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Abstract

Bayesian approaches to learning and estimation have played a significant role in the Statis-
tics literature over many years. While they are often provably optimal in a frequentist
setting, and lead to excellent performance in practical applications, there have not been
many precise characterizations of their performance for finite sample sizes under general
conditions. In this paper we consider the class of Bayesian mixture algorithms, where an
estimator is formed by constructing a data-dependent mixture over some hypothesis space.
Similarly to what is observed in practice, our results demonstrate that mixture approaches
are particularly robust, and allow for the construction of highly complex estimators, while
avoiding undesirable overfitting effects. Our results, while being data-dependent in nature,
are insensitive to the underlying model assumptions, and apply whether or not these hold.
At a technical level, the approach applies to unbounded functions, constrained only by
certain moment conditions. Finally, the bounds derived can be directly applied to non-
Bayesian mixture approaches such as Boosting and Bagging.

1. Introduction and Motivation

The standard approach to Computational Learning Theory is usually formulated within the
so-called frequentist approach to Statistics. Within this paradigm one is interested in con-
structing an estimator, based on a finite sample, which possesses a small loss (generalization
error). While many algorithms have been constructed and analyzed within this context, it is
not clear how these approaches relate to standard optimality criteria within the frequentist
framework. Two classic optimality criteria within the latter approach are minimaxity and
admissibility, which characterize optimality of estimators in a rigorous and precise fashion
(Robert, 2001). Except for some special cases (e.g. Yang (1999)), it is not known whether
any of the approaches used within the Machine Learning community lead to optimality in
either of the above senses of the word. On the other hand, it is known that under certain
regularity conditions, Bayesian estimators lead to either minimax or admissible estimators,
and thus to well-defined optimality in the classical (frequentist) sense. In fact, it can be
shown that Bayes estimators, or limits thereof, are essentially the only estimators which
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can achieve optimality in the above senses (Robert, 2001). This optimality feature provides
strong motivation for the study of Bayesian approaches in a frequentist setting.

While Bayesian approaches have been widely studied, there have not been generally appli-
cable finite-sample bounds in the frequentist framework. Recently, several approaches have
attempted to address this problem. In this paper we establish finite sample data-dependent
bounds for Bayesian mixture methods, which together with the above optimality properties
suggest that these approaches should become more widely used.

Consider the problem of supervised learning where we attempt to construct an estimator
based on a finite sample of pairs of examples S = {(X1, Y1), . . . , (Xn, Yn)}, Xi ∈ X , Yi ∈ Y,
each pair drawn independently at random according to an unknown distribution µ(X, Y ).
Let A be a learning algorithm which, based on the sample S, selects a hypothesis (estimator)
h from some set of hypotheses H. Denoting by �(y, h(x)) the instantaneous loss of the
hypothesis h, we wish to assess the true loss

L(h) = EX,Y �(Y, h(X)) ((X, Y ) ∼ µ). (1)

In particular, the objective is to provide algorithm and data-dependent bounds of the fol-
lowing form. For any h ∈ H and δ ∈ (0, 1), with probability at least 1 − δ,

L(h) ≤ Λ(h, S) + ∆(h, S, δ), (2)

where Λ(h, S) is some empirical assessment of the true loss, and ∆(h, S, δ) is a complexity
term. For example, in the classic Vapnik-Chervonenkis framework (Vapnik and Chervo-
nenkis, 1971), Λ(h, S) is the empirical error (1/n)

∑n
i=1 �(Yi, h(Xi)), and ∆(h, S, δ) depends

on the VC-dimension of H but is independent of both the hypothesis h and the sample
S. By algorithm and data-dependent bounds we mean bounds where the complexity term
depends on both the hypothesis (chosen by the algorithm A) and the sample S.

The main contribution of the present work is the extension of the PAC-Bayesian framework
of McAllester (1999, 2003) to a rather unified setting for Bayesian mixture methods, where
different regularization criteria may be incorporated, and their effect on the performance
can be easily assessed. Furthermore, it is also essential that the bounds obtained are
dimension-independent, since otherwise they yield useless results when applied to methods
based on high-dimensional mappings, such as kernel machines. Similar results can also
be obtained using the covering number analysis in Zhang (2002a). However the approach
presented in the current paper, which relies on the direct computation of the Rademacher
complexity, is more direct and gives better bounds in many cases. The analysis is also easier
to generalize than the corresponding covering number approach. Moreover, our analysis
applies directly to other non-Bayesian mixture approaches such as Bagging and Boosting.
On a technical level, our results remove a common limitation of many of the bounds in
the learning community, namely their assumption of the boundedness of the underlying
loss functions. This latter assumption is usually inappropriate for regression, and is often
inapplicable to classification problems, where the 0−1 loss function is replaced by a convex
upper bound (see Section 6.4).

The remainder of the paper is organized as follows. We begin in Section 2 with a description
of the decision theoretic framework for Bayesian learning. We then move on in Section 3 to
discuss mixture distributions, and recall some basic properties of convex functions. Section
4 presents a new uniform convergence result for unbounded loss functions, and Section 5
then established bounds on the (Rademacher) complexity of classes of functions defined

2



Meir and Zhang April 6, 2003

by convex constraints. Section 6 applies these general results to several cases of interest,
establishing data-dependent bounds. We conclude in Section 7 and present some technical
details in the appendix.

Before moving to the body of the paper, we make several comments concerning notation.
Unless otherwise specified, the natural base of the logarithm is used. We denote random
variables by upper-case letters and their realizations by lower case letters . Expectations
with respect to a random variable X are denoted by EX . Vectors will be denoted using
boldface.

2. A Decision Theoretic Bayesian Framework

In the decision theoretic Bayesian setting we consider three spaces. An input space X ,
an action space A and an output space Y. Consider a (deterministic) action a = a(x)
performed upon observing input x, and let the loss function � : Y × A �→ R, be given by
�(y, a(x)). Let µ be a probability measure defined over X ×Y. The Bayes optimal decision
rule a

.= aµ is given by minimizing EX,Y �(Y, a(X)), namely

EX,Y �(Y, aµ(X)) ≤ inf
a∈A

EX,Y �(Y, a(X)) ((X, Y ) ∼ µ),

where, for ease of notation, we suppress the µ-dependence in the expectation.

