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Abstract

We consider the problem of estimating, in the presence of model uncertainties, a random vector x that

is observed through a linear transformation H and corrupted by additive noise. We first assume that both

the covariance of x and the transformation H are not completely specified, and develop the linear estimator

that minimizes the worst-case mean-squared error (MSE) across all possible covariance matrices and

transformations H in the region of uncertainty. Although the minimax approach has enjoyed widespread

use in the design of robust methods, we show that its performance is often unsatisfactory. To improve the

performance over the minimax MSE estimator, we develop a competitive minimax approach, for the case

where H is known but the covariance of x is subject to uncertainties, and seek the linear estimator that

minimizes the worst-case regret, namely the worst-case difference between the MSE attainable using a

linear estimator, ignorant of the signal covariance, and the optimal MSE attained using a linear estimator

that knows the signal covariance. The linear minimax regret estimator is shown to be equal to a minimum

MSE (MMSE) estimator corresponding to a certain choice of signal covariance, that depends explicitly

on the uncertainty region. We demonstrate through an example that the minimax regret approach can

improve the performance over both the minimax MSE approach and a “plug in” approach, in which the

estimator is chosen to be equal to the MMSE estimator with an estimated covariance matrix replacing the

true unknown covariance. We then show that although the optimal minimax regret estimator in the case

in which the signal and noise are jointly Gaussian is nonlinear, we often do not loose much by restricting

attention to linear estimators.
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1 Introduction

The theory of estimation in linear models has been studied extensively in the past century, following the

classical works of Wiener [1] and Kolmogorov [2]. A fundamental problem considered by Wiener and

Kolmogorov is that of estimating a stationary random signal in additive stationary noise, where the signal

may be filtered by a linear time invariant (LTI) channel. The desired signal is estimated using a linear

estimator which is obtained by filtering the received signal with an LTI estimation filter. When the signal

and noise spectral densities as well as the channel are completely specified, the estimation filter minimizing

the mean-squared error (MSE) is the well-known Wiener filter.

In practice, the actual spectral densities and the channel may not be known exactly. If the spectral

densities and the channel deviate from the ones assumed, then the performance of the Wiener filter matched

to the assumed spectral densities and channel can deteriorate considerably [3]. In such cases, it is desirable

to design a robust filter whose performance is reasonably good across all possible spectral densities and

channels, in the region of uncertainty.

The most common approach for designing robust estimation filters is the minimax MSE approach,

initiated by Huber [4, 5], in which the estimation filter is chosen to maximize the worst-case MSE over an

appropriately chosen class of spectral densities [6, 7, 8, 3, 9] where the channel is assumed to be known.

A similar approach has also been used to develop a robust estimator for the case in which the spectral

densities are known and the channel is subject to uncertainties [10]. The minimax approach, in which the

goal is to optimize the worst-case performance, is one of the major techniques for designing robust systems

with respect to modelling uncertainties, and has been applied to many problems in detection and estimation

[11, 12, 13].

In this paper, we consider a finite-dimensional analogue of the classical Wiener filtering problem, so that

we consider estimating a finite number of parameters from finitely many observations, where the motivation

is to obtain non-asymptotic results. Specifically, we treat the problem of estimating a random vector x that

is observed through a linear transformation H and corrupted by additive noise w. If the signal and noise

covariance matrices as well as the transformation H are completely specified, then the linear minimum MSE

(MMSE) estimator of x for this problem is well known [14].

In many practical applications the covariance of the noise can be assumed known in the sense that it

can be estimated within high accuracy. This is especially true if the noise components are uncorrelated and

identically distributed, which is often the case in practice. The signal, on the other hand, will typically have

a broader correlation function, so that estimating this correlation from the data with high accuracy often

necessitates a larger sample size than is available. Therefore, in this paper, we develop methods for designing

robust estimators in the case in which the covariance of the noise is known precisely, but the covariance of

the desired signal x and the model matrix H are not completely specified.

Following the popular minimax approach, in Section 3 we consider the case in which H is known, and

seek the linear estimator that minimizes the worst case MSE over all possible covariance matrices. As we

show, the resulting estimator, referred to as the minimax MSE estimator, is an MMSE estimator matched to
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the worst possible choice of covariance matrix. In Section 4, we develop a minimax estimator that minimizes

the worst-case MSE when both the covariance matrix and the model matrix H are subject to uncertainties.

In this case, we show that the optimal estimator can be found by solving a semidefinite programming (SDP)

problem [15, 16, 17], which is a convex optimization problem that can be solved very efficiently, e.g., using

interior point methods [17, 18].

Although the minimax approach has enjoyed widespread use in the design of robust methods for signal

processing and communication [11, 13], its performance is often unsatisfactory. The main limitation of this

approach is that it tends to be overly conservative since it optimizes the performance for the worst possible

choice of unknowns. As we show in the context of a concrete example in Section 6, this can often lead to

degraded performance.

To improve the performance of the minimax MSE estimator, in Section 5, we propose a new competitive

approach to robust estimation for the case where H is known, and seek a linear estimator whose performance

is as close as possible to that of the optimal estimator for all possible values of the covariance matrix.

Specifically, we seek the estimator that minimizes the worst-case regret, which is the difference between the

MSE of the estimator, ignorant of the signal covariance, and the smallest attainable MSE with a linear

estimator that knows the signal covariance. By considering the difference between the MSE and the optimal

MSE rather than the MSE directly, we can counterbalance the conservative character of the minimax

approach, as is evident in the example we consider in Section 6. It would also be desirable to develop

the minimax estimator that minimizes the worst-case regret when both H and the covariance matrix are

subject to uncertainties. However, since this problem is very difficult, for analytical tractability, we restrict

our attention to the case in which H is known.

The minimax regret concept has recently been used to develop a linear estimator for the unknowns x

in the same linear model considered in this paper, where it is assumed that x is deterministic but unknown

[19]. Similar competitive approaches have been used in a variety of other contexts, for example, universal

source coding [20], hypothesis testing [21, 22], and prediction (see [23] for a survey and references therein).

For analytical tractability, in our development we restrict attention to the class of linear estimators. In

some cases, there is also theoretical justification for this restriction. As is well known [14], if x and w are

jointly Gaussian vectors with known covariance matrices, then the estimator that minimizes the MSE, among

all linear and nonlinear estimators, is the linear MMSE estimator. In Section 7, we show that this property

does not hold when minimizing the worst-case regret with covariance uncertainties, even in the Gaussian

case. Nevertheless, we demonstrate that in many cases we do not loose much by confining ourselves to linear

estimators. In particular, we develop a lower bound on the smallest possible worst-case regret attainable

with a third-order (cubic) nonlinear estimator, when estimating a Gaussian random variable contaminated

by independent Gaussian noise, and show that the linear minimax regret estimator often nearly achieves

this bound, particularly at high SNR. This provides additional justification for the restriction to linear

estimators in the context of minimax regret estimation.

Before proceeding to the detailed development, in Section 2, we provide an overview of our problem.
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2 Problem Formulation

In the sequel, we denote vectors in C
m by boldface lowercase letters and matrices in C

n×m by boldface

uppercase letters. I denotes the identity matrix of appropriate dimension, (·)∗ denotes the Hermitian

conjugate of the corresponding matrix, and (̂·) denotes an estimated vector or matrix. The cross covariance

between the random vectors x and y is denoted by Cxy, and the covariance of x is denoted by Cx. N (m, σ2)

denotes the Gaussian distribution with mean m and covariance σ2.

Consider the problem of estimating the unknown parameters x in the linear model

y = Hx + w, (1)

where H is an n × m matrix with rank m, x is a zero-mean random vector with covariance Cx and w is a

zero-mean random vector with positive definite covariance Cw, uncorrelated with x. We assume that Cw is

known completely but that we may only have partial information about the covariance Cx and the model

matrix H.

