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Abstract

Many regression and classification algorithms proposed over the years can described as
greedy procedures for the stagewise minimization of an appropriate cost function. Some
examples include additive models, matching pursuit, and Boosting. In this work we focus
on the classification problem, for which many recent algorithms have been proposed and
applied successfully. For a specific regularized form of greedy stagewise optimization, we
prove consistency of the approach under rather general conditions. Focusing on specific
classes of problems we provide conditions under which our greedy procedure achieves the
(nearly) minimax rate of convergence, implying that the procedure cannot be improved in
a worst case setting. We also construct a fully adaptive procedure, which, without knowing
the smoothness parameter of the decision boundary, converges at the same rate as if the
smoothness parameter were known.

1. Introduction

The problem of binary classification plays an important role in the general theory of learning
and estimation. While this problem is the simplest supervised learning problem one may
envisage, there are still many open issues related to the best approach to solving it. In
this paper we consider a family of algorithms based on a greedy stagewise minimization
of an appropriate smooth loss function, and the construction of a composite classifier by
combining simple base classifiers obtained by the stagewise procedure. Such procedures
have been known for many years in the statistics literature as additive models (Hastie and
Tibshirani, 1990, Hastie et al., 2001) and have also been used in the signal processing
community under the title of matching pursuit (Mallat and Zhang, 1993). More recently,
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it has transpired that the Boosting algorithm proposed in the machine learning community
(Schapire, 1990, Freund and Schapire, 1997), which was based on a very different motivation,
can also be thought of a stagewise greedy algorithm (e.g Breiman, 1998, Friedman et al.,
2000, Schapire and Singer, 1999, Mason et al., 2000, Meir and Rätsch, 2002). In spite of the
connections of these algorithms to earlier work in the field of statistics, it is only recently
that certain question have been addressed. For example, the notion of the margin and its
impact on performance (Vapnik, 1998, Schapire et al., 1998), the derivation of sophisticated
finite sample bounds (e.g. Bartlett et al., 2002, Bousquet and Chapelle, 2002, Koltchinksii
and Panchenko, 2002, Zhang, 2002b, Antos et al., 2002), the utilization of a range of different
cost functions (Mason et al., 2000, Friedman et al., 2000, Lugosi and Vayatis, 2001, Zhang,
2002b, Mannor et al., 2002a) are but a few of the recent contributions to this field.

Boosting algorithms have been demonstrated to be very effective in many applications, a
success which led to some initial hopes that boosting does not overfit. However, it became
clear very quickly that Boosting may in fact overfit badly (e.g. Dietterich, 1999, Schapire and
Singer, 1999) if applied without regularization. In order to address the issue of overfitting,
several authors have recently addressed the question of statistical consistency. Roughly
speaking, consistency of an algorithm with respect to a class of distributions implies that
the loss incurred by the procedure ultimately converges to the lowest loss possible as the
size of the sample increases without limit (a precise definition is provided in Section 2.1).
Given that an algorithm is consistent, a question arises as to the rates of convergence to the
minimal loss. In this context, a classic approach looks at the so-called minimax criterion,
which essentially measures the performance of the best estimator for the worst possible
distribution in a class. Ideally, we would like to show that an algorithm achieves the minimax
(or close to minimax) rate. Finally, we address the issue of adaptivity. In computing
minimax rates one usually assumes that there is a certain parameter θ characterizing the
smoothness of the target distribution. This parameter is usually assumed to be known in
order to compute the minimax rates. For example, the parameter θ may correspond to
the Lipschitz constant of a decision boundary. In practice, however, one usually does not
know the value of θ. In this context one would like to construct algorithms which are able
to achieve the minimax rates without knowing the value of θ in advance. Such procedures
have been termed adaptive in the minimax sense in Barron et al. (1999).

The remainder of this paper is organized as follows. We begin in Section 2 with some formal
definitions of consistency, minimaxity and adaptivity, and recall some recent tools from the
theory of empirical processes. In Section 3 we introduce a greedy stagewise algorithm for
classification, based on rather general loss functions, and prove the universal consistency
of the algorithm. In Section 4 we then specialize to the case of the squared loss, for which
recent results from the theory of empirical processes enable the establishment of fast rates of
convergence. We also introduce an adaptive regularization algorithm which is shown to lead
to nearly minimax rates even if we do not assume a-priori knowledge of θ. We then present
some numerical results in Section 5, which demonstrate the importance of regularization.
We conclude the paper in Section 6 and present some open questions.

2. Background and preliminary results

We begin with the standard formal setup for supervised learning. Let (Z,A, P ) be a
probability space and let F be a class of A measurable functions from Z to R. In the
context of learning one takes Z = X × Y where X is the input space and Y is the output
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space. We let S = {(X1, Y1), . . . , (Xm, Ym)} denote a sample generated independently at
random according to the probability distribution P = PX,Y ; in the sequel we drop subscripts
(such as X, Y ) from P , as the argument of P will suffice to specify the particular probability.
In this paper we consider the problem of classification where Y = {−1, +1} and X = R

d,
and where the decision is made by taking the sign of a real-valued function f(x). Consider
the 0 − 1 loss function given by

�(y, f(x)) = I[yf(x) ≤ 0], (1)

where I[E] is the indicator function of the event E, and the expected loss is given by

L(f) = E�(Y, f(X)). (2)

Using the notation η(x)
�
= P (Y = 1|X = x), it is well known that L∗, the minimum of

L(f), can be achieved by setting f(x) = 2η(x) − 1 (e.g., Devroye et al., 1996). Note that
the decision choice at the point f(x) = 0 is not essential in the analysis. In this paper
we simply assume that I[0] = 1/2, so that the decision rule 2η(x) − 1 is Bayes optimal at
η(x) = 1/2.

2.1 Consistency, minimaxity and adaptivity

Based on a sample S, we wish to construct a rule f which assigns to each new input x a (soft)
label f(S, x), for which the expected loss L(f, S) = E�(Y, f(S, X)) is minimal. Since S is a
random variable so is L(f, S), so that one can only expect to make probabilistic statements
about this random variable. In this paper, we follow standard notation within the statistics
literature, and denote sample-dependent quantities by a hat above the variable. Thus,
we replace f(S, x) by f̂(x). In general, one has at one’s disposal only the sample S, and
perhaps some very general knowledge about the problem at hand, often in the form of some
regularity assumptions about the probability distribution P . Within the PAC setting (e.g.
Kearns and Vazirani, 1994), one makes the very stringent assumption that Yi = g(Xi) and
that g belongs to some known function class. Later work considered the so-called agnostic
setting (e.g. Anthony and Bartlett, 1999), where nothing is assumed about g, and one
compares the performance of f̂ to that of the best hypothesis f∗ within a given model class
F , namely f∗ = argminf∈F L(f) (in order to avoid unnecessary complications, we assume
f∗ exists). However, in general one is interested in comparing the behavior of the empirical
estimator f̂ to that of the optimal Bayes estimator, which minimizes the probability of error.
The difficulty, of course, is that the determination of the Bayes classifier gB(x) = 2η(x)−1,
requires knowledge of the underlying probability distribution. In many situations, one
possesses some general knowledge about the underlying class of distributions P , usually
in the form of some kind of smoothness assumption. For example, one may assume that
η(x) = P (Y = 1|x) is a Lipschitz function, namely |η(x) − η(x)| ≤ K‖x − x′‖ for all x and
x′. Let us denote the class of possible distributions by P, and an empirical estimator based
on a sample of size m by f̂m. The following definition is the standard definition of strong
consistency.

Definition 1 A classification algorithm leading to a (soft) classifier f̂m is strongly consis-
tent with respect to a class of distributions P if for every P ∈ P

lim
m→∞L(f̂m) = L∗ , P almost surely.
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If X ⊆ R
d and P contains all Borel probability measures, we say that the algorithm is

universally consistent.

In this work we show that algorithms based on stagewise greedy minimization of a convex
upper bound on the 0−1 loss are consistent with respect to the class of distributions P, where
certain regularity assumptions will be made concerning the class conditional distribution
η(x).

Consistency is clearly an important property for any learning algorithm, as it guarantees
that the algorithm ultimately performs well, in the sense of asymptotically achieving the
minimal loss possible. One should keep in mind though, that consistent algorithms are not
necessarily optimal when only a finite amount of data is available. A classic example of the
lack of finite-sample optimality of consistent algorithms is the James-Stein effect (see, for
example, Robert, 2001, Section 2.8.2).