In general, we do not have access to µ, but rather observe a sample S = {(Xi, Yi)}n
i=1,

Xi ∈ X , Yi ∈ Y. Let a = a(x, S) be an action selected based on the sample S and the
current input x. We refer to such a sample-dependent action as an algorithm. The sample
dependent loss of a is given by

R(µ, a, S) = EX,Y �(Y, a(X, S)).

We are interested in the expected loss of an algorithm averaged over samples S,

R(µ, a) = ESR(µ, a, S) =
∫

R(µ, a, S)dµ(S),

where the expectation is taken with respect to the sample S drawn i.i.d. from the probability
measure µ. If we consider a family of measures µ, which possesses some underlying prior
distribution π(µ), then we can construct the averaged risk function with respect to the prior
as,

r(π, a) = EπR(µ, a) =
∫

dµ(S)dπ(µ)
∫

R(µ, a, S)dπ(µ|S),

where
dπ(µ|S) =

dµ(S)dπ(µ)∫
µ dµ(S)dπ(µ)

is the posterior distribution on the µ family, which induces a posterior distribution on the
sample space as πS = Eπ(µ|S)µ. An action (algorithm) a

.= aB minimizing the Bayes risk
r(π, a) is referred to as a Bayes algorithm, namely

r(π, aB) ≤ inf
a∈A

r(π, a).

In fact, for a given prior, and a given sample S, the optimal algorithm should return the
Bayes optimal predictor with respect to the posterior measure πS .
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For many important practical problems, the optimal Bayes predictor is a linear functional of
the underlying probability measure. For example, if the loss function is quadratic, namely
�(y, a(x)) = (y − a(x))2, then the optimal Bayes predictor aµ(x) is the conditional mean
of y, namely E[Y |x]. For binary classification problems, we can let the predictor be the
conditional probability aµ(x) = µ(Y = 1|x) (the optimal classification decision rule then
corresponds to a test of whether aµ(x) > 0.5), which is also a linear functional of µ. Clearly
if the Bayes predictor is a linear functional of the probability measure, then the optimal
Bayes algorithm with respect to the prior π is given by

aB(x, S) =
∫

µ
aµ(x)dπ(µ|S) =

∫
µ aµ(x)dµ(S)dπ(µ)∫

µ dµ(S)dπ(µ)
. (3)

In this case, an optimal Bayesian algorithm can be regarded as the predictor constructed by
averaging over all predictors with respect to a data-dependent posterior π(µ|S). We refer to
such methods as Bayesian mixture methods. While the Bayes estimator aB(x, S) is optimal
with respect to the Bayes risk r(π, a), it can be shown, that under appropriate conditions
(and an appropriate prior) it is also a minimax and admissible estimator (Robert, 2001).

In general, aµ is unknown. Rather we may have some prior information about possible
models for aµ. In view of (3) we consider a hypothesis space H, and an algorithm based
on a mixture of hypotheses h ∈ H. This should be contrasted with classical approaches
where an algorithm selects a single hypothesis h from H. For simplicity, we consider a
countable hypothesis space H = {h1, h2, . . .}, and a probability distribution {qj}∞j=1 over
H, namely qj ≥ 0 and

∑
j qj = 1. We introduce the vector notation q = (q1, q2, . . .) and

h = (h1, h2, . . .), and define the probability simplex

Π =


q : qj ≥ 0,

∑
j

qj = 1


 .

Further, denote

fq(x)
�
= 〈q,h(x)〉 =

∞∑
j=1

qjhj(x) (q ∈ Π).

Observe that in general fq(x) may be a great deal more complex that any single hypothesis
hj . For example, if hj(x) are non-polynomial ridge functions, the composite predictor f
corresponds to a two-layer neural network with universal approximation power (Leshno
et al., 1993).

A main feature of this work is the establishment of data-dependent bounds on L(fq), the
loss of the Bayes mixture algorithm. There has been a flurry of recent activity concerning
data-dependent bounds (a non-exhaustive list includes Bartlett et al. (2002b), Bousquet
and Chapelle (2002), Koltchinksii and Panchenko (2002), Shawe-Taylor et al. (1998), Zhang
(2001)). In a related vein, McAllester (1999, 2003) provided a data-dependent bound for
the so-called Gibbs algorithm, which selects a hypothesis at random from H based on the
posterior distribution π(h|S). Essentially, this result provides a bound on the average error∑

j qjL(hj) rather than a bound on the error of the averaged hypothesis, L
(∑

j qjhj

)
, which

may be much smaller. Later, Langford et al. (2001) extended this result to a mixture of
classifiers using a margin-based loss function. A more general result can also be obtained
using the covering number approach described in Zhang (2002a). Finally, Herbrich and
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Graepel (2001) showed that under certain conditions the bounds for the Gibbs classifier can
be extended to a Bayesian mixture classifier. However, their bound contained an explicit
dependence on the dimension (see Thm. 3 in Herbrich and Graepel (2001)).

Although the approach pioneered by McAllester (1999, 2003) came to be known as PAC-
Bayes, this term is somewhat misleading since an optimal Bayesian method (in the decision
theoretic framework outline above) does not average over loss functions but rather over hy-
potheses. In this regard, the learning behavior of a true Bayesian method is not addressed in
the PAC-Bayes analysis. In this paper, we attempt to narrow the discrepancy by analyzing
Bayesian mixture methods, where we consider a predictor that is the average of a family of
predictors with respect to a data-dependent posterior distribution. Bayesian mixtures can
often be regarded as a good approximation to truly optimal Bayesian methods. In fact, we
have argued above that they are equivalent for many important practical problems.

3. Mixture Algorithms with Convex Constraints

A learning algorithm within the Bayesian mixture framework uses the sample S to select a
distribution q over H and then constructs a mixture hypothesis fq. In order to constrain
the class of mixtures used in forming the mixture fq we impose constraints on the mixture
vector q. Let g(q) be a non-negative convex function of q and define for any positive A,

ΩA = {q ∈ Π : g(q) ≤ A} ,

FA = {fq : fq(x) = 〈q,h(x)〉, q ∈ ΩA} . (4)

In subsequent sections we will consider different choices for g(q), which essentially acts
as a regularization term. Finally, for any mixture fq we define the loss by L(fq) =
EX,Y �(Y, fq(X)) and the empirical loss incurred on the sample by L̂(fq) = (1/n)

∑n
i=1 �(Yi, fq(Xi)).