We seek to estimate x using a linear estimator so that x̂ = Gy for some m × n matrix G. We would

like to design an estimator x̂ of x to minimize the MSE, which is given by

E(‖x̂ − x‖2) = Tr(Cx) + Tr(Cx̂) − 2Tr(Cxx̂)

= Tr(Cx) + Tr(G(HCxH∗ + Cw)G∗) − 2Tr(CxH∗G∗)

= Tr (Cx(I − GH)∗(I − GH)) . (2)

If H and Cx are known and Cx is positive definite, then the linear estimator minimizing (2) is the MMSE

estimator [14]

x̂ = CxH∗(HCxH∗ + Cw)−1y. (3)

An alternative form for x̂, that is sometimes more convenient, can be obtained by applying the matrix

inversion lemma [24] to (HCxH∗ + Cw)−1 resulting in

(HCxH∗ + Cw)−1 = C−1
w − C−1

w H(H∗C−1
w H + C−1

x )−1H∗C−1
w . (4)

Substituting (4) into (3), the MMSE estimator x̂ can be expressed as

x̂ = Cx

(
I − H∗C−1

w H(H∗C−1
w H + C−1

x )−1
)
H∗C−1

w y

= (H∗C−1
w H + C−1

x )−1H∗C−1
w y. (5)

If Cx or H are unknown, then we cannot implement the MMSE estimator (3). Instead, we may seek

the estimator that minimizes the worst-case MSE over all possible choices of Cx and H that are consistent

with our prior information on these unknowns. In Section 3 and Sections 5–6, we consider the case in which

H is a known n×m matrix with rank m, and Cx is not completely specified. In Section 4, we consider the
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case in which both Cx and H are subject to uncertainties.

To reflect the uncertainty in our knowledge of the true covariance matrix, we consider two different

models of uncertainty which resemble the “band model” widely used in the continuous-time case [7, 25, 26, 3].

Although these models are similar in nature, depending on the optimality criteria, a particular model may

be mathematically more convenient. In the first model, we assume that Cx commutes with H∗C−1
w H, and

that each of the nonnegative eigenvalues δi ≥ 0, 1 ≤ i ≤ m of Cx satisfies

li ≤ δi ≤ ui, 1 ≤ i ≤ m, (6)

where li ≥ 0 and ui are known. If x is a stationary random vector and H represents convolution of x with

some filter, then both Cx and H will be Toeplitz matrices and are therefore approximately diagonalized by

a Fourier transform matrix, so that in this general case Cx and H∗C−1
w H approximately commute [27].

The model (6) is reasonable when the covariance is estimated from the data. Specifically, denoting by

ζi = (ui + li)/2, εi = (ui − li)/2 for 1 ≤ i ≤ m, the conditions (6) can equivalently be expressed as

δi = ζi + ei, e2
i ≤ ε2

i , 1 ≤ i ≤ m, (7)

so that each of the eigenvalues of Cx lies in an interval of length 2εi around some nominal value ζi which

we can think of as an estimate of the ith eigenvalue of Cx from the data vector y. The interval specified by

εi may be regarded as a confidence interval around our estimate ζi and can be chosen to be proportional to

the standard deviation of the estimate ζi.

In the second model,

Cx = C̃x + δCx, ‖δCx‖ ≤ ε, (8)

where C̃x is known, ‖ · ‖ denotes the matrix spectral norm [24], i.e., the largest singular value of the

corresponding matrix, and ε is chosen such that C̃x + δCx ≥ 0 for all ‖δCx‖ ≤ ε. In this model, Cx is not

assumed to commute with H∗C−1
w H. As a consequence, we can no longer constraint each of the eigenvalues

of Cx as we did in the first model, but rather we can only restrict the largest eigenvalue, or equivalently,

the spectral norm. If Cx is constrained to commute with H∗C−1
w H for all δCx, then the uncertainty model

(8) is equivalent to the uncertainty model (7) with {ζi, 1 ≤ i ≤ m} equal to the eigenvalues of C̃x and

εi = ε, 1 ≤ i ≤ m.

Given ζi in the first model or C̃x in the second model, a straightforward approach to estimating x is to

use an MMSE estimate corresponding to the estimated covariance. However, as we demonstrate through an

example in Section 6, by taking an uncertainty interval around ζi into account, and seeking a competitive

minimax estimator in this interval, we can further improve the estimation performance.

In Section 3, we develop the minimax estimators that minimize the worst case MSE over all covariance

matrices Cx that satisfy each of the two uncertainty models (6) and (8). As we show, the resulting estimators

are MMSE estimators matched to the worst possible choice of eigenvalues i.e., δi = ui in the first model

and Cx = C̃x + εI in the second model. Since these estimators are matched to the worst possible choice of
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parameters, in general they tend to be overly conservative, which can often lead to degraded performance,

as is evident in the example in Section 6. In this example, the minimax MSE estimator performs worse than

the MMSE estimator matched to the estimated covariance matrix.

In Section 4, we consider the case in which the model matrix H is also subject to uncertainties, and

develop a minimax MSE estimator that minimizes the worst case MSE over all possible covariance matrices

Cx and model matrices H. We assume that both Cx and H obey an uncertainty model of the form (8).

To improve the performance of the minimax estimators, in Section 5 we consider a competitive approach

in which we seek the linear estimator that minimizes the worst-case regret, where the regret is the difference

between the MSE of an estimator x̂ of x and the best possible MSE attainable using a linear estimator

where Cx is assumed to be known. In this case, we consider only the first model in which Cx commutes

with H∗C−1
w H and its eigenvalues are given by (6). As we show, the resulting estimator can also be

interpreted as an MMSE estimator matched to a covariance matrix which depends on the nominal value ζi

and the uncertainty interval εi, as well as on the eigenvalues of H∗C−1
w H. In the example in Section 6, we

demonstrate that the minimax regret estimator can improve the performance over both the minimax MSE

estimator and the MMSE estimator matched to the estimated covariance matrix.

3 Minimax MSE For Known H

We first consider the case in which the model matrix H is known, and seek the linear estimator that minimizes

the worst-case MSE over all possible values of Cx that commute with H∗C−1
w H and with eigenvalues δi

satisfying (6). Thus, let H∗C−1
w H have an eigendecomposition

H∗C−1
w H = VΛV∗, (9)

where V is a unitary matrix and Λ is a diagonal matrix with diagonal elements λi > 0. Then Cx has the

form

Cx = V∆V∗, (10)

where ∆ is a diagonal matrix with diagonal elements li ≤ δi ≤ ui.

We now consider the problem

min
G

max
li≤δi≤ui

E(‖Gy − x‖2) = min
G

{
Tr(GCwG∗) + max

li≤δi≤ui

Q(Cx)
}

, (11)

where from (2),

Q(Cx) = Tr (Cx(I − GH)∗(I − GH)) . (12)

To find the maximum value of Q(Cx) we rely on the following lemma.

Lemma 1. Let W,T and M be nonnegative definite matrices with W ≤ T. Then Tr(MW) ≤ Tr(MT).

Proof. Since M ≥ 0 and T − W ≥ 0 we can define the nonnegative symmetric square-roots M1/2 and
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(T − W)1/2. Denoting A = (T − W)1/2M1/2 we have

Tr(M(T − W)) = Tr(M1/2(T − W)1/2(T − W)1/2M1/2) = Tr(A∗A) ≥ 0, (13)

since Tr(Z) ≥ 0 for any Z ≥ 0. Thus, Tr(MT) ≥ Tr(MW).

Let Cx be an arbitrary matrix of the form (10) with eigenvalues li ≤ δi ≤ ui. Then,

Cx ≤ VZV∗, (14)

where Z is a diagonal matrix with diagonal elements ui. This then implies from Lemma 1 that

Tr (Cx(I − GH)∗(I − GH)) ≤ Tr (VZV∗(I − GH)∗(I − GH)) (15)

with equality if Cx = VZV∗, so that Q(Cx) is maximized for the worst possible choice of eigenvalues

i.e., δi = ui. The problem of (11) therefore reduces to minimizing the MSE of (2) where we substitute

Cx = VZV∗. The optimal estimator is then the linear MMSE estimator of (3) or (5) with Cx = VZV∗.

