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Robust System Identification Using Speech

Signals
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Abstract

An important component of a multichannel hands-free communicatystes is the identification of the coupling
between sensors in response to a desired source signal. In this papbust system identification approach adapted to
speech signals is proposed. A weighted least-squares optimization ariteristroduced, which includes the probability
that the desired signal is present in the observed signals. An asymiyotinbiased estimate for the system’s transfer
function is derived, and a corresponding recursive on-line impléamtien is presented. We show that compared to a
competing nonstationarity-based method, a significantly smaller errianearis achieved and generally shorter observation
intervals are required. Furthermore, in case of a time-varying sy$ssier convergence and higher reliability of the system
identification are obtained. Evaluation of the proposed system identificatipro@ch is performed under various noise
conditions, including simulated stationary and nonstationary white Gauseiae, mnd car interior noise in real pseudo-
stationary and nonstationary environments. The experimental resulfisncdhe advantages of proposed approach.

Index Terms

Array signal processing, system identification, signal detection, &iconsise measurement, speech enhancement,
spectral analysis, adaptive signal processing.

I. INTRODUCTION

An important component of a multichannel hands-free comioation system is the identification of the coupling
between sensors in response to a desired source signal2?]1][3]. This coupling, often referred to as the
acoustical transfer function (ATF) ratio, represents tblatron between the impulse responses of the sensors
to the desired source. In reverberant and noisy envirorsnéimé coupling identification enables to construct an
adaptive blocking channel, for an accurate derivation affarence noise signal, and an adaptive noise canceller, for
eliminating directional or coherent noise sources [4]tirermore, it also facilitates multichannel signal detattnd
postfiltering techniques, which employ the transient povetio between the beamformer output and the reference
signals [5], [6].
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Shalvi and Weinstein [1] have proposed to identify the cmgpbetween sensors by using the nonstationarity
of the desired signal. They assumed that the sensors caadditive interfering signals whose cross-correlation
function is stationary, while the autocorrelation funatiof the desired signal is nonstationary. Then, dividing the
observation interval into a sequence of subintervals, amdpating for each subinterval the cross power spectral
density (PSD) of the sensors, they obtained an overdetedhsat of equations for the two unknown quantities: the
system’s transfer function and the (presumably statignengss-PSD of the primary sensor and a noise component.
An asymptotically unbiased estimate for the system’s fearfanction was derived by using a weighted least-squares
(WLS) approach for minimizing the error variance under garessumptions.

A major limitation of the nonstationarity-based systemniifecation is that both the system identification and
noise estimation are carried out through the same WLS optiniz criterion. The WLS optimization consists of
two conflicting requirements: One is minimizing the erroria@ace of the system’s transfer function estimate, which
pulls the weight up to higher values in higher SNR subintetv@ihe other requirement is minimizing the error
variance of the noise estimate, which rather implies smalieights in higher SNR subintervals. Another major
limitation of this method is that the observation intervabsld be adequately long, so that for all frequency bands it
includes quite a few subintervals that contain the desiigabsé Unfortunately, in case the desired signal is speech,
in some frequency bands the presence of speech may be sphisk,implies a very long observation interval.
Furthermore, the system’s transfer function is assumecetodnstant during the observation interval. Hence, very
long observation intervals also restrict the capabilititto$ technique to track time-varying systenesg(, tracking
moving talkers in hands-free communication scenarios[81],[9]). Additionally, a fundamental assumption is that
the interfering signals remain stationary during the entibservation interval. This is a very restrictive assuamti
particularly in view of the generally long observation inv& required for obtaining a reliable system identificatio
in case of speech signals.