In the sequel we use the notation Ênf = 1
n

∑n
i=1 f(Xi), and ES stands for an average over

the sample S with respect to the distribution µn.

For future reference, we formalize our assumptions concerning g(q).

Assumption 1 The constraint function g(q) is convex and non-negative.

An important tool which is used extensively in this paper is the theory of convex duality
(Rockafellar, 1970, Boyd and Vandenberghe, 2002). We begin by discussing some issues and
introduce several useful results.

3.1 Some results on convex functions and duality

Let f(x) denote a convex function, namely f is defined over a convex domain K and for
any 0 ≤ θ ≤ 1 and x,y ∈ K

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

Definition 1 For a function f , we define

uf (x) = sup
r∈K

[
f(r + x) + f(r − x)

2
− f(r)

]
.
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The following result follows directly from a Taylor expansion.

Lemma 2 Assume f possesses continuous first order derivatives. Then for all q > 1:

uf (x) ≤ sup
r,θ∈(0,1)

θ1−q d

dθ

{
f(r + θx) − f(r − θx)

2q

}
.

Moreover, if f possesses continuous second order derivatives, then

uf (x) ≤ 1
2

sup
r,|θ|≤1

d2

dθ2
f(r + θx).

Proof For any θ ∈ R, let s(θ) = [f(r + θx) + f(r − θx)]/2 − f(r). Observe that s(0) =
s′(0) = 0. From the generalized mean value Theorem (e.g. Theorem 5.15 in Apostol (1957))
it is known that for two functions h and g, which are continuously differentiable over [0, 1],
[h(θ) − h(θ0)]g′(θ1) = [g(θ) − g(θ0)]f ′(θ1), for any θ, θ0 ∈ [0, 1] and some θ1 ∈ [θ0, θ].
Replacing h by s and setting g(θ) = θq, q ≥ 1, we infer that there exists a θ1 ∈ (0, 1)
such that s(1) = s′(θ1)/(qθq−1

1 ). If s is continuously second order differentiable, then a
second order Taylor expansion with remainder shows that there exists a θ2 ∈ (0, 1) such
that s(1) = s′′(θ2)/2. �
For any function f defined over a domain K we define the conjugate f∗ by

f∗(y) = sup
x∈K

(〈y,x〉 − f(x)) ,

noting that f∗(·) is always convex (irrespective of the convexity of f(·)). The domain of f∗

consists of all values of y for which the supremum is finite, namely the values of y for which
〈y,x〉 − f(x) is bounded from above on K.

A simple consequence of the definition of f∗ is the so called Fenchel inequality, which states
that for all x and y

〈y,x〉 ≤ f(x) + f∗(y). (5)

4. A concentration inequality for unbounded functions

In general, loss functions used in applications cannot be bounded a-priori. The starting point
for our analysis is a concentration result similar to Theorem 1 of Koltchinksii and Panchenko
(2002) (see also Theorem 8 of Bartlett and Mendelson (2002)). The main advantage of the
current formulation is that the functions in F are not assumed to be bounded. This is
particularly useful in the context of regression. The proof is given in the appendix.

Theorem 3 Let F be a class of functions mapping from a domain X to R, and let {Xi}n
i=1

be independently selected according to a probability measure P . Assume that there exists a
positive number M(F) such that for all λ > 0:

log EX sup
f∈F

cosh(2λf(X)) ≤ λ2M(F)2/2.

Then, for any integer n and 0 < δ < 1, with probability at least 1− δ over samples of length
n, every f ∈ F satisfies

Ef(X) ≤ Ênf(X) + ES sup
f∈F

{
Ef(X) − Ênf(X)

}
+ M(F)

√
2 log(1/δ)

n
.
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We note that the dependence of M on F is made explicit, as it will play a role in the sequel.
The bound can be slightly improved when the functions in F are bounded.

Corollary 4 Let the conditions of Theorem 3 hold, and in addition assume that supf,x,x′ |f(x)−
f(x′)| ≤ M(F), then

Ef(X) ≤ Ênf(X) + ES sup
f∈F

{
Ef(X) − Ênf(X)

}
+ M(F)

√
log(1/δ)

2n
.

Proof In the proof of Lemma 17 in the Appendix, note that supx1,x′
1
|c′(x1) − c′(x′

1)| ≤
λ supx,x′ |f(x)−f(x′)| ≤ λM . Now instead of bounding EX1 exp(c′(X1)−EX′

1
c′(X ′

1)) using
the symmetrization argument as in Lemma 17, we may apply Chernoff’s bound which leads
to log EX1 exp(c′(X1) − EX′

1
c′(X ′

1)) ≤ λ2M2/8. �
In spite of the slightly improved bound in the case of bounded functions, we will use the
bound of Theorem 3 for generality.

A great deal of recent work has dealt with Rademacher complexity based bounds. Denote
by {σi}n

i=1 independent Bernoulli random variables assuming the values ±1 with equal
probability. For a set of n data points Xn = {Xi}n

i=1 ∈ X n, we define the data-dependent
Rademacher complexity of F as

R̂n(F) = Eσ

[
sup
f∈F

1
n

n∑
i=1

σif(Xi) | Xn

]
,

where σ = (σ1, . . . , σn). The expectation of R̂n(F) with respect to Xn will be denoted by
Rn(F). Note that R̂n(F) differs from the standard Rademacher complexity R̂n(F) which
is defined using the absolute value |(1/n)

∑n
i=1 σif(Xi)| in the argument of the supremum

(van der Vaart and Wellner, 1996). The current version of Rademacher complexity has
the merit that it vanishes for function classes consisting of single constant function, and
is always dominated by the standard Rademacher complexity. Both definitions agree for
function classes which are closed under negation, namely classes F for which f ∈ F implies
−f ∈ F .

Using standard symmetrization arguments (for example, Lemma 2.3.1 of van der Vaart and
Wellner (1996)) one can show that

EXn sup
f∈F

{
Ef(X) − Ênf(X)

}
≤ 2Rn(F). (6)

It is often convenient to use the Rademacher average due to the following Lemma.