Using the eigendecomposition of H∗C−1
w H given by (9), we can express x̂ of (5) as

x̂ = (H∗C−1
w H∗ + C−1

x )−1H∗C−1
w y = V(Λ + Z−1)−1V∗H∗C−1

w y = VQV∗H∗C−1
w y, (16)

where Q is an m × m diagonal matrix with diagonal elements

qi =
ui

uiλi + 1
. (17)

We now seek the linear estimator that minimizes the worst-case MSE over all covariance matrices Cx of

the form (8). Thus, we consider the problem

min
G

max
‖δCx‖≤ε

E(‖Gy − x‖2) = min
G

{
Tr(GCwG∗) + max

‖δCx‖≤ε
Q(δCx)

}
, (18)

where

Q(δCx) = Tr
(
(C̃x + δCx)(I − GH)∗(I − GH)

)
. (19)

Since the condition ‖δCx‖ ≤ ε is equivalent to the condition δCx ≤ εI, we can use Lemma 1 to conclude

that

Q(δCx) = Tr
(
(C̃x + δCx)(I − GH)∗(I − GH)

)
≤ Tr

(
(C̃x + εI)(I − GH)∗(I − GH)

)
, (20)

with equality for δCx = εI. Therefore, the problem (18) reduces to minimizing the MSE of (2) where we

substitute δCx = εI, and the optimal estimator is the linear MMSE estimator with Cx = C̃x + εI.

We summarize our results on minimax MSE estimation with known H in the following theorem.

Theorem 1 (Minimax MSE estimators). Let x denote the unknown parameters in the model y =

Hx+w, where H is a known n×m matrix with rank m, x is a zero-mean random vector uncorrelated with
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w with covariance Cx and w is a zero-mean random vector with covariance Cw. Let H∗C−1
w H = VΛV∗

where V is a unitary matrix and Λ is an m × m diagonal matrix with diagonal elements λi > 0, let S1

denote the set of matrices Cx = V∆V∗ where ∆ is an m × m diagonal matrix with diagonal elements

0 ≤ li ≤ δi ≤ ui, and let S2 denote the set of matrices Cx = C̃x + δCx where C̃x is known and ‖δCx‖ ≤ ε.

Here ε is chosen such that C̃x + δCx ≥ 0 for all ‖δCx‖ ≤ ε. Then,

1. The solution to the problem minx̂=Gy maxCx∈S1 E(‖x̂ − x‖2) is an MMSE estimator matched to the

covariance Cx = VZV∗ where Z is an m × m diagonal matrix with diagonal elements ui, and can be

expressed as

x̂ = VQV∗H∗C−1
w y,

where Q is an m × m diagonal matrix with diagonal elements

qi =
ui

uiλi + 1
.

2. The solution to the problem minx̂=Gy maxCx∈S2 E(‖x̂ − x‖2) is an MMSE estimator matched to the

covariance Cx = C̃x + εI.

4 Minimax MSE For Unknown H

In the previous section, we developed the minimax MSE estimator under the assumption that the model

matrix H is known exactly. In many engineering applications the model matrix H is also subject to uncer-

tainties. For example, the matrix H may be estimated from noisy data in which case H is an approximation

to some nominal underlying matrix. If the actual data matrix is H̃ + δH for some unknown matrix δH,

then an estimator designed based on H̃ alone may perform poorly.

To explicitly take uncertainties in H into account, we now consider a robust estimator that minimizes

the worst-case MSE over all possible covariance and model matrices. Specifically, suppose now that the

model matrix H is not known exactly, but is rather given by

H = H̃ + δH, ‖δH‖ ≤ ρ, (21)

where H̃ is known. Similarly, the covariance matrix Cx is given by (8). We then seek the linear estimator

that is the solution to the problem

min
x̂=Gy

max
‖δCx‖≤ε,‖δH‖≤ρ

E(‖x̂ − x‖2) =

= minG max‖δCx‖≤ε,‖δH‖≤ρ

{
Tr
(
(C̃x + δCx)(I − G(H̃ + δH))(I − G(H̃ + δH))∗

)
+ Tr(GCwG∗)

}
. (22)

In Theorem 2 below, we show that the problem (22) can be formulated as a convex semidefinite program-

ming (SDP) problem [15, 16, 17], which is the problem of minimizing a linear functional subject to linear

matrix inequalities (LMIs), i.e., matrix inequalities in which the matrices depend linearly on the unknowns.
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(Note that even though the matrices are linear in the unknowns, the inequalities are nonlinear since a

positive semidefinite constraint on a matrix reduces to nonlinear constraints on the matrix elements.) The

main advantage of the SDP formulation is that it readily lends itself to efficient computational methods.

Specifically, by exploiting the many well known algorithms for solving SDPs [16, 15], e.g., interior point

methods1 [17, 18], which are guaranteed to converge to the global optimum, the optimal estimator can be

computed very efficiently in polynomial time. The SDP formulation can also be used to derive necessary

and sufficient conditions for optimality.

Theorem 2. Let x denote the unknown parameters in the model y = (H̃ + δH)x + w, where H̃ is a

known n × m matrix and δH is an unknown matrix satisfying ‖δH‖ ≤ ρ, x is a zero-mean random vector

uncorrelated with w with covariance C̃x + δCx where C̃x is a known m×m matrix and δCx is an unknown

matrix satisfying ‖δCx‖ ≤ ε with ε chosen such that C̃x + δCx ≥ 0 for all ‖δCx‖ ≤ ε, and w is a zero-mean

random vector with covariance Cw. Then the problem

min
x̂=Gy

max
‖δCx‖≤ε,‖δH‖≤ρ

E
(‖x̂ − x‖2

)
is equivalent to the semidefinite programming problem

min
t,G,λ,X,Y

t

subject to

Tr((C̃x + εI)X) + Tr(Y) ≤ t Y G

G∗ C−1
w

 ≥ 0


X − λI (I − GH̃)∗ 0

I − GH̃ I −ρG

0 −ρG∗ λI

 ≥ 0.

Proof. We begin by noting that

min
x̂=Gy

max
‖δCx‖≤ε,‖δH‖≤ρ

E
(‖x̂ − x‖2

)
= min

t,G,τ
t (23)

subject to

Tr(GCwG∗) + τ ≤ t (24)

Tr
(
(C̃x + δCx)(I − G(H̃ + δH))(I − G(H̃ + δH))∗

)
≤ τ, ∀δCx : ‖δCx‖ ≤ ε,∀δH : ‖δH‖ ≤ ρ. (25)

1Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been reached. A worst case
analysis of interior point methods shows that the effort required to solve an SDP to a given accuracy grows no faster than a
polynomial of the problem size. In practice, the algorithms behave much better than predicted by the worst case analysis, and
in fact in many cases the number of iterations is almost constant in the size of the problem.
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To simplify the constraint (25) we rely on the following proposition, the proof of which is provided in

Appendix A.

Proposition 1. Let G(A) and Q(B) be nonnegative matrices which are functions of the matrices A and B

respectively. Then the problem

min τ (26)

subject to

Tr(G(A)Q(B)) ≤ τ, ∀A : ‖A‖ ≤ α,∀B : ‖B‖ ≤ β (27)

is equivalent to the problem of (26) subject to

Tr(G(A)X) ≤ τ, ∀A : ‖A‖ ≤ α (28)

Q(B) ≤ X, ∀B : ‖B‖ ≤ β. (29)

Using Proposition 1, we can express the constraint (25) as

Tr((C̃x + δCx)X) ≤ τ, ∀δCx : ‖δCx‖ ≤ ε; (30)

(I − G(H̃ + δH))(I − G(H̃ + δH))∗ ≤ X, ∀δH : ‖δH‖ ≤ ρ. (31)

From Lemma 1 and the fact that (31) implies that X ≥ 0,

max
‖δCx‖≤ε

Tr((C̃x + δCx)X) = Tr((C̃x + εI)X), (32)

so that (30) reduces to

Tr((C̃x + εI)X) ≤ τ. (33)

Since we would like to minimize τ , the optimal choice is τ = Tr((C̃x + εI)X).

To treat the constraint (31), we rely on the following lemma [24, p. 472]:

Lemma 2. Let

M =

 A B∗

B C


be a Hermitian matrix. Then M ≥ 0 if and only if C > 0 and ∆C ≥ 0 where ∆C is the Schur complement

of C in M and is given by

∆C = A − B∗C−1B.