In this paper, a robust system identification approach adajat speech signals is proposed. The speech presence
probability in the time-frequency domain is incorporatatbithe optimization criteria for system identification and
noise spectra estimation. An estimate for the system’steariunction is derived based on subintervals that contain
speech, while subintervals that do not contain speech aneooé significance when estimating the noise spectra.
The estimate for the auto-PSD of the desired signal is obthlyy applying a first-order recursive smoothing to
its Optimally Modified Log-Spectral Amplitud®M-LSA) estimate [10]. The cross-PSD of the interferingreils
is estimated by using th#inima Controlled Recursive AveraginglCRA) approach [11], [12]. Subsequently,
minimum variance WLS estimate for the system’s transfer tioncis derived, and a recursive on-line solution is
obtained based on the least-mean-square (LMS) algorithensigw that the error variance obtained by using the
proposed method is significantly smaller than that obtaimgdsing the nonstationarity method. Furthermore, the
contribution of a given time-frequency bin to the errortmace minimization depends on the relative power of the

desired signal in that bin. The higher the SNR is, the shehobservation interval required for obtaining a reliable



system identification. Whereas the nonstationarity metlegdires a relatively long observation interval, regarsiles
of the SNR, to retain the desired signal sufficiently nomsietry. Additionally, in contrast to the nonstationarity
method, in the proposed method the statistical properfidsednterfering signals are allowed to change during time-
frequency windows that do not contain desired signal corapts Accordingly, in case of a time-varying system,
faster convergence and higher reliability of the systenmtifieation are achieved by using the proposed method.
Evaluation of the proposed method is performed under vanmise conditions, including simulated stationary and
nonstationary white Gaussian noise, and real car intedi@enin pseudo-stationary and nonstationary environments
The experimental results confirm that the proposed algarithadvantageous to the nonstationarity-based algorithm.
The paper is organized as follows. In Section Il, we fornaildiie system identification problem. In Section lll,
we review the nonstationarity-based system identificatémhnique, which heavily relies on the stationarity of the
interfering signals and nonstationarity of the desirechaigin Section IV, we introduce a system identification
approach that is more appropriate to speech signals. Thmalpéstimate for the system’s transfer function is
derived based on the speech presence probability in theftegeency domain. In Section V, we describe the
system identification algorithm and its on-line impleméiota Finally, in Section VI, we present experimental

results, which demonstrate the improvement gained by tbpgsed approach.

Il. PROBLEM FORMULATION

Let s(t) represent a desired source signal, denote(byandw(t) additive interfering signals that are uncorrelated
with the desired signal, and lett) represent the coupling of the desired signal to the referseasor. The signals

measured by a primary and reference sensors are given by
z(t) = s(t)+u(t) @)
y(t) = a(t)*st) +w(t) )
wherex denotes convolution. Our objective is to identifgt) in the general case whetgt) is statistically correlated
with w(t).
An equivalent problem is to consider a linear time-invari@t1) system, whose input(¢) and outputy(t) are
related by
y(t) = a(t) = x(t) + o(t) @)
where a(t) represents the impulse response of the system that we wademtify, andv(¢) denotes additive
noise. The system input is assumed to be the sum of a desgedl s{¢) and statistically uncorrelated noisgt)

as in (1). Furthermore, the desired signal is presumablpmelated withv(¢). It is easy to verify that the two

above-mentioned problems are equal, with

v(t) = w(t) — a(t) *u(t) . 4)



IIl. SYSTEM IDENTIFICATION USING NONSTATIONARITY

In this section, we review the system identification techeri@f Shalvi and Weinstein [1]. This method heavily

relies on the assumption thaft) is stationary, and that the desired sige@l) is nonstationary.

Dividing the observation interval intd/ subintervals, and computing for each subintema(m = 1,2,..., M)
the cross-PSD betweenand z, we obtain from (3)
O (w) = A(w) ¢ (@) + va(w) (5)

where A(w) is the Fourier transform oé(¢), and ¢, . (w) is independent of the subinterval index due to the
stationarity ofv(t) andu(t), and the lack of correlation betweerit) ands(t). Let g% (w), 3% (w) and i (w)

be estimates fop" (w), ¢\ (w) and ¢, ,(w), respectively. Then

SR (w) = Aw) D (W) + 60 (w)

