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Abstract

We consider the scheduling problem over wireless channels for reabpipiations where the Quality of Service requirements
are given in terms of delay statistics. Although many wireless channel-dégtendent (CSD) schedulers have been proposed
recently, their contributions lie in the design of the scheduling mechanism & soene performance objectives. However, the
delay performance are specified in terms of first-order statistics,average or worst-case values, which are insufficient to
characterize the scheduler’'s performance.

In this paper, we develop a framework for the stochastic analysis of @lay ¢herformance of CSD schedulers. We derive
the delay probability density function and its moments for a Two-State Ma@tmain Error Model using a matrix formulation
approach. We demonstrate the applicability of our analysis numericallphsidering the admissibility of a wireless scheduler in
terms of a minimum throughput requirement. This translates to an uppedban the mean Head-of-Line (HOL) packet delay.
Subsequently, we evaluate the buffer size requirement of the wiredessver and highlight the trade-off between buffer size
requirements and channel efficiency.

I. INTRODUCTION
A. Related work in Wireless Scheduling

An abundance of scheduling policies that provide guaranh€@eality of Service (QoS) for wireline networks exists ireth
literature ([1], [2], [3], to name a few). However, directdigation of these policies to the wireless media is not uisdtie
to the following unique characteristics: (a) high channmeberate (b) bursty and time-varying channel capacity @gation
dependent channel capacity (d) user mobility and (e) powestcaint of mobile users.

The notion of channel-state dependence (CSD) or awareressmvoduced in [4] to improve the performance of wireline
schedulers when deployed in a wireless media by exploithmgacteristics (b) and (c). [5] offers a comprehensive esuif
variants of CSD schedulers that differ in the mechanism ofbshg the instantaneous ‘best’ flow to transmit while $ytig
different constraints. Such constraints can often be fipdan terms of the long-term fraction of time to be allocatedceach
user (time-fraction requirement).

In [6], the authors defined the scheduling problem as one aimiaing the average system performance. An opportunistic
(equivalent to channel-state aware) scheduling policyapased that solves the scheduling problem optimally. biitamh, the
algorithm also improves every user's average performaalaive to any non-opportunistic scheduling policy andatskes
into account the short-term performance requirements efsugdowever, it is unclear how the scheme performs in terims o
per-flow QoS when handling delay-sensitive traffic.

The concept of ‘compensation’ was introduced and emplope@3D schedulers proposed in [7], [8], [9], [10], [11], [12]
to achieve a tradeoff between channel efficiency and skam-fairness provision. While wireline scheduling is usediam
error-free conditions, a wireless adaptation scheme isl@m@ when these conditions no longer prevail. Essentiélibyv
swapping takes place when an allocated flow is unable tortranis order to maximize channel efficiency. Flows that ‘gave
up’ their allocated slots are subsequently compensatedolms fthat ‘acquired’ those additional slots so as to mainsaiort-
term fairness. The performance of these schedulers in tefrttgoughput, delay and fairness was analyzed and compared
[13].

B. Research Contributions of This Paper

In this paper, we consider the scheduling problem for rieaé-tapplications (e.g., streaming and interactive audiet)
whose QoS requirements can be specified in terms of delagt®st Many wireless schedulers have been proposed in the
literature recently whose main contributions lie in theigesof the scheduling mechanism to meet various performance
objectives. Although delay analysis has been performedHerproposed schedulers, the metrics used are first order, i.
average and worst-case values, which are inadequate tacthidze the scheduler's performance. For example, theiverc
buffer requirement depends on both the mean as well as tl@ngarof the inter-arrival time (i.e. the HOL packet delay of
the scheduler).

Our focus is to propose a framework for stochastic analykithe delay performance of CSD schedulers. Our approach is
similar to that adopted in [14], where the authors studied dblay performance of a simple ARQ error control strategy fo
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communications over a bursty channel ofiagleflow. In [15], the author investigated the characteristiod &raffic effects of
variable-rate communication servers. It is shown thatlifrgdut connections to a fluctuation-constrained [16] wodgserving
server-node are burstiness-constrained [17], detertitiros statistical bounds on queue length and traffic delagiirisolated
work-conserving variable-rate server node can be commddang as the stability criterion is satisfied. However,dtigeduling
policy considered is not channel-aware since the chanmaskismed to be location-independent. This charactersstiorisidered
in the resource allocation problem in [18], where the awghdraracterized the stability properties of the system aogdgsed
an optimal allocation policy that maximizes throughput anidimizes delay. However, the results are only applicableain

uncorrelated channel, which is an impractical assumptitrar@cteristic (b)).

We adopt a generic CSD scheduling architecture based orrdpeged wireless schedulers and derive the delay protyabili
density function (pdf) for a wireless channel model thaetaknto account characteristics (b) and (c). Such an agabfférs
a more complete characterization of the delay performafee@reless schedulers.

The rest of the paper is organized as follows: In Section B, define the wireless scheduling model considered in our
analysis. In Section lll, we describe our approach for thiydanalysis. Section IV describes the evaluation of the HOL
packet delay pdf while Section V considers the special cAsmaorrelated channel errors. Numerical results are pteden
Section VI, where we consider an application of our analySmncluding remarks are presented in Section VII.

Il. DESCRIPTION OFCSD SCHEDULER AND CHANNEL MODEL
We consider a K-flow centralized wireless scheduling séenahere channel access to each flow is allocated in terms of

fixed-size time slots. We assume that each flow is always bggkld and comprises constant-size packets with trangmissi

time of one slot. Each floy is characterized by the integer parametér where the ratio— denotes the time-fraction
Z rm

requirement of flowj, i.e., the fraction of resources that should be allocatefiote j in the Tgrllg term.

A. Wireless Channel Model

We use a Two-State Markov Chain to model the error behavidhefwireless channel of each flow, and defideto be
the channel state of floyin sloti, wherec] = Good or Bad. The state transition diagram of the error midshown in Fig.
1(a). For each flow, the model is specified in terms of the parametp&sandpgorr, which are defined as follows:

pl, = Steady State Probability of Channel of flgi
being in Good State

piorr = p]BG' +p]GB

where

php = Prob(cl = Bad | ¢]_, = Good)

Pha = Prob(c] =Good | ¢]_, = Bad)

1
Given pl, andpl,,., pl,; andpl,, are computed as follows:
J — J J
Ppg = Peorr Pa

p]GB = p?;orr(l - p]G)

The parameterp’, .., is inversely proportional to the level of correlation iretierror behavior across successive slots for
flow j; a value close to O indicates high correlation while a valti#.0 represents the special case of uncorrelated errare sin
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Fig. 1. (a) State Transition Diagram of 2SMC Error Model (lr@ral Architecture of CSD Wireless Schedulers



Php = Php = Pl andplhyy = plhg = 1 — ply. We assume that the channel state of each flow is indepenéi¢hatoof any

other flow.
In order to characterize the channel process, let us defimestite variablec® as the decimal equivalent of the binary
representation given byf(cf ~1...c}, where the binary representations ®bod and Bad states are 0 and 1 respectively, as

shown in Fig. 1. This is illustrated below for the case of K=2.