Equivalently, M ≥ 0 if and only if A > 0 and ∆A ≥ 0 where ∆A is the Schur complement of A in M and

is given by

∆A = C − BA−1B∗.
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From Lemma 2 it follows that (31) is equivalent to the condition X (I − G(H̃ + δH))∗

I − G(H̃ + δH) I

 ≥ 0, ∀δH : ‖δH‖ ≤ ρ, (34)

which is equivalent to

A(X,G) ≥ B∗(G)δHC + C∗δH∗B(G), ∀δH : ‖δH‖ ≤ ρ, (35)

where

A(X,G) =

 X (I − GH̃)∗

I − GH̃ I

 ;

B(G) =
[

0 G∗
]
;

C =
[

I 0
]
. (36)

We now exploit the following proposition, the proof of which can be found in [19], and relies on the Cauchy-

Schwarz inequality and Lemma 3 below.

Proposition 2. Given matrices P,Q,A with A = A∗,

A ≥ P∗ZQ + Q∗Z∗P, ∀Z : ‖Z‖ ≤ ρ

if and only if there exists a λ ≥ 0 such that A − λQ∗Q −ρP∗

−ρP λI

 ≥ 0.

From Proposition 2 it follows that (35) is satisfied if and only if there exists a λ ≥ 0 such that


X − λI (I − GH̃)∗ 0

I − GH̃ I −ρG

0 −ρG∗ λI

 ≥ 0, (37)

so that (25) is equivalent to (33) and (37) which are both LMIs.

Finally, the constraint (24) can be expressed as

Tr(Y) ≤ t − τ, (38)

GCwG∗ ≤ Y, (39)
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which using Lemma 2 is equivalent to  Y G

G∗ C−1
w

 ≥ 0, (40)

completing the proof of the theorem.

5 Minimax Regret

To improve the performance over the minimax MSE approach, we now consider a competitive approach in

which we seek a linear estimator whose performance is as close as possible to that of the optimal estimator

for all possible values of Cx satisfying (6), where we assume, as in Section 3, that H is completely specified.

Thus, instead of choosing a linear estimator to minimize the worst case MSE, we now seek the linear estimator

x̂ that minimizes the worst-case regret, so that we partially compensate for the conservative character of

the minimax approach.

The regret R(Cx,G) is defined as the difference between the MSE using an estimator x̂ = Gy and

the smallest possible MSE attainable with an estimator of the form x̂ = G(Cx)y when the covariance Cx

is known, which we denote by MSEo. If Cx is known, then the MMSE estimator is given by (3) and the

resulting optimal MSE is

MSEo = Tr(Cx − CxyC−1
y Cyx) = Tr(Cx) − Tr(CxH∗(HCxH∗ + Cw)−1HCx). (41)

From (4) and (5) we have that CxH∗(HCxH∗ + Cw)−1 = (H∗C−1
w H + C−1

x )−1H∗C−1
w , so that (41) can be

written in the equivalent form,

MSEo = Tr
((

I − (H∗C−1
w H + C−1

x )−1H∗C−1
w H
)
Cx

)
= Tr

(
(H∗C−1

w H + C−1
x )−1

)
, (42)

which will be more convenient for our derivations.

Thus, we seek the matrix G that is the solution to the problem

min
G

max
li≤δi≤ui

R(Cx,G), (43)

where Cx has an eigendecomposition of the form (10), and

R(Cx,G) = E(‖Gy − x‖2) − MSEo

= Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − Tr
(
(H∗C−1

w H + C−1
x )−1

)
. (44)

The linear estimator that minimizes the worst-case regret is given by the following theorem.

Theorem 3 (Minimax regret estimator). Let x denote the unknown parameters in the model y =

Hx+w, where H is a known n×m matrix with rank m, x is a zero-mean random vector uncorrelated with

w with covariance Cx and w is a zero-mean random vector with covariance Cw. Let H∗C−1
w H = VΛV∗

12



where V is a unitary matrix and Λ is an m × m diagonal matrix with diagonal elements λi > 0 and let

Cx = V∆V∗ where ∆ is an m × m diagonal matrix with diagonal elements 0 ≤ li ≤ δi ≤ ui. Then the

solution to the problem

min
x̂=Gy

max
li≤δi≤ui

{
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

}
=

= minG maxli≤δi≤ui

{
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − Tr

(
(H∗C−1

w H + C−1
x )−1

)}
is

x̂ = VCV∗H∗C−1
w y,

where C is an m × m diagonal matrix with diagonal elements

ci =
1
λi

1 − 1√
(1 + λiζi)2 − λ2

i ε
2
i

 , (45)

ζi = (ui + li)/2 and εi = (ui − li)/2.

Proof. The proof of Theorem 3 is comprised of three parts. First, we show that the optimal G minimizing

the worst-case regret has the form

G = VDΛ−1V∗H∗C−1
w , (46)

for some m × m matrix D. We then show that D must be a diagonal matrix. Finally, we show that the

diagonal elements ci of C = DΛ−1 are given by (45).

We begin by showing that the optimal G has the form given by (46). To this end, note that the regret

R(Cx,G) of (44) depends on G only through GH and Tr(GCwG∗). Now, for any choice of G,

Tr(GCwG∗) = Tr(GC1/2
w PC1/2

w G∗) + Tr(GC1/2
w (I − P)C1/2

w G∗) ≥ Tr(GC1/2
w PC1/2

w G∗) (47)

where

P = C−1/2
w H(H∗C−1

w H)−1H∗C−1/2
w (48)

is the orthogonal projection onto the range space of C−1/2
w H. In addition, GH = GC1/2

w PC−1/2
w H since

PC−1/2
w H = C−1/2

w H. Thus, to minimize Tr(GCwG∗) it is sufficient to consider matrices G that satisfy

GC1/2
w = GC1/2

w P. (49)

Substituting (48) into (49), we have

G = GC1/2
w PC−1/2

w = GH(H∗C−1
w H)−1H∗C−1

w = B(H∗C−1
w H)−1H∗C−1

w , (50)

for some m × m matrix B. Denoting B = VDV∗ and using the fact that H∗C−1
w H = VΛV∗, (50) reduces

to (46).

13



We now show that D must be a diagonal matrix. Substituting Cx = V∆V∗ and G of (50) into (44), we

can express R(Cx,G) as

R(Cx,G) =

= Tr
(
D∗DV∗(H∗CwH)−1V

)
+ Tr (V∗CxV(I − D)∗(I − D)) − Tr

(
(H∗C−1

w H + C−1
x )−1

)
= Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − Tr

(
(Λ + ∆−1)−1

)
. (51)

We conclude that the problem (43) reduces to finding D that minimizes

G(D) = max
li≤δi≤ui

L(D, ∆) (52)

where

L(D, ∆) = Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − Tr
(
(Λ + ∆−1)−1

)
. (53)

Clearly, L(D) is strictly convex in D. Therefore, for any 0 < α < 1,

G(αD1 + (1 − α)D2) = max
li≤δi≤ui

L(αD1 + (1 − α)D2, ∆)

< max
li≤δi≤ui

{αL(D1, ∆) + (1 − α)L(D2, ∆)}
≤ α max

li≤δi≤ui

L(D1, ∆) + (1 − α) max
li≤δi≤ui

L(D2, ∆)

= αG(D1) + (1 − α)G(D2), (54)

so that G(D) is also strictly convex in D, and consequently has a unique global minimum. Let J be any

diagonal matrix with diagonal elements equal to ±1. Then

G(JDJ) = max
li≤δi≤ui

{
Tr(JD∗DJΛ−1) + Tr (∆(I − JDJ)∗(I − JDJ)) − Tr

(
(Λ + ∆−1)−1

)}
= max

li≤δi≤ui

{
Tr(D∗DJΛ−1J) + Tr (J∆J(I − D)∗(I − D)) − Tr

(
(Λ + ∆−1)−1

)}
= max

li≤δi≤ui

{
Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − Tr

(
(Λ + ∆−1)−1

)}
= G(D), (55)

where we used the fact that J2 = I and for any diagonal matrix M, JMJ = M. Since G(D) has a unique

minimizer we conclude that the matrix D that minimizes G(D) satisfies D = JDJ for any diagonal matrix

J with diagonal elements equal to ±1, which in turn implies that D must be a diagonal matrix.