Lemma 5 Let {gi(θ)} and {hi(θ)} be sets of functions defined for all θ in some domain
Θ. If for all i, θ, θ′, |gi(θ)− gi(θ′)| ≤ |hi(θ)−hi(θ′)|, then for any function c(x, θ), x ∈ X1,
and probability distribution over X ,

EσEX sup
θ∈Θ

{
c(X, θ) +

n∑
i=1

σigi(θ)

}
≤ EσEX sup

θ∈Θ

{
c(X, θ) +

n∑
i=1

σihi(θ)

}
.
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Proof By induction. The result holds for n = 0. Then when n = k + 1

Eσ1,...,σk+1
EX sup

θ

{
c(X, θ) +

k+1∑
i=1

σigi(θ)

}

= Eσ1,...,σk
EX sup

θ1,θ2

{
c(X, θ1) + c(X, θ2)

2
+

k∑
i=1

σi
gi(θ1) + gi(θ2)

2
+

gk+1(θ1) − gk+1(θ2)
2

}

= Eσ1,...,σk
EX sup

θ1,θ2

{
c(X, θ1) + c(X, θ2)

2
+

k∑
i=1

σi
gi(θ1) + gi(θ2)

2
+

|gk+1(θ1) − gk+1(θ2)|
2

}

≤ Eσ1,...,σk
EX sup

θ1,θ2

{
c(X, θ1) + c(X, θ2)

2
+

k∑
i=1

σi
gi(θ1) + gi(θ2)

2
+

|hk+1(θ1) − hk+1(θ2)|
2

}

= Eσ1,...,σk
Eσk+1

EX sup
θ

{
c(X, θ) + σk+1hk+1(θ) +

k∑
i=1

σigi(θ)

}

≤ Eσ1,...,σk
Eσk+1

EX sup
θ

{
c(X, θ) + σk+1hk+1(θ) +

k∑
i=1

σihi(θ)

}
.

The last inequality follows from the induction hypothesis. �

Remark 6 The above lemma is a refined (and symmetric) version of the Rademacher
process comparison theorem (Theorem 4.12 of (Ledoux and Talgrand, 1991)). The proof
presented here is also simpler.

Let {φi} be a set of functions, each characterized by a Lipschitz constant γi, namely |φi(θ)−
φi(θ′)| ≤ γi|θ − θ′|. The following consequence is immediate from Lemma 5.

Theorem 7 Let {φi}n
i=1 be functions with Lipschitz constants γi, then

Eσ

{
sup
f∈F

n∑
i=1

σiφi(f(xi))

}
≤ Eσ

{
sup
f∈F

n∑
i=1

σiγif(xi)

}
.

Let �(y, f(x)) be a loss function and set φi(f(xi)) = (φi ◦ f)(yi,xi) = �(yi, f(xi)). Assume
that φi(f(Xi)) is Lipschitz with constant κ, namely |φi(f(xi))−φi(f ′(xi)| ≤ κ|f(xi)−f ′(xi)|
for all i. Let LF consist of functions from Y ×X , defined by LF = {g : g = φ ◦ f, f ∈ F},
where φ is Lipschitz with constant κ. Then we find from Theorem 7 that Rn(LF ) ≤ κRn(F).
We note in passing that by using Theorem 7 we gain a factor of 2 comparing to the bound
in Corollary 3.17 in Ledoux and Talgrand (1991). Moreover, we do not need to require that
φi(0) = 0 as in (Ledoux and Talgrand, 1991).

Setting L(f) = EX,Y �(Y, f(X)) and L̂(f) = Ên�(Y, f(X)), we obtain the following bound
for the expected loss.

Theorem 8 Let F be a class of functions mapping from a domain X to R, and let {(Xi, Yi)}n
i=1,

Xi ∈ X , Yi ∈ R, be independently selected according to a probability measure P . Assume
there exists a positive real number M(F) such that for all positive λ

log EX,Y sup
f∈F

cosh(2λ�(Y, f(X))) ≤ λ2M(F)2/2,
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where for every f ∈ F , φi(f(Xi)) = (φ ◦ f)(Yi, Xi) = �(Yi, f(Xi)) is Lipschitz with constant
κ(F). Then with probability at least 1 − δ over samples of length n, every f ∈ F satisfies

L(f) ≤ L̂(f) + 2κ(F)Rn(F) + M(F)

√
2 log(1/δ)

n
.

5. The Rademacher complexity for classes defined by convex constraints

We consider the class of functions FA defined in (4) through a convex constraint func-
tion g(q). We wish to compute the Rademacher complexity Rn(FA). Denoting by g∗ the
conjugate function to g, we have from (5) that for all q and z

〈q, z〉 ≤ g(q) + g∗(z).

Setting z = (λ/n)
∑n

i=1 σih(Xi), we conclude that for any positive λ

Eσ sup
q∈ΩA

{
1
n

n∑
i=1

σi〈q,h(Xi)〉
}

≤ 1
λ

{
A + Eσg∗

(
(λ/n)

n∑
i=1

σih(Xi)

)}
.

Since this inequality holds for every λ > 0, we obtain the following upper bound on the
Rademacher complexity,

R̂n(FA) ≤ inf
λ≥0

{
A

λ
+

1
λ
Eσg∗

(
(λ/n)

n∑
i=1

σih(Xi)

)}
. (7)

In general, it may be difficult to compute the expectation of g∗ with respect to σ. For this
purpose we make use of the following Lemma. Note that g(q) ≥ 0 implies that g∗(0) =
supq∈ΩA

{−g(q)} ≤ 0.

Lemma 9 For any a > 0 and convex function f such that f(0) ≤ 0,

Eσf

(
a

n∑
i=1

σih(xi)

)
≤

n∑
i=1

uf (ah(xi)). (8)

Proof We prove the claim by induction. For n = 1 we have

Eσf (aσh(x1)) =
1
2

[f(ah(x1)) + f(−ah(x1))] − f(0) + f(0)

≤ uf (ah(x1)),

9
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where we have used f(0) ≤ 0. Next, assume the claim holds for n and let σn = {σ1, . . . , σn}.
We have

EσnEσn+1f

(
a

n+1∑
i=1

σih(xi)

)

=
1
2
Eσn

[
f

(
a

n∑
i=1

σih(xi) + ah(xn+1)

)
+ f

(
a

n∑
i=1

σih(xi) − ah(xn+1)

)]

=
1
2
Eσn

[
f

(
a

n∑
i=1

σih(xi) + ah(xn+1)

)
+ f

(
a

n∑
i=1

σih(xi) − ah(xn+1)

)]