2el g2
00 0
01 1
10 2
11 3

The state space of the channel process is given by thsgt2, - - - 25 —1}. Therefore, the state transition probability matrix,
éK*, is of dimension2X x 2X and can be computed, fdt > 2, using the following recurrence relation:

A = éK—l'pé% éK—l'pé(l
=K éK—l -Plo éK—l g4l
where
1 1
A = Poo  Po1 ]
=1 [ Plo P
If the row vectorf (i) denotes the pdf ok, i.e.,
fG) = [Prob(ef =)l 5"
then,
fi) = fi-1)xA, 0

B. CSD Scheduling Model

The CSD scheduling architecture comprises a slot alloegtigicy (SAP), a channel status monitor (CSM) and a packet
dispatcher, as depicted in Fig. 1(b) [4].

At the beginning of each slat the SAP determines the flojsthat has the highest priority to transmit in sioaccording
to »/ of each flowf using a Weighted-Round Robin (WRR) policy. The CSM maintahes history ofzX = m > 0 and
uses this information to prediat. We assume, in this analysis, that channel prediction ifegerlf c{ = Good, the packet
dispatcher will transmit the HOL packet of flojyotherwise, ararbitration schemewill be used to select an alternative flow
to transmit based omX.

I11. NOTION OF CONSTRAINED STATE TRANSITION MATRIX

Let E/ denote the transmission event of fldwin a slot that is allocated to floy where Ec {S,F} is used to denote
a Successful and deerred transmission respectively. For a given arbitrationese, the values of andj determine the
probability of occurrence oE]J.C in slot i. Conversely stated, given the value jpthe occurrence oEjf in sloti imposes a
constraint on the pdf of:X. We define theconstrained state transition matribor eventE]f as follows:

- !
Qj - éK x %(E])
Whereﬂ(EJf) is a diagonal matrix such that the diagonal element of novg the probability thatEf will occur if zX=m-1.
Therefore,
o f
ST = A xM(s])
o f
E' - éK X ﬁ(FJ )
We note the following:
f o f f
§j+£j - éKxﬂ(Sj)—i_éKx%(Fj)
— I f
- éK x ﬂ(sj U Fj )
Ay

*Note that the notations And A denote vector and matrix A respectively. The notations . andenote scalar and matrix products respectively.



Hence,gg can be expressed in terms Q}f and4, .
If we replaceéK in Eq. (1) bygf, we have the following:

fG) = fi-1)xE]

= [Prob(z =z, Eloccurs in sloti)]2" ;!
Similarly,
fi+1) = f-1)xE <Ef

= [Prob(zf$, ==, EJ,Ef occur in slotsi andi+1 respectivelyj2 ;!

i+n
In general, if E(u) is the event in slotand () E(u) denotes the sequence of evefii),E(i+1), - - ,E(i+n)} in slots [i:i+n],

u=t
i+n i+n
then we can define wint constrained state transition matri [ £(u), of [ E(u) such that:
i+n

fli4+n) = i(z‘—l)xng(u)

i+n
= [Prob(z] ==z, () E(u) occurg]2 ;!

Therefore,
itn oK _1 itn
Prob(") E(u) occurs) = Y Probxf =z, () E(u) occurs

u=1 x=0 u=1

1
= fli4+n)x | : (2)
1
i+n 1

= Si-D)xJ[Ewx | :
u=t 1

Example 1:Consider a 2-flow CSD scheduler where=r2, and assume that a flow 1 packet becomes HOL at the beginning
of sloti that is allocated to flow 2. We would like to determine the @dobty that this packet will be transmitted in slot1,
i.e., Prob(HOL delay = 2 slots).

Sincer!=r2, the SAP allocates slots alternately to each flow and thexefioti+1 is allocated to flow 1. For the packet to
be transmitted in sloit+1, the eventd”] and S} must occur in slots andi+1 respectively. According to the CSD scheduling
mechanismF3 occurs in slot if 27={0,1,3}. Therefore,

1 0 0 O
. 0100
E, = 4,%10 00 0
(00 0 1|
Similarly, St occurs in sloti+1 if 22, ,={0,2}. Therefore,
(1 0 0 07
_ 0000
S = 4% 501 0
(000 0|
Hence,
1
Prob(HOL delay = 2 slots}- f(i —1) x FL x S! x |
1

TNote that the notatimﬂZ when used with matrices refers to a sequence of matrix produutse the order is important and given by a,a+1,a+2b.



IV. EVALUATION OF HOL PACKET DELAY PDF

In our earlier work [19], we have developed a Markov model doK-flow CSD scheduler in order to analyze its QoS
performance for the Two-State Markov Chain error model. \Weehassumetiomogeneityn both rate and channel, i.ed=1
and ¢, pl,,.) = (0, peorr) respectively for ¥ j < K. We considered a uniform arbitration scheme, i.e., whenllacaed
flow fails to transmit, a flow igandomlychosen to transmit amongst those with good channels. Thexlaldr model has been
shown to be ergodic, and therefore its delay pdf under stetatg conditions exists. We have numerically evaluateddday
pdf for small values of K.

In this section, we extend the analysis by considering diffearbitration schemes as well as channel heterogeheity.” (n)
denote the pdf of the HOL packet delayfor flow f under steady-state conditions. Since all flows are alwagklbgged,n
corresponds to the duration between two successiveffimansmissions. Let us assume tb”étoccurs in the first transmission,
and denote the sequence of subsequent events that mustupctuthe second transmission m/jf(n), as illustrated in Fig.
2. We note that between two successive S events, there carberit events.