Denote by di, λi and δi the diagonal elements of D, Λ and ∆, respectively. Then we can express G(D) as

G(D) = max
li≤δi≤ui

{
m∑

i=1

(
d2

i

λi
+ δi(1 − di)2 − δi

λiδi + 1

)}

= max
li≤δi≤ui

{
m∑

i=1

(
(λi(di − 1)δi + di)2

λi(λiδi + 1)

)}

14



=
m∑

i=1

max
li≤δi≤ui

{
(λi(di − 1)δi + di)2

λi(λiδi + 1)

}
. (56)

The problem of minimizing G(D) can now be formulated as

min
ti,di

m∑
i=1

ti (57)

subject to

max
li≤δi≤ui

{
(λi(di − 1)δi + di)2

λi(λiδi + 1)

}
≤ ti, 1 ≤ i ≤ m, (58)

which can be separated into m independent problems of the form

min
t,d

t (59)

subject to

max
li≤δi≤ui

{
(λi(d − 1)δi + d)2

λi(λiδi + 1)

}
≤ t, (60)

or, equivalently,
(λi(d − 1)δi + d)2

λi(λiδi + 1)
≤ t, ∀δi : li ≤ δi ≤ ui. (61)

To develop a solution to (57) and (58), we thus consider the problem of (59) and (61), where for brevity, we

omit the index i.

Let δ = ζ + e where ζ = (u + l)/2. Then the condition l ≤ δ ≤ u is equivalent to the condition e2 ≤ ε2

where ε = (u − l)/2, so that (61) can be written as

(λ(d − 1)(ζ + ε) + d)2 ≤ tλ(λ(ζ + ε) + 1), ∀e : e2 ≤ ε2, (62)

which in turn is equivalent to the following implication:

P (e)
�
=ε2 − e2 ≥ 0 ⇒ Q(e) ≥ 0, (63)

where

Q(e) = tλ(λ(ζ + e) + 1) − (λ(d − 1)(ζ + e) + d)2

= −e2λ2(d − 1)2 + 2e

(
tλ2

2
+ λ(1 − d) (d(λζ + 1) − λζ)

)
+ tλ(λζ + 1) − (d(λζ + 1) − λζ)2. (64)

We now rely on the following lemma [28, p. 23]:

Lemma 3. [S-procedure] Let P (z) = z∗Az + 2u∗z + v and Q(z) = z∗Bz + 2x∗z + y be two quadratic

functions of z where A and B are symmetric and there exists z0 satisfying P (z0) > 0. Then the implication

P (z) ≥ 0 ⇒ Q(z) ≥ 0

15



holds true if and only if there exists an α ≥ 0 such that B − αA x − αu

x∗ − αu∗ y − αv

 ≥ 0.

Combining (63) with Lemma 3, it follows immediately that the condition (61) is equivalent to the condition α − λ2(d − 1)2 tλ2

2 + λ(1 − d) (d(λζ + 1) − λζ)
tλ2

2 + λ(1 − d) (d(λζ + 1) − λζ) tλ(λζ + 1) − (d(λζ + 1) − λζ)2 − αε2

 ≥ 0. (65)

Note that if (65) is satisfied, then α − λ2(d − 1)2 ≥ 0 which implies that α ≥ 0. Therefore, the problem of

(59) and (61) is equivalent to minimizing t subject to (65).

To satisfy (65) we must have that

tλ(1 + λζ) ≥ (d(λζ + 1) − λζ)2 + αε2, (66)

from which it follows that t ≥ 0. If t = 0 then from (66), α = 0 and d = λζ/(λζ + 1). But then

α − λ2(d − 1)2 < 0 (67)

which violates (65) so that t > 0. Defining β = α/t, our problem reduces to

min
t,β,d

t (68)

subject to  tβ − λ2(d − 1)2 tλ2

2 + λ(1 − d) (d(λζ + 1) − λζ)
tλ2

2 + λ(1 − d) (d(λζ + 1) − λζ) tλ(λζ + 1) − (d(λζ + 1) − λζ)2 − tβε2

 , (69)

which can be expressed as

tA − bb∗ ≥ 0, (70)

where

A =

 β λ2

2

λ2

2 λ(1 + λζ) − βε2

 , (71)

and

b =

 λ(d − 1)

d(1 + λζ) − λζ

 . (72)

Suppose there exists a t̂ such that

t̂A − bb∗ = 0. (73)

Then, as we now show, t̂ minimizes (68) subject to (70). Since t̂ ≥ 0 and from (73) t̂A ≥ 0, if follows that
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A ≥ 0. If 0 ≤ t < t̂, then t̂ − t > 0 so that (t̂ − t)A ≥ 0, which implies that

tA ≤ t̂A = bb∗, (74)

or

tA − bb∗ ≤ 0. (75)

Thus, either we have tA = bb∗ or at least one of the eigenvalues of tA−bb∗ is smaller than 0, which violates

the constraint (70). Therefore, if there exists t̂, β̂ and d̂ that solve (73), or equivalently the equations

t̂β̂ = λ2(1 − d̂)2;

t̂
(
λ(1 + λζ) − β̂ε2

)
= (d̂(1 + λζ) − λζ)2;

t̂λ = 2(d̂ − 1)
(
d̂(1 + λζ) − λζ

)
, (76)

then the optimal value of t must also satisfy (76) for some β and d. It can be shown that (76) has a unique

solution

d̂ = 1 − 1√
(1+λζ)2−λ2ε2

;

β̂ = λ3

2
(√

(1+λζ)2−λ2ε2−1−λζ
) ;

t̂ =
2
(√

(1+λζ)2−λ2ε2−1−λζ
)

λ((1+λζ)2−λ2ε2)
, (77)

which is therefore the solution to the problem of (59) and (61).

The linear minimax estimator is therefore given by

x̂ = VD̂Λ−1V∗H∗C−1
w y = VCV∗H∗C−1

w y, (78)

where C = D̂Λ−1 is the diagonal matrix with diagonal elements d̂i/λi and

d̂i = 1 − 1√
(1 + λiζi)2 − λ2

i ε
2
i

, 1 ≤ i ≤ m, (79)

which completes the proof of the theorem.

As we now show, we can interpret the estimator of Theorem 3 as an MMSE estimator matched to a

covariance matrix

Cx = VXV∗, (80)

where X is a diagonal matrix with diagonal elements

xi =
1
λi

(√
(1 + λiζi)2 − λ2

i ε
2
i − 1

)
. (81)
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Note that if εi = 0 so that the ith eigenvalue of the true covariance of Cx is equal to ζi then, as we expect,

xi = ζi.

From (5) the MMSE estimate of x with covariance Cx given by (80) and H∗C−1
w H = VΛV∗ is

x̂ = (H∗C−1
w H + C−1

x )−1H∗C−1
w y = V

(
Λ + X−1

)−1 V∗H∗C−1
w y. (82)

Since
1

λi + 1
xi

=
xi

xiλi + 1
=

1
λi

1 − 1√
(1 + λiζi)2 − λ2

i ε
2
i

 = ci, (83)

the estimator x̂ of (82) is equivalent to the estimator given by Theorem 3. We thus have the following

corollary to Theorem 3.

Corollary 4. Let x denote the unknown parameters in the model y = Hx+w. Then, under the assumptions

of Theorem 3, the solution to the problem

min
x̂=Gy

max
li≤δi≤ui

{
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

}
is an MMSE estimator matched to the covariance Cx = VXV∗, where X is a diagonal matrix with diagonal

elements

xi =
1
λi

(√
(1 + λiζi)2 − λ2

i ε
2
i − 1

)
with ζi = (ui + li)/2 and εi = (ui − li)/2.

Since the minimax regret estimator minimizes the regret for Cx = VXV∗, we may view the covariance

Cx = VXV∗ as the “least-favorable” covariance in the regret sense.

