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Abstract

Optical direct-detection systems have been considered before for high-speed intersatellite links.
In this paper we consider a three-level amplitude modulated multipulse PPM for use in bandwidth
limited optical systems. Specifically, we investigate the capacity, cutoff rate, and error probability
of this modulation scheme. This facilitates the evaluation of the bandwidth efficiency of the
proposed modulation as compared to regular multipulse PPM which delivers the same throughput

and detection quality under the same average-power constraint.
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I. Introduction

Optical direct detection systems have long been considered for deep-space communication. For
moderate data rates and where good performance for low-power consumption is paramount; pulse-
position modulation (PPM) was shown to be a suitable modulation scheme [1, 2]. When higher
data rates are considered PPM seems to exhibit inherent throughput limitation since the only way
throughput can increase is by reducing the pulsewidth. This is unacceptable when the transmitter
is subject to stringent bandwidth constraint. In order to improve the transmission efficiency under
a given bandwidth constraint, two alternative techniques have been suggested. The first scheme is
overlapping PPM (OPPM), wherein more than one pulse-position per pulsewidth is allowed in order
to maintain low duty-cycle, yet while preserving some of the desirable properties of PPM. This scheme
was originally studied in [3] and later in [4, 5, 6, 8].

Another modulation scheme that has been considered recently in the literature is multipulse or
combinatorial PPM (MPPM) [9, 10, 7]. This modulation scheme is a generalization of PPM that
allows more than one pulse per symbol interval. Thus, if @ is the PPM alphabet size — i.e., the
number of disjoint pulse slots per symbol signaling interval T', and the number of pulses allowed is p,
the fized composition MPPM codebook is obtained by taking all Q-length binary codewords having
exactly p coordinates equal to one. The waveform generated by the encoder A, (¢),0 < t < T admits
the peak-power A whenever the corresponding binary codeword admits the value one and it is zero
otherwise. Henceforth we shall refer to this modulation scheme as a (Q,ﬁ, A) MPPM scheme.

For a given p the MPPM codebook size equals M= (2), thus if 7, is the slot duration (pulsewidth)
—ie. T =T,Q, the data rate (in nats/sec) achieved by MPPM is

S

In an optical direct-detection system the message is transmitted by modulating the intensity A(¢) of a
photon emitting source. At the same time the receiver records the exact time arrivals of the individual
photons that follow a Poisson probability law with an intensity A(t) + Ag, where Ao denotes the dark
current. The capacity of this direct-detection photon channel under peak and average power constraints
imposed on A(t) was derived by Kabanov [11], Davis [12] and Wyner [14]. The error exponent and
construction of specific codes achieving capacity were also reported in [14], and in particular it was
shown that binary signaling is capacity achieving. It should be emphasized, however, that in references
[11]-[14] no bandwidth constraints were imposed on A(¢).

In [15] Shamai incorporates (in addition to the peak and average power constraints) a bandwidth
constraint on A(t) via restricting the minimal time interval A in which A(#) must remain constant. A
simple piecewise constant pulse amplitude modulated waveform A(t) = A\;, ¢t € [(1 — 1)A,iA] satisfy-
ing the constraints is considered. The main contribution of Shamai is in showing that the capacity
achieving input sequence {\;} is an i.i.d. sequence with a discrete probability mass function having
finite support. It is demonstrated in [15] that when A is restricted to be larger than a threshold Ay,
which depends on the dark current intensity Ao, binary signaling is no longer capacity achieving.

Motivated by the results of Shamai, this work investigates the performance of an extension of
MPPM which allows two pulse levels per each “active” signaling slot. Specifically, we consider a
fixed composition signaling scheme the symbol interval of which is equal to that of the MPPM symbol



interval T, yet the number of available slots () is strictly smaller than Q). Furthermore, in each symbol;
p out of the () available slots are pulsed, p; out of the p pulsed slots are of level A; while the rest
p — p1 are of level Ay, where A, > A;. The fixed composition three-level MPPM codebook is obtained
by taking all Q)-length ternary codewords having exactly: p; coordinates equal to 1; p — p; coordinates
equal to 2; while the rest () — p equal to 0. In what follows we shall refer to this modulation scheme
as a (Q,p,p1, A1, Az) 3L-MPPM scheme.