Event D ‘(n) .
St Ff_Ff Ff Ff  Ff St
j*l j+ i j+ 2 jHr
slot j JHl A2 e j AL A2 Jr
allocation qK slots r slots
n slots
Fig. 2. Events between two successive transmissions of fflow
Then, as in Eq. (2)¢/(n) can be expressed as follows:
K
f — f
d'(n) = Prob(D; (n))
Jj=1
e 1
= D _fIxDim)x | 3)
Jj=1 1

whereif = [Prob@® = z, ij occurs)iig1 and Qj(n) is the joint constrained state transition matrifo(n) given as
follows:

j+r—1
I — fa f f
Din) = (¢l <[ ] ElIxs!, (4)
m=j5+1
K o
Whereg; = mgﬂgfn, q = "%-, andr is given as follows:

~ [ nmodulo K n modulo K> 0;
Tl K otherwise.

)

We drop the slot index in the notationsf (i) and = sincei always refers to a slot where a fldistransmission take place.
In addition, we note that all subscripts corresponding tw filedices for all the matrix notations are modulo K.
From Eq. (3),d(n) can be expressed in terms @5, g szl- The evaluation of these terms are described next.

A. Evaluation ofﬂ

Since the SAP is independent of the channel process, packéflow f becomes HOL with a flow+1 allocation if packet
m-1 is transmitted in a slot allocated to flgwHence, under steady-state conditioﬁ]é,can be evaluated based on a recurrence

relation in terms of{ﬁ}f=1 and {Q;(n) K., We begin with the evaluation of/ as follows:

o= xS Dl K)+ x> DI K =)+ + fL. x> DI (¢ K — [K —1])
q=1 q=1 q=1
K oo
= > > fIxDlg- K—[t—1) 5)

t=1g=1



Substituting Eg. (4) into Eq. (5) and simplifying, we obtaire following equation forff:

Z f f I C f H —m

m=t+1

In general, the recurrence equations i(;fr, 1 < j < K, can be written as follows:

K+j—1
if fo (L-c)x HFf—i—fo L-chHhx ] E] xsf (6)
m=t+1 m=t+1
We can express Eq. (6) in matrix form as follows:
f=fxInCxFS
where
f f f
iK iK—l L
i fy-1
(L-Ch) ( Y L 0
0 I-C -1 .. 0
InvC = ) - K !
: : . o
[ o 0 z-gh
) ;
f f f f f
mzlgmxéf( £ x5, 5
f f f f f f
FS — é]{ £K><£1 §2 £KX§1
e of fopfl gty of
_mI;IQEmXE(K §2 £2'”£KX§1_

B. Evaluation ofo

We recall thaTSf is defined in terms of4 and a diagonal matrlx_/,\i(Sf) where the diagonal element of raw is the
probab|I|ty thatSf will occur in a slot wherech—ml Let M(Sf) be a row vector comprising the diagonal elements of

M(sf) = [Probs! occurs| 2 = 2)25 5t

The evaluation OM(ij) depends on the arbitration scheme used by the CSD scheattieh determines the alternative flow
to transmit in the event that an allocated flow is unable tosmait. We consider two arbitration schemes: (ajform and (b)
prioritized arbitration.

1) Uniform Arbitration CSDy 4 Scheduler): With uniform arbitration, a flow isandomly selected amongst those that
currently perceive good channels when an allocated flow &blento transmit.

To determine the vectoM(Sf) we first initialize it to a vector of zeros. For eaei, the corresponding value af for
1< j < K (denotedc’ (zK)) is given as follows:

K
i kY J 0, [g5=r|modulo 2 =1, 7
(=) { 1 otherwise. %

The necessary conditions ch};f to occur are given as follows:
d@E)y =0
d@®) = 1 (8)
Based on Eqg. (7), we can determine the range:df Index,x, for which Eq. (8) are satisfied. For eagk ¢ Index,x,
we determine the total number of flows (other than flgveontending for transmissiofiptal, i.e., total number of flow$ow,

such thatcf* (2%)=0. Since there are altogeth®otal + 1 flows that are eligible for transmission, the probabitityat any

flow is selected for transmission I)Sm Hence, the corresponding entryM( ) is m



2) Prioritized Arbitration (C'SDp4(P,) Scheduler): An inherent characteristic of CSD scheduling is that flows able
to transmit in other slots in addition to those allocatedhent. Although this results in improvement in channel efficie
the delay variation may be increased, giving rise to largeeiver buffer requirements, which is undesirable. Witifarm
arbitration, it is possible that a flow may transmit in two cegsive slots (including the slot allocated to it) and themain
silent for about K slots until the next transmission in itkoahted slot. This introduces a large delay variation, Whian be
reduced by using prioritized arbitration. The motivatieehind this arbitration scheme is that when an allocated ftouniable
to transmit,preferencefor transmission is given to flows whose next allocation isaasaway as possible from the given slot.
In this way, the delay variance can be reduced with respetitabachievable with uniform arbitration.

Quantitatively, letFlow}), modulo K be the set of flows with priority level P, wherec@P < P,,,,, in a slot allocated to
flow j. For eachj, 1< j < K, if a smaller P denotes #igher priority of transmission, thetFlow{D is defined as follows:

Flow), = j’. . P =0
P {.]_Pmn,x+P_17]+Pma3:_P+1}7 1< P < P,

where

K-1 .
Pmaw _ { 5 I(Odd7

%, Keven.

Hence, in a slot allocated to floyy flow j has the highest priority to transmit. In the event that itedgfits transmission,
uniform arbitration is used to determine which of the flow¢s¥low] will transmit. If none of the flows can transmit (i.e.,
all their channels are in bad state), we descendéi@’ and so on.

We can parametize the prioritized arbitration scheme shahih any slot allocated to floyy only flows e {Flowp}
are allowed to transmit. Hence, ff ¢ {Flow)} 5", then flowf will not be allowed to transmit. Hence, the chmcel@f
may represent a tradeoff between channel efficiency andg deldgance under good channel conditions : a larggrimplies
more opportunities for flow to transmit which may in turn result in a larger delay varenc

To determine the vecth(S ), we first determine the priority level of flofy Pr, using Eq. (9). IfPr; > P, then flow
f is unable to transmit in the given slot and we M(Sf) to a vector of zeros. Otherwise, for eacft, for ij to occur,
in addition to Eq. (8), all flows with priority< Pr must have erroneous channels. The latter condition can pressed as
follows:

vy = 1 Vflowe{FlowP}P” ! (9)

Based on Eq. (7), we can determine the rangedf Index,x, such that Eq. (8) and Eq. (9) are satisfied.