It is interesting to note that while the minimax MSE estimator of Theorem 1 for the model (6) is matched

to a covariance matrix with eigenvalues ui ≥ ζi, the minimax regret estimator of Theorem 3 is matched to

a covariance matrix with eigenvalues xi ≤ ζi. Indeed, from (81) we have that

xi ≤
√

(λiζi + 1)2 − 1
λi

= ζi. (84)

Expressing xi as

xi =
1
λi

(1 + λiζi)

√
1 − λ2

i ε
2
i

(1 + λiζi)2
− 1

 =
1
λi

(
(1 + λiζi)

√
1 − ai − 1

)
, (85)

where

ai =
λ2

i ε
2
i

(1 + λiζi)2
< 1, (86)

(since ζi ≥ εi) and using the first order approximation
√

1 − y ≈ 1 − (1/2)y for 0 ≤ y < 1, we have that

xi ≈ ζi − λiε
2
i

2(1 + λiζi)
. (87)
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Thus, the correction to the nominal covariance ζi is approximately λiε
2
i /(2(1 + λiζi)), which is quadratic in

the length of the uncertainty interval εi.

The minimax estimators for the uncertainty model (7) often lie in a different class than the estimator

matched to the nominal covariance matrix. For example, suppose that λi = λ, 1 ≤ i ≤ m and δi = δ, 1 ≤ i ≤
m so that both H∗C−1

w H and the nominal covariance matrix of x are proportional to the identity. In this

case, the MMSE estimator matched to the nominal covariance matrix is x̂ = ay for some constant a so that

x̂ is simply a scaled version of y. This property also holds for the minimax MSE estimator of Theorem 1

with covariance uncertainty given by (8). However, for the minimax regret estimator and the minimax MSE

estimator with covariance uncertainty given by (7), this property no longer holds in general. In particular,

if εi �= εj for some i and j, then the optimal estimators will no longer be a scaled version of y.

6 Example of the Minimax Regret Estimator

We now consider an example illustrating the minimax regret estimator of Theorem 3.

Consider the estimation problem in which

y = x + w, (88)

where x is a length-n segment of a zero-mean stationary first order AR process with components xi so that

E(xixj) = ρ|j−i| (89)

for some parameter ρ, and w is a zero-mean random vector uncorrelated with x with known covariance

Cw = σ2I. We assume that we know the model (88) and that x is a segment of a stationary process,

however its covariance Cx is unknown.

To estimate x, we may first estimate Cx from the observations y. A natural estimate of Cx is given by

Ĉx = [Ĉy − Cw]+ = [Ĉy − σ2I]+, (90)

where

Ĉy(i, j) =
1
n

n−|j−i|∑
k=1

ykyk+|j−i| (91)

is an estimate of the covariance of y and [A]+ denotes the matrix in which the negative eigenvalues of A

are replaced by 0. Thus, if A has an eigendecomposition A = UΣU−1 where Σ is a diagonal matrix with

diagonal elements σi, then [A]+ = U[Σ]+U−1 where [Σ]+ is a diagonal matrix with ith diagonal element

equal to max(0, σi). The estimate (90) can be regarded as the analogue for finite-length processes of the

spectrum estimate based on the spectral subtraction method for infinite-length processes [29, 30].

Given Ĉx, we may estimate x using an MMSE estimate matched to Ĉx. However, as can be seen below

in Fig. 1, we can further improve the estimation performance by using the minimax regret estimator of

Theorem 3.
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To compute the minimax regret estimator, we choose V to be equal to the eigenvector matrix of the

estimated covariance matrix Ĉx, and ζi = σi where σi are the eigenvalues of Ĉx. We would then like to

choose εi to reflect the uncertainty in our estimate ζi. Since computing the standard deviation of ζi is

difficult, we choose εi to be proportional to the standard deviation of an estimator σ̃2
x of the variance σ2

x of

x where

σ̃2
x =

1
n

n∑
i=1

y2
i − σ2

w. (92)

We further assume that x and w are uncorrelated Gaussian random vectors. The variance of σ̃2
x is given by

E
{(

σ̃2
x − σ2

x

)2} = E


(

1
n

n∑
i=1

(
y2

i − σ2
w − σ2

x

))2
 =

1
n2

n∑
i,j=1

E(titj), (93)

where ti = y2
i − σ2

w − σ2
x. Since E(y2

i ) = σ2
w + σ2

x,

E(titj) = (y2
i − σ2

w − σ2
x)(y2

j − σ2
w − σ2

x) = E(y2
i y

2
j ) − (σ2

w + σ2
x)2. (94)

If x and w are Gaussian, then so is y so that

E(y2
i y

2
j ) = E2(yiyj) + E(y2

i )E(y2
j ) = (Cx(i, j) + σ2

wδij)2 + (σ2
w + σ2

x)2, (95)

where Cx(i, j) is the ijth element of Cx. Combining (93), (94) and (95), we have

E
{(

σ̃2
x − σ2

x

)2} =
2
n

(
(σ2

x + σ2)2 +
n∑

i=2

C2
x(1, i)

)
. (96)

Since σ2
x and Cx(1, i) are unknown, we substitute their estimates Ĉx(1, i), 1 ≤ i ≤ m. Finally, to ensure

that εi ≤ ζi, we choose

εi = min

ζi, A

√√√√ 2
n

(
(Ĉ2

x(1, 1) + σ2)2 +
n∑

i=2

Ĉ2
x(1, i)

) , (97)

where A is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax regret estimator averaged over 1000 noise realizations as a

function of the SNR defined by −10 log σ2 for ρ = 0.8, n = 10 and A = 5. The performance of the “plug

in” MMSE estimator matched to the estimated covariance matrix Ĉx and the minimax MSE estimator

are plotted for comparison. As can be seen from the figure, the minimax regret estimator can increase the

estimation performance particularly at low to intermediate SNR values. It is also interesting to note that the

popular minimax MSE approach is useless in this example, since it leads to an estimator whose performance

is worse than the performance of an estimator based on the estimated covariance matrix.
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Figure 1: MSE in estimating x as a function of SNR using the minimax regret estimator, the minimax MSE
estimator and the MMSE estimator matched to the estimated covariance matrix.

7 Nonlinear Minimax Regret Estimation

In the previous sections we developed linear estimators for estimating the unknown vector x in the linear

model (1) when the covariance Cx is not known precisely. The restriction to linear estimators was made for

analytical tractability since developing the optimal nonlinear estimator is a difficult problem. If x and w are

jointly Gaussian vectors with known covariance matrices, then the estimator that minimizes the MSE among

all linear and nonlinear estimators is the linear MMSE estimator, which provides theoretical justification for

restricting attention to the class of linear estimators. As we now show, this property of the optimal estimator

is no longer true when we consider minimizing the worst-case regret with covariance uncertainties, even if

x and w are Gaussian. Nonetheless, we will demonstrate that when estimating a Gaussian random variable

contaminated by independent Gaussian noise, the performance of the linear minimax regret estimator is

close to that of the optimal nonlinear third-order estimator that minimizes the worst-case regret, so that at

least in this case, we do not loose much by restricting our attention to linear estimators.

