;JVy[JU;Y) = 1(X;Vy]JU.Y)
— H(X|JU,Y) - H(X|JU;V;,Y)

1 & . 1 & .

1 n
= =Y I(X;Vi|Ui,Yy). (109)
n
=1
In view of (108), (109), the bound (101) can be written as
R, > I(X;U|Z) + I(X; V|U,Y). (110)
In a similar manner, it is shown that (102) can be written as

Ry — Ry > I(X;W|U,V,Y). (111)

To complete the proof of the converse part, it remains to prove that condition 3 in the definition
of R*(D) holds, namely, to show that the alphabets of the random variables U, V, and W, can
be limited, without loss of generality, as in eqs. (14), (15), and (16), respectively. To this end,

we invoke the support lemma (cf. [2, p. 310]), which results from the Carathéodory theorem.
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According to this lemma, given k real-valued, continuous functionals f;, j = 1,...,k, on the set
P(X) of probability distributions over an alphabet X, and given any probability measure u on
the Borel o—algebra of P(X), there exist k elements Q1,...,Qx of P(X) and k non-negative reals,

ai,...,ar, that sum to unity, such that for every 7 =1,...,k:

k
/P oy FHQH(EQ) =3 (@) (112)

Before we actually apply the support lemma, we first rewrite the relevant conditional mutual
informations and the distortion functions (that appear in the definition of R*(D)) in a more
convenient form for the use of this lemma, by taking advantage of the Markov structure. As for

the first term, I(X;U|Z), in the lower bound to Ry, we have:

I(x;U1z) = H{U|Z)-H(U|X,Z)
= H(U|Z) - H({U]X)
= H(U)+H(Z|U) - H(Z) - H{U) - HX|U) + H(X)
= H(X)-H(Z)+H(Z)U) - H(X|U). (113)

For the second term in the lower bound to R, we have
I(X;VIU)Y) = H(X|U)Y)-H(X|U,V,Y)
= Elog P(X|U,V,Y)—-Elog P(X|U,Y)

— Eiog [FUVLD) PG X.Y)

Hauy)yﬂﬂg{may)

P(U,V)P(X|U, V)P(Y|X)} CElo [P(U)P(X|U)P(Y|X)
PU,V)P(Y|U,V) PU)P(Y|U)

— H(X|U)- H(Y|U)+ H(Y|U,V) — H(X|U,V). (114)

= Elog {

Thus, the sum of these two terms is given by:

I(X;U)Y)+I(X;V|U,Y) = [H(X)-—H(Z)|+[H(Z|U)—-H((Y|U)]+
[H(Y|U,V)—-H(X|U,V)]

a+ B+ (115)

In a similar manner, for the lower bound to Re — R, we obtain

1>

I(X;W|U,V,Y)=[H(Y|U,V,W) - H(X|UV,W)] — 0—r. (116)
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In order to preserve prescribed values of I(X;U|Z) + I(X;V|U,Y) and I(X;W|U,V,Y), it then
suffices to preserve the associated values of (3 + ) and (§ — ), since « is a constant that depends

only on the given statistics of the source and the SI.

We first invoke the support lemma in order to reduce the alphabet size of U, while preserving
the values of 8+ v and § — v as well as the first—stage distortion. The alphabets of V and W

are still kept intact at this step. Define the following functionals of a generic distribution Q) over

X xV x W, where X is assumed, without loss of generality, to be {1,2,...,m}, m 2 | X].

:ZQ(ac,v,w), r=1,...,m—1 (117)
fm(Q) = A(Q) + B(Q), (118)
where
Zx’,u’,w’ Q(xlavlﬂw,)P(y|xl)
xzv:wQ $’U7w ZP y,Z|x log E:v’,v’,w’ Q("L‘lvvlvwl)P(zml)’ (119)
and
Q
= ¥ Q) X Pk os 7 oy (120
with
A Ew’ Q(ZB,’U,U)I)
Q) S QU 0w 2y
and
A Em’,w’ P(y|:1:')Q(:1:’,U,w’)
P = 5 e PW)Q v, ) 12
Next, define
fa(@) = T Q) Pl log 7 0B (@) (123)

with similar definitions (but without the summations over w') for the numerator and the denomi-

nator of the argument of the logarithm. Finally, for the distortion constraint, let

fma2(Q Zmln Z Q(z,v,w)P(z|z)d(z, £). (124)