− Eσf

(
a

n∑
i=1

σih(xi)

)
+ Eσf

(
a

n∑
i=1

σih(xi)

)

≤ uf (ah(xn+1)) +
n∑

i=1

uf (ah(xi)),

where the last step used the definition of uf and the induction hypothesis. �
Using (7) and Lemma 9 we find that

R̂n(FA) ≤ inf
λ≥0

{
A

λ
+

1
λ

n∑
i=1

ug∗((λ/n)h(Xi))

}
. (9)

6. Data-dependent bounds

Consider the loss bound derived in Theorem 8. This bound requires prior knowledge of the
constant A, characterizing the class FA. In general, we would like to be able to establish a
bound which is data-dependent, namely does not assume any such a-priori knowledge. We
begin by rewriting the bound of Theorem 8 in a slightly different form. For any fq = 〈q,h〉,
q ∈ ΩA, with probability at least 1 − δ

L(fq) ≤ L̂(fq) + 2κ(A)Υ(A) + M(A)

√
2 log(1/δ)

n
, (10)

where we slightly abuse notation, setting κ(A) = κ(FA), M(A) = M(FA) and where

Υ(A) = Rn(FA).

Observe that Υ(A) is monotonically increasing in A. Either (7) or (9) may be used to upper
bound Υ(A). For example, using (7) we have that

Υ(A) ≤ ES inf
λ≥0

{
A

λ
+

1
λ
Eσg∗

(
(λ/n)

n∑
i=1

σih(Xi)

)}
.

Eliminating the dependence on A in (10) leads to the following fully data-dependent bound.

Theorem 10 Let the assumptions of Theorem 8 hold. Consider two parameters g0 > 0
and s > 1, and let g̃(q) = s max(g(q), g0). Then for all fq, q ∈ Π, with probability at least
1 − δ

L(fq) ≤ L̂(fq) + 2κ(g̃(q))Υ(g̃(q)) + M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
.

10
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Proof First, observe that g̃(q)/g0 ≥ s, so that the final term is always well-defined. Let
{Ai}∞i=1 and {pi}∞i=1 be a sets of positive numbers such that

∑
i pi = 1. From Theorem 8

and the multiple-testing Lemma (essentially a slightly refined union bound) we have that
for all Ai and q ∈ ΩAi , with probability at least 1 − δ

L(fq) ≤ L̂(fq) + 2κ(Ai)Υ(Ai) + M(Ai)

√
2 log(1/piδ)

n
. (11)

Next, pick Ai = g0s
i and pi = 1/i(i + 1), i = 1, 2, . . . (note that

∑
i pi = 1). For each q

let iq denote the smallest index for which Aiq ≥ g(q). We have iq ≤ logs(g̃(q)/g0), and
Aiq ≤ g̃(q). Substituting piq = 1/iq(1 + iq) we have that log(1/piq) ≤ 2 log(iq + 1) ≤
2 log logs(sg̃(q)/g0). Combing these bounds with (11), and keeping in mind the monotonic-
ity of Υ(A), we have that with probability at least 1 − δ

L(fq) ≤ L̂(fq) + 2κ(g̃(q))Υ(g̃(q)) + M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
,

which concludes the proof. �
Note that the parameter g0 essentially ‘sets the scale’ for g(q). For example, if g0 is selected
so that g(q) ≤ g0 for all q, we get a data-independent bound, where q0 replaces g(q). We
also observe that the bounds derived in Theorem 10 are data-dependent and can thus be
used in order to select the optimal posterior distribution q. We comment on this further in
Section 6.1.

6.1 Entropic constraints

Assume a data-independent prior distribution ν is assigned to all hypotheses in H, namely
νj ≥ 0 and

∑
j νj = 1, where νj = ν(hj). We set g(q) to be the Kullback-Leibler divergence

of q from ν.
g(q) = D(q‖ν) ; D(q‖ν) =

∑
j

qj log(qj/νj).

In this case, the conjugate function g∗ can be explicitly calculated yielding

g∗(z) = log
∑

j

νje
zj .

Note that
d2

dθ2
g∗(z + θz′) ≤

∑
j νjz

′
j
2ezj+θz′j∑

j νje
zj+θz′j

.

It is easy to see that

sup
z,z′,θ

d2

dθ2
g∗(z + θz′) ≤ ‖z′‖2

∞.

Using Lemma 2, we have ug∗(h(xi)) ≤ ‖h(xi)‖2∞/2, and (9) can then be applied. However,
a slightly better bound can be obtained with a more refined derivation. Using (7) we can
derive an upper bound on the Rademacher complexity, captured in the following Lemma.

11
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Lemma 11 The empirical Rademacher complexity of FA using g(q) = D(q‖ν) is upper
bounded as follows:

R̂n(FA) ≤
(√

2A

n

)
sup

j

√√√√ 1
n

n∑
i=1

hj(Xi)2 .

Proof From (7) and the expression for g∗ we have that for any λ > 0

sup
q∈ΩA

{
1
n

n∑
i=1

σi〈q,h(Xi)〉
}

≤ 1
λ


A + log

∑
j

νj exp

[
λ

n

∑
i

σihj(Xi)

]
 .

Taking the expectation with respect to σ = (σ1, . . . , σn), and using the Chernoff bound
Eσ {exp (

∑
i σiai)} ≤ exp

(∑
i a2

i /2
)
, we have that for any λ ≥ 0

R̂n(FA) ≤ 1
λ


A + Eσ log

∑
j

νj exp

[
λ

n

∑
i

σihj(Xi)

]


(a)

≤ 1
λ

{
A + sup

j
log Eσ exp

[
λ

n

∑
i

σihj(Xi)

]}

(b)

≤ 1
λ

{
A + sup

j
log exp

[
λ2

n2

∑
i

hj(Xi)2

2

]}

=
A

λ
+

λ

2n2
sup

j

∑
i

hj(Xi)2,

where (a) made use of Jensen’s inequality and (b) used Chernoff’s bound. Minimizing the
r.h.s. with respect to λ, we obtain the desired result. �
Using this result in Theorem 10 we obtain the main result of this section.

Theorem 12 Let the conditions of Theorem 10 hold, and set

g̃(q) = s max(D(q‖ν), g0) ; ∆H =

√√√√ 1
n
ES sup

j

n∑
i=1

hj(Xi)2.