Given the parameters (@, p,p1) the size of this 3L-MPPM codebook equals M = (g) (;1)’ and

therefore the data rate achieved by 3L-MPPM, assuming that the slot duration equals T (with T,Q =
T), is

n [ (9)(2)]
T,Q)

The question is: for a given requirement on data rate and transmitter average-power constraint, how
far can this 3L-MPPM scheme compete with MPPM in order to save bandwidth while delivering the
same detection quality. Consequently, for a fixed symbol interval 7' and a given (Q,p, A) MPPM
reference scheme our focus will be in analyzing a respective (Q,p, p1, A1, A3) 3L-MPPM scheme for
which @ < Q,M > M, the average-power constraint is the same as that of the (Q,ﬁ, A) MPPM
scheme, in order to find out whether the symbol error probability in both schemes is comparable if
symbol frame synchronizm is implicitly assumed. Even though we impose just the same average-power
constraint on both schemes, as we envision a three-level PAM modulation for the extended MPPM
scheme the results of Shamai [15] imply that as long as the final peak-power of the 3L-MPPM scheme
is finite the capacity achieving distribution for this scenario indeed has a discrete support.

In [13] Frey considered the information capacity of the bandwidth unlimited Poisson channel subject
to an encoder time-varying peak constraint ¢(¢) that may be chosen freely subject only to the constraint

R mppy = nats/sec .

%/OTc(t)dt <P (1)

for some given P > 0. Then, for a known nonrandom noise intensity Ao(¢), the channel capacity is
found to be C' = PJe.

In fact, the average-power constraint that we consider in our bandwidth limited 3L-MPPM model
falls under the category (1). This, as implied by Frey’s result, renders the bandwidth unlimited
capacity finite and consequently the capacity for our model is also finite. Asymptotic results regarding
the capacity for the model considered herein have recently been reported in [17].

For MPPM in the quantum limited regime an exact expression for the symbol error probability
is given in [7, Equation (8)]. Thus, in order to compare the detection quality of both schemes a
tight upper bound on the symbol error probability for 3L-MPPM in this regime is called for, and
this is the first main result in this work. For the noisy channel, a general bound concerning binary
hypothesis testing in a direct-detection system is combined with the union bound in [7] to derive
an upper bound on the symbol error probability. Following the same arguments we focus here on
obtaining an expression for the distance profile of 3L-MPPM in order to compare the corresponding
upper bounds in the noisy channel case as well.

The paper is organized as follows. Section II presents the communication model studied here.
Section III describes the detection problem precisely and derives the optimum decision rule for our



model. Section IV analyzes the error probability of the optimal receiver for the quantum-limited
channel, while the capacity for this case is considered in Section V. In Section VI an expression for
the cutoff rate valid for both the noisy and the quantum-limited channel is obtained, while Section
VII considers a general upper bound on the error probability for this case. Finally, in section VIII we
consider a few specific 3L-MPPM configurations for which we demonstrate the bandwidth efficiency
that they offer as compared to MPPM schemes having the same throughput, error probability, and
average-power constraint.

II. Communication model

To be explicit, the single-user Poisson channel model studied here is described as follows. The
codebook consists of M ternary ()-length codewords. Assuming the encoder wishes to transmit the
message m € {1,..., M} it picks the mth codeword ¢, € {0,1,2}? and generates a 3L-MPPM input
Am(t) , 0 <t < T that satisfies

Ay te|(l —1)T,IT;] and the [th component of ¢, is 1
An(t) = Ay te[(l —1)Ts,IT;] and the [th component of ¢, is 2
0 tel(l—1)T; 1T, and the Ith component of ¢, is 0,

and
T, (p1Ar + (p — p1)Az) = pAT, < 0 AT (2)

where 0 < 0 < 1 defines the average-power constraint for both schemes and it is implicitly assumed
in (2) that QT, = QT, =T.

The waveform A, (t) determines the rate of a corresponding doubly stochastic Poisson process d(t).
Specifically, d(t) corresponds to the number of counts registered by a direct detection device in the
interval [0, ], in reaction to the input A,,(¢). The observation is

v(t) = d(t) + D(t) ,

which is also a Poisson process with instantaneous rate A(t) = Ao+ A, (t). The dark current represented
by D(t) is a homogeneous Poisson process of rate \g. Thus, conditional on the input {\(¢)}, the signal
{v(t)} is a counting process with independent increments and

(f: )\(T)dT)k

Pr (v(t) — v(s) = kH{A()}) = e F A

,t>s, kelZt. (3)
Here ZT denotes the set of nonnegative integers.
III. Optimum receiver for constant composition 3L-MPPM

Following the formulation of Lapidoth in [16] a channel use is a pair of probability measures, P°
and P™, defined on a measurable space (€2, F) on which the “input” process A(¢), and the “output”
process v(t), are defined. The probability measure P? serves as a reference probability measure in the
sense that v(t) is a homogeneous Poisson process of intensity Ay with respect to its natural history
F} and the measure P°. We shall use the notation that v(¢) admits the (P° F})-intensity Ag. It is



further assumed that P™ is absolutely continuous with respect to P°, i.e., P™ < P° and with respect
to the measure P™ the output process v(t) admits the predictable (P™, F})-intensity A, (t).