For the sake of simplicity, we now consider the problem of estimating the scalar x in the linear model

y = x + w, (98)

where x and w are independent, zero-mean, Gaussian random variables with variances σ2
x and σ2

w, respec-

tively. We seek the possibly nonlinear estimator x̂ of x that minimizes the worst-case regret over all variances

σ2
x satisfying l ≤ σ2

x ≤ u for some 0 ≤ l ≤ u. In the case of model (98) the linear MMSE estimator is given
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by

x̂ =
σ2

x

σ2
x + σ2

w

y = αy, (99)

where

α =
σ2

x

σ2
x + σ2

w

, (100)

and the optimal MSE is

MSEo = E(αy − x)2 =
σ2

xσ2
w

σ2
x + σ2

w

. (101)

Therefore, our problem reduces to finding

R = min
x̂

max
l≤σ2

x≤u

{
E(x̂ − x)2 − σ2

xσ2
w

σ2
x + σ2

w

}
. (102)

Since x and w are jointly Gaussian, E(x|y) = αy with α given by (100), so that (102) can be expressed

as

E(x̂ − x)2 − σ2
xσ2

w

σ2
x + σ2

w

=
∫ ∞

−∞
py(y)dy

∫ ∞

∞
px|y(x|y)

(
(x̂ − x)2 − (αy − x)2

)
dx

=
∫ ∞

−∞
py(y)

(
x̂2 − 2x̂E(x|y) + 2αyE(x|y) − α2y2

)
dy

=
∫ ∞

−∞
py(y) (x̂ − αy)2 dy, (103)

where px(x) = N (0, σ2
x) and py(y) = N (0, σ2

x + σ2
w) denote the probability density functions (pdfs) of x and

y respectively. Since there is a one-to-one correspondence between σ2
x and α, instead of maximizing (103)

over l ≤ σ2
x ≤ u, we may maximize it over lα ≤ α ≤ uα where

lα =
l

l + σ2
w

;

uα =
u

u + σ2
w

, (104)

with uα ≤ 1. Thus,

R = min
x̂

max
lα≤α≤uα

∫ ∞

−∞
py|α(y|α) (x̂ − αy)2 dy. (105)

Here

py|α(y|α) = N
(

0,
σ2

w

1 − α

)
, (106)

is the pdf of y given the value of α. We now note that instead of maximizing the objective in (105) over α,

we can imagine that α is a random variable with pdf pα(α) which has support on the interval I = [lα, uα],

and maximize the objective over all possible pdfs pα(α) with support on I. This follows from the fact that

the objective will be maximized for the pdf pα(α) = δ(α0) where α0 ∈ I maximizes the objective over

lα ≤ α ≤ uα. We then have that

R = min
x̂

max
pα(·)

∫ uα

lα

pα(α)dα

∫ ∞

−∞
py|α(y|α) (x̂ − αy)2 dy. (107)
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Since the objective in (107) is convex in the minimization argument x̂ and concave (linear) in the maximiza-

tion argument pα(·), we can exchange the order of the minimization and maximization [31] so that

R = max
pα(·)

min
x̂

∫ uα

lα

pα(α)dα

∫ ∞

−∞
py|α(y|α) (x̂ − αy)2 dy

= max
pα(·)

{∫ ∞

−∞
py(y)dy min

x̂

(∫ uα

lα

pα|y(α|y) (x̂ − αy)2 dα

)}
, (108)

where pα|y(α|y) is the conditional probability of α given y induced by pα(α).

Differentiating the second integral with respect to x̂ and equating to 0, the optimal x̂ that minimizes

(108) is

x̂ = yE(α|y), (109)

where py,α(y, α) = py|α(y|α)pα(α) with py|α(y|α) given by (106) and

pα(α) = arg max
pα(·)

∫ ∞

−∞
y2 Var {α|y} py(y)dy, (110)

with Var {α|y} denoting the variance of α given y. Substituting x̂ into (108), the minimax regret is

R = max
pα(·)

∫ ∞

−∞
y2 Var {α|y} py(y)dy. (111)

As we now show, (109) implies that the minimax regret estimator is nonlinear, even though x and w

are jointly Gaussian. Therefore, contrary to the MMSE estimator for the Gaussian case where σ2
x is known,

the estimator minimizing the worst-case regret when σ2
x is unknown is nonlinear. Nonetheless, as we show

below, in practice we do not loose much by restricting the estimator to be linear.

To show that (109) implies that x̂ must be nonlinear in y, we note that since

py|α(y|α) ∝ e
−(1−α) y2

2σ2
w , (112)

we can express E(α|y) as

E(α|y) =

∫
I αpy,α(y, α)dα∫
I py,α(y, α)dα

=

∫
I αpα(α)eαy2/(2σ2

w)dα∫
I pα(α)eαy2/(2σ2

w)dα
=

d

dz

{
ln
∫
I

pα(α)eαzdα

}
=

d

dz
lnφ(z), (113)

where z
�
=y2/(2σ2

w), φ(z) is the moment generating function of pα(α), and I denotes the support of pα(α).

It is immediate from (109) that x̂ is linear if and only if E(α|y) = a for some constant a. This then

implies from (113) that the derivative of lnφ(z) must be equal to a constant, independent of z, which in

turn implies that φ(z) = eaz (since φ(0) = 1 for any moment generating function). Since pα(α) is the inverse

Fourier transform of φ(−jω), in this case pα(α) = δ(α − a), and Var {α|y} = 0 so that from (111), the

regret R = 0. Clearly, there are other choices of pα(α) for which R > 0 so that pα(α) = δ(α − a) does not

maximize the regret, and E(α|y) cannot be equal to a constant.

In order to obtain an explicit expression for the minimax regret estimator of (109), we need to determine
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the optimal pdf pα(α), which is a difficult problem. Since E(α|y) is the MMSE estimator of α given the

random variable y, we may approximate E(α|y) by a linear estimator of α of the form α̂ = a + by for some

a and b �= 0 (we have seen already that E(α|y) cannot be equal to a constant). With this approximation,

x̂ = ay + by2, (114)

where a and b are the solution to

min
a,b

max
lα≤α≤uα

∫ ∞

−∞
py(y) (x̂ − αy)2 dy = min

a,b
max

lα≤α≤uα

E
(
(x̂ − αy)2

)
. (115)

Substituting (114) into (115), a and b are the solution to the problem

min
a,b

max
lα≤α≤uα

E
((

(a − α)y + by2
))2 = min

a,b
max

lα≤α≤uα

{
(α − a)2E(y2) + b2E(y4)

}
, (116)

where we used the fact that since y is Gaussian, E(y3) = 0. Now, for any choice of a and b, (α−a)2E(y2)+

b2E(y4) ≥ (α − a)2E(y2) so that

min
a,b

max
lα≤α≤uα

{
(α − a)2E(y2) + b2E(y4)

} ≥ min
a

max
lα≤α≤uα

(α − a)2E(y2), (117)

with equality for b = 0. Thus the optimal estimator of the form (114) reduces to a linear estimator, which

cannot be optimal.

Since the second-order approximation (114) results in a linear estimator, we next consider a third-order

approximation of the form

x̂ = ay + by3, (118)

where now a and b are the solution to

min
a,b

max
lα≤α≤uα

E
((

(a − α)y + by3
)2) =

= min
a,b

max
lα≤α≤uα

{
(α − a)2E(y2) + b2E(y6) + 2(a − α)bE(y4)

}
= min

a,b
max

lα≤α≤uα

{
(α − a)2

σ2
w

1 − α
+ 15b2 σ6

w

(1 − α)3
+ 6(a − α)b

σ4
w

(1 − α)2

}
. (119)

Here we used the fact that y is a zero-mean Gaussian random variable so that [14]

E(yn) =

 1 · 3 · . . . · (n − 1)σn
y , n even;

0, n odd,
(120)

where σ2
y = σ2

w/(1 − α) is the variance of y.

Finding the optimal values of a and b that are the solution to (119) is a difficult problem. Instead of

solving this problem directly, we develop a lower bound on the minimax regret R achievable with a third-

order nonlinear estimator of the from (118), and show that in many cases it is approximately achieved by
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the linear minimax regret estimator of Theorem 3. In particular, we have the following theorem, the proof

of which is provided in Appendix B.

Theorem 5. Let x denote a zero-mean Gaussian random variable with variance σ2
x and let y = x+w where

w denotes a zero-mean Gaussian random variable with variance σ2
w, independent of x. Let x̂ = ay + by3 be a

third-order estimator of x where a and b minimize the worst-case regret over all values of α = σ2
x/(σ2

x + σ2
w)

satisfying lα ≤ α ≤ uα for some 0 ≤ lα ≤ uα. Then the minimax regret given by

R = min
a,b

max
lα≤α≤uα

E
{[

(a − α)y + by3
]2}

,

satisfies R ≥ B where B is the solution to the convex optimization problem

B = min
β≥0,a,b,τ,γ

{
τ2

1 − lα
+ 6b2 σ6

w

(1 − lα)3

}
subject to  γ − σw

1
2 ((a − 2ζ + 1)σw − τ)

1
2 ((a − 2ζ + 1)σw − τ) τ(1 − ζ) − (1 − ζ)(a − ζ)σw − 3bσ3

w − γε2

 ≥ 0; (121)

 β + σw −1
2 ((a − 2ζ + 1)σw + τ)

−1
2 ((a − 2ζ + 1)σw + τ) τ(1 − ζ) + (1 − ζ)(a − ζ)σw + 3bσ3

w − βε2

 ≥ 0, (122)

where ζ = (uα + lα)/2 and ε = (uα − lα)/2.