Next, we determine the flof that has the same priority level as fléwising Eq. (9). For each” € Index,x, if ¢/!(2%)=0,
then we have two contending flows (including fléyvand the entry inM(S]f) = %; otherwise, flowf is the only eligible flow
to transmit and therefore the entryM(SJf):l

V. SPECIAL CASE: UNCORRELATED CHANNEL ERRORS

In Section IV, we developed a matrix formulation to deterenthe pdf of the HOL packet delay for an arbitrary flowf
in terms of the channel parameters as well as the arbitratbheme employed by the CSD scheduler. In this section, we wil
illustrate the derivation of moments ofunder the following assumptions foKl; < K:

(a) channel errors are uncorrelated, iz§,,.,=1.0 and

(b) channel process is homogeneous, ig:.,,,.) = (G Peorr)-

Assumption (a) implies that the matrices defined in Sectdncollapse into scalar quantities. Hence, we will drop
from these notations for this section. Together with raiexbgeneity, assumption (b) implies that the schedulingesyss
homogeneous and hence, the delay performance of all flowsl@nécal. Therefore, we drop the superscfipand consider
only the performance of flow 1.

K
SinceF,, is a scalar, we note that; = C = [[ F,,, 1< j < K. Hence, the corresponding matrix form for Eq. (6) is given
m=1

as follows:

~
Q
<3

i:ix nvC X

(10)




where

o= [ fx fro il
1 0 0
oo 1 0 1 0
v 1-C | :
0 0 1
- k-1 .
HF SK Fl‘SQ 51
SK FK'FI'SQ FK'SI
FS = L . .
K-1
HFm'SK S2 FQFKsl
L m=2 d

We have K-1 independent equations in Eqg. (10) to solve for Knowns. The sum of probab|lltyz f; = 1, offers the

additional equation needed to solve fér. We notice that in Eq. (10), for each equation with on the LHS, there is a
common factor,S;, on the RHS Hence, a good guess for the solutiorfofs f; = COS;VST According to the sum of

probability, we have CONST —Z S¢ (henceforth, denotedls).

Lemma 1:For uncorrelated channel errors, the probability that a flopacket transmits in a slot allocated to flgwy;,
for a homogeneous K-flow CSD scheduler is given by:

f _ SJ _ S]
I K - Z—S
B
Proof: Substituting the expression fgf into the RHS of Eq. (10), we have the following:
S. j—1 K+j5-1
H = — 27 F Fm
s 2s(1-0) [;S ml_u[+1 +ZS ml_u[+1

Expanding the terms within the brackets (denai®¢dand writing them in decreasmg order of the number of elgmevithin
each term, we obtain the following summation:
S = S; Fjy1-Fjyo-Fxg-Fy - Fj_
+ Sjt1- Fipo - Figs - i

+ ijZ'ijl
+ Sj_l

Adding C = H Fy =F;-Fjy1--- Fg-Fy -+ Fj_1 to the first term of the RHS of, we obtainF - Fjyo- - Fg-Fi -+ Fj_1.

f=
Adding this to the second term, we obtal), o - Fjy3--- Fx - 1 --- F;_1. Proceeding in the same manner, eventually, we
obtain

E+0=1
Therefore, we have the following:

S;
RIS = ot g(1-0)
S;
s
— LHS

If we write n =¢q- K +r, whereq > 0,1 <r < K, then from Eq. (3) and Lemma 1, we have the following:



Theorem 1:For uncorrelated channel errors, the pdf of the HOL packétydef any flow for a homogeneous K-flow
CSD-scheduler is given as follows:

j+r—1
d(g-K +r) = Zs Sivr [[ Fm
m=j+1
where q20,1§r§K

A. Evaluation of the moments of the HOL packet delay, n

In this section, we shall obtain expressions for the first secbnd moment af.
Theorem 2:For uncorrelated channel errors, the expected HOL packay der a homogeneous K-flow CSD scheduler is
given as follows:

Proof: Beginning with the definition of E[n] and using 1Sheorem 1, wavéd the following:

oo K
Eln] = Y > (¢-K+r)dig-K+r)

q=0r=1
= Zq Kqu K+r) +ZZT dlg- K +r)
q=0r=1
+r—1 o] K K Jj+r—1
q- K c 7 c
SV 9 IR | (RS 91 o) SETT | I
q=0 r=1j=1 m=j+1 q=0 r=1 j=1 m=j+1
K- -C 1
= b ¥ 11
SR Ee i g R —
where
K K jHr—1
Ei == ZTZZSJ"SJ'J,_T H Fm
r=1 j=1 m=j+1
co K
Using the fact that sum of probabilities is 1, we ha¥e 3" d(q- K + r)=1. Substituting forD%%+", we have the following:
q=0r=1
Y ES, = 1
q:01
Ss(1=0C) Yo = 1
= %o = Y5(1-0)
Y1 can be expanded as follows:
S1 -85 +52 - 53 o Sk -5
+2[51'F2'53 +52'F3'S4 "FSKF]_SQ]
+3[S1 - Fy- I3+ 8, +Sy - F3-Fy-Ss -+ +Sk-Fi-Fy-S3]
+K[5’1 By Fg-S1 +8y-F3--Fy-Sy -+ +Sk-F--Frg_4 'SK]

Let us consider the elements of the first column3if Excluding the common factol§;, the summation can be written
alternatively as follows:

K{S2 +F2 'SS st +F2"'FK71 'SK +F2"'FK 'Sl}
—{S +I-83 -+ +Fy---Fg 1-Sk }
—{SQ +Fy - S3 }
—{S, }

The above summation can be simplified to the following exgices

J K Jj
K1-C —Z ~[IF)=14+> [[Fn—-K-C

m=2 j=2m=2
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Similarly, excluding the common facto§,, the summation of the elements of the second columi,o€an be expressed as
the following expression:

K+1 j

1+ > I P -

j=3 m=3
Proceeding in the same manner for the remaining columns,btgrothe following expression fax;:

K4+u—1 i
21=21+Z HF—KCS
u=1 j=u+1 m=u+1
Substituting forS; = 1-F}, and after cancellation of common terms and simplificative,have the following:
., = K1-0)-3%¥sK-C

Substituting for¥y and X, in Eq. (11), we have the following:

K -CXs(1-0) +K(1—C)—ESK~C
Ss(1 - O) Ss(1-C)

K-C K K-C

i—ctss T 1-c

K

T

E[n] =

]