In order to quantify the performance more precisely, we need to be able to say something
about the speed at which convergence to L∗ takes place. In order to do so, we need to
determine a yard-stick by which to measure distance. A classic measure which we use here
is the so-called minimax rate of convergence, which essentially measures the performance of
the best empirical estimator on the most difficult distribution in P. Let the class of possible
distributions be characterized by a parameter θ, namely P = Pθ. For example, assuming
that η(x) is Lipschitz, θ could represent the Lipschitz constant. Formally, the minimax risk
is given by

rm(θ) = inf
f̂m

sup
P∈Pθ

E�(Y, f̂m(X)) − L∗ ,

where f̂m is any estimator based on a sample S of size m, and the expectation is taken with
respect to X, Y and the m-sample S. The rate at which the minimax risk converges to zero
has been computed in the context of binary classification for several classes of distributions
in Yang (1999).

So far we have characterized the smoothness of the distribution P by a parameter θ. How-
ever, in general one does not possess any prior information about θ, except perhaps that it
is finite. The question then arises as to whether one can design an adaptive scheme which
constructs an estimator f̂m without any knowledge of θ, and for which convergence to L∗

at the minimax rates (which assumes knowledge of θ) can be guaranteed. Following Barron
et al. (1999) we refer to such a procedure as adaptive in the minimax sense.

2.2 Some technical tools

We begin with a few useful results. Let {εi}m
i=1 be a sequence of binary random variables

such that εi = ±1 with probability 1/2. The Rademacher complexity of F (e.g., van der
Vaart and Wellner, 1996) is given by

Rm(F)
�
= E sup

f∈F

∣∣∣∣∣ 1
m

m∑
i=1

εif(Xi)

∣∣∣∣∣ ,

where the expectation is over {εi} and {Xi}. See Bartlett and Mendelson (2001) for some
properties of Rm(F).

The following theorem can be obtained by a slight modification of the proof of Theorem 1
in Koltchinksii and Panchenko (2002).
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Theorem 2 (Adapted from Theorem 1 in Koltchinksii and Panchenko, 2002)
Let {X1, X2, . . . , Xm} ∈ X be a sequence of points generated independently at random ac-
cording to a probability distribution P , and let F be a class of measurable functions from
X to R. Furthermore, let φ be a non-negative Lipschitz function with Lipschitz constant κ,
such that φ ◦ f is uniformly bounded by a constant M . Then with probability at least 1 − δ

Eφ(f(X)) − 1
m

m∑
i=1

φ(f(Xi)) ≤ 4κRm(F) + M

√
log(1/δ)

2m

for all f ∈ F .

For many function classes, the Rademacher complexity can be estimated directly. Re-
sults summarized in Bartlett and Mendelson (2001) are useful for bounding this quantity
for algebraic composition of function classes. We recall the relation between Rademacher
complexity and covering numbers. For completeness we repeat the standard definition of
covering numbers and entropy (e.g. van der Vaart and Wellner, 1996), which are related to
the Rademacher complexity.

Definition 3 Let F be a class of functions, and let ρ be a distance measure between func-
tions in F . The covering number N (ε,F , ρ) is the minimal number of balls {g : ρ(g, f) ≤ ε}
of radius ε needed to cover the set. The entropy of F is the logarithm of the covering number.

Let X = {X1, . . . , Xm} be a set of points and let Qm be a probability measure over these
points. We define the �p(Qm) distance between any two functions f and g as

�p(Qm)(f, g) =

(
m∑

i=1

Qm|f(xi) − g(xi)|p
)1/p

.

In this case we denote the (empirical) covering number of F by N (ε,F , �p(Qm)). The
uniform �p covering number and the uniform entropy are given respectively by

Np(ε,F , m) = sup
Qm

N (ε,F , �p(Qm)) ; Hp(ε,F , m) = logNp(ε,F , m),

where the supremum is over all probability distributions Qm over sets of m points sampled
from X . In the special case p = 2, we will abbreviate the notation, setting H(ε,F , m) ≡
H2(ε,F , m).

Let �m
2 denote the empirical �2 norm with respect to the uniform measure on the points

{X1, X2, . . . , Xm}, namely �m
2 (f, g) =

(
1
m

∑m
i=1 |f(Xi) − g(Xi)|2

)1/2. If F contains 0, then
there exists a constant C such that (see Corollary 2.2.8 in van der Vaart and Wellner, 1996)

Rm(F) ≤
(
E

∫ ∞

0

√
logN (ε,F , �m

2 ) dε

)
C√
m

, (3)

where the expectation is taken with respect to the choice of m points. We note that the
approach of using Rademacher complexity and the �m

2 covering number of a function class
can often result in tighter bounds than some of the earlier studies that employed the �m

1

covering number (for example, in Pollard, 1984). Moreover, the �2 covering numbers are
directly related to the minimax rates of convergence (Yang, 1999).
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2.3 Related results

We discuss some previous work related to the issues studied in this work. The question
of the consistency of Boosting algorithms has attracted some attention in recent years.
Jiang, following Breiman (2000), raised the questions of whether AdaBoost is consistent
and whether regularization is needed. It was shown in Jiang (2000b) that AdaBoost is
consistent at some point in the process of boosting. Since no stopping conditions were
provided, this result essentially does not determine whether boosting forever is consistent
or not. A one dimensional example was provided in Jiang (2000a), where it was shown that
AdaBoost is not consistent in general since it tends to a nearest neighbor rule. Furthermore,
it was shown in the example that for noiseless situations AdaBoost is in fact consistent. The
conclusion from this series of papers is that boosting forever for AdaBoost is not consistent
and that sometimes along the boosting process a good classifier may be found.

In a recent paper Lugosi and Vayatis (2001) also presented an approach to establishing
consistency based on the minimization of a convex upper bound on the 0−1 loss. According
to this approach the convex cost function, is modified depending on the sample size. By
making the convex cost function sharper as the number of samples increases, it was shown
that the solution to the convex optimization problem yields a consistent classifier. Finite
sample bounds are also provided in Lugosi and Vayatis (2001, 2002). The major differences
between our work and (Lugosi and Vayatis, 2001, 2002) are the following: (i) The precise
nature of the algorithms used is different; in particular the approach to regularization
is different. (ii) We establish convergence rates and provide conditions for establishing
adaptive minimaxity. (iii) We consider stagewise procedures based on greedily adding on
a single base hypothesis at a time. The work of Lugosi and Vayatis (2002) focused on the
effect of using a convex upper bound on the 0 − 1 loss.

A different kind of consistency result was established by Mannor and Meir (2001, 2002). In
this work geometric conditions needed to establish the consistency of boosting with linear
weak learners were established. It was shown that if the Bayes error is zero (and the
oppositely labelled points are well separated) then AdaBoost is consistent.

In Zhang (2002b), the author studied an approximation-estimation decomposition of binary
classification methods based on minimizing some convex cost functions. The focus there was
on approximation error analysis as well as behaviors of different convex cost functions. The
author also studied estimation errors for kernel methods including support vector machines,
and established universal consistency results. However, the paper does not contain any
specific result for boosting algorithms.

All of the work discussed above deals with the issue of consistency. This paper extends
earlier results reported in Mannor et al. (2002a) where we proved consistency for certain
regularized greedy boosting algorithms. Here we go beyond consistency and consider rates
of convergence and investigate the adaptivity of the approach.
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3. Consistency of Methods Based on Greedy Minimization of a Convex
Upper Bound

Consider a class of so-called base hypotheses H, and assume that it is closed under negation.
We define the order t convex hull of H as

cot(H) =

{
f : f(x) =

t∑
i=1

αihi(x), αi ≥ 0,

t∑
i=1

αi ≤ 1, hi ∈ H
}

.

The convex hull of H, denoted by co(H), is given by taking the limit t → ∞. The algorithms
considered in this paper construct a composite hypothesis by choosing a function f from
βco(H), where for any class G, βG = {f : f = βg, g ∈ G}. The parameter β will be
specified at a later stage.

We assume throughout that functions in H take values in [−1, 1]. This implies that functions
in βco(H) take values in [−β, β]. Since the space βco(H) may be huge, we consider
algorithms that sequentially and greedily select a hypothesis from βH. Moreover, since
minimizing the 0 − 1 loss is often intractable, we consider approaches which are based on
minimizing a convex upper bound on the 0 − 1 loss. The main contribution of this section
is the demonstration of the consistency of such a procedure.

To describe the algorithm, let φ(x) be a convex function, which upper bounds the 0 − 1
loss, namely

φ(yf(x)) ≥ I[yf(x) ≤ 0], φ(u) convex .