T, v,w
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Applying now the support lemma, we find that there exists a random variable U (jointly distributed
with X') whose alphabet size is k = m + 2 = |X| + 2 that satisfies simultaneously

ZP =u)fs(P(-lu)) = P(z), z=1,...,m—1 (125)
ZP =u)fm(P(|u)) = B+ (126)
ZP =) fmi1(P(fu)) = §—~ (127)
ZP = u)fmi2(P(lu)) = minEd(X, (U, Z)). (128)

Having found such a random variable U, we now proceed to reduce the alphabet of V' in a similar
manner, where this time, we have |X|-|U|—1 constraints to preserve the joint distribution of (X, U)
just defined, and two more constraints for preserving v and § (note that V' is not involved in 5 and

in any distortion constraint). Thus, the necessary alphabet size of V' is upper bounded by
VI <X Ul + 1< X (12 +2) + 1= (|X] +1)% (129)
Finally, W must preserve the joint distribution of (X, U, V'), plus the value of ¢ and the second
expected distortion miny IEd(X, f(W,Y')), which means that the needed alphabet size of W does
not have to exceed
X1 ] - V] + 1< X (2] +2) - (12 +1)% + 1 (130)
This completes the proof of the converse part.

Direct Part:

We begin by setting up some notation and mentioning a few basic facts that will be needed hereafter.
Given a distribution Px, we denote by T)‘g the set of all n-tuples & that are J-typical according

tOP)(,i.e.,
1
7')(2 - {:cEX”: ‘—N((L‘|.’B)—Px((£) <6 VzelX,
n

and N(z|z) =0 whenever Px(z) =0}

where N (z|z) is the number of occurrences of the letter z in the n-tuple . In the sequel, we will

use the following well known results [2]. For any € 72 and any &' > §

exp[-n(I(X;U) +e)] < > Po(u) <expl-n(I(X;U) —e)] (131)
u: (T,u)eTy,
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where € = €(,0") and €, = €,(0,9") both vanish as §, 6’ — 0. Similarly, for any pair (z,u) € T)‘?U
and any 6" > ¢’

exp[—n(I(X; V|U) +1y))] < > Pyjy(vu) < exp[-n(I(X;VIU) —n)]  (132)

v (Z,U0)ETL
where 1 = n(d",0") and 7, = 1y[,(d',0") both vanish as ¢, 0" — 0.

Let a distortion pair D = (Dy, D2) be given, and let (U, V, W) satisfy the conditions that define
R*(D). Recall that this guarantees the existence of functions fi, fo, satisfying (12), (13). Fix
an arbitrary v > 0 and consider the construction of an hierarchy of codebooks described in the

following steps.

Codebook Generation

1. Randomly generate M; = exp[n(I(X;U) + )] independent codewords {u;}, each of length n,

according to Py(-). Denote
A:{ul,uz,...,uMl}, Ujeun, 1< < M. (133)

2. Let Ly = exp[n(I(Z;U) — 4v)], and

M exp [n(I(X;U) = I(Z;U) + 5)]

—~
5]
~

exp [n(I(X;U]Z) + 57)]

— Myexp[-n(I(Z:0) - 49)] = 7 (134)

where (a) above follows from the Markov structure (U, V,W)e X e Y e Z. Partition the codebook

A into N; bins, each containing Ly members of A. Let Ap(7) denote the elements u € A assigned
to bini, 1 <i < Nj.

3. Set My = exp[n(I(X;V|U)++)]. For any u € A, generate a codebook, of length n and size

My, according to Py (v|w), where

Py (wlw) = TT Po (o). (135)
=1

Denote this codebook by B(u).
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4. Let Ly = exp [n(I(Y;V|U) — 4v)], and

Ny = exp[n(I(X;V|U) = I(Y;V|U) + 57v)]
= exp[n(I(X;V|U,Y) + 5y)]

— Myexp[—n(I(Y; V|U) — 47)] = 22, (136)
For each element u € A, partition the codebook B(u) into N bins, each containing Ly members
of B(u). Let Bp(j,u) denote the set of elements v € B(u) assigned to bin j, 1 < j < Ns.