Thus, a convenient description of P™ is expressed via its Radon-Nykodim derivative with respect
to the reference probability P°. Denote by P' the restriction of PV to F/,v € {0,m}, and define the
(P™, F/) martingale L; by
_dPr
-~ dPY

Ly

By [18] it follows that

Lt:

)\)\—?X{an}] - exp {/Ot [Ao — )\m(S)]dS} ) (4)

n>1

where 1), denotes the stopping time when the nth jump occurred, and xyq, denotes the indicator
function of the set G.

As the processes A, (t),m € {1,..., M} defined by our 3L-MPPM construction are all adapted to
F/, they are F} predictable. The existence of a measure P™ which induces a predictable F}-intensity
given by A, (t) follows now by [18].

To this end let the decoder observe vy = {v(t) : t € T® = [(k — 1)T, kT]} as it is assumed through-
out that symbol synchronizm is available for the decoder, and according to (4) a maximum-likelihood
decision rule can be defined via the Radon-Nykodim derivative

P s !
Lty Ay Ay) = FE”’ = [H WX{TnQ}] " exp {/0 [ A (8) — Am(5)] ds}

n>1 " Tn
)\m
= H)\—Z?X{Tngt}a (5)

n>1""Tn
where the last step in (5) follows by the constant composition property of the 3L-MPPM code.

e Let {¢;},i=1,..., M be the set of all Q-length ternary sequences having p; coordinates equal to
1 and p—p; coordinates equal to 2 (namely the set of messages that could have been transmitted
in the form of an 3L-MPPM symbol).

o Let w; = {w;,, ws,,...,w;,} be the set of p distinct integers taking values in the set {1,2,...,Q}
indicating the positions of pulsed slots, either with A; or A, levels, in the ith message.

o Let z; = {2, 2,,...,2,, } be the set of p — p; distinct integers taking values in the set
{1,2,...,Q} indicating the positions of Ay pulsed slots in the ith message.

Noting that the Poisson process v(t), (k — 1)T < t < kT, during the kth symbol time, is split into
(2 independent Poisson processes with parameters

I, (Ay + X\o)Ts if slot [ is pulsed with A,
/ A(t)dt =< (Ay + A\g)Ts if slot [ is pulsed with A,
(1T Mo T if slot [ is not pulsed ,



it follows from (5) that the ML decoder collects the sufficient statistics

Nl(k) £ fnumber of arrivals registered on signaling slot [ , [ € {1,...,Q} during kth symbol} ,

and decides upon that message m which maximizes simultaneously, the number of arrivals collected
over w,, and the number of arrivals collected over z,,, as compared to any m’ # m.
That is,

(k) k
D <1/6F ) = arg {élnagXM ( Z Nﬁ’ﬂ)  max, (Z N]( )>} : (6)

rewn, JEZm

if such an index exists, while otherwise an erasure is declared. In other words, the decoder accumulates
the number of photons in each pulsed slot (either by A; or by Aj) for each possible transmitted
hypothesis, and additionally it accumulates the number of arrivals in each pulsed A, slot. It then
declares the message corresponding to the symbol that simultaneously maximizes both results.

In the quantum-limited regime, when Ay = 0 and arrivals can appear only over the p “active”
signaling slots, the ML decoding rule (6) simplifies to

(k)
D (I/OT ) = arg max
1<m<M

if such an index exists, while otherwise an erasure is declared.

Thus, (6) defines a decoder which is a measurable mapping D : F, — {1,2,..., M} U {erasure},
where we allow for the decoder to declare an erasure, and the average probability of error assuming
equi-probable messages, P,, is

xa). 7

]em

P.=1- % épi(z)l(i)) : (8)

IV. Error probability analysis in the quantum-limited regime

In this section we derive an upper bound on the symbol error probability for 3L-PPM in a quantum-
limited channel. Recall that for the reference (Q,p, A) MPPM scheme the exact expression for the
symbol error probability (in the quantum-limited regime) was derived in [7, pp. 1315], namely

e B (e 0

(=1

where ¢, & (Q_]’:J’k), and € 2 ¢~ ig the pulse-erasure probability. An error probability upper bound
for 3L-MPPM will provide us with the ability to assess the performance of any (Q, p, p1, A1, A3) scheme

in contrast to a reference (Q,p, A) one.

When 3L-MPPM modulation is used in the quantum-limited regime the decoder (7) errs when
either of the following events occurs

1. An active slot has been erased due to lack of arrivals.



2. A misdetection has happened due to an A; <+ Ay “switch”. This happens whenever the number
of arrivals over an A; slot is at least as large as that over an A, slot.