Specific examples for φ are given in Section 3.3. Consider the empirical and true losses
incurred by a function f based on the loss φ,

Â(f)
�
=

1
m

m∑
i=1

φ(yif(xi)) ,

A(f)
�
= EX,Y φ(Y f(X)) ,

= EX {η(X)φ(f(X)) + (1 − η(X))φ(−f(X))} .

Here EX,Y is the expectation operator with respect to the measure P and EX is the expec-
tation with respect to the marginal on X.

3.1 Approximation by convex hulls of small classes

In order to achieve consistency with respect to a large class of distributions, one must
demand that the class βco(H) is ‘large’ in some well-defined sense. For example, if the
class H consists only of polynomials of a fixed order, then we cannot hope to approximate
arbitrary continuous functions, since co(H) also consists solely of polynomials of a fixed
order. However, there are classes of non-polynomial functions for which βco(H) is large.

As an example, consider a univariate function σ : R → [0, 1]. The class of symmetric ridge
functions over R

d is defined as:

Hσ
�
= {±σ(a · x + b), a ∈ R

d, b ∈ R} .
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Input: A sample Sm; a stopping time t; a constant β
Algorithm:

1. Set f̂0
β,m = 0

2. For τ = 1, 2, . . . , t

ĥτ , α̂τ , β̂τ = argmin
h∈H,0≤α≤1,0≤β′≤β

Â((1 − α)f̂ τ−1
β,m + αβ′h)

f̂ τ
β,m = (1 − α̂τ )f̂ τ−1

β,m + α̂τ β̂τ ĥτ

Output: Classifier f̂ t
β,m

Figure 1: A sequential greedy algorithm based on the convex empirical loss function Â.

It is known from Leshno et al. (1993) that the span of Hσ is dense in the set of continuous
functions over a compact set. Since span(Hσ) = ∪β≥0βco(H), it follows that every contin-
uous function from a compact set Ω to R can be approximated with arbitrary precision by
some g in βco(H) for a large enough β.

For the case where the h(x) = sgn(w
x + b) Barron (1992) defines the class

spanC(H) =

{
f : f(x) =

∑
i

cisgn(w

i x + bi), ci, bi ∈ R, wi ∈ R

d,
∑

i

|ci| ≤ C

}
.

and refers to it as the class of functions with bounded variation with respect to half-spaces.
In one dimension, this is simply the class of bounded variation. Note that there are sev-
eral extensions to the notion of bounded variation to multiple dimensions. We return to
this class of functions in Section 4.2. Other classes of base functions which generate rich
nonparametric sets of functions are free-knot splines (See, Agarwal and Studden, 1980, for
asymototic properties) and radial basis functions (e.g., Schaback, 2000).

3.2 A greedy stagewise algorithm and finite sample bounds

Based on a finite sample Sm, we cannot hope to minimize A(f), but rather minimize its
empirical counterpart Â(f). Instead of minimizing Â(f) directly, we consider a stagewise
greedy algorithm, which is described in Figure 1. It is clear from the description of the
algorithm that f̂ t

β,m, the hypothesis generated by the procedure, belongs to βcot(H) for
every t. Note also that, by the definition of φ, for fixed α and β the function Â((1−α)f̂ τ−1

β,m +
αβh) is convex in h.

We observe that many recent approaches to Boosting-type algorithms (e.g., Breiman, 1998,
Hastie et al., 2001, Mason et al., 2000, Schapire and Singer, 1999) are based on algorithms
similar to the one presented in Figure 1. Two points are worth noting. First, at each
step τ , the value of the previous composite hypothesis f̂ τ−1

β,m is multiplied by (1 − α), a
procedure which is usually not followed in other Boosting-type algorithms; this ensures
that the composite function at every step remains in βco(H). Second, the parameters α
and β are constrained at every stage; this serves as a regularization measure and prevents
overfitting.
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In order to analyze the behavior of the algorithm, we need several definitions. For η ∈ [0, 1]
and f ∈ R let

G(η, f) = ηφ(f) + (1 − η)φ(−f).

Let R
∗ denote the extended real line (R∗ = R∪ {−∞, +∞}). We extend a convex function

g : R → R to a function g : R
∗ → R

∗ by defining g(∞) = limx→∞ g(x) and g(−∞) =
limx→−∞ g(x). Note that this extension is merely for notational convenience. It ensures
that, fG(η), the minimizer of G(η, f), is well-defined at η = 0 or 1 for appropriate loss
functions. For every value of η ∈ [0, 1] let

fG(η)
�
= argmin

f∈R∗
G(η, f) ; G∗(η)

�
= G(η, fG(η)) = inf

f∈R∗ G(η, f).

It can be shown (Zhang, 2002b) that for many choices of φ, including the examples given
in Section 3.3, fG(η) > 0 when η > 1/2. We begin with a result from Zhang (2002b). Let
f∗

β minimize A(f) over βco(H), and denote by fopt the minimizer of A(f) over all Borel
measurable functions f . For simplicity we assume that fopt exists. In other words

A(fopt) ≤ A(f) (for all measurable f).

Our definition implies that fopt(x) = fG(η(x)).

Theorem 4 (Zhang (2002b), Theorem 2.1) Assume that fG(η) > 0 when η > 1/2,
and that there exist c > 0 and s ≥ 1 such that for all η ∈ [0, 1],

|η − 1/2|s ≤ cs(G(η, 0) − G∗(η)).

Then for all Borel measurable functions f(x)

L(f) − L∗ ≤ 2c
(
A(f) − A(fopt)

)1/s
, (4)

where the Bayes error is given by L∗ = L(2η(·) − 1).

The condition that fG(η) > 0 when η > 1/2 in Theorem 4 ensures that the optimal
minimizer fopt achieves the Bayes error. This condition can be satisfied by assuming that
φ(f) < φ(−f) for all f > 0. The parameters c and s in Theorem 4 depend only on the loss
φ. In general, if φ is second order differentiable, then one can take s = 2. Examples of the
values of c and s are given in Section 3.3. The bound (4) allows one to work directly with
the function A(·) rather than with the less wieldy 0 − 1 loss L(·).
We are interested in bounding the loss L(f) of the empirical estimator f̂ t

β,m obtained after
t steps of the stagewise greedy algorithm described in Figure 1. Substitute f̂ t

β,m in (4), and
consider bounding the r.h.s. as follows (ignoring the 1/s exponent for the moment):

A(f̂ t
β,m) − A(fopt) =

[
A(f̂ t

β,m) − Â(f̂ t
β,m)

]
+

[
Â(f̂ t

β,m) − Â(f∗
β)

]
+

[
Â(f∗

β) − A(f∗
β)

]
+

[
A(f∗

β) − A(fopt)
]
. (5)

Next, we bound each of the terms separately.

The first term can be bounded using Theorem 2. In particular, since A(f) = Eφ(Y f(X)),
where φ is assumed to be convex, and since f̂ t

β,m ∈ βco(H) then f(x) ∈ [−β, β] for every
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x. It follows that on its (bounded) domain the Lipschitz constant of φ is finite and can be
written as κβ (see explicit examples in Section 3.3). From Theorem 2 we have that with
probability at least 1 − δ,

A(f̂ t
β,m) − Â(f̂ t

β,m) ≤ 4βκβRm(H) + φβ

√
log(1/δ)

2m
,

where φβ
�
= supf∈[−β,β] φ(f). Recall that f̂ t

β,m ∈ βco(H), and note that we have used the
fact that Rm(βco(H)) = βRm(H) (e.g., Bartlett and Mendelson, 2001). The third term
on the r.h.s. of (5) can be estimated directly from the Chernoff bound. We have with
probability at least 1 − δ:

Â(f∗
β) − A(f∗

β) ≤ φβ

√
log(1/δ)

2m
.

Note that f∗ is fixed (independent on the sample), and therefore a simple Chernoff bound
suffices here. In order to bound the second term in (5) we assume that

sup
v∈[−β,β]

φ′′(v) ≤ Mβ < ∞, (6)

where φ′′(u) is the second derivative of φ(u).

From Theorem 4.2 in Zhang (2002a) we know that for a fixed sample

Â(f̂ t
β,m) − Â(f∗

β) ≤ 8β2Mβ

t
. (7)

This result holds for every convex φ and fixed β.

The fourth term in (5) is a purely approximation theoretic term. An appropriate assumption
will need to be made concerning the Bayes boundary for this term to vanish.