5. Set M3 = exp[n(I[(X;W|U,V)++)]. For any pair (u,v) such that v € A and v € B(u),

generate a codebook of length n and size M3, according to Py gy

n
Py v (wlw, v) = [] Pwjov (wilug, vr). (137)
=1
Denote this codebook by C(u,v).

6. Similarly to the partitions of A and B(u) above, we now partition C(w,v). Thus, define Lg =
exp [n(I(Y; W[V, U) — 4v)], and

N3 = expn(I(X;W|U,V)—1(Y;W|U,V) + 5v)]
= exp[n(I(X;W|U,V,Y) + 5v)]

= Msexp[—n(I(Y;W|U,V) — 4y)] = =2. (138)

For each pair (u,v) such that u € A and v € B(u), partition the codebook C(u,v) into N3 bins,
each containing L3 members. Let Cp(k,u,v) denote the elements w € C(u,v) assigned to bin

k, 1<k<Ns.

Reveal the codebooks and the partitions to the encoder and decoders.
Encoding

Given a source vector @, the encoding process proceeds along the following steps.

1. First encoder: The encoding map ¢4 (x) consists of two maps,

b1(x) = p11(z)P12(2),
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i.e., it is a double index, defined as follows. The encoder seeks a vector u € A such that
(z,u) € TZ;. If more than one such vector exists in the codebook A, the first one is chosen. If
such a vector does not exist in the codebook A, a default vector is chosen, say uy, and an error
is declared. Denote this vector by w(x). The second index is set equal to the bin number to
which u(x) belongs, that is

pr2(x) =1 if u(x)e Ap(i). (139)

The mapping ¢; 2(-) thus takes values in the set {1,2,..., N}

We proceed to the first map, ¢;,1. Given & and a codeword u(x) € A, the encoder seeks a vector

v € B(u(z)) such that (z,u(z),v) € T39,,. If such vector does not exist, a default vector is
chosen, say the first vector in B(u(x)), and an error is declared. If more than one exists, the
first one is chosen. Denote this vector by v(x). The map ¢y 1(x) is defined as the bin number

to which v(x) belongs, that is
da(x) =7 if v(x) € Bp(j,u(x)). (140)
Observe that the encoding map ¢ is taking values in a discrete set of size Nj - No, where
Ny Ny =expn(I(X;V|Z)+1(X;V|U,Y) + 10v)] .

2. Second encoder (refinement encoder): The second encoder knows @, u(x), and v(x). It seeks

a codeword w € C(u(z),v(z)) such that (z,u(z),v(z),w) € Tyoyw- If such vector does not
exist, a default w is chosen, say, the first vector in C(u(x),v(x)), and an error is declared. If
more than one exists, the first in the list is chosen. Denote this vector by w(x). The value

assigned to ¢y () is the bin number to which w(z) belongs, i.e.,
po(x) =k if w(x)e€Cplk,u(z),v(x)). (141)

Observe that the mapping ¢ is taking values in {1,2,..., N3}.

The first encoder sends the indices of the two bins, ¢1 1(z)$12(x), using
log(Ni - No) = n[[(X;U|Z) + I(X;V|U,Y) + 104] bits. (142)
The refinement encoder sends the index of the third bin using

log N5 = n[I(X; W|U,V,Y) +54] bits. (143)

Decoding
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1. The decoder of the first stage has the vector z as SI. It has access to the double index ¢o(x) =
(i,7), 1 <i < Ny, 1 < j < Ny, but in the reconstruction process it utilizes only the first index

i. It decodes the vector u precisely as in the classical Wyner—Ziv decoding procedure [1], [12].
Specifically, the first decoder seeks a unique vector u € Apg(7) such that (u,z) € T[})’%X . Denote
this vector by @(z). If there is no vector u € Apg(7) jointly typical with z, or there is more than
one, an arbitrary @ is chosen, and an error is declared. The reconstruction vector of the first
stage, 1, is given by

&1 = (21,1, %12, -, T1,0) (144)
where

t1y = fi1(i(z), z1)- (145)

2. The decoder of the second stage has the vector y as SI. It receives the double-index (i, j) as the
first decoder, but utilizes both indices, 7 and j. In addition, it gets the output of the second
encoder, ¢o(x) =k, 1 < k < N3, and utilizes it too. Thus, it can be described in four stages.