yzx
= AW) I (W) + dux(w) + ™ (w), 6)
where
™ (w) = 1 (W) — dy o () .- (1)
This can be written in a matrix form as
o5 (w) Sw) 1 e (w)
N QEEJQQU ((U) (2)32250 (LU) 1 A(w) 6(2) (w)
Z = . = . . + .
. ¢’U$(w)
b (w)] [ w) 1 e (1)
2 Go+te. o)
The WLS estimate ob is obtained by
Aw) . , o \H .
) = O=argmin({z—-GO) W (z—-G0O
B - 0)"w (o)
(GHWG) o, 9)

where W is a positive Hermitian weight matrix! denotes conjugate-transpose, a&#f WG is required to be

invertible.
Shalvi and Weinstein suggested two choices of a weight rmane choice is given by

Twm, m=n
Win = (10)
0, m#n



whereT,, is the length of subintervah, so that longer intervals obtain higher weights. In thisec49) reduces to

i) = (bye(@) dea(@)) = (dyulw)) <2¢m<w>> "

(82.)) = (dealw))

2 ey T ™ (@)

with the average operation defined by

12
(p(w)) S (12)
Another choice ofi¥ that minimizes the covariance éfis given by
7 (m) _
_— {T /3 @), m=n 12
0, m#n
In which case, (9) yields
(1/600(@)) (Syl@)) = (Byalw) / buulw))
Aw) = g , (14)
(do0(@)) (1] dualw)) =1
and the variance ofi(w) is given by
1 _ 1 d)vu(w) <1/¢7T(W)>
V‘““{A(‘”)} T BT (ra @) (1] e — 1 =
WhereT Z 1T, andB = DTEIC) |s related to the window’s bandwidth that is pre-selectedtie empirical

cross-spectrum estimation [1].

A major limitation of the WLS optimization in (9) is that botlhe identification ofA(w) and the estimation
of the cross-PSDy, . (w) are carried out using the same weight maffiXx That is, each subintervak is given
the same weight, whether we are trying to find an estimateAfar) or for ¢, .(w). However, subintervals with
higher SNRs are of greater importance when estimatifig), whereas the opposite is true when estimating(w).
Consequently, the optimization criterion in (9) considt$éwo conflicting requirements: One is minimizing the error
variance offl(w), which pulls the weight up to higher values in higher SNR stésvals. The other requirement
is minimizing the error variance Q;fm(w), which rather implies smaller weights in higher SNR subiveés. For
instance, suppose we obtain observations on a relativaly lon-SNR interval of lengtti, and on a relatively
short high-SNR interval of lengti; (T3 < T,). Then, the variance ofi(w) in (15) is inversely proportional to
the relative length of the high-SNR intervdl; /(T + 11). That is, including in the observation interval additional
segments that do not contain speeioh, (increasingl) increases the variance éf(w). This unnatural consequence
is a result of the desire to minimize the varianceq@gg(w) by using larger weights on the segments that do not
contain speech, while increasing the weights on such sivels degrades the estimate féfw).

Another major limitation of system identification using stetionarity is that the interfering signals are required
to be stationary during the entire observation interval] #me observation interval should include quite a few

subintervals that contain the desired signal. Unfortupate case the desired signal is speech, in some frequency



bands the presence of speech may be sparse, which impliesy dong observation interval, thus constraining
the interfering signals to be stationary over long intesvdturthermore, the system’s transfer functidtw) is

assumed to be constant during the observation intervalcéjevery long observation intervals also restrict the
capability of the system identification technique to traekying A(w) (e.g, tracking moving talkers in reverberant

environments).

IV. SYSTEM IDENTIFICATION USING SPEECHSIGNALS

In this section, we propose a system identification apprdhahis adapted to speech signals. Specifically, we
assume that the presence of the desired speech signal immeirdréquency domain is uncertain, and employ the
speech presence probability to separate the tasks of sydtartification and cross-PSD estimation. An estimate
for A(w) is derived based on subintervals that contain speech, whbétervals that do not contain speech are of
more significance when estimating the components.of(w).