In summary, for every t, with probability at least 1 − 2δ,

A(f̂ t
β,m) − A(fopt) ≤ 4βκβRm(H) +

8β2Mβ

t
+ φβ

√
2 log(1/δ)

m
+ (A(f∗

β) − A(fopt)). (8)

The final term in (8) can be bounded using the Lipschitz property of φ. In particular,

A(f∗
β) − A(fopt) = EX

{
η(X)φ(f∗

β(X)) + (1 − η(X))φ(−f∗
β(X))

}
− EX

{
η(X)φ(fopt(X)) + (1 − η(X))φ(−fopt(X))

}
= EX

{
η(X)[φ(f∗

β(X)) − φ(fopt(X))]
}

+ EX

{
(1 − η(X))[φ(−f∗

β(X)) − φ(−fopt(X))]
}

≤ κβEX

{
η(X)|f∗

β(X) − fopt(X)| + (1 − η(X))|f∗
β(X) − fopt(X)|}

≤ κβEX |f∗
β(X) − fβ,opt(X)| + ∆β , (9)

where the Lipschitz property and the triangle inequality were used in the final two steps.
Here fβ,opt(X) = max(−β, min(β, fopt(X))) is the projection of fopt onto [−β, β], and

∆β
�
= sup

η∈[1/2,1]
{I(fG(η) > β)[G(η, β) − G(η, fG(η))]} .

Note that ∆β → 0 when β → ∞ since ∆β represents the tail behavior G(η, β). Several
examples are provided in Section 3.3.

10
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3.3 Examples for φ

We consider three commonly used choices for the convex function φ. Other examples are
presented in Zhang (2002b).

exp(−x) Exponential
log(1 + exp(−x))/ log 2 Logistic loss
(x − 1)2 Squared loss

In this paper, the natural logarithm is used in the definition of logistic loss. The division by
log 2 sets the scale so that the loss function equals 1 at x = 0. For each one of these cases
we provide in Table 1 the values of the constants Mβ, φβ , κβ , and ∆β defined above. We
also include the values of c and s from Theorem 4, as well as the optimal minimizer fG(η).
Note that the values of ∆β and κβ listed in Table 1 are upper bounds (see Zhang, 2002b).

φ(x) exp(−x) log(1 + exp(−x))/ log 2 (x − 1)2

Mβ exp(β) 1/(4 log 2) 2
φβ exp(β) log(1 + exp(β))/ log 2 (β + 1)2

κβ exp(β) 1/ log 2 2β + 2
∆β exp(−β) exp(−β)/ log 2 max(0, 1 − β)2

fG(η) 1
2 log η

1−η log η
1−η 2η − 1

c 1/
√

2
√

log 2/2 1/2
s 2 2 2

Table 1: Parameter values for several popular choices of φ.

3.4 Universal Consistency

We assume that h ∈ H implies −h ∈ H, which in turn implies that 0 ∈ co(H). This implies
that β1co(H) ⊆ β2co(H) when β1 ≤ β2. Therefore, using a larger value of β implies
searching within a larger space. We define span(H) = ∪β>0βco(H), which is the largest
function class that can be reached in the greedy algorithm by increasing β.

In order to establish universal consistency, we may assume initially that the class of functions
span(H) is dense in C(K) - the class of continuous functions over a domain K ⊆ R

d under
the uniform norm topology. From Theorem 4.1 in Zhang (2002b), we know that for all
φ considered in this paper, and all Borel measures, inff∈span(H) A(f) = A(fopt). Since
span(H) = ∪β>0βco(H), we obtain limβ→∞ A(f∗

β)−A(fopt) = 0, leading to the vanishing
of the final term in (8) when β → ∞. Using this observation we are able to establish
sufficient conditions for consistency.

Theorem 5 Assume that the class of functions span(H) is dense in C(K) over a domain
K ⊆ R

d. Assume further that φ is convex and Lipschitz and that (6) holds. Choose
β = β(m) such that as m → ∞, we have β → ∞, φ2

β log m/m → 0, and βκβRm(H) → 0.
Then the greedy algorithm of Figure 1, applied for t steps where (β2Mβ)/t → 0 as m → ∞,
is strongly universally consistent.

11
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Proof Let δm = 1
m2 . It follows from (8) that with probability smaller than 2δm

A(f̂ tm
β,m) − A(fopt) > 4βmκβmRm(H) +

8β2
mMβm

tm
+ 2φβ

√
log m

m
+ ∆Aβ ,

where ∆Aβ = A(f∗
β) − A(fopt) → 0 as β → ∞. Using the Borel Cantelli Lemma this

happens finitely many times, so there is a (random) number of samples m1 after which the
above inequality is always reversed. Since all terms in (8) converge to 0, it follows that
for every ε > 0 from some time on A(f̂ t

β,m) − A(fopt) < ε with probability 1. Using (4)
concludes the proof.

Unfortunately, no convergence rate can be established in the general setting of universal
consistency. Convergence rates for particular functional classes can be derived by applying
appropriate assumptions on the class H and the posterior probability η(x). We note that in
Mannor et al. (2002a) we used (8) in order to establish convergence rates for the three loss
functions described above, when certain smoothness conditions were assumed concerning
the class conditional distribution η(x). The procedure described in Mannor et al. (2002a)
also established appropriate (non-adaptive) choices for β as a function of the sample size
m. In the next section we use a different approach for the squared loss in order to derive
faster, nearly optimal, convergence rates.

4. Rates of Convergence and Adaptivity - the Case of Squared Loss

We have shown that under reasonable conditions on the function φ, universal consistency
can be established as long as the base class H is sufficiently rich. We now move on to discuss
rates of convergence and the issue of adaptivity, as described in Section 2. In this section
we focus on the squared loss, as particularly tight bounds are available for this case, using
techniques from the empirical process literature (e.g., van de Geer, 2000). This allows us to
demonstrate nearly minimax rates of convergence. Since we are concerned with establishing
convergence rates in a nonparametric setting, we will not be concerned with constants which
do not affect rates of convergence. We will denote generic constants by c, c′, c1, c

′
1, etc.

We begin by bounding the difference between A(f) and A(fopt) in the non adaptive setting,
where we consider the case of a fixed value of β which defines the class βco(H). In Section
4.2 we use the multiple testing Lemma to derive an adaptive procedure that leads to a
uniform bound over span(H). We finally apply those results for attaining bounds on the
classification (0− 1) loss in Section 4.3. Observe that from the results of section 3, for each
fixed value of β, we may take the number of boosting iterations t to infinity. We assume
throughout this section that this procedure has been adhered to.

4.1 Empirical ratio bounds for the squared loss

In this section we restrict attention to the squared loss function,

A(f) = E (f(X) − Y )2.

Since in this case
fopt(x) = E(Y |x),

12
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we have the following identity for any function f :

EY |x(f(x) − Y )2 − EY |x(fopt(x) − Y )2 = (f(x) − fopt(x))2.

Therefore
A(f) − A(fopt) = E (f(X) − fopt(X))2. (10)

We assume that f belongs to some function class F , but we do not assume that fopt belongs
to F . Furthermore, since for any real numbers a, b, c, we have that (a − b)2 − (c − b)2 =
(a − c)2 + 2(a − c)(c − b) the following is true:

Â(f) − Â(fopt) =
1
m

m∑
i=1

(f(xi) − yi)2 − 1
m

m∑
i=1

(fopt(xi) − yi)2

=
2
m

m∑
i=1

(fopt(xi) − yi)(f(xi) − fopt(xi)) +
1
m

m∑
i=1

(f(xi) − fopt(xi))2.

(11)

Our goal at this point is to assess the expected deviation of [A(f) − A(fopt)] from its
empirical counterpart, [Â(f)−Â(fopt)]. In particular, we want to show that with probability
at least 1 − δ, δ ∈ (0, 1), for all f ∈ F we have

A(f) − A(fopt) ≤ c(Â(f) − Â(fopt)) + ρm(δ) ,

for appropriately chosen c and ρm(δ).

For any f it will be convenient to use the notation Êf
�
= 1

m

∑m
i=1 f(xi).

We now relate the expected and empirical values of the deviation terms A(f)−A(fopt). The
following result is based on the symmetrization technique and the so-called peeling method
in statistics (e.g., van de Geer, 2000). Since the proof is rather technical, it is presented in
the appendix.

Lemma 6 Let F be a class of uniformly bounded functions, and let X = {X1, . . . , Xm} be
a set of points drawn independently at random according to some law P . Assume that for
all f ∈ F , supx |f(x) − fopt(x)| ≤ M . Then there exists a positive constant c such that for
all q ≥ c, with probability at least 1 − exp(−q), for all f ∈ F

E
(
f(X) − fopt(X)

)2 ≤ 4Ê
(
f(X) − fopt(X)

)2 +
{

100qM2

m
+

∆2
m

6

}
,

where ∆m is any number such that

m∆2
m ≥ 32M2 max(H(∆m,F , m), 1). (12)

Observe that ∆m is well-defined since the the l.h.s. is monotonically increasing and un-
bounded, while the r.h.s. is monotonically decreasing.