(a) Decoding u: Due to the Markov structure (U,V,W)e XeY e Z, the second decoder can

do everything the first decoder can. Thus, it looks for a unique vector u € Ap(i) such that

36| X
(wy) € T, (146)
If such vector w does not exist, or if it is not unique, an arbitrary element in Ap(7) is
chosen. Denote the output of this stage by u(y).

(b) Decoding v: In this stage, the second decoder looks for a unique vector v € Bp(j, 4(y))
such that
N slx
(@(y), v,y) € Tk - (147)

Denote this vector by ©(y). As usual, if such a vector does not exist, or there is more than

one such vector in Bp(j,u(y)), an arbitrary o(y) is chosen.

(c) Decoding w: At the third stage, the second decoder looks for the unique vector

w € Cp(k, u(y), o(y))

such that
. N 50/ x|
(a(y),o(y), w,y) € Tpvwy- (148)
Denote this vector by w(y). If such a vector does not exist, or there is more than one, an

arbitrary representative is chosen.

36



(d) At the last stage, the second reproduction vector &5 is constructed, as
Ty = (L21,%22,...,%2,n) (149)
where

T2 = fa(Wi(y), yr)- (150)

Analysis of the Probability of Error

The probability of error in the encoding/decoding scheme is examined next. We start by defining

the error events. The error events in the encoding scheme are the following:

By = {ze (T}

My
By = Egn {ﬂ {(m,ul) QT)%(;]}}

=1

M>
By, = EgnEfn{ﬂ{ v])gTXUV}}

2 M3
E3 = ( ﬂ Efn) N { ﬂ {(wau(m)av(m)awk) Qtrlé'?]vw}}
m=0

k=1

where Fy and Es correspond to the first and second stages of the first encoder, and E3 corresponds

to the second encoder. The error events of decoder 2 are

By = (ﬁEC)m{ ) ¢ Ty }

B — (ﬁEm>ﬂ{ {(u, )ET36|X|}}
m=0 ueAp(i u;éu z)

By = (mi]OE )m{ (@), 2,9) € T xy }

i (ﬁﬁfn)“{m ), (T

By = (mﬁE )m{ w(2),2,y) & Tiwxy )
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8
By — (ﬂ Em>m{ U {(u(m»v(w),w,y)e’ré%y}}
m=0 welp(k

U(T),v(T))

Finally, the error events for the first decoder are defined as

3
Ey = (ﬂ E;)m{(um),m,z)wé%@}
m=0

B, — <(3]Eﬁn>mEfUﬂ{ U {(u,z>eT£ZX}}
m=0

UuUcAg(i)
The probability of error in the encoding/decoding process, P, is upper bounded as
11 11
P, <P { U Eg} <> P(Ey). (151)
£=0 £=0

Observe that if no error occurs in the encoding/decoding process (i.e., the event N E¢ occurs),

then the following is satisfied
(W(Y),X,Y) € Thyy (152)
U(Y),X,Z) € T, (153)

where = 50| x V|, which means that the empirical distributions of these random vectors is close
to their corresponding joint distributions. Thus, in view of (12), (13), the distortion constraints

are approximately satisfied.

Thus, to prove the direct part of Theorem 1, it is enough to show that for fixed v and sufficiently
small §, each of the terms in the sum in (151) vanishes as n — oo. The techniques for proving these
limits are now classical, and follow those of [12] (see also [1] and [5]). We will focus on events Ej to

E;. The proof that the probabilities of the events Eg to F15 vanish, follows by similar arguments.

Ey. Clearly, P(Ep) tends to zero as n — oo.