Remark 1:The expression for E[n] can also be derived intuitively. Végjibh by giving a qualitative interpretation &fs.
Since S; denotes the probability of flow 1 transmission in a slot aled to flowj, Xs denotes the probability that flow 1

will transmit (at all) within a period of K slots. Henc@% denotes the probability that flow 1 transmitsany slot, which is
equivalent to its throughput. Since the mean HOL packetydafa throughput are reciprocals of each other, we have E[n] =

throughput -
Theorem 3 For uncorrelated channel errors, the second moment of the p#0ket delay for a homogeneous K-flow CSD
scheduler is given as follows:

K K—-1r+i—1

K1+C)+2> E H F,

E 2 — r=1 i=
] 0=
Proof: Beginning with the definition of E{?] and using Theorem 1, we have the following:
E[n? = ZZ(] K +7)%d(q- K +7) (12)
q=0r=1
Jj+r—1
= ZZ CK*+r*+2¢- K- quZS Sjr H Fn
q=0r=1 —]+1
_ S 2 72 2
= 5K 0150+ > g K3y —l—ZCQZr )
q=0 q=0 q=0 r=1
1 K?C(1+0C) 2K - C 1
= = — by by
55l a-op Ot a-optt -
K2*C 2K2C 1

= Z
—c 1-0%s "'Ss0-0)"

In a manner similar t&;, X, can be written as follows:

Sy - S 45, - S5 o 48k -8
+22[S; - Fy - Sy +Sy - Fy- Sy o 48k Fy- Sy

+32[S1 - Fy - F5- Sy +Sy-F3-Fy-S5 -+ +Skg-F1-Fy-Ss5]

+K2[51~F2-~FK-5’1 +8y - F3--Fy-Sy -+ +Sg-Fy--Fgx_1- Skl
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Let us consider the elements of the first columnXbf Excluding the common factor§;, the summation can be written
alternatively as follows:

K*{S; +F,-S3 -+ +Fy-F3---Fg_5-Sgk_1 +Fy-F3---Fx_1-Sx +Fy-F3---Fg-S1} —
2K —1){Sy +F2-S3 -+ +Fy-F3---Fx o-Sx 1 +Fy-F3---Fg 1Sk [
(2K —3){Sy +F>-S3 -+ +Fy-F3---Fg_o-Skg_1 J

5{52 +F253 } —

3{5> }

The above summation can be simplified as follows:
K21-C)— (2K - 1)(1—F-Fs-- Fx) — (2K —3)(1— Fy- Fy--- Fx_y) — - — 5(1 — Fy - F3) — 3(1 — F)
K—-1
= K1-C)= ) @r+1)+{14+3F+5F Fs+-+ (2K —1)(F, - F5--- Fx)}
=0
-K’C+1 +F +Fs - F3 R N I i R &) " +Fy - F3---Fk
+2(F2 +F>-Fs oo APy B3 Froa +Fy - F3--- Fg)

+2(F2-F5 -+ 4Fp-F3---Fg_ +F, - F3--- Fg)

+2(Fs - F3---Fg_1 +F>-F3--- Fg)
49F, - F3---Fx

Taking into consideration the common fact6f,=1-F;, we obtain the following:

—-K?C-51+1 +F, +Fy - F3 e Py B3 Fiog +Fy - F3--- Fi
+2(F +F; - F3 oo +FyF3e-Fgog +Fy - Fy--- Fi)
+2(Fy - F3 oo FFy - F3e Fio g +Fy - F3---Fk)
Y2(Fy - Fy- - Fren VFy Py Fy)
4OF, . Fy--- Fy
—F —F-Fy —F-Fy-Fy o —F -Fy-Fy- Fr, —F -Fy-Fy---Fg
—2(F-Fy +F-F-Fy -+ +F-Fy-F3---Fg y  +F-F-F3---Fk)

—(F,-Fy-Fy -+ +F,-Fy-F3-- Fr_, +F, - Fy - F3---Fg)

—2(Fy-Fy-F3---Fx_y +F,-Fy-Fy---Fg)
—2F, - Fy - Fy--- Fg

In a similar manner, the elements of the second columR-n0€tan be expressed as follows:

—K?C-S;+1 +F; +F3 - F)y o Py Fyee- Fi +F5 - Fy--- By
+2(F3 +F3 - Fy oo +F3-Fye-Fg +F3 - Fy--- )
o(Fy - Fy o 4Py Fy--Fg VFy - Fye )
4Py Fy- Fr NFy - Fye )
+2F3'F4"'F1
_F, Py Fy —Fy-F3-Fy, o —Fy -Fy-Fy---Fx —Fy-F3-Fy---F
—Fy-Fy +F, -F3-Fy, - +F-F3-Fy--Fx +F F3-F-F)

—2(Fy-F3-Fy -+ +F,-F3-Fy---Fg +Fy-F3-Fy---Fy)

—2(Fy-Fy-Fy---Fx +Fy -Fy-F;---F)
—2Fy - Fy-Fy--- F

The elements of the remaining columns X can be expressed in a similar manner. By summing these exmnes after
cancelling out common terms, we obtain the following:

X« ,
Sy =-K’CSs+ K(1- (2K —1)C) +2) F,,
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Hence, substituting into Eq. (12), we obtain the following:

p .
_K20%¢ 4+ K(1— (2K — 1 2 ol
K2C . 2K2C . CBs + K1 = ( )0) + ;
1-C " (1-0)zg Ss(1—O)
K K—1r+i—1

KA+C)+2% > Il Fn

r=1 i=1 m=r

(1-0)Zs

I
3
I
U

E[n? =

B. Evaluation ofS;

1) CSDy4: With uniform arbitration, when an allocated flow is unablettansmit, amongst those flows that currently
perceive good channels, a flow is randomly selected for in&gson. Considering flow 1's performance, flow 1 will trarsm
in a slot allocated to it as long as it perceives an error-flegnnel, i.e.S1 = pg, since it has the highest priority to transmit.
In any slot that is not allocated to flow 1, due to our assunmptibhomogeneity, we hav8,=S3=---=Sk.

Let us consider a slot that is allocated for flgvand evaluateS;, 2 < j < K. For flow 1 to transmit in this slot, the
necessary conditions are that flow 1 must perceive an emerdhannel and floyw must perceive an erroneous channel, and
these occur with probabilitys (1 — pe).