We use the following bound from van de Geer (2000):

13
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Lemma 7 (van de Geer (2000), Lemma 8.4) Let F be a class of functions such that
for all positive δ, H(δ,F , m) ≤ Kδ−2ξ, for some constants 0 < ξ < 1 and K. Let X, Y be
random variables defined over some domain. Assume further that |W (x, y)| ≤ M for all
x, y, and EY |xW (x, Y ) = 0 for all x. Then there exists a constant c, depending on ξ, K and
M only, such that for all ε ≥ c/

√
m:

P

{
sup
f∈F

|Ê{W (X, Y )f(X)}|
(Êf(X)2)(1−ξ)/2

≥ ε

}
≤ c exp(−mε2/c2).

For reference, it is useful to introduce the following assumption.

Assumption 1 Assume that supx |f(x) − fopt(x)| ≤ M for all f ∈ F . Moreover, for all
positive ε, H(ε,F , m) ≤ K(ε/M)−2ξ where 0 < ξ < 1.

It is convenient to rewrite Lemma 7 in a somewhat different form.

Lemma 8 Let Assumption 1 hold. Then there exist positive constants c0, c1 that depend
on ξ and K only, such that ∀q ≥ c0, with probability at least 1 − exp(−q), for all f ∈ F

∣∣∣Ê{
(fopt(X) − Y )(f(X) − fopt(X))

}∣∣∣ ≤ 1 − ξ

2
Ê(f − fopt)

2 + c1M
2
( q

m

)1/(1+ξ)
.

Proof Let

W (X, Y ) = (fopt(X) − Y )/M, ; g(X) = (f(X) − fopt(X))/M.

Using Lemma 7 we find that there exist constants c and c′ that depend on ξ and K only,
such that ∀ε ≥ c/

√
m

P
{
∃g ∈ G : |Ê{W (X, Y )g(X)}| >

1 − ξ

2
Êg(X)2 +

1 + ξ

2
ε2/(1+ξ)

}
(a)

≤ P
{
∃g ∈ G : |Ê{W (X, Y )g(X)}| > (Êg(X)2)(1−ξ)/2ε

}

= P

{
sup
g∈G

|Ê{W (X, Y )g(X)}|
(Êg(X)2)(1−ξ)/2

> ε

}

(b)

≤ c exp(−mε2/c2).

where (a) used the inequality |ab| ≤ 1−ξ
2 |a|2/(1−ξ) + 1+ξ

2 |b|2/(1+ξ), and (b) follows using
Lemma 7. The claim follows by setting ε =

√
q/m and choosing c0 and c1 appropriately. �

Combining Lemma 6 and Lemma 8, we obtain the main result of this section.

Theorem 9 Suppose Assumption 1 holds. Then there exist constants c0, c1 > 0 that depend
on ξ and K only, such that ∀q ≥ c0, with probability at least 1 − exp(−q), for all f ∈ F

A(f) − A(fopt) ≤
4
ξ

[
Â(f) − Â(fopt)

]
+

c1M
2

ξ

( q

m

)1/(1+ξ)
.
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Proof By (10) it follows that A(f) − A(fopt) = E(f − fopt)2. There exists a constant c′0
depending on K only such that in Lemma 6, we can let ∆2

m = c′0M2m−1/(1+ξ) to obtain

A(f) − A(fopt) = E(f − fopt)
2 ≤ 4Ê(f − fopt)

2 + M2(100q/m + c′0m
−1/(1+ξ)) (13)

with probability at least 1 − exp(−q) where q ≥ 1. By (11) we have that

[Â(f) − Â(fopt)] = 2Ê
{
(fopt(X) − Y )(f(X) − fopt(X))

}
+ Ê(f(X) − fopt(X))2

Using Lemma 8 we have that for c′1 ≥ 1 and c′2 that depend on K and ξ only, such that for
all q ≥ c′1, with probability at least 1 − exp(−q):

∣∣∣Ê{
(fopt(X) − Y )(f(X) − fopt(X))

}∣∣∣ ≤ 1 − ξ

2
Ê(f − fopt)

2 + c′2M
2
( q

m

)1/(1+ξ)
.

Combining these results we have that with probability at least 1 − e−q:

[Â(f) − Â(fopt)] = 2Ê
{
(fopt(X) − Y )(f(X) − fopt(X))

}
+ Ê(f(X) − fopt(X))2

≥ ξÊ(f − fopt)
2 − 2c′2M

2
( q

m

)1/(1+ξ)
. (14)

From (13) and (14) we obtain with probability at least 1 − 2 exp(−q):

A(f) − A(fopt) ≤
4
ξ
[Â(f) − Â(fopt)] +

8
ξ
c′2M

2
( q

m

)1/(1+ξ)
+ M2(100q/m + c′0m

−1/(1+ξ)) .

The theorem follows from this inequality with appropriately chosen c0 and c1. �

4.2 Adaptivity

In this section we let f be chosen from βco(H) ≡ βF , where β will be determined adaptively
based on the data in order to achieve an optimal balance between approximation and
estimation errors. In this case, supx |f(x)| ≤ βM where h ∈ H are assumed to obey
supx |h(x)| ≤ M . We first need to determine the precise β-dependence of the bound of
Theorem 9. We begin with a definition followed by a simple Lemma, the so-called multiple
testing Lemma (e.g. Lemma 4.14 in Herbrich, 2002).

Definition 10 A test Γ is a mapping from the sample S and a confidence level δ to the
logical values {True, False}. We denote the logical value of activating a test Γ on a sample
S with confidence δ by Γ(S, δ).

Lemma 11 Suppose we are given a set of tests Γ = {Γ1, . . . ,Γr}. Assume further that a
discrete probability measure P = {pi}r

i=1 over Γ is given. If for every i ∈ {1, 2, . . . , r} and
δ ∈ (0, 1), P{Γi(S, δ)} ≥ 1 − δ, then

P {Γ1(S, δp1) ∧ · · · ∧ Γr(S, δpr)} ≥ 1 − δ.

We use Lemma 11 in order to extend Theorem 9 so that it holds for all β. The proof again
relies on the peeling technique.
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Theorem 12 Let Assumption 1 hold. Then there exist constants c0, c1 > 0 that depend on
ξ and K only, such that ∀q ≥ c0, with probability at least 1 − exp(−q), for all β ≥ 1 and
for all f ∈ βF we have

A(f) − A(fopt) ≤
4
ξ

[
Â(f) − Â(fopt)

]
+ c1β

2M2

(
q + log log(3β)

m

)1/(1+ξ)

.

Proof For all s = 1, 2, 3, . . ., let Fs = 2sF . Let us define the test Γs(S, δ) to be TRUE if

A(f) − A(fopt) ≤
4
ξ

[
Â(f) − Â(fopt)

]
+

c

ξ
22sM2

(
log(1/δ)

m

) 1
1+ξ

for all f ∈ Fs and FALSE otherwise. Using Theorem 9 with we have that P(Γs(S, δ)) ≥ 1−δ.
Let ps = 1

s(s+1) , noting that
∑∞

s=1 ps = 1 and by Lemma 11 we have that

P {Γs(S, δps) for all s} ≥ 1 − δ .

Consider f ∈ βF for some β ≥ 1. Let s = �log2 β�+1, we have that P
{

Γs(S, δ
s(s+1))

}
≥ 1−δ

so that with probability at least 1 − δ we have that:

A(f) − A(fopt) ≤
4
ξ

[
Â(f) − Â(fopt)

]
+

c′

ξ
22sM2

(
log( s2+s

δ )
m

)1/(1+ξ)

≤ 4
ξ

[
Â(f) − Â(fopt)

]
+

c1

ξ
β2M2

(
log log(3β) + q

m

)1/(1+ξ)

where we set t = log(1/δ) and used the fact that 2s−1 ≤ β ≤ 2s. �
Theorem 12 bounds A(f) − A(fopt) in terms of Â(f) − Â(fopt). However, in order to
determine overall convergence rates of A(f) to A(fopt) we need to eliminate the empirical
term Â(f) − Â(fopt). To do so, we first recall a simple version of the Bernstein inequality
(e.g. Devroye et al., 1996) together with a straightforward consequence.