Define Pg’ and Pe"; as

P £ Pr{ An active slot has been erased|m was sent}

P £ Pr{ A misdetection has happened|m was sent} ,

then the union of events bound implies

1—P™(D ' (m)) <P+ P . (10)
Due to the symmetry of the 3L-MPPM codebook, combining (8) with (10) it follows that
P.=1-P(D'(i)) <P, + P, (11)

for an arbitrary transmitted message i.

The probability of error Pei1 caused by slot erasures is computed as follows.

e When the number of slot erasures /, is not larger than py:

1. If there is at least one Aj slot erasure among these ¢ < p; slot erasures, the decoder will err
with probability one.

2. When all 7 slot erasures are on A; slots, then the decoder takes a random decision among
the ay = (Q_(if’_é)) symbols which admit active pulses (both A; and A, type) on the p — ¢
positions over which arrivals have been registered.

e When the number of slot erasures ¢, is larger than p;:

1. If there is at least one A; slot that hasn’t been erased the decoder will err with probability
one.

2. When all A; slots have been erased together with ¢ — p; additional A, slots, the decoder
takes a random decision among the 3, = (Q*(” 74)) (pél) symbols which admit active pulses

¢
of type Ay on the p — £ positions over which arrivals have been registered.
Let €, = e~ 1y = 1,2 be the pulse-erasure probability for an A, pulsed slot. The above arguments
yield the expression

P1 -1
i p p—p \—by - 1 —(t—ty
IR ol ol (3 A FR R

=1 l1=1

—1
+ (12> M — )1 - 62)””1}

Qg

D p1—1
=) {Z () (20 )bt - cpmeea = eyt

{=pi+1 \{1=1 1

- —1
(p)dm oo 42

Suppose that some arbitrary message ¢ was transmitted,
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e Let x = (v,,7,,...,7, ) be the random vector representing the number of registered arrivals
on the p; slots (11,129, ..,1%,) where \;(¢) admits the value A;.

o Let y = (Y, Yp»- -+ Yy, ) be the random vector representing the number of registered arrivals
on the p — py slots (51, g2, - - -, Jp—p,) Where \;(¢) admits the value A,.

e Let the random variables Vi (i) and V;(i) be defined as

=
—~
~.
SN
I

min {yﬁ, Yo - y]p—m }

Va(i) = max{x“,xw,...,xzm}.

A misdetection due to an A; <> Ay “switch” will happen when the number of arrivals registered on
an A; slot exceeds that number registered on an A, slot. Consequently,
P, < Pr{¥(i) > Vi(i)|N(-)}
= 1=Pr{Vi(z) = V2(i) > O[\:()} (13)

where the inequality follows by the fact that we count the event {V5(i) = Vi(i)} as an error, and
PriVi(i) = Va()) > 0\:()} = D Pr{Va(i) = } Pr{Vi(i) > £}
¢

= Y Pr{Vi(i) = €} Pr{Va(i) < £} . (14)

Since the components of & as well as those of y are independent and identically distributed Poisson
r.v.’s with parameters A;7T, and AT} respectively, one can apply results on order statistics in order
to compute the probability density function of V3 (i) and V5 (7).

To this end let (v, vy, ..., vp,) be the ordered version of (z,,, 7y, ..., 7, ), then following the proof of
[19, p. 185] we have

p1—£

Pr{v,=n} =p <p€1_—11) [Pr {z < n}]z1 Pr{z =n} [Pr {z > n}] : (15)

Applying (15) for £ = p, to obtain the statistics of V5(7) and then for ¢ =1 for (v, va, ..., v,_,,) being
the ordered version of (y,,,%,,,.-.,¥;,_, ) We conclude that

Pr{V1(i) = n}

w-p)[Priv=n)]" Priy = n)

Pr{V3(i) =n} = m [Pr{x < n}]p11 Y "
where
Pr{r =n} = e—AlTs(A%n#)n
Pr{y =n} = e‘AzTS% ‘



It can also be verified that

Pr{Vi(i) <n} = pi_”:l (p —gp1> [Pr{y < n}]z [Pr{y > n}]p_pl_e
= f__l Pr{Vi(i) > n}
Pr{V(i) <n} = [Pr{x < n}]pl . 17

The expressions (16)-(17) for the p.m.f’s and distribution functions of V; (i) and V(i) can now be used
in (14) to provide the sought for upper bound (13) on P, .

In [21] de Caen obtained the following lower bound for the probability of a union of events {4;};er
in a probability space (2, F, P).

i (U Ai) > Y 1

€T
Particularizing (18) to our case wherein A; = e; and Ay = ey one obtains

[P(ed))? N [P(e2)]”
P(ey) + P(eyNey)  Pleg) + PlepNey)

P(e;Uey) > (19)

Consequently, if P(e; Neg) < max {P(e;), P(es)} the union of events bound (11) is tight, whereas if
P(e;) ~ P(es) the union bound is within a factor of 2 from the exact lower bound on the r.h.s. of

(19).
Remark :

The bounding technique presented in this section can be extended to the case where \y > 0 as
follows.

e Define an “erasure” event as the event where the decoder (6) identifies incorrectly the p active
slots.

e Define a misdetection event as the event where the decoder (6) identifies correctly the p active
slots but then fails to recover the correct message.