Let the observed signals be divided in time into overlappiragnes by the application of a window function
and analyzed using the short-time Fourier transform (STREsuming the support of the window function is

sufficiently large compared with the duration @ft), (3) can be written in the time-frequency domain as
Y(k,0) = A(k) X(k,0) + V(k,0) (16)

where A(k) is the transfer function of the syster represents the frequency bin indéx=£ 1,2, ..., K), and/ is

the frame index{ = 1,2,..., L). Thus, similar to (5) we have
¢ym(ka é) = A(k) ¢T1(kv 6) + @bvm(k»g) . (17)

Egs. (1) and (4), and the assumption that the desired sighgpis uncorrelated with the interfering signaist)
andw(t), imply
¢yw(kv €) = A(k) Os S(kl) + Puw u(ka 6) . (18)

Writing this equation in terms of the PSD estimates, we obtain
by o(ky0) = duu(k, 0) = A(k) bs 5 (K, £) + (K, €) (19)

wheree(k, £) denotes an estimation error. This giveslugquations, which may be written in a matrix form as

Qi;yx(k, 1) - ¢wu(ka 1) Qgs%‘(kvl> 5(k71)
12}(k) é ‘z)yx(ka)i‘j)wu(kaQ) _ ‘i’ss(.kaQ) A(k)+ 5(16-72)
(ﬁy$(k7L) _q;wu(kaL) éss(k}aL) €(k’L)

>

b, (k) A(k) + €. (20)



Since the transfer functiod (k) represents the coupling between the primary and referesrgos with regards
to the desired source signal, the optimization criteriontfe identification ofA(k) has to take into consideration
the probability that the desired signal is present in theeokel signals {(k,¢) # 0). Specifically, letp(k, ¢) =
P{S(k,¢) #0|z(t),y(t)} denote the conditional signal presence probability givendbserved signals, and [Et
represent a diagonal matrix with the elemelpig:, 1), p(k,2),...,p(k, L)] on its diagonal. Then the WLS estimate
of A(k) is obtained by

— 3 H
Alk) = argrf{l(llg[Ps] W [Pe]

— argain [9(06) 6., (0) AK)] PW P [D(0) - b,.(6) AR

T
EX

= (o1 PW P, )] bLL0PW P ). (21)
The weight matrixi¥ that minimizes the variance of(k) is given by
W = [cov(Pe)] ™" = P~ [cov(e)] ' P~ (22)
where P~ is a generalized inverse dt, i.e.,

P [p(k,0)]"", if £=¢ andp(k,€) #0
o 0, otherwise.

This choice ofI¥ yields an asymptotically unbiased estimate fff)

~ ~T

AGk) = (87,8 leov(@)] b)) BLL(k) eov(e)] b (29

whose variance is given by (see Appendix I)

R _ -1
var {A(k) } = (#7.(k) lcov(e)] " b.u(k)) (24)
The elements otov(e) are asymptotically given by (see Appendix Il)
i;gj ¢$w(k7£) ¢vv(k) s =1
0, LH#
wherea, (0 < ay < 1) is a smoothing parameter used for the empirical crosstspaaestimation by the Welch’s
method. Substituting (25) into (23) and (24) we obtain

A (82200) 850050) [yalh ) = Duul,0)] ),

cov (e(k, €),e(k, ) = { (25)

Ah) = A A (26)
(93 k.0 82, (h.0))
~ . l—OZS ) (bvv(k)
ar{dm} = 5 (623 (k,0) 62 (K, 1)), n

where the average operation is defined by

ok, 0), 2 > ok 0). (28)



Note that the estimaté(k), as well as its variance, are independent of the speechrnuegeobability, even though
the error minimization in the first line of (21) is subject toetconditional probability that the desired signal is
present in the observed signals. Furthermore, only fraimascontain speechz}(s(k,é) # 0) influence the values
of A(k) andvar {A(k)}. Including in the observation interval additional segnsethiat do not contain speech does
not increase the variance df(k).