Note that a positive semidefinite constraint of the form a b

b c

 ≥ 0, (123)

is equivalent to the three inequalities a ≥ 0, c ≥ 0 and ac − b2 ≥ 0.

In Fig. 2, we plot the bound B as a function of the SNR which is defined as 10 log(σ2
x/σ2

w) for σ2
x = u = 50

and l = 30. For comparison, we also plot the worst-case regret using the linear minimax regret estimator of

Theorem 3. The value of B is computed using the fmincon function on Matlab. As can be seen from the

figure, the worst-case regret using the linear minimax estimator is very close to the bound so that in this

case we do not loose in performance by using a linear estimator instead of a nonlinear third-order estimator.

In general, the performance of the linear minimax regret estimator is close to the bound for small values of

u − l. If u � l, then the performance of the linear estimator approaches the bound only at high SNR.

8 Conclusion

We considered the problem of estimating a random vector x in the linear model y = Hx + w, where the

covariance matrix Cx of x and possibly also the model matrix H are subject to uncertainties. We developed
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Figure 2: Worst-case regret in estimating x as a function of SNR using the linear minimax regret estimator,
and the bound on the smallest worst-case regret attainable using a third-order estimator.

the minimax MSE estimators for the case in which Cx is subject to uncertainties and the model matrix is

known, and for the case in which both Cx and H are not completely specified.

The main contribution of the paper is the development of a competitive minimax approach in which we

seek the linear estimator that minimizes the worst-case regret, which is the difference between the MSE of

the estimator and the best possible MSE attainable with a linear estimator that knows the covariance Cx.

As we demonstrated, the competitive minimax approach can increase the performance over the traditional

minimax method, which in some cases turns out to be completely useless.

The minimax estimator has the interesting property that it often lies in a different class than the estimator

matched to the nominal covariance matrix. We have seen an example of this property in Section 5 where

the nominal estimator is proportional to the observations y, while the linear minimax regret estimator is

no longer equal to a constant times y. Another example was considered in Section 7, where we showed that

the optimal minimax regret estimator for the case in which y and w are jointly Gaussian is nonlinear, while

the nominal estimator is linear.

In our development of the minimax regret, we assumed that H is completely specified and that HC−1
w H

commutes with Cx for all possible covariance matrices. An interesting direction for future research is to

develop the minimax regret estimator for more general classes of H as well as in the presence of uncertainties

in H. It is also interesting to investigate the loss in performance with respect to an arbitrary nonlinear

minimax regret estimator in the general linear model.
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A Proof of Proposition 1

Let X be an arbitrary matrix satisfying (29). Then from Lemma 1,

max
‖A‖≤α,‖B‖≤β

Tr(G(A)Q(B)) ≤ max
‖A‖≤α,‖B‖≤β

Tr(G(A)X). (124)

Since

Tr(G(A)X) = Tr(G(A)Q(B)) + Tr (G(A)(X −Q(B))) , (125)

we have that

max
‖A‖≤α,‖B‖≤β

Tr(G(A)X) ≤ max
‖A‖≤α,‖B‖≤β

Tr(G(A)Q(B)) + max
‖A‖≤α,‖B‖≤β

Tr (G(A)(X −Q(B))) . (126)

Let τ1 = min τ subject to (27), let τ2 = min τ subject to (28) and (29), and let τ3 = min τ subject to

max
‖A‖≤α,‖B‖≤β

Tr(G(A)Q(B)) + max
‖A‖≤α,‖B‖≤β

Tr (G(A)(X −Q(B))) ≤ τ, (127)

and (29). It then follows from (124) and (126) that

τ1 ≤ τ2 ≤ τ3. (128)

Since G(A) ≥ 0 and X − Q(B) ≥ 0 for all ‖A‖ ≤ α, ‖B‖ ≤ β and X satisfying (29), it follows from

Lemma 1 that max‖A‖≤α,‖B‖≤β Tr (G(A)(X −Q(B))) ≥ 0. Therefore to minimize the value of τ in (127),

X is chosen such that max‖A‖≤α,‖B‖≤β Tr (G(A)(X −Q(B))) = 0. But then τ3 = τ1 so that from (128) we

conclude that τ2 = τ1, completing the proof of the proposition.

B Proof of Theorem 5

From (119) it follows that we can express R as

R = min
a,b

max
lα≤α≤uα

G(a, b, α), (129)

where

G(a, b, α) = (α − a)2
σ2

w

1 − α
+ 15b2 σ6

w

(1 − α)3
+ 6(a − α)b

σ4
w

(1 − α)2

=
1

1 − α

(
(a − α)σw +

3bσ3
w

1 − α

)2

+ 6b2 σ6
w

(1 − α)3
. (130)
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Since lα ≤ α ≤ uα ≤ 1,

G(a, b, α) ≥ 1
1 − lα

(
(a − α)σw +

3bσ3
w

1 − α

)2

+ 6b2 σ6
w

(1 − lα)3
, (131)

so that R ≥ B where

B = min
a,b

max
lα≤α≤uα

{
1

1 − lα

(
(a − α)σw +

3bσ3
w

1 − α

)2

+ 6b2 σ6
w

(1 − lα)3

}
. (132)

To compute B we note that (132) can be expressed as

B = min
a,b,t

t (133)

subject to
1

1 − lα

(
(a − α)σw +

3bσ3
w

1 − α

)2

+ 6b2 σ6
w

(1 − lα)3
≤ t, ∀α : lα ≤ α ≤ uα, (134)

which is equivalent to

(
(a − α)σw +

3bσ3
w

1 − α

)2

≤ (1 − lα)t − 6b2 σ6
w

(1 − lα)2
, ∀α : lα ≤ α ≤ uα. (135)

Defining

τ2 = (1 − lα)t − 6b2 σ6
w

(1 − lα)2
≥ 0, (136)

we have that

B = min
a,b,τ

{
τ2

1 − lα
+ 6b2 σ6

w

(1 − lα)3

}
(137)

subject to (
(a − α)σw +

3bσ3
w

1 − α

)2

≤ τ2, ∀α : lα ≤ α ≤ uα, (138)

or, equivalently,

(a − α)σw +
3bσ3

w

1 − α
≤ τ, ∀α : lα ≤ α ≤ uα; (139)

(a − α)σw +
3bσ3

w

1 − α
≥ −τ, ∀α : lα ≤ α ≤ uα. (140)

Consider first the constraint (139). Let α = ζ +e where ζ = (uα + lα)/2. Then lα ≤ α ≤ uα is equivalent

to e2 ≤ ε2 where ε = (uα − lα)/2, so that (139) can be expressed as

(1 − ζ − e)(a − ζ − e)σw + 3bσ3
w ≤ τ(1 − ζ − e), ∀e : e2 ≤ ε2, (141)

which in turn is equivalent to the implication

P (e)
�
=ε2 − e2 ≥ 0 ⇒ Q(e) ≥ 0, (142)
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where

Q(e) = τ(1 − ζ − e) − (1 − ζ − e)(a − ζ − e)σw − 3bσ3
w

= −σwe2 + e((a − 2ζ + 1)σw − τ) + τ(1 − ζ) − (1 − ζ)(a − ζ)σw − 3bσ3
w. (143)

From (63) and Lemma 3 it follows that the condition (139) is equivalent to the condition (121), for some

γ ≥ 0. If (121) is satisfied, then γ ≥ σw ≥ 0 so that it is not necessary to impose the additional constraint

γ ≥ 0. Similarly, we can show that the condition (140) is equivalent to the condition (122) for some β ≥ 0,

completing the proof of the theorem.
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