Then for all fq, q ∈ Π, with probability at least 1 − δ,

L(fq) ≤ L̂(fq) + 2∆Hκ(g̃(q))

√
2g̃(q)

n
+ M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
(12)

Note that if the functions hj are uniformly bounded, say |hj(x)| ≤ c, then ∆H ≤ c.

Finally, as mentioned following Theorem 10, these data-dependent bounds can be used in
order to select an optimal posterior distribution q. While D(q‖ν) is convex in q, this is
not the case for

√
D(q‖ν). However, one may formulate the optimization problem as a

constrained optimization problem of the form

min
q∈Π

D(q‖ν)

s.t. L̂(fq) ≤ a,

12
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for some parameter a which can be optimized in order to obtain the best bound. If L̂(fq)
is a convex function of q (for example, if a quadratic loss is used), we obtain a convex
programming problem which can be solved using standard approaches (e.g. Boyd and
Vandenberghe (2002)). We note that this approach is very similar to the so-called maximum
entropy discrimination proposed in Jaakkola et al. (1999). Finally, if �(y, fq(x)) is convex
in q, we may use Jensen’s inequality to upper bound L̂(fq) = L̂(〈q,h〉) by

∑
j qjL(hj). In

the latter case, McAllester (2003) has shown that an exact solution in the form of a Gibbs
distribution can be obtained. This solution may in principle be used as a starting point for
numerical optimization algorithms for solving the current problem.

6.2 Norm based constraints

We begin with the simple case where g(q) = (1/2)‖q‖2
2, namely the L2 norm is used.

In this case, we simplify the notation by using ‖q‖ .= ‖q‖2. It is then easy to see that
g∗(z) = (1/2)‖z‖2. A simple calculation yields

Eσg∗
(

(λ/n)
n∑

i=1

σih(Xi)

)
=

λ2

2n2

n∑
i=1

‖h(Xi)‖2.

Substituting this result in (7), and minimizing over λ, we find that

R̂n(FA) ≤
√√√√2A

n

(
1
n

n∑
i=1

‖h(Xi)‖2

)
. (13)

Using Theorem 10, and Jensen’s inequality E
√

X ≤ √
E[X], X ≥ 0, we obtain the following

bound.

Theorem 13 Let the conditions of Theorem 10 hold, and set

g̃(q) = s max((1/2)‖q‖2, g0), ∆H =

√√√√ 1
n
ES

n∑
i=1

‖h(Xi)‖2

Then for all fq, q ∈ Π, with probability at least 1 − δ,

L(fq) ≤ L̂(fq) + 2∆Hκ(g̃(q))

√
2g̃(q)

n
+ M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
. (14)

Consider next the case of general p and q such that 1/q + 1/p = 1, p ∈ (1,∞). Let
p′ = max(p, 2) and q′ = min(q, 2), and consider p-norm regularization g(q) = 1

p′ ‖q‖p′
p and

its associated conjugate function g∗(z), namely

g(q) =
1
p′
‖q‖p′

p ; g∗(z) =
1
q′
‖z‖q′

q .

Note that if p ≤ 2 then q ≥ 2 and q′ = p′ = 2, while if p > 2 then q < 2, q′ = q, p′ = p.

In the present case, the average over σ required in (7) is rather cumbersome, and we resort
to using (9) instead. The Rademacher averaging result for p-norm regularization is known
in the Geometric theory of Banach spaces (type structure of the Banach space), for example,
see (Ledoux and Talgrand, 1991), and follows from Khinchine’s inequality. It can also be
derived from the general techniques developed in this work, where we use the following
bound on ug∗ in (9).

13
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Lemma 14 The following bound is valid,

ug∗(h(x)) ≤ max(1, q − 1)
q′

‖h(x)‖q′
q .

Proof When q ≥ 2 (implying q′ = 2), we have that g∗(z+ θz′) = (1/2)
(∑

j |zj + θz′j |q
)2/q

.
A direct computation of the second order derivatives required in Lemma 2, and use of the
condition q ≥ 2, yields

d2

dθ2
g∗(z + θz′) ≤ (q − 1)‖z + θz′‖(2−q)/q

q

∑
j

|zj + θz′j |q−2z′j
2

≤ (q − 1)‖z + θz′‖(2−q)/q
q ‖z + θz′‖(q−2)/q

q ‖z′‖2
q

= (q − 1)‖z′‖2
q ,

where the second inequality follows from Hölder’s inequality with the dual pair (q/(q −
2), q/2).

When q < 2 (implying q′ = q), we have g∗(z + θz′) = (1/q)
∑

j |zj + θz′j |q and use the first
part of Lemma 2.

|θ|1−q

∣∣∣∣ d

dθ

{
g∗(z + θz′) − g∗(z − θz′)

2q

}∣∣∣∣ ≤ |θ|1−q
∑

j

∣∣∣∣∣ |zj + θz′j |q−1 − |zj − θz′j |q−1

2q
z′j

∣∣∣∣∣
≤ |θ|1−q

∑
j

∣∣∣∣∣ |2θz′j |q−1z′j
2q

∣∣∣∣∣
=

2q−2

q
‖z′‖q

q.

where the inequality ||a|q−1 − |b|q−1| ≤ |a− b|q−1 was used in the second inequality. Use of
Lemma 2 and the observation that max(1, q − 1)/q′ = (q − 1)/2 if q ≥ 2, and max(1, q −
1)/q′ = 1/2 if q < 2 establishes the claim. �
From (7) we obtain a bound on the Rademacher complexity of FA.

R̂n(FA) ≤ inf
λ≥0

{
A

λ
+

max(1, q − 1)
λq′

(
λ

n

)q′ n∑
i=1

‖h(Xi)‖q′
q

}

=
Cq

n
A1−1/q′(

n∑
i=1

‖h(Xi)‖q′
q )1/q′ , (15)

where Cq = (1 − 1/q′)1/q′−1 max(1, q − 1)1/q′ . Combining (15) with Theorem 10, and using
Jensen’s inequality E[X1/q′ ] ≤ (E[X])1/q′ , we obtain the following result.

Theorem 15 Let the conditions of Theorem 10 hold, and set

g̃(q) = s max
(
(1/p′)‖q‖p′

p , g0

)
; ∆H,q =

[
(1/n)ES

n∑
i=1

‖h(Xi)‖q′
q

]1/q′

.