Insofar as A\g > 0 suppose that message ¢ was transmitted and let w = (ug,,up,,...,us,_,) be the
random vector representing the number of registered arrivals on the Q@ —p slots (¢, s, ..., ¢g_,) where
Ai(t) = 0 and just the dark current is active..

Let the random variables V3(i) and Vy(7) be defined as

. A .
V3(1) = min {x“,xm, ey Ty, }
. A
Vi(i) £ max {ug,ue, ..., un ) -
Then the “erasure” event e; can be expressed as

er = {Vi(i) < Vi) }HJ{Va() < Va()} - (20)

9



Furthermore, the misdetection event e; can now be expressed in terms of order statistics expressions
analogous to those defining the “switch” event in this section except that the relevant p.m.f’s are
conditioned on the event ef.

Since the calculations involved with this approach are quite tedious we adopt the Chernoff bound
in order to compute in section VII an upper bound on the error probability in the case where \q > 0.

V. Capacity in the quantum limited regime

The 3L-MPPM direct detection quantum limited channel can be modeled as a DMC with (g) (If’l)
inputs and infinite number of outputs. It can be easily verified that the above channel model is
symmetric in the sense defined by Gallager in [20, Section 4.5] as follows.

For any input symbol ¢; corresponding to the ¢th row of the transition matrix, the possible outputs
are all vectors (x,y) € (Z™)" with support w; = (w;,, ws,, ..., w;,) that defines the set of coordinates
where ¢; admits the values 1 or 2. The remaining elements of the ith row (which correspond to
all vectors (x,y) wherein at least one coordinate falls outside the support of w;) are zero, again
independently of 7. Thus, the rows of the transition matrix are permutations of one another. Turning
to the columns of the transition matrix, we can partition the set of columns into subsets, of p!(g)
columns each, cooresponding to outputs with the same realization of registered photons but located on
different slot coordinates. Any column which corresponds to a specific realization vector (x,y) admits
non-zero entries in ( ::1 ) rows. These rows correspond to those input symbols having the support w;
as defined by the (@, y) vector. Thus, for each of these subsets of the transition probability matrix,
each row is a permutation of each other row and each column is a permutation of each other column.
Therefore, the capacity achieving input distribution is the uniform distribution [20, Theorem 4.5.2].

It follows that, the probability of a specific output vector (x,y) can be obtained by considering just
the ( ;1 ) aforementioned transition probabilities. Moreover, in the process of enumerating all possible
output vectors, as one considers those (x,y) vectors admitting non-zero values on a specific set of p— ¢
coodinates one needs to decide first which corresponding slots are the “active” ones and only then to

consider the corresponding (1‘;”1) transition probabilities. Thus, such a set of (x,y) vectors admitting

non-zero values on a given set of p — ¢ coordinates occupies (Q_EH) columns in the channel transition
matrix.
Consequently,

Pr(z,y) = > p@y)le)pla) ,

i@ p((X,Y)]ci)>0

where

(i p (@ g)le) > 0] = (”) . (21)

b1

As a result, the general expression for the capacity of a DMC

C = mixiifjp(wi)p(m In <M) ’

p(y;)

10



can be written in our case as,

o e o o PL AT, (A T )Kn P—P1 —A,Ty (A T )Lm
. € 14s € 24+s
Csr—mppv = InM — Z Z . Z K, L
Ki=0  Kp=0Li=0 L, , =0n=1 m=1
‘I p((z,y)lc) | /p (@ y)lei) | (22)
i 2 p((T,Y)]ei)>0

where in (22) @ = (Ky,...,K,,) is a p;-vector of a specific realization on the A, pulsed slots, while
y=(Ly,...,L, ) is a (p — p1)-vector of a specific realization on the A, pulsed slots.

VI. Cutoff rate for the background noise channel

The general expression for the cutoff rate derived in [2], for optical channels with observations
modeled by (3), is

M M
1
Ry = —1 : Qi —Zd> t , 23
0 n{rgll?i > qq]exp( 5 ]>} nats/cu (23)

i=1 j=1

where ¢; is the prior probability for the ith symbol, and

dfj:/OT {m—,mj(tw%rdt. (24)

In 3L-MPPM the squared distance (24) decomposes into combinations of the following components

r 2
D; = _\/(Al + Xo)Ts — \/AOTS]

- 2
D = _\/(A2 + M) T — \/)\oTs]

D, A :\/(A1 )Ty — /(Az + )\O)TS]Z

Furthermore, since our code consists of all combinations of ternary sequences having p; coordinates
equal to 1 and p — p; coordinates equal to 2 the squared-distance profile is the same for each codeword.
As a result we may fix say ¢;, and consider all different configurations of d%j, j # 1.