For the remaining K-2 flows, the probability that flows will have error-free channels while the remaining Kalows
will have erroneous channels is given as follows:

K—2
( . )pg(l—pc)KQm, 0<m<K-2

Suppose thatm=M. In this case, there are M+1 flows contending for transimissand therefore, the probability that flow 1
will be selected to transmit ig/ .
Putting all the terms together, we obtain the following egsion:

5, = 3 G- pol " "pe(l — po)
’ m=0 m+ 1
2<j<K (13)

Multiplying the RHS of Eq. (13) by (K-1), we obtain the follawg:

Ki (K = 2K - )pg(1 - pe) > "pe(1 - pa)

(K —-2—-—m)!m!(m+1)

m=0
K-2
K —1)! . .
= Z(K—Q(—m)l()m+1)lpc(1_pG)K ’ pe(1-pc)
m=0 ’ :
K-2
K -1 m —2—m
= > <m+1>pG+1(1_pG)K 27" (1 = pa)
m=0
K-1
K-1
= > (M - per - )
w=1
K—-1
K—-1 w —1-w
= 1 (4 -0 0 o) - (- )
w=0
According to binomial theorem}~ (})z*y"~* = (x + y)™. Therefore, we have
k=0
(K—-1)8; = (1—pa)—(1-pa)™
3. 1—pg — (1 =pg)™
J K-1

Hence, for the homogeneous K-flaWiS Dy 4 scheduler, when channel errors are uncorrelated, we havioilowing:

jZeB J=1
S = 1-pa—(1—pa)¥ . (14)
{ —reg kel 2<j<K.
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2) CSDpa(Py), K odd: In this case Prar = % and there are two candidate flows for each priority levetOPRecall
that P, specifies the lowest priority level for which a flow can comtdor transmission in a given slot. Hence,F¥; is the
priority level of flow 1 in a slot allocated to floy then flow 1 cannot transmit iPry > P, i.e.,S; = 0.

Let us assume tha®r; < P,. If Pry = 1, i.e.,j=5H or j=2%, then we have the following:

_ _ ()P —pa)'
Sy =83 = (1—pc)pc;g::0 o
_ (1=pe)pc(2 —pc)
2
Similarly, if Pry =2, i.e.,j= @ orj= , then we have the following:
1 m 1-m
PG (1= pa)
Siys = Ssr = (1-pa)pal) () Gm+1 J(1 - pe)®
m=0
_ (1-pc)’pc(2—pc)
2

In general, forPr; < Py, we have the following:
(1-pa)*"'pa(2 —pa)
2

Hence, for the homogeneous K-flaSDp 4 (P;,) scheduler, when channel errors are uncorrelated and K isvegithave the
following:

SK;?’—PT —SK+1+PT =

jZeB J=1
Sj — (17pG)2Pr12*1PG(Q*PG)7 1 < PT1 < Phaj — {K;S _ P’I"l, K;»l + Prl}; (15)
07 Ph+1§Pr1§Pmaz-

3) CSDpa(Py), K even:In this case P, = % and there are two candidate flows for eachlP and one candidate flow
each for P=0 and P=1. Consider the case whegel. If Pr; = 1, i.e.,j=1+% since it is the only candidate flow, we have
the following:

Sy = (I—-pa)ra

However, if Pry = 2, i.e.,j= & orj = £+2, then we have the following:

— _ m pG 17pG) -
Sk =Sy = (1-pa) pGZ o’
_ (1-pc)? pG(2 —PG)
2
Next, if Pry =3, i.e.,j = £-1 orj = £+3, then we have the following:
1 1\, m 1—-m
_ _ 2 (m)pG(]‘ _pG) 2
Sg 1 =95k,3 = (1-pa) pc[mz;o —— J(1=pc)

(1—pa)*pa(2—pa)
2
Hence, for the homogeneous K-flo®SDp 4(P;,) scheduler, when channel errors are uncorrelated and K is, @ have
the following:

jep J=1
g _ pc(l—pa), ji% 1,Pri =1, Py < Pp; (16)
IT e eeCore) (K y o pry K4 Pri},2 < Pr < Py
0, Py +1< Pri < Pra.

VI. APPLICATION: ADMISSIBILITY OF WIRELESSSCHEDULER BASED ONEFFICIENCY REQUIREMENT AND
DETERMINATION OF RECEIVER BUFFERSIZE

We shall present some numerical results for the case of telated errors by considering an application of our analysi
Suppose we have a K-flow homogeneous scheduling scenatidsthanstrained by an efficiency requirement in terms of a
minimum required overall throughpw,,.;,,. We would like to determine whether a given scheduler cant théerequirement,
and if so, to compute the required buffer lengity,, at the wireless receiver.
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A. Admissibility of Wireless Scheduler basedmn,,

The throughput of any flow is given as the average number dégtacansmissions of that flow per slot and can be expressed
in terms of E[n] as follows:

1
flow throughput = B
For a homogeneous K-flow system, the overall throughpuis given as follows:
K
"7 EW

Hence, in order to satisfy the overall throughput requinetneg,,;.., we must have the following:

The above equation can be expressed in terms of an upper loougfh] as follows:
K
E] < 17)

nmin

The expressions for E[n] for various schedulers are givefoldmws:
1) CSDy4: From Eqg. (14), we can evaluates as follows:

1—pe—(1—pa)*!

Y = K-1
5 pa + ( ) K
pe+1-pe—(1-pa)~
1—(1—pa)™
Hence, we obtain the following:
K K
Eln] =

Ss 1-(1-pa)¥
2) CSDp4(Py): For odd values of K, using Eq. (15), we can evalugie as follows:

Py

S = pot? Z (1- pG)Qm_;pG(Q - pa)
- pe)@—palpell - (- pa)?]
- oret 1—(1-pa)?

(1-pa)(2—pa)pall — (1 —pg)*™]
(1= =pe)(1+(1-pc))

= pg+1-pe—(1-pe)t!
1— (1 _ pG)QPh+1

For even values of K, using Eg. (16), we have:

= pc+

Pp, 2m—2
1— 2 —
s = pG+pG(1—PG)+2Z( rc) ZPG( pc)
m=2
1—pc)*(2— 1—(1—pg)*Fr=2
_ 2pc—pg;+( pa)”(2 — pe)pa| (2 pa) ]
1-(1-pc)
1—pe)?(2— 1—(1—pg)?n—2
— opg —p 4 L=Pe) 2 —pe)pell — (1 - pa)” ]

(1-(1—=pe)1+(1~-pc))
= 2pc —pe+1—2pc +pe — (1—pe)*™

= 1-(1-pe)*™, P, >1
Hence, we obtain the following:

K odd;

K
—(1— P 9
Eln] = { el K even (18)

1—(1-pg)*"n’

3) CSDpa(Py = Ppaz): Substituting forP, = P, in Eq. (18), we obtain E[n] -—-1_(1_#)1( which is the same as that
obtained for theC'SDy 4 scheduler.
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4) CSDpa(P, =0): This corresponds to the simple WRR scheduler, since in tlis,doows are only allowed to transmit
in slots allocated to them. Substituting f6y, = 0 into Eq. (18), we obtain E[n] —p—% which is theworst-caseexpected HOL
packet delay of CSD schedulers.