14
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Then for all fq, q ∈ Π, with probability at least 1 − δ,

L(fq) ≤ L̂(fq) +
2Cq∆H,qκ(g̃(q)) (g̃(q))1/p′

n1/p′ + M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
.

(16)
where Cq = (1 − 1/q′)1/q′−1 max(q − 1, 1)1/q′ .

6.3 Oracle inequalities

Up to this point we have obtained data-dependent bounds which can be used for the purpose
of model selection. In general, one is interested in knowing how the empirical estimator
compares to the best possible estimator, which can only be known if the underlying proba-
bility distribution is known. Such bounds are referred to as oracle inequalities. Let q̂ be an
empirically derived posterior distribution. In particular, we establish an oracle inequality
which relates the loss L(〈q̂,h〉) to the minimal loss infq∈Π L(〈q,h〉).
We recall from Theorem 10 that for all fq, q ∈ Π, with probability at least 1 − δ

L(fq) ≤ L̂(fq) + ∆n(H,q, δ), (17)

where

∆n(H,q, δ) = 2κ(g̃(q))Υ(g̃(q)) + M(g̃(q))

√
4 log logs(sg̃(q)/g0) + 2 log(1/δ)

n
.

As in structural risk minimization (Vapnik, 1998), we select q̂ based on a complexity regu-
larization criterion

q̂ = argmin
q∈Π

{
L̂(fq) + ∆n(H,q, δ)

}
.

From (17), with probability at least 1 − δ/2

L(fq̂) ≤ L̂(fq̂) + ∆n(H, q̂, δ/2).

By the optimality of the selection of q̂

L̂(fq̂) + ∆n(H, q̂, δ/2) ≤ L̂(fq̄) + ∆n(H, q̄, δ/2),

where q̄ is an arbitrary hypothesis that does not depend on the data. We may apply
Theorem 3 to −L(fq̄) and obtain that with probability greater than 1 − δ/2

L̂(fq̄) < L(fq̄) + M(g(q̄))

√
2 log(2/δ)

n
≤ L(fq̄) + ∆n(H, q̄, δ/2).

Note that in this case the function class F consists of the single element fq̄, so that the
term leading to the Rademacher complexity vanishes. Therefore, with probability at least
1 − δ,

L̂(fq̂) + ∆n(H, q̂, δ/2) ≤ L(fq̄) + 2∆n(H, q̄, δ/2).

Since q̄ is arbitrary, we obtain the following result.

Theorem 16 Under the same conditions as in Theorem 10, with probability at least 1 − δ

L(fq̂) ≤ inf
q∈Π

[L(fq) + 2∆n(H,q, δ/2)].

Note that if ∆n(H,q, δ/2) can be uniformly bounded, say 2∆n(H,q, δ/2) ≤ cn(δ) indepen-
dently of q, we find that with probability at least 1 − δ, L(fq̂) ≤ infq∈Π L(fq) + cn(δ).

15
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6.4 Binary classification

So far we have mainly been concerned with regression. The case of binary classification
can easily be incorporated into the present framework. Let S = {(Xi, Yi)}n

i=1 be a sample
where Xi ∈ X and Yi ∈ {−1, +1}. Consider a soft classifier f(x) and define the 0 − 1
loss as �0−1(y, f(x)) = I(yf(x) ≤ 0). Let φ(yf(x)) be a Lipschitz function with Lipschitz
constant κ(F), which dominates the 0− 1 loss, namely �0−1(y, f(x)) ≤ φ(yf(x)). It is then
not hard to conclude that under the same conditions as those in Theorem 8 we find that
for all f ∈ F , with probability at least 1 − δ,

P{Y f(X) ≤ 0} ≤ Ênφ(Y f(X)) + 2κ(F)Rn(F) + M(F)

√
2 log(1/δ)

n
.

One can then proceed to develop data-dependent bounds for this problem along the lines
of Theorem 10. Note that several possible choices for φ(f(x), y) have been proposed in
the literature. A proof of the Bayes consistency of algorithms based on these dominating
functions can be found in Lugosi and Vayatis (2002), Mannor et al. (2002), Zhang (2003).
An extension to multi-category classification has recently been proposed in Desyatnikov and
Meir (2003).

7. Conclusion

We have developed a general procedure for establishing data-dependent bounds for mixture
based approaches to regression and classification. As discussed in Section 1, Bayesian mix-
ture approaches possess several desirable attributes from a frequentist perspective. However,
in opposition to many Bayesian approaches, our results hold independently of the correct-
ness of the model assumptions. The approach pursued can effectively use many forms
of prior knowledge, which may be incorporated through the selection of appropriate con-
straint functions. Additionally, the results apply to general mixture based approaches such
as Bagging and Boosting. At a technical level, we have replaced the boundedness assump-
tions, prevalent in the Learning Theory literature, with more general moment constraint
conditions.

Several open issues remain for future research. First, we intend to perform a thorough nu-
merical test of the method applied to real-world data. Preliminary results in this direction
indicate that the bounds correlate very well with the test error. Second, it would be be in-
teresting to combine the current approach with recent methods based on local Rademacher
complexities (e.g. Bartlett et al. (2002a)), which are sometimes able to attain faster con-
vergence rates. Third, a particularly interesting question relates to using the data itself to
learn an appropriate constraint function, or perhaps several constraint functions.

In this paper we have been concerned solely with mixture based Bayesian solutions. As
pointed out in Section 1, general optimal Bayesian solutions are not always of a mixture
form. In this context, it would be particularly interesting to establish finite sample bounds
for optimal Bayesian procedures, which, under appropriate conditions, would provide tight
upper bounds on the performance of any learning algorithm, and not only those based on
selecting hypotheses from some class of hypotheses.

Given the suggested connections established in this work between the frequentist and
Bayesian approaches, we would like to conclude with the following quote from (Lehmann
and Casella, 1998).
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“The strengths of combining the Bayesian and frequentist approaches
are evident. The Bayes approach provides a clear methodology for
constructing estimators, while the frequentist approach provides the
methodology for evaluation.”

Although we have restricted ourselves to Bayesian mixture algorithms, which are not nec-
essarily optimal in general, we hope that this paper has made some steps towards strength-
ening this claim.
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Appendix A. Examples of convex functions and their conjugates

We provide several examples of convex functions and their conjugates. Further examples
can be found in Boyd and Vandenberghe (2002) and Zhang (2002b).