To this end note that any symbol ¢;,j # 1 is defined by its configuration w.r.t. ¢; as follows.
Let the set of p; coordinates of ¢; that equal to 1 be split into three subsets of sizes n;1,7112 and
p1 — (n11 + ni2) respectively. Here ny; denotes the cardinality of the set of coordinates for which
¢; = 1Neci = 1, nyz denotes the cardinality of the set of coordinates for which ¢; = 1M ¢; = 2, while
p1 — (n11 + n12) denotes the cardinality of the set of coordinates for which ¢; = 1N ¢; = 0. Similarly,
let the set of p — p; coordinates of ¢; that equal to 2 be split into three subsets of sizes nyi, ngo and
p — p1 — (n21 + ngg) respectively. Here ngy; denotes the cardinality of the set of coordinates for which
c; = 2N ¢ = 1, nyy denotes the cardinality of the set of coordinates for which ¢; = 2N ¢; = 2, while
p — p1 — (n21 + nge) denotes the cardinality of the set of coordinates for which ¢; =2N¢; = 0.

11



The restrictions on (ny1, n1s, not, Nay) are

nit+nie <P

ng1 +ng2 < p—p
nit+na < Py
nig+nge < p—p1-

Any such configuration entails p; —(n114+n91) coordinates for which ¢; = 0N¢; = 1 and p—p; —(n12+n92)
coordinates for which ¢; = 0N ¢; = 2. As a result, such a configuration corresponds to a squared-
distance of

d%j(nlla N1z, N1, N2z) = (N2 + Nt ) (sz — D}, — Dgo) +2(p1 — n11) D3y + 2(p — p1 — na2) D,
The number of symbols c;, 7 # 1 having such a configuration is
L(n11, 12, nat, noz) =
<p1>(pl—n11>(p—p1><p—p1—n21>< @—p ><Q—p—p1+n11+n21>
ni ni2 N1 N2 p1 — (n11 + noy) p—p1 — (n12 + na2)
Following the same arguments as in [7, section II.A] one concludes that the uniform distribution is the
minimizing distribution in (23) and consequently

1 B 1, .
Rosr—mppy = —1In {M ZL(n) exp {_id’j(n)] } nats/cu , (25)

where we’ve used the notation 7@ = (niy, n1g, No1, Na2).
VII. Error probability analysis for the background noise channel
Since the considered 3L-MPPM scheme is a constant composition modulation scheme, we may

assume that the symbol ¢; was transmitted. For the noisy channel case, the union of events bound
implies

P

IN

Pr {LAj {Lya (Aj, A1) > 1|Cl}}

J=2

M
< > Pr{Lpw (A, A1) > et}

Jj=2

To proceed further, we use the Chernoff bound derived in [7, Appendix B] for any direct detection
system and then apply it to our case. This bound reads

1 g 3 YS(\Y1—s
Pr{Lyw (Aj, \1) > 1|1} < 5 €XP {/0 [—s)\j(t) — (L= s)Ai(t) + A1)\ (t)] dt} :
where \;(t) = A\;(t) + Ao, 1 <j < M, and 0 < s < 1 is chosen to minimize the right-hand side.

12



In 3L-MPPM the intensities \;(#) admit values from the set {\g, A; + X, A2 + Ao}, hence the
tightest bound is not necessarily achieved for s = 1/2. However, for our purposes we take s = 1/2

which yields
1 1 (T 3 -
Pr{Lpw (Aj; A1) > e} < §GXP {—5/0 {\/)\l(t) - \/)‘j(t)] dt} :

Next, applying the distance profile results of 3L-MPPM as developed in the previous Section with
regard to the cutoff rate, we conclude that

Po<g {Z L) exp | 57 } . (26)

VIII. Numerical results

In this section we consider a few specific 3L-MPPM configurations and compare them with corre-
sponding MPPM schemes. In our comparison we consider the detection quality (probability of error)
of both schemes as well as the cutoff rate and capacity, subject to a given requirement on the data
rate and average transmitted power. The comparison between any pair of schemes is done as follows.

1. The 3L-MPPM pulse width (slot duration) T should be strictly larger than that of the MPPM
scheme denoted as T, in an attempt to save bandwidth while maintaining the same error prob-
ability as MPPM.