For the comparison with the nonstationarity method, wea@plthe subinterval index in (15) with the frame
index ¢, and normalize the window function so thBt7T, = 1 whereTj is the frame’s length. Accordingly, the
variance ofA(k) obtained using the nonstationarity method is

A 1 s (k)
var {A(k)}‘NS method L (z2(k,0)), <¢;916(ka£)>2 -1

Consequently, the ratio between the variance obtained &éyptbposed method and that obtained by the nonsta-

(29)

tionarity method is

var {A(k)}’proposed method: l—as (Dza(k,0)), <¢;;(k,€)>e —1 .
var {A(k)}‘NS method 1+ Qs <¢;i(kv€)>/ <¢;i(k7£) gs(k7€)>g

1>

p (30)

Let &(k, ) 2 ¢ss(k,0)/ & (k) denote thea priori SNR at the primary sensor. Then substituting,. (k, () =
0s s(k, ) + ¢ (k) into (30) we obtain (see Appendix Ill)
oy RO+, (RO+TT) -1

T e (S0 1y T

(1)

p

Thus, the variance oﬂ(k) obtained by using the proposed method is significantly snaltian that obtained by
using the nonstationarity method. Additionally, the cimttion of a given time-frequency bifk, ¢) to the quality
(error variance minimization) of the proposed estimatopetels on the desired signal power contained in that
bin, ¢ss(k,¢). The higher the SNR is, the fewer number of frames requiredsétting a certain upper limit to
the error variance. Whereas with the nonstationarity methegardless of the SNR, a large number of frames is
necessary to account for the nonstationarityof (k, £). Furthermore, in the nonstationarity method, a fundantenta
assumption is that the interfering signals remain statipmiring the entire observation interval. This is a very
restrictive assumption, particularly in view of the gerigriong observation interval required for obtaining a adlie
A(k) estimate by using the nonstationarity method. On the othadfin the proposed method, not only a shorter
observation interval suffices, but also the statisticapprties of the interfering signals are not required to bestim
invariant during time-frequency windows that do not comtdésired signal components. Accordingly, in case of a
time-varying system, a faster convergence and higherbittiaof the system identification is achieved by using

the proposed method.



V. IMPLEMENTATION
Our algorithm requires estimates for, . (k, £), ¢, (k,£), ¢ss(k,£) and ¢, ., (k, £). The first two estimates are
obtained by applying a first-order recursive smoothing ® pleriodograms$X (k, ¢)|* and Y (k, ) X*(k, ¢) of the
observed signals. Specifically,
boa(k0) = g dpa(k,l—1)+(1—ay)|X(k,0) (32)

by (k, 0)

s Gya(ky b — 1) + (1 — ag)Y (K, £) X*(k, 0) (33)

where the smoothing parameter (0 < a; < 1) determines the equivalent number of cross-periodograatsare
averaged Ny, ~ (1 + «a;)/(1 — as). Typically, speech periodograms are recursively smoothitld an equivalent
rectangular window of; = 0.2 seconds length, which represents a good compromise besmeaothing the noise
and tracking the speech spectral variations [13]. Theegfior a sampling rate & kHz, a STFT window length of
256 samples and a frame update stef 28 samples, we use; = (T-8000/128 —1)/(Ts-8000/128 +1) = 0.85.

To obtain an estimate for the PSD of the desired signal, we distimate the STFT of the desired signal
by using theOptimally Modified Log-Spectral Amplitud®©M-LSA) estimation technique [10]. Subsequently, the

periodogram of the desired signal is recursively smoothed
Gs sk, 0) = as Dss(k, € = 1) + (1 — ) G2 (k, 0) [ X (I, ) (34)

whereG(k, ¢) denotes the OM-LSA gain function.
The cross-PSD of the interfering signais(t) andu(t), is estimated by using thiglinima Controlled Recursive
Averaging(MCRA) approach [11], [12]. Specifically, past spectralssgpower values of the noisy observed signals

are recursively averaged with a time-varying frequengyetielent smoothing parameter
G (ks ) = Gy (K, 0) o (ks € — 1) + B [1 = G (K, 0)] Y (K, £) X* (K, £) (35)

where &, (k, ¢) is the smoothing parameted & &, (k,¢) < 1), andjs (6 > 1) is a factor that compensates the
bias when the desired signal is absent. The smoothing péeaisedetermined by the signal presence probability,

p(k, ¢), and a constant,, (0 < «, < 1) that represents its minimal value:
Gy (k) = a + (1 — ) p(k, £) . (36)