Lemma 13 Let {X1, X2, . . . , Xm} be real-valued i.i.d. random variables such that |Xi| ≤ b
with probability one. Let σ2 = Var[X1]. Then, for any ε > 0

P

{
1
m

m∑
i=1

Xi − E[X1] > ε

}
≤ exp

(
− mε2

2σ2 + 2bε/3

)
.

Moreover, if σ2 ≤ c′bE[X1], then for all positive q, there exists a constant c that depends
only on c′ such that with probability at least 1 − exp(−q)

1
m

m∑
i=1

Xi ≤ cE[X1] +
bq

m
,

where c is independent of b.

Proof The first part of the Lemma is just the Bernstein inequality (e.g. Devroye et al., 1996).
To show the second part we need to bound from above the probability that (1/m)

∑m
i=1 Xi >
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cE[X1] + bq/m. Set ε = (c − 1)E[X1] + bq/m. Using Bernstein’s inequality we have that

P

{
1
m

m∑
i=1

Xi − E[X1] > (c − 1)E[X1] +
bt

m

}
≤ exp

(
− mε2

2σ2 + 2bε/3

)

≤ exp
(
− mε2

2c′bE[X1] + 2bε/3

)
(a)

≤ exp
(
−mε

b

)
≤ exp (−q) ,

where (a) follows by choosing c large enough so that 2c′ < 1
3(c−1), implying that 2c′bE[X1] <

bε/3. �
Next, we use Bernstein’s inequality in order to bound Â(f) − Â(fopt).

Lemma 14 Let Assumption 1 hold. Given any β ≥ 1 and f ∈ βF , there exists a constant
c0 > 0 such that ∀q, with probability at least 1 − exp(−q):

Â(f) − Â(fopt) ≤ c0

[
(A(f) − A(fopt)) +

(βM)2q
m

]
.

Proof Fix f ∈ βF and set Z = 2[(fopt(X)−Y )(f(X)−fopt(X))]+(f(X)−fopt(X))2. Ac-
cording to (11), Â(f)−Â(fopt) = Ê[Z]. Using (10) we have that E[Â(f)−Â(fopt)] = A(f)−
A(fopt) = E(f(X) − fopt(X))2. A direct computation shows that Var[Z] ≤ 9β2M2E[Z].
The claim then follows from a direct application of Lemma 13. �
We now consider a procedure for determining β adaptively from the data. Define a penalty
term

γq(β) = β2M2

(
log log(3β) + q

m

)1/(1+ξ)

,

which penalizes large values of β, corresponding to large classes with good approximation
properties.

The procedure then is to find β̂q and f̂q ∈ β̂qF such that

Â(f̂q) + γq(β̂q) ≤ inf
β≥1

[
inf

f∈βF
Â(f) + 2γq(β)

]
. (15)

This procedure is similar to the so-called structural risk minimization method (Vapnik,
1982), except that the minimization is performed over the continuous parameter β rather
than a discrete hypothesis class counter. Observe that β̂q and f̂q are non unique, but this
poses no problem.

We can now establish a bound on the loss incurred by this procedure.

Theorem 15 Let Assumption 1 hold. Choose q0 > 0 and assume we compute f̂q0 using
(15). Then there exist constants c0, q0 > 0 that depend on ξ and K only, such that ∀m ≥
q ≥ max(q0, c0), with probability at least 1 − exp(−q),

A(f̂q0) ≤ A(fopt) + c1

(
q

q0

)1/(1+ξ)

inf
β≥1

[
inf

f∈βF
A(f) − A(fopt) + γq(β)

]
.
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Note that since for any q, γq(β) = O((1/m)1/(1+ξ)), Theorem 15 provides rates of con-
vergence in terms of the sample size m. Observe also that the main distinction between
Theorem 15 and Theorem 12 is that the latter provides a data-dependent bound, while
the former establishes a so-called oracle inequality, which compares the performance of the
empirical estimator f̂q0 to that of the optimal estimator within a (continuously parameter-
ized) hierarchy of classes. This optimal estimator cannot be computed since the underlying
probability distribution is unknown, but serves as a performance yard-stick.

Proof (of Theorem 15) Consider βq ≥ 1 and fq ∈ βqF such that

A(fq) − A(fopt) + 2γq(βq) ≤ inf
β≥1

[
inf

f∈βF
A(f) − A(fopt) + 4γq(β)

]
. (16)

Note that βq and fq determined by (16), as opposed to β̂q and f̂q in (15), are independent
of the data. Using Lemma 14, we know that there exists a constant c′2 such that with
probability at least 1 − exp(−q):

Â(fq) − Â(fopt) + 2γq(βq) ≤ c′2 inf
β≥1

[
inf

f∈βF
A(f) − A(fopt) + γq(β)

]
. (17)

From (15) we have

Â(f̂q0) − Â(fopt) + γq0(β̂q0)
(a)

≤ Â(fq) − Â(fopt) + 2γq0(βq)
(b)

≤ Â(fq) − Â(fopt) + 2γq(βq)
(c)

≤ c′2 inf
β≥1

[
inf

f∈βF
A(f) − A(fopt) + γq(β)

]
. (18)

Here (a) results from the definition of f̂q0 , (b) uses q ≥ q0, and (c) is based on (17). We
then conclude that there exist constants c′0, c′1 > 0 that depend on ξ and K only, such that
∀q ≥ c′0, with probability at least 1 − exp(−q):

A(f̂q0) − A(fopt)
(a)

≤ c′1[Â(f̂q0) − Â(fopt) + γq(β̂q0)]

(b)

≤ c′1

(
q

q0

)1/(1+ξ)

[Â(f̂q0) − Â(fopt) + γq0(β̂q0)]

(c)

≤ c′1c
′
2

(
q

q0

)1/(1+ξ)

inf
β≥1

[ inf
f∈βF

A(f) − A(fopt) + γq(β)].

Here (a) is based on Theorem 12, (b) follows from the definition of γq(β) and (c) follows
from (18). �

4.3 Classification error bounds

Theorem 15 established rates of convergence of A(f̂) to A(fopt). However, for binary
classification problems, the main focus of this work, we wish to determine the rate at which
L(f̂) converges to the Bayes error L∗. However, from the work of Zhang (2002b), reproduced
as Theorem 4 above, we immediately obtain a bound on the classification error.
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Corollary 16 Let Assumption 1 holds. Then there exist constants c0, c1 > 0 that depend
on ξ and K only, such that ∀m ≥ q ≥ max(q0, c0), with probability at least 1 − exp(−q),

L(f̂q0) ≤ L∗ + c0

(
q

q0

)1/2(1+ξ)

inf
β≥1

[
inf

f∈βF
(
A(f) − A(fopt)

)
+ γq(β)

]1/2

. (19)

Moreover, if the conditional probability η(x) is uniformly bounded away from 0.5, namely
|η(x) − 1/2| ≥ δ > 0 for all x, then with probability at least 1 − exp(−q),

L(f̂q0) ≤ L∗ + c1

(
q

q0

)1/(1+ξ)

inf
β≥1

[
inf

f∈βF
(A(f) − A(fopt)) + γq(β)

]
.

Proof The first inequality follows directly from Theorems 4 and 15, noticing the s = 2 for
the least squares loss. The second inequality follows from Corollary 2.1 of Zhang (2002b).
According to this corollary

L(f̂q0) ≤ L∗ + 2c inf
δ>0

[(
E|η(x)− 1

2
|<δ(f̂q0 − fopt)

2
)1/2

+ c′
1
δ
(A(f̂q0) − A(fopt))

]
.

The claim follows since by assumption the first term inside the infimum on the r.h.s. van-
ishes. �
In order to proceed to the derivation of complete convergence rates we need to assess the
parameter ξ and the approximation theoretic term inff∈βF A(f)−A(fopt), where we assume
that F = co(H). In order to do so we make the following assumption.

Assumption 2 For all h ∈ H, supx |h(x)| ≤ M . Moreover, N2(ε,H, m) ≤ C (M/ε)V , for
some constants C and V .

Note that Assumption 2 holds for VC classes (e.g., van der Vaart and Wellner, 1996). The
entropy of the class βco(H) can be estimated using the following result.

Lemma 17 (van der Vaart and Wellner (1996), Theorem 2.6.9) Let Assumption 2
hold for H. Then there exists a constant K that depends on C and V only such that

logN2(ε, βco(H), m) ≤ K

(
βM

ε

) 2V
V +2

(20)

We use Lemma 17 to establish precise convergence rates for the classification error. In
particular, Lemma 17 implies that ξ in assumption 1 is equal to 2V/(V + 2), and indeed
obeys the required conditions. We consider two situations, namely the non-adaptive and
the adaptive settings. First, assume that fopt ∈ βF = βco(H) where β < ∞ is known.