The expression for B[] is given as follows:

K*(2 - pc)
e

5) Fair Aggregation (FA) SchedulerWe consider the FA scheduler [19] as a variant of the WRR sdaedwhere the
motivation is to reduce the delay variance relative to the Wd&RReduler while retaining the channel efficiency. Instedd o
switching resource allocation between flows at each sld,ishperformed upon eacsuccessfupacket transmission. Hence,
the FA flow transmission sequence corresponds to the WRR flloeation sequence and is shown in Fig. 3. In this way, the
likelihood that a flow will transmit at least once within eacycle of K slots is increased compared to the WRR scheduler.

According to Fig. 3, after each flow 1 transmission, the flomngmission sequence before the next flow 1 transmission is
fixed and given by{2,3,4,--- K'}. These K-1 packets must be transmitted in the firgtslots before flow 1 transmits in slot
n. Hence, in the firsh-1 slots, there must be exactly K-1 slots where the channeiri-free; in addition, the channel must
be error-free in sloh. Therefore, we can write the pdf ofas follows:

(K“*l)(l —pg)ipg, n=K+1, i >0;
d(n) = { 0, n < K. (19)

E[nQ] =

From Eqg. (19), we can compute E[n] as follows:

En] = Zn -d(n)

3 (K +i-1 i
— Z(K—H)< ; )(1_pG)pg
i=0
3 (K 4i-1)! i
= K K+ 1) 1 - )
,;( w0 il(K —1)! (1 =pc)'pc
K (K +)! »
= e S A 1 B ;
Z;K'i!(Kfl)!( pc)'pe
(K +i i
i=0
Using the following result from Binomial theorem:
— (K +1i\ ; )
Z ( 1 )l’ = m o0
i=0
we obtain
K -pE K
E[n] = Pa _

Similarly, we can compute BF] as follows:

E[* = Y n?-d(n)
> (K +i—1 ;
= Z(K+l)2( . >(1pc)p§
i=0
> (K +i ;
— K.Z(:)(K—I—z)( . )(1_pg)p§
flow transmission cycle Y2
7
DR I S I Y N I S S
Ntime

transmission of flow j packet

Fig. 3. Flow transmission sequence in K-flow homogeneous F&ddmg
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Nin=0-8 Nin=0-9

10°

u_x| 4
ERE]

i

CSD,, and CSD, (P, >0)
CSD,,, and CSD, (P, >0)

None

None

10° L L L L s L L L 10° L L L L L L s L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe Pe

(a) (b)

Fig. 4. Operating Regions (R, ,pg) for various schedulers to satisfy,,;, = (a) 0.8 and (b) 0.9

Differentiating Eq. (20), we obtain the following:
ZOC (K +4\ K+1
1 . x = 75
i (1 —z)K+2

=0
Hence, we obtain

E[n? = K2§:<K:i>(1—pc;)ipg

We substitute the expressions of E[n] for each wirelessdidee into Eq. (17) and illustrate the constraint graphycal Fig.
4 with 7,,;,= 0.8 and 0.90 respectively.

We can partition the operating region into three sub-regidiine region denoted b&ll, given bypg > nmin, indicates that
all schedulers can be deployed for any K while satisfyingttireughput constraint. On the other extreme, the regiomten
by None where K < K,,;,, for CSDya and Py, < Py for CSDpa(Py), indicates that none of the schedulers can satisfy
the throughput constraint. The remaining region stipsldte requirements on K an#, for CSD schedulers to satisfy the
requirement. Hence, givem,.;,, K and ps, we can determine which of the scheduler(s) are admissiltte respect to,,,, -

B. Determination ofNg in terms of HOL Packet Delay Statistics

A G/G/1 system can be used to model the queueing behavior aekess receiver, as shown in Fig. 5. Based on queueing
theory, the average waiting time in the queue under stetadg-sonditions satisfies the following [20]:

Mo2+02) A1 —p)o?

W < - 4 21
<, . (21)
where
o2 = Variance of inter-arrival times
of = Variance of the service times
A = Average arrival rate
1 . .
— = Average service time
w
A A
p = Utilization factor= —
w
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If we assume a constant-rate server (iog=0), and a constant utilization factpr then Eq. (21) can be written as follows:
p(2—p)
2(1=p)
Using Little’s formula, which is valid when steady-statenddions exists, the average number of packets waiting éngtieue
can be expressed as follows:

= constant

w < C)\ai, where C =

Nyw = \W
< C’)\Qog

Hence, we can choose a suitali¥g, in terms of arrival statistics) ando,, as follows:

NQ = C)\QO'g
However, we note the following relationship between airstatistics to the buffer and departure statistics fromdtieeduler:
1
A= =
Eln]
o2 = Varln]
where
Var[n] = E[@*] - (E[n))?
Hence, N can be computed in terms of the HOL packet delay statistidbefwvireless scheduler as follows:
Var|n]
N, = .4
¢ En]?

From Section VI-A, we can obtain closed-form expressionsttie ratio ‘;"[ﬁ]’;] for the WRR and FA schedulers as follows:

Varln] 1—pg, WRR scheduler
En] lpe FA scheduler

)

(22)

In addition, we have the following:
Theorem 4:For uncorrelated channel errors, the ra&i@ﬂf]—’g] for a homogeneous K-flow CSD scheduler is asymptotically
upper bounded.
Proof: From Theorem 2 and 3, we have the following expression:

K K—-1r+i—1

K(1 2 F,
Var[n] _ ( * O) * TZ=:1 z; m=r " . 2_25‘
En]z 1-0)%g K2

SinceF; < 1, 1< j < K, we have the following:

K K-1
K14+C)+2> >

Var(n] < r=1 i=1 Z_%
En2 ~ (1-C)sg K2
K1 +0O)+2K(K 1) ¥}
- (1-C)%g K2
 K@QK-1+0C) %%
T T 1-0O3s K?
285 N
T 1-C K
— —
(A,0,) (L, 0p)
W

Fig. 5. G/G/1 Queueing representation of receiver buffer
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Var[nJE[nf

0.008 -

—FA —FA

_ _CsD, — - CSDy,

0.06} CSD(P.=P_) e 0.006 — CSD,(P,=P, )
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0.02- 1 0.002
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0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
@) (b)

Fig. 6. V;[;n[{;] of various schedulers fas = (a) 0.9 and (b) 0.99

From Section VI-A, we know thatQ ¥ g < 1. Hence,
Var[n| < 2%¢
Enlz2 - 1-C

Since X C < 1, the RHS of the above equation is finite and hence, the raie 2} is upper bounded. [ |
Hence, the queueing system at the buffestablefor the wireless schedulers considered in our analysis.