The value ofa, is close tol when the desired signal is present to prevent the noise -&8Bs estimate from
increasing as a result of signal components. It decreasearly with the probability of signal presence to allow

a faster update of the noise estimate. The valuevpfcompromises between the tracking rate (response rate to
abrupt changes in the noise statistics) and the variancheohotise estimate. Typically, in case of high levels of

non-stationary noise, a good compromise is obtained.by= 0.85 [12].
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Substituting the above spectral estimates into (26) weimlzta estimate forA(k). Alternatively, a recursive
on-line solution to (21) based on the LMS algorithm [14] isagi by

Ak, t) = A(k,£—1)

PO OWir [y 0) = a0, 0) — A, 0)]

0A* A=A(k,t-1)
= A(k, 0= 1) + p(k,£) ¢s s(k, 0) é(K, €) 37)

where

k0) = — a8 38
Wb = e ) dnale ) (39)

is a time-varying frequency-dependent step-size paramete

E(k,0) = byu(k.0) = duulk, 0) = Ak, € = 1)dss(, 0) (39)
is the estimation error, and by using the relatiétk, ¢) = Y (k, ¢) — A(k) X (k,¢) we obtain
Boo(k, 0) = by y(k, 0) + ‘A(k,ﬁ - 1)’2 by ok, 0) — m{zx(k,e - 1)5;;95(/{,4)} . (40)

The update ofA(kJ) in (37) is carried out whenever the time-frequency bin¢) contains some desired signal
energy €.g.,in the event that0 log,[¢s s (k, €)/¢x = (k, £)] > —10dB). The implementation of the proposed on-line

system identification algorithm is summarized in Fig. 1.

VI. EXPERIMENTAL RESULTS

In this section, the proposed system identification apgréscompared to the nonstationarity method in various
noise environments. The performance evaluation includeslated stationary and nonstationary white Gaussian
noise (WGN), as well as pseudo-stationary and nonstationaiye signals recorded in a car environment. A
guantitative comparison between the system identificati@thods is obtained by evaluating the signal blocking
factor (SBF), defined by

82
SBF = 101log,, % [dB] (41)

whereE {s?(t)} is the energy contained in the clean speech signal,/afid?(¢)} is the energy contained in the
leakage signal
r(t) = a(t) * s(t) — a(t) = s(t). (42)

The leakage signal represents the difference between vleebsrated clean signal at the reference sensor and its
estimatei(t) = s(t) given the desired signal at the primary sensor. It has a nadfect on the amount of distortion
introduced by the Transfer Function GSC [4]. The SBF measumssociated with the capability to block the
desired signal and produce a noise-only signal by computing= y(t) — a(t) * z(t).

The first experiment was performed on a speech signal (fesdaker) sampled & kHz. Similar to the

experiment in [1], the noise(t) is a stationary zero-mean gaussian process whose average j3oa factor of
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2.5 larger than the average power of the speech (SNRIB). The impulse response of the reference sensor to the
desired signal is
a(t) =d6(t —6T) —0.56(t —7T)+0.255(t —8T),

whereT = 12.5 ms is the sampling period. In addition, the reference sensizew(t) is generated by

w(t) = g(t) = u(t),
where

g(t) = —8(t) — 0.58(t — T) + 0.15(t — 2T) .

Figure 2 shows the clean speech signals at the primary aatkrefe sensors, and the observed noisy signals.

We have applied the nonstationarity-based system ideattdic algorithm (14) to ai-s observation interval
(32000 samples) that was arbitrarily divided into disjoint subimals of 128 samples length. As is suggested in
[2], only subintervals in which speech is active (SNR in thubisterval is greater thaf dB) were taken into
account. The leakage signa(t) is plotted in Fig. 3(a). The resultant SBFdsl dB.