2. Both configurations should have the same average-power
1AL+ (p — 1) A2] T, = AT, (27)

3. The 3L-MPPM codebook size should be at least as large as that of the MPPM
v=()0)> ()
P/ \P p

log, M log, M
Rsr_ymppyv = C%QT > 527;

This requirement implies that

= Ryppu -

[t can be verified that inequality (28) can be met while insisting on @ < Q and p < p, thus a decrease
in bandwidth is feasible without penalizing the rate.

In our search the parameters (Q,ﬁ, A, Ts) of MPPM and (Q, p,p1) of 3L-MPPM were chosen to
satisfy (28), then the parameters (Ts, A, A2) of the 3L-MPPM have been determined to satisfy (27).

Table 1. shows the bandwidth efficiency reduction factor § = Q/ @ achievable by 3L-MPPM for a
few MPPM configurations (Q,ﬁ).
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QlplQ[r|n] % [5=2
6 31521 1.0000 | 0.8333
8 4 | 7 | 3 | 2 | 1.5000 | 0.8750
9 4 |1 8 | 3 | 2 | 1.3333 | 0.8889
10 5 | 8 | 4| 2 | 1.6667 | 0.8000
10 51 9] 3|2 1.0 0.9000
111519 4| 2] 1.6364 | 0.8182
1216 | 9] 5| 3| 1.3636 | 0.7500
1316 [10] 5 | 3 | 1.4685 | 0.7692
141 7 |10 6 | 3 | 1.2238 | 0.7143
15 7 |11 6 | 3 | 1.4359 | 0.7333
16| 7 (12 6 | 3 | 1.6154 | 0.7500
17 8 12 7 | 4 | 1.1403 | 0.7059
18| 7 |13 ] 6 | 3 | 1.0784 | 0.7222
19 7 |14 6 | 3 | 1.1920 | 0.7368
200 9 |14 | 8 | 4 | 1.2515 | 0.7000
21| 8 |15 7 | 4 | 1.1068 | 0.7143
2211|1510 | 5 || 1.0728 | 0.6818
231 9 |16 | 8 | 4 || 1.1024 | 0.6957
2419 |17 8 | 4 | 1.3015 | 0.7083
20 |11 117 {10 | 5 | 1.0995 | 0.6800
26 110 | 18 | 9 | 5 | 1.1533 | 0.6923
271 9 19| 8 | 4 || 1.1289 | 0.7037
281 11|19 | 10| 5 || 1.0841 | 0.6786
29110120 9 | 5 || 1.0566 | 0.6897
30110219 | 5 | 1.2327 | 0.7000

Table 1: Bandwidth reduction factor of 3L-MPPM over MPPM

Another quantity of practical interest is the peak-to-average ratio o, which for 3L-MPPM is given
by a = AyQ/ [p1 A1 + (p — p1)As] as compared to o = @Q/p for the MPPM scheme.

In what follows we provide some numerical results for both schemes under the constraints as defined
above, wherein it is assumed throughout that 7, = 1.

A: Error Probability

Taking as a reference an MPPM scheme with Q = 10 and p = 5, we examine the performance of
a 3L-MPPM scheme with parameters Q =9, p =3 and p; = 2 in terms of error probability, both in
the quantum limited and the background noise regimes.

For the quantum limited channel we choose A = 8 for the reference MPPM scheme. Figure 1
illustrates the error probability of 3L-MPPM as a function of A;, where A, is determined according to
the average-power requirement (27). It is noticed that an optimal ratio Ay/A; exists which achieves
a minimum in the error probability. This Figure also illustrates the Chernoff bound, in the quantum
limited regime, for this particular case.
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Figure 2 shows the two components composing the error probability in Figure 1, namely the slot
erasures component Pei1 and the misdetection component sz, respectively. It is seen that erasure
caused detection errors are the dominating factor for large Ay/A;, while misdetection (switch) errors
become the dominating factor when the As and A; values are close.

Figure 3 shows the upper bound on P, against the lower bound implied by de Caen’s bound.

Figures 4, 5 and 6 show the Chernoff upper bound on the error probability of 3L-MPPM, in the
presence of background noise, for different combinations of reference MPPM scheme and corresponding
3L-MPPM scheme and for various values of Aq.

B: Cutoff Rate

We compute next the cutoff rate of 3L-MPPM in both regimes : the quantum limited and back-
ground noise.

In our search for the optimal parameters of the 3L-MPPM configuration (@, p,p;), we maintain
the same average power as compared to the corresponding (Q,ﬁ, fi) MPPM reference scheme while
allowing the ratio Ay/A; to vary.

In the quantum limited case, it is obvious from Table 3 that 3L.-MPPM provides better throughput
efficiency (in nats/photon) as compared to MPPM. Furthermore, 3L-MPPM becomes more effective
and its advantage over MPPM is pronounced further when the symbol is restricted to have relatively
low energy.