We use g(u) to denote a convex function with variable u, while g∗(v) denotes its conjugate

with dual variable v. The �p norm of a vector u is given by ‖u‖p =
(∑

j |uj |p
)1/p

.

• Let K be a symmetric positive-definite matrix. Then

g(u) =
1
2
〈u, Ku〉 ; g∗(v) =

1
2
〈v, K−1v〉.

• Let p, p′, q, q′ ≥ 1 be real numbers obeying 1/p + 1/q = 1 and 1/p′ + 1/q′ = 1. Then

g(u) =
1
p′
‖u‖p′

p ; g∗(v) =
1
q′
‖v‖q′

q .

• Assume uj ≥ 0 and µj > 0. Then

g(u) =
∑

j

uj log
uj

eµj
; g∗(v) =

∑
j

µj exp(vj).

Appendix B. Proof of Theorem 3

We first prove the following lemma.

Lemma 17 Consider real-valued functions ci : Θ × Xi → R, i = 1, 2. Define c(x1,x2) =
supθ∈Θ(c1(θ,x1) + c2(θ,x2)). Let X1 ∈ X1 and X2 ∈ X2 be two independent random vari-
ables. Then

log EX1 exp(EX2c(X1, X2)) ≤ EX1,X2c(X1, X2) + log EX1 sup
θ∈Θ

cosh(2(c1(θ, X1)).

17
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Proof Let
c′(X1) = EX2 [c(X1, X2) − sup

θ∈Θ
c2(θ, X2)].

It is clear that
inf
θ∈Θ

c1(θ, X1) ≤ c′(X1) ≤ sup
θ∈Θ

c1(θ, X1).

Therefore using Jensen’s inequality and symmetrization, we obtain

EX1 exp
{

c′(X1) − EX′
1
c′(X ′

1)
} (a)

≤ EX1,X′
1
exp

{
c′(X1) − c′(X ′

1)
}

(b)

≤ EX1,X′
1

1
2
[exp(2c′(X1)) + exp(−2c′(X ′

1))]

(c)
= EX1 cosh(2c′(X1))
≤ EX1 sup

θ∈Θ
cosh(2c1(θ, X1)),

where (a) and (b) used Jensen’s inequality and (c) applied a symmetrization argument. �
Let Zn = {Z1, . . . , Zn}, Zi ∈ Z, be independently drawn from a distribution P , and let F
be a class of functions from Z to R. Set

ÂF (Zn) = sup
f∈F

[
nEZf(Z) −

n∑
i=1

f(Zi)

]
.

Lemma 18 For all positive λ

log EZn exp
{

λÂF (Zn)
}
≤ λEZnÂF (Zn) + n log EZ sup

f∈F
cosh(2λ(f(Z)).

Proof The lemma follows by recursively applying Lemma 17 for k = n, n − 1, . . . , 1, and
identifying the function f with the parameter θ. For each value of k we set

X1 = Zk ; X2 = {Zk+1, . . . , Zn},

where we assume that {Z1, . . . , Zk−1} are fixed. Moreover, set

c1(θ, X1) = −λf(Zk)

c2(θ, X2) = nλEZf(Z) −
∑
i	=k

λf(Zi),

and note that c(X1, X2) = λÂF (Zn). We simplify the notation by using Z l
k = {Zk, . . . , Zl}

for any positive integers k and l, l ≥ k. From Lemma 17 we have (for fixed Zk
1 ),

log EZk
exp

{
EZn

k+1
λÂF (Zn)

}
≤ EZn

k
λÂF (Zn) + log EZ sup

f∈F
cosh (2λf(Z)) ,

which, upon exponentiation, is rewritten as

EZk
exp

{
EZn

k+1
λÂF (Zn)

}
≤ exp

{
EZn

k
λÂF (Zn) + log EZ sup

f∈F
cosh (2λf(Z))

}
.
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Taking expectations with respect to Zk−1
1 on both sides of the inequality, followed by ap-

plying the logarithm function, we find that

log EZk
1
e
EZn

k+1
λÂF (Zn) ≤ log EZk−1

1
e
EZn

k
λÂF (Zn) + log EZ sup

f∈F
cosh (2λf(Z)) . (18)

Summing both sides of (18) over k = n, n − 1, . . . , 1 we obtain

log EZn
1
eλÂF (Zn) + log EZn−1

1
eEZnλÂF (Zn) + · · · + log EZ1e

EZn
2

λÂF (Zn)

≤ log EZn−1
1

eEZnλÂF (Zn) + log EZn−2
1

e
EZn

n−1
λÂF (Zn)

+ · · · + log e
EZn

1
λÂF (Zn)

+ n log EZ sup
f∈F

cosh (2λf(Z)) .

Upon subtracting identical terms from both sides of the inequality we find that

log EZn
1
eλÂF (Zn) ≤ λEZn

1
ÂF (Zn) + n log EZ sup

f∈F
cosh (2λf(Z)) ,

which establishes the claim. �
Let Xn = {X1, . . . , Xn}, and set

δ = P

{
sup
f∈F

[
nEXf(X) −

n∑
i=1

f(Xi)

]
≥ EXn sup

f∈F

[
nEXf(X) −

n∑
i=1

f(Xi)

]
+ nε

}
.

From Bernstein’s inequality, P{X ≥ x} ≤ inf {exp(−λx)E exp(λx) : λ ≥ 0}, we have for all
non-negative λ

δ ≤ e−λEXn ÂF (Xn)−λnεEXneλÂF (Xn).

Taking logarithms of both sides of the inequality, we find that

log δ ≤ −λEXnÂF (Xn) − λnε + log EXneλÂF (Xn)

(a)

≤ −λnε + n log EX sup
f∈F

cosh(2λf(X))

(b)

≤ −λnε +
n

2
λ2M2,

where Lemma 18 was used in (a) and the assumption of Theorem 3 was used in (b).

Since λ ≥ 0 is arbitrary, we conclude that

log δ ≤ inf
λ≥0

[n

2
λ2M2 − λnε

]
= − nε2

2M2
.

We thus obtain with probability of at least 1 − δ,

sup
f∈F

{
Ef(X) − Êf(X)

}
≤ EXn sup

f∈F

{
Ef(X) − Ênf(X)

}
+ M

√
2 log(1/δ)

n
. �
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