Figures 3(b) and (c) show the leakage signals obtained mguke proposed algorithms. Off-line speech-based
system identification (see (26)) yields a SBF18f5 dB, whereas the on-line speech-based system identificéstsmn
(37)) yields a SBF 0fi3.9 dB. Both algorithms achieve a significantly higher SBF thiae monstationarity-based
algorithm.

In the second experiment, a nonstationary W&(¥) was simulated by increasing the stationary WGN at a rate
of 6 dB/s for a period of two seconds, and then decreasing it batket original level at the same rate. We used
again the same speech signal, and the same impulse respofi$endg(¢), of the reference sensor to the desired
signal and the primary sensor noise (SNR5.2 dB at the primary sensor). The leakage signals producedéy th
above-mentioned algorithms are shown in Fig. 4. As in théostary noise environment, the proposed speech-
based algorithms achieve significantly higher SBF's tham nbnstationarity-based algorithm. Furthermore, the
performance degradation of the proposed algorithms, wberpared to the stationary noise case, is less substantial
than that of the nonstationarity-based algorithm. Thisuis t the fact that in the proposed algorithms the noise €ross
PSD estimate is continuously updated during speech presamd absence, whereas in the nonstationarity-based
algorithm the noise is assumed stationary and the systentifidation is completely based on the nonstationarity
of the desired signal alone.

In the third experiment, two microphones with cm spacing are mounted in a car on the visor. Clean speech
signals are recorded at a sampling rat8 kHz in the absence of background noise (standing car, gl@ntonment).

Car noise signals are recorded while the car speed is aokin/h, and the window next to the driver is either
closed or slightly open (abodtcm; the other windows remain closed). The noise PSD is psstadimnary in the
former case, while varies substantially in the latter case tb wind blows and passing cars. The input microphone

signals are generated by mixing the speech and noise sighatgious SNR levels in the randge 10, 10] dB.
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Figure 5 shows experimental results of the average SBFr@stainder various car noise conditions using the
competing system identification algorithms. Clearly, thepgosed system identification method is considerably more
efficient than the nonstationarity-based method even inpgeaido-stationary noise environment. The rationale is
that subintervals with low SNR are more useful for noiseneation, whereas subintervals with high SNR are
more useful for system identification. Therefore, by weighthe subintervals for noise estimation differently than
the weighting for system identification, improved perforroa is achieved. Moreover, the proposed algorithm is
less sensitive to variations in the noise statistics in ¢hsenoise is nonstationary. For a given input SNR, the
performance of the proposed algorithm im@nstationarynoise environment might be even slightly better than that
obtained in a stationary noise environment. This is reléetthe fact that for a given input SNR and nonstationary
noise, there are necessarily subintervals where the tastaous noise power is lower than its average, and these
subintervals are given higher weights in the system ideatifin process. On the contrary, the performance of the
nonstationarity-based algorithm, which is based on thestationarity of the desired signal alone, essentially is

impaired in nonstationary noise environments.

VIl. CONCLUSION

We have proposed a robust system identification approadhédoroupling between sensors in response to speech
signals. The optimization criterion takes into accountghabability that the desired speech is present in the redeiv
signals. Nevertheless, the estimate for the system’sfaafimction and its variance are independent of the speech
presence probability, but require the auto-PSD of the ddssignal and the cross-PSD of the interfering signals.
The auto-PSD of the desired signal is estimated by recuyssraoothing the log-spectral amplitude estimate of
the signal. The cross-PSD of the interfering signals isrested by applying a time-varying frequency-dependent
recursive smoothing to the cross-PSD of the observed sigaatl compensating the bias in accordance with the
MCRA method. We showed that the proposed minimum variance \@AtBnate for the system’s transfer function
yields a significantly smaller error variance than that of#d by the nonstationarity method. Generally shorter
observation intervals are required for obtaining a reéabjstem identification, and also the interfering signags ar
not required to be stationary during absence of the desiggdls In case of a time-varying systemg, moving
talkers in hands-free communication scenarios, the pexposethod allows to faster and more reliably track the
variations. Using the proposed method for the identificatibthe acoustical transfer function ratios, as part of the
transfer-function generalized sidelobe cancel(@F-GSC) [2], [4], leads to improved adaptation of the bliogk
matrix and the noise canceller, and facilitates multiclehrsignal detection and postfiltering techniques, which

employ the transient power ratio between the beamformgrubw@nd the reference signals [15], [6], [16].
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APPENDIX |