For a throughput constraint af,,;, = 0.90, we would like to determine the admissibility and camgpthe ratlo‘;?[;]g for
each scheduler for two cases: (&) > Nmin and (2)pa < Nmin-

1) pa > Mmin: According to Fig. 4, in this region, all schedulers are adibie in terms of the throughput constraint. We
plot the ratlova[”]” for each scheduler as a function of K fo; = 0.9 and 0.99 in Fig. 6.

We can categorize the FA and tli&éSDp4 (P, = 0) schedulers as channel-unaware schedulers since thedmtission
heuristics are independent of the channel process. Simcehtannel conditions are very good, most flows transmit iiir the
allocated slots. Hence, the additional transmission dppidres available for channel-aware schedulers actuakbylts in an
increased buffer requirement since delay variance is &s&@ while the mean delay is reduced compared to channebuma
schedulers. However, the lower buffer requirement of cekunaware schedulers is traded-off with lower channetiefficy
compared with channel-aware schedulers.

Under very good channel conditions, the expression of E[nitfe C.SDy 4 andC S D p 4(P,,=PF,,4.) Can be approximated by
K. As K increases, theandomnes®f transmissions (i.e., Var[n]) in th€ SDy 4 scheduler increases while ti&SDp 4 (P, =
P,,.) scheduler becomes more effective in controlling thedomnes®f transmission. As a result, although E[n] increases
with K, the buffer requirements of th@SD;; 4 scheduler increases while that of th& D p 4 (P}, = P...) Scheduler decreases
as K increases since Var[n] is the dominant term in the rafiowever, for large K, the E[n] term becomes dominant and
hence, the ratio converges asymptotically for both scresdullhe buffer size requirement fé¥, < P,,... is similar to that of
Py, = P4, Since most transmissions take place in allocated slotsruretg good channel conditions.

2) pc < Nmin: According to Fig. 4, in this region, the FA ardSDp4(P;, = 0) schedulers are inadmissible. Hence, we
compareVE“[TL[}Z] of the CSDy4 andCSDp (P, > 0) schedulers as a function of K fgiz = 0.8 and 0.5 in Fig. 7.

We observe the same trend betwe8§ Dy 4 and CSDpa(P, = P,...) Schedulers as when the channel conditions are
very good. However, the buffer size requirement for 88 Dp4(P;,) scheduler is reduced &8, is reduced. Under poor
channel conditions, a substantial amount of transmissicosar in non-allocated slots, and therefore, a smadHgis effective
in limiting these transmissions, thereby reducing the yekriance, at the expense of reduced channel efficiency.

C. Effects of non-zero channel error correlation

In this section, for a throughput constraint @f,;,, = 0.90, we would like to determine the admissibility and camgpthe
ratio ‘;“[;}Z for each scheduler for two cases: () > nmin and (2)pg < Ymin, WhenNpeo = 0.1.

1) pc > mmin: According to Fig. 4, in this region, all schedulers are adibie in terms of the throughput constraint
when channel errors are uncorrelated. In [19], we obseivatvtith respect to the case of uncorrelated errors, theigfimout
achieved by the FA scheduler is degraded significantly adetred of error correlation is increased, while that achiewdth
the WRR and CSD schedulers is invariant with the level of ecasrelation. Hence, the FA scheduler is not admissible when

channel errors are correlated.
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pg=0.80 Pg=0.50

03

Var[nJE[nf

Var[nJE[nf

— CSD, . — CsSD,
— - CSDp (PP ) - - CSD, (P =P )
— CSD,,,(P,=3) 06 — CSD,,,(P,=3)
08l . CSDPA(P,;Z) | ... CSDy,(P,=2)
CSD,,,(P,=1) CSD,,(P,=1)

(a) (b)

Fig. 7. V;[;n[{;] of various schedulers fas = (a) 0.8 and (b) 0.5

pg=0.90,p,,=0.1

Var[n)/E[nf

(@) (b)

Fig. 8. ‘;firl]"] of various schedulers fgsg = (a) 0.90 and (b) 0.80

We plot the ratio——5%" V‘" 7] for the WRR and CSD schedulers as a function of Kear= 0.90 in Fig. 8(a). As K increases, if a

flow misses its aIIocated slot due to channel errors, it is légly to miss the next allocated slot since the duratifritte next
allocation is increased. Therefore, the delay variatios.,(Var[n]) due to transmission in non-allocated slotseduced and
therefore, the raticz2[2! is reduced. We also note that the ratio tends asymptotitaltiie corresponding value achieved for
uncorrelated errors. ‘Hherefore, the buffer system at timel@gs receiver is stable. In addition, the relative buféguirements
amongst the schedulers are preserved as in the case of elatedrerrors.

2) pc < nmin: According to Fig. 4, in this region, the WRR scheduler is inghible. Hence, we compare the ra{g%
for different arbitration schemes of the CSD scheduler asatfon of K forps = 0.8 in Fig. 8(b). Similar trends are observed
in terms of the relative buffer requirements amongst theedaters as fops = 0.90.

VIl. CONCLUSIONS

In this paper, we developed a framework for the stochastidyais of the delay performance of channel-state dependent
wireless schedulers. These schedulers differ in the méahaof choosing the ‘instantaneous’ best flow (arbitratichesne)
to transmit based on available channel information in otdesatisfy some performance requirements. We adopted aigene
scheduling architecture based on proposed wireless slenedn the literature, and defined variants that differ inm® of the
arbitration scheme. We derived the delay probability dgrsinction and its moments for a Two-State Markov Chain Erro
Model using a matrix formulation approach.

We demonstrated the applicability of our analysis numdyidsy considering the admissibility of a wireless schedueterms
of a minimum throughput requirement. This translates to gpen bound on the mean HOL packet delay. Given the channel
condition and the total number of flows, we illustrated giealy the admissible region of each scheduler. Subsetyient
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evaluated the buffer size requirement of the wireless vecend highlighted the trade-off between buffer size nemménts
and channel efficiency.
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