E,. For E; we have

P(E) = P (ﬁl (X, U) ¢ TR} X € 7}‘2) P(XeT})

=1

My
= > (ﬂ {(::;,Ui) 6175‘?%}) Px () (154)
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By the left hand side of (131), for & € 7{ we have

My
Py (n {@U)¢ ’5%%})

{1 — exp [-nI(X;U) — ne,J} ™

IN

< exp[—exp(ny — ney)| (155)

which tends to 0 doubly exponentially fast, provided v > €,(d,26). Substituting (155) in (154),
we have

Tim P(Ey) = 0. (156)

Es. Conditioned on E§ N Ef, we have (z,u(x)) € T2, thus similarly to (154) we obtain

Mo
P(E)= >, Py (ﬂ (@,w,V;) & Ty |U> Pxy(z,u) (157)

(Tu)eT, J=1
By the left hand side of (132), for (z,u) € T2,
M>
Py (ﬂ1 {(w,u,V ) & XUV} | U)
j=
< {1 — exp [—nI(X; VIU) - mmu] }Mz
< exp [~ expmy — ) (158)

which vanishes provided v > n,,(20,3d). Hence

lim P(Es) — 0. (159)

n— 00

Es3. Conditioned on N2,_,E¢,, the triplet (z,u(zx),v(x) is jointly typical, and belongs to 739 .

Thus the steps to show that P(FEs3) vanishes are similar to those leading from (157) to (159),
except that the conditioning is on (U, V'), and the small parameter is 40 instead of 3§. Thus we
have

lim P(E3;) — 0. (160)

n— 00

provided v > Ny (36, 46).

39



E,. Conditioned on N3 _,ES,, the pair (z,u(zx)) is jointly typical. Moreover, there is a Markov
structure Ue XY, where the random vector Y is drawn according to Py |x. Consequently, by

the Markov lemma [1, Lemma 14.8.1]
P(E)< Y Py {@w,Y) ¢ Ty e} Pxu(@,u) >0 (161)
T U)ETE,

as n — 0.

E5. The sequences {Ui}f\ill are drawn independent of everything. Conditioned on the intersection
Nt _oES,, the vector y is typical. The probability that independently drawn Uj; is jointly typical
with y is upper bounded by (see right hand side of (131))

Py (U, y) € Ti™) < exp [-nI(U;Y) + ne(20]X], 38| X)) (162)

Since |Ap(i)| = exp [n(I(Z;U) — 4v)] and I(Z;U) < I(Y;U), we have

lim P(Es5) =0 (163)

n—o0

provided 4y > €(260]| X[, 30| X|).

Eg. Conditioned on N _ E¢ | the triplet (z, u(x), v(z)) is jointly typical. We have also the Markov
structure Ue Ve X oY, thus we apply the Markov lemma, as in (161), to conclude that P(FEs)

vanishes as n — 0o.

E;. The vectors {vj};.v[:zl are drawn according to Py y(-|ui(x)). Conditioned on the intersection

NS, _oES,, the pair (u(z),y) is typical. The probability that a vector V; drawn according to
Py independently of y is jointly typical with y is upper bounded by (see right hand side
of (132))

Py ((w(@), V,y) € TRY) < exp[-n(I(Y; V|U) - e(30]X], 45]X]))] (164)
Since
1Bp(j; w(x))| = exp [n(I(Y; V|U) — 4)] (165)
we have
Tim P(Er) =0 (166)

provided 4y > €(30| X[, 40| X|).

40



6.2 Proof of Theorem 4

The direct part follows from Theorem 3, by substituting Vj , = Uy, and choosing Vi, k <[ < K,

to be null random variables. For the converse, we will show the existencee of a K-tuple of random

variables (U1, Uy, ..., Uk) satisfying Conditions 1-3 in the definition of Rj. (D). Let T; = ¢;(X™)

stand for the output of the 7’th encoder, i = 1,2,..., K. The following chains of inequalities hold

nRky >
n(Ry — Ry) >
and, in general,
n(Ry — Ri—1)

Define the random variables

H(T) > (X" Ti|Y") = H(X"|Y™) — H(X"|T1,Y™)

3 [H(Xi|Y”Xi*1) _ H(Xi|T1Y”XZ'*1)}

=1

> [HXY) = HOGYT Y™ X

=1

S I(X; Y™ X Y), (167)
=1

H(T2|T1) Z I(Xn;T2|T1, Yn)

n
S I(Xy DY, Y™ XL, (168)
i=1

> H(Tp|Tg1,--.,T1) > I(X" Ty Ty 1y -, T1)
n . .

= S I(X ThlYi, Ty ... TIY™N X, (169)
=1

U 2 mymixict (170)
A

Ui = ToUp 1y k=2,3,....K. (171)

With these definitions, the proof proceeds along the lines leading from (101) to (111). The details,

being straightforward, are omitted. ]
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