In this case, inff∈βF A(f)−A(fopt) = 0, so that from (19) we find that for sufficiently large
m, with high probability

L(f̂q0) − L∗ ≤ O
(
m−(V +2)/(4V +4)

)
.

where we selected f̂q0 based on (15) with q = q0.

In general, we assume that fopt ∈ Bco(H) for some unknown but finite B. In view of the
discussion in Section 2, this is a rather generic situation for sufficiently rich base classes H
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(e.g. non-polynomial ridge functions). Consider the adaptive procedure (15). In this case
we may simply replace the infimum over β in (19) by the choice β = B. The approximation
error term inff∈βF A(f) − A(fopt) vanishes, and we are left with the term γ(B), which
yields the rate

L(f̂q0) − L∗ ≤ O
(
m−(V +2)/(4V +4)

)
. (21)

We thus conclude that the adaptive procedure described above yields the same rates of
convergence as the non-adaptive case, which uses prior knowledge about the value of β.

In order to assess the quality of the rates obtained, we need to consider specific classes of
functions H. For any function f(x), denote by f̃(ω) its Fourier transform. Consider the
class of functions introduced by Barron (1993) and defined as,

N(B) =
{

f :
∫

Rd

‖ω‖1|f̃(ω)|dω ≤ B

}
,

consisting of all functions with a Fourier transform which decays sufficiently rapidly. Define
the approximating class composed of neural networks with a single hidden layer,

Hn =

{
f : f(x) = c0 +

n∑
i=1

ciφ(v
i x + bi), |c0| +
n∑

i=1

|ci| ≤ B

}

where φ is a (non-polynomial) sigmoidal Lipschitz function. Barron (1993) showed that the
class Hn is dense in N(B).

For the class N(B) we have the following worst case lower bound from Yang (1999)

inf
f̂m

sup
η∈N(B)

EL(f̂) − L∗ ≥ Ω(m−(d+2)/(4d+4)), (22)

where f̂m is any estimator based on a sample of size m, and by writing h(m) = Ω(g(m)) we
mean that there exists m0, C such that h(m) ≥ Cg(m) for m ≥ m0. As a specific example
for a class H, assume H is composed of monotonically increasing sigmoidal ridge functions.
In this case one can show (e.g. Theorems 11.3, 11.4, and 12.2 in Anthony and Bartlett,
1999) that V = (d + 1). Substituting in (21) we find a rate of the order O(m−(d+3)/(4d+8)),
which is slightly worse than the minimax lower bound (22). In Mannor et al. (2002a) we
also established convergence rates for the classification error. For the particular case of
the squared loss and the class N(B) we obtained the (non-adaptive) rate of convergence
O(m−1/4), which does not depend on the dimension d, as is required in the minimax bound.
The necessary dependence on the dimension that comes out of the analysis in the present
section, hinges on the utilization of the more refined bounding techniques used here.

5. Numerical experiments

The algorithm presented in Figure 1 was implemented and tested for an artificial data set.
The algorithm and the scripts that were used to generate the graphs that appear in this
paper are provided in the online appendix (Mannor et al., 2002b) for completeness.

5.1 Algorithmic details

The optimization step in the algorithm of Figure 1 is computationally expensive. Un-
fortunately, while the cost function A((1 − α)f + αh) is convex in α for a fixed h, it is
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not necessarily convex in the parameters that define h. The weak learners we used were
sigmoidal H = {h(x) = σ(θ · x + θ0)}. Given a choice of h it should be noted that

Â((1 − α)f̂ τ−1
β,m + αβ′h) (23)

is convex in α. We therefore used a coordinate search approach where we search on α
and h alternately. The search over α was performed using a highly efficient line search
algorithms based on the convexity. The search over the parameters of h was performed
using the Matlab optimization toolbox function fminsearch, which implements the Nedler-
Mead algorithm. Due to the occurrence of local minima (e.g. Auer et al., 1996), we ran
several instances until convergence, starting each run with different initial conditions. The
best solution was then selected.

5.2 Experimental results

The two-dimensional data set that was used for the experiments was generated randomly in
the following way. Positively labelled points were generated uniformly at random in a the
unit circle. Negatively labelled point were generated uniformly at random in the ring (in
spherical coordinates) {(r, θ) : 2 ≤ r ≤ 3, 0 ≤ θ < 2π}. The sign of each point was flipped
with probability 0.05. A sample data set is plotted Figure 2a. The Bayes error of this data
set is 0.05 (log10(0.05) ≈ −1.3).

In order to investigate overfitting as a function of the regularization parameter β, we ran
the following experiment. We fixed the number of samples m = 400 and varied β over a
wide range. We ran the greedy algorithm with the squared loss. As expected, the squared
loss per sample decreases as β increases. It can also be seen that the empirical classification
training error decreases when β increases, as can be seen in Figure 2b. Every experiment
was repeated fifteen times and the error bars represent one standard deviation.

The generalization error is plotted in Figure 3a. It seems that for β that is too small the
approximation power does not suffice, while for large values of β overfitting occurs. We note
that for large values of β the optimization process may fail with non negligible probability.

In spite of the overfitting phenomenon observed in Figure 3a we note that for a given value
of β the performance improves with increasing sample size. For a fixed value of β = 1 we
changed m from 10 to 1000 and ran the algorithm. The generalization error is plotted in
Figure 3b (again results are averaged over 15 runs and the error bars represent one standard
deviation). We note that comparable behavior was observed for other data sets. Specifically,
similar results were obtained for points in a noisy XOR configuration in two dimensions.
We also ran experiments on the Indian Pima dataset. The results were comparable to
state-of-the-art algorithms (the error for the Pima dataset using 15 fold cross validation
was 29% ± 3%). The results are provided in detail, along with implementation sources, in
Mannor et al. (2002b).

6. Discussion

In this paper we have studied a class of greedy algorithms for binary classification, based on
minimizing an upper bound on the 0− 1 loss. The approach followed bears strong affinities
to Boosting algorithms introduced in the field of machine learning, and additive models
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Figure 2: (a) An artificial data set, (b) Square loss and error probability for the artificial
data set.
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Figure 3: (a) Generalization error: as a function of β, sampled using 1000 points; (b)
Generalization error: plotted as a function of m for a fixed β = 1, sampled using
1000 points.
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studies within the statistics community. While Boosting algorithms were originally incor-
rectly believed to elude the problem of overfitting, it is only recently that careful statistical
studies have been performed in an attempt to understand their statistical properties. The
work of Jiang (2000b,a), motivated by Breiman (2000), was the first to address the statis-
tical consistency of Boosting, focusing mainly on the question of whether Boosting should
be iterated indefinitely, as had been suggested in earlier studies, or whether some early
stopping criterion should be introduced. Lugosi and Vayatis (2001) and Zhang (2002b)
then developed a framework for the analysis of algorithms based on minimizing a contin-
uous convex upper bound on the 0 − 1 loss, and established universal consistency under
appropriate conditions. The ealier version of this work Mannor et al. (2002a) considered a
stagewise greedy algorithm, thus extending the proof of universal consistency to this class
of algorithms, and showing that consistency can be achieved by Boosting forever, as long as
some regularization is performed by limiting the size of a certain parameter. In the current
version, we have focused on the establishment of rates of convergence and the development
of adaptive procedures, which assume nothing about the data, and yet converge to the
optimal solution at nearly the minimax rate, which assumes knowledge of some smoothness
properties.

While we have established nearly minimax rates of convergence and adaptivity for a certain
class of base learners (namely ridge functions) and target distributions, these results have
been restricted to the case of the squared loss where particularly tight rates of convergence
are available. In many practical applications other loss functions are used, such as the
logistic loss, which seem to lead to excellent practical performance. It would be interesting
to see whether the rates of convergence established for the squared loss apply to a broader
class of loss functions. Moreover, we have established minimaxity and adaptivity for a rather
simple class of target functions. In future work it should be possible to extend these results
to more standard smoothness classes (e.g. Sobolev and Besov spaces). Some initial results
along these lines were provided in Mannor et al. (2002a), although the rates established
in that work are not minimax. A further issue which warrants further investigation is the
extension of these results to multi-category classification problems.