Table 2 summarizes the cutoff rate results for the background noise channel.

)\0 A Q ﬁ RO,MPPM Q P | D1 RO,BLfMPPM ﬁ_f*
1 216 13107393 ||5]|2]|1 1.303 > 1
1 4 6 | 3| 17758 || 5| 2|1 1.9943 2.4129
1 2 |10 5| 1.2403 || 9 | 3| 2 2.1886 6.9108
2 2 |10 5| 0.8170 || 9 | 3| 2 2.0430 >1
5 |10 110 |5 | 4.3605 || 9 | 3| 2 4.9680 2.2452
1010 {1015 ] 3.2933 || 9 | 3| 2 4.3364 2.05040
1 2 |11 15| 1.3549 || 9 4] 2 2.2461 > 1

Table 2: 3L-MPPM and MPPM Cutoff rate in the background noise regime

It is seen from Table 2 that 3L-MPPM becomes more effective in the presence of background noise,
especially for moderate signal to noise ratios (SNRs). This improvement is due to the flexibility that
3L-MPPM has in choosing the optimal ratio A;/A; subject to the same average power constraint.

C: Capacity in the Quantum-limited Regime

The Capacity of a specific 3L-MPPM scheme in the quantum limited regime is computed using
a computer program. For ease of computation we assume that the number of photons detected at
each “active” slot admits values in the range [0, JAyT}|, where A; > A; and J is a parameter (chosen
such that the numerical error in the capacity computation is negligible). In this case, the number of
possible channel output signals is L = (JAyT5)P.
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The computation of Pr (z,y) involves the following steps:
e Generation and numbering of the M channel inputs (codewords).

e Generating the transition probabilities {p ((zx,y;)|ci), k =1,2,---, L} given a specific input
symbol ¢;, in a vector of length L = (JAT;)P. This vector will be indexed using a proper index
set I = {11, --,1,} according to some predefined rule.

e The index set I} is derived for each output vector (xy, y;).

e Generating the appropriate (;’1) permutations of [, creating a group of index sets that would

be used to calculate the entries to the transition probability vector.

A comparison between the capacity and cutoff rate of MPPM and 3L-MPPM in the quantum
limited regime is given in Table 3. Here the ratio A5/A; for the 3L-MPPM was determined to achieve
the highest capacity.

MPPM 3L-MPPM

Al Q |p| rT; Ry C Qlp|p| rTs Ry C ﬁ—f* for R, ﬁ—f* for C
316 3104993 | 2.61 [2.792{ 52| 1 ]0.599 2493 | 2.70 3.189 3.17
516 |3]0.4993 |2.936 (2968 | 5 |2| 1 |0.599 | 2.824 | 2.912 3.496 3.464

6| 6 |3]0.4993 (2974|2985 | 5 |2| 1 |0.599 | 2.898 | 2.950 3.587 3.687

2 | 10| 5] 0.5529 | 3.662 | 4.409 || 9 | 3| 2 | 0.614 | 4.025 | 4.69 2.712 3
3110 |5|0.5529 | 4.611 | 5.096 | 9 |3 | 2 | 0.614 | 4.748 | 5.174 3.075 3.19

4 110 |5|0.5529 | 5.129 | 5.367 || 9 | 3| 2 | 0.614 | 5.145 | 5.377 3.31 3.625

Table 3: Cutoff rate and Capacity of 3L-MPPM as compared to MPPM. Quantum limited channel.
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Figure 1: 3L-MPPM error probability as a function of A;. Quantum limited channel. MPPM param-
eters (A =8, Q=10,p= 5), 3L-MPPM parameters (Q = 9,p = 3,p; = 2).
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Figure 2: 3L-MPPM erasure and switch probability as a function of A;. Quantum limited channel.
MPPM parameters (4 = 8,Q = 10, p = 5), 3L-MPPM parameters (Q = 9,p = 3,p; = 2).
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Figure 3: 3L-MPPM error probability vs de Caen bound. Quantum limited channel. MPPM param-
eters (A =8, Q=10,p= 5), 3L-MPPM parameters (Q = 9,p = 3,p; = 2).
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Figure 4: 3L-MPPM error probability upper bound with noise intensity A\ = 15. MPPM parameters
(A=20,Q =6,p =3), 3L-MPPM parameters (Q =5,p = 2,p; = 1).
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Figure 5: 3L-MPPM error probability upper bound with noise intensity Ay = 15. MPPM parameters
(A =20,Q =10,p =5), 3L-MPPM parameters (Q = 9,p = 3,p, = 2).
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Figure 6: 3L-MPPM error probability upper bound with noise intensity A\g = 2. MPPM parameters
(A =20,Q =10,p =5), 3L-MPPM parameters (Q = 9,p = 3,p, = 2).
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