Finally, we comment on the optimality of the procedures discussed in this paper. As pointed
out in Section 4, near optimality for the adaptive scheme introduced in that section was
established. On the other hand, it is well known that under very reasonable conditions
Bayesian procedures (e.g. Robert, 2001) are optimal from a minimax point of view. In
fact, it can be shown that Bayes estimators are essentially the only estimators which can
achieve optimality in the minimax sense (Robert, 2001). This optimality feature provides
strong motivation for the study of Bayesian type approaches in a frequentist setting (Meir
and Zhang, 2002). In many cases Bayesian procedures can be expressed as a mixture
of estimators, where the mixture is weighted by an appropriate prior distribution. The
procedure described in this paper, as many others in the Boosting literature, also generates
an estimator which is formed as a mixture of base estimators. An interesting open question is
to relate these types of algorithms to formal Bayes procedures, with their known optimality
properties.
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Appendix

Proof of Lemma 6

In the following, we use the notation g(x) = (f(x) − fopt(x))2, and let G = {g : g(x) =
(f(x)−fopt(x))2, f ∈ F}. Consider any g ∈ G. Suppose we independently sample m points
twice. We denote the empirical expectation with respect to the first m points by Ê and the
empirical expectation with respect to the second m points by Ê′. We note that the two sets
of random variables are independent. We have from Chebyshev inequality (∀γ ∈ (0, 1)):

P
{∣∣∣Ê′g(X) − Eg(X)

∣∣∣ ≥ γEg(X) +
M2

γm

}
≤ Varg(X)

m

1
(γEg(X) + M2

γm )2
.

Rearranging and taking the complement one gets that:

P
{
Ê′g(X) ≥ (1 − γ)Eg(X) − M2

γm

}
≥ 1 − Varg(X)

m(γEg(X) + M2

γm )2
.

Since 0 ≤ g(X) ≤ M2 it follows that Varg(X) ≤ Eg(X)2 ≤ M2Eg(X) so that:

P
{
Ê′g(X) ≥ (1 − γ)Eg(X) − M2

γm

}
≥ 1 − Eg(X)M2

m(γEg(X) + M2

γm )2
.

Observe that for every positive numbers a, b, m, γ one have that

ab

m(γa + b
γm)2

=
1

2 + mγ2 a
b + b

γ2ma

≤ 1
4

,

where the inequality follows since a + 1
a ≥ 2 for every positive number a. We thus have

P
{
Ê′g(X) ≥ (1 − γ)Eg(X) − M2

γm

}
≥ 3

4
.

It follows (by setting γ = 1/4) that ∀ε > 8∆2
m:

3
4
P

{
∃g ∈ G : Eg(X) > 4Êg(X) + ε +

16M2

3m

}
(a)

≤ P
{
∃g ∈ G : Eg(X) > 4Êg(X) + ε +

16M2

3m
& Ê′g(X) ≥ 3

4
Eg(X) − 4M2

m

}

≤ P
{
∃g ∈ G : Ê′g(X) > 3Êg(X) +

3ε

4

}

≤ P
{
∃g ∈ G : 2|Ê′g(X) − Êg(X)| > Êg(X) + Ê′g(X) +

3ε

4

}
,

where (a) follows by the independence of Ê and Ê′. Let {σi}m
i=1 denote a set of independent

identically distributed ±1-valued random variable such P{σi = 1} = 1/2 for all i. We abuse
notation somewhat and let Êσg(X) = (1/m)

∑m
i=1 σig(Xi), and similarly for Ê′. It follows
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that

3
4
P

{
∃g ∈ G : Eg(X) > 4Êg(X) + ε +

16M2

3m

}

≤ P
{
∃g ∈ G : 2|Ê′σg(X) − Êσg(X)| > Êg(X) + Ê′g(X) +

3ε

4

}

≤ P
{
∃g ∈ G : 2(|Ê′σg(X)| + |Êσg(X)|) > Êg(X) + Ê′g(X) +

3ε

4

}
(a)

≤ 2P
{
∃g ∈ G : 2|Êσg(X)| > Êg(X) +

3ε

8

}
,

where (a) uses the union bound and the observation that Ê and Ê′ satisfy the same prob-
ability law. For a fixed sample X let

Ĝs
�
=

{
g ∈ G : 2s−1∆2

m ≤ Êg(X) ≤ 2s∆2
m

}
.

We define the class σĜs = {f : f(Xi) = σig(Xi), g ∈ Ĝs, i = 1, 2, . . . , m}. Let Ĝs,ε/2 be an
ε/2-cover of Ĝs, with respect to the �m

1 norm, such that Êg ≤ 2s∆2
m for all g ∈ Ĝs,ε/2. It is

then easy to see that σĜs,ε/2 is also an ε/2-cover of the class σĜs. For each s we have

PX,σ

{
∃g ∈ Ĝs : |Êσg(X)| > ε

}
= EXPσ

(
∃g ∈ Ĝs : |Êσg(X)| > ε

)
≤ EXPσ

(
∃g ∈ Ĝs,ε/2 : |Êσg(X)| > ε/2

)
(a)

≤ 2EX

∣∣∣Ĝs,ε/2

∣∣∣ exp
(
− mε2

2Eg2

)

≤ 2EN1(ε/2, Ĝs, �
m
1 ) exp

(
− mε2

2Êg2

)

≤ 2EN1(ε/2, Ĝs, �
m
1 ) exp

(
− mε2

M22s+1∆2
m

)
(24)

where in step (a) we used the union bound and Chernoff’s inequality P(|Ê(σg)| ≥ ε) ≤
2 exp(−2mε2/Êg2). Using the union bound and note that ε > 8∆2

m, we have that:

3
4
P

{
∃g ∈ G : Eg(x) > 4Êg(x) + ε +

16M2

3m

}

≤ 2
∞∑

s=1

P
{
∃g ∈ Ĝs : 2|Êσg(X)| > 2s−1∆2

m +
3ε

8

}

(a)

≤ 4
∞∑

s=1

EN1(ε/11 + 2s−3∆2
m, Ĝs, �

m
1 ) exp

(
−m(2s−2∆2

m + 3ε
16)2

2s+1∆2
mM2

)

≤ 4
∞∑

s=1

EN1(ε/11 + 2s−3∆2
m, Ĝs, �

m
1 ) exp

(
−m2s∆2

m

32M2
− mε

32M2

)
.

Inequality (a) follows from (24).
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We now relate the �2 covering number of F to the �1 covering number of G. Suppose that
that Ê|f1 − f2|2 ≤ ε2. Using (11) this implies that

Ê|(f1 − fopt)
2 − (f2 − fopt)

2| ≤ ε2 + 2Ê|(f2 − fopt)(f1 − f2)|
(a)

≤ ε2 + 2
√

Ê(f2 − fopt)2
√

Ê(f1 − f2)2

(b)

≤ ε2 + 8ε2 +
1
8
Ê(f2 − fopt)

2 ,

where (a) follows from the Cauchy-Schwartz inequality, and (b) follows from the inequality
4a2 + b

16 ≥ a
√

b (which holds for every a and b). Recalling that for f2 ∈ Ĝs, Ê(f2 −fopt)2 ≤
2s∆2

m, we conclude that for all positive ε,

N1(9ε + 2s−3∆2
m, Ĝs, �

m
1 ) ≤ eH(

√
ε,F ,m).

Note that we can choose �2-covers of Ĝs so that their elements g satisfy Êg ≤ 2s∆2
m.

Combining the above we have that ∀ε > ∆2
m:

3
4
P

{
∃g ∈ G : Eg(x) > 4Êg(x) + 100ε +

16M2

3m

}

≤ 4
∞∑

s=1

eH(∆m,F ,m) exp
(
−m2s∆2

m

32M2
− 100mε

32M2

)

(a)

≤ 4
∞∑

s=1

exp
(

m∆2
m

32M2

)
exp

(
−m2s∆2

m

32M2
− 3mε

M2

)

= 4
∞∑

s=1

exp
(

m∆2
m

32M2
(1 − 2s)

)
exp

(
−3mε

M2

)

≤ 4
∞∑

s=1

exp
(
−m∆2

m2s−1

32M2

)
exp

(
−3mε

M2

)

(b)

≤ 4
∞∑

s=1

exp
(−2s−1

)
exp

(
−3mε

M2

)

=
4

1 − e−2
e−3mε/M2

≤ 7e−3mε/M2

Here we used (12) in steps (a) and (b).

Set q = −2 + 3mε/M2, it follows that with probability at least 1 − exp(−q) for all g ∈ G

Eg(x) ≤ 4Êg(x) + 100ε +
16M2

3m
.

By (12), ∆2
m
6 ≥ 16M2

3m . By our definition of q it follows that if q ≥ 3 then q + 2 ≤ 3q so that
ε < qM2/m. We conclude that with probability at least 1 − exp(−q) for all g ∈ G

Eg(x) ≤ 4Êg(x) +
100qM2

m
+

∆2
m

6
,

�
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