ASYMPTOTIC VARIANCE OF A(k)

Substituting (20) into (21), we obtain

N AT -1

~ ~T
AR) = AK) = [ u()PW P, (K)] .. ()PW Pe
-1
~ oL (PW P, (k)] @l (k)PWPe (43)
where we have assumed that to a first order approxima?t'go;ﬁk:) is sufficiently close tap, , (k). From (32)-(35),
byx(k, 0), duu(k,l) and ¢, ,(k,¢) are unbiased estimates for, . (k,£), du.(k,£) and ¢, (k,¢), respectively.
Hence,
E{e(k, 0} = E{byualk,0) = duulh,0) = A(R) by (k. 0)}
= str(kag) - stu(kvg) - A(k) d’ss(kvg) =0.
Accordingly ¢ is zero mean, which implies tha&(k) is asymptotically an unbiased estimate fofk).
The choice ofi¥ that minimizes the variance of(k) is given by
W = [cov(Pe)] ™" = P~ [cov(e)] ' P~ (44)
where P~ is a generalized inverse d?, i.e.,
po ) RO if €= andp(k, () £ 0
o 0, otherwise.
The variance ofd(k) is given by
" —1 —1
var {A(k)} = [oL. ()P W P&, (K)| ~ ¢L.(k)PW Pcov(e) PWH Po, (k) | 6], (k)P W™ P o, (k)|
(45)

Substituting (44) into (45), we obtain

-1

var {A(k)} = (@1, (k) [cov(e)] " b, (k) (46)
where we used the identit~ P ¢, (k) = ¢, ,(k), since by definitiong; s(k,¢) reduces to zero whenever the

speech presence probabilipyk, ¢) is zero.

APPENDIXII

ASYMPTOTIC COVARIANCE OF e

From (18) and (19), we have

(k) = [Dyalk,€) = 6y, O] = [burulh ) = Guu(k,0)] = A [Dosk,0) = 60s(k,0)]  (47)
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Using the relations
V(k, ) =Y (k,0) — A(k) X (k,0) = W (k,0) — A(k) U(k,¢)

and
(;5:695(]{,@) = (bss(k;e) + ¢uu(k7€)

we obtain

0k, ) = [Dualk,€) = 00l D) = [duulh ) = Guulh,0) (48)

Since the estimate fap, ., (k,¢) is derived based on frames that do not contain speégb(k,é) is not updated

during speech presendeg., whenp(k, ¢) # 0), we have
cov{p(k,O)e(k,0),p(k, 0" )e(k, )} = p(k,Op(k,t")cov{e(k,l),e(k,¢')}
= ok, Op(, )cov { Gy a (R, ), b (k,€) }
= cov {p(k, Oy a(k, 0),p(k, )b (k,€)} (49)
Then, for the purpose of WLS optimizatiohe(, minimization of [P ]” W [P ¢]), the elements ofov(e) can be
substituted withcov {ésm(k, 0), bk, ef)}.
Cross-spectrum estimation by using Welch’'s method [17]liesp

- 1
var {dua(k, O} & 5 (k) 000 (. 0) (50)

whereN, is the number of cross-periodograms that are averagedyigph first-order smoothing with a smoothing

parametery; (0 < as < 1) for the empirical cross-spectrum estimation
Gva(k,0) = g yu(k, £ — 1) + (1 — )V (k, ) X*(k, £),

and assuming that observations in the time-frequency dorassociated with different frames are statistically

independent, we have

cov (e(k, ), e(k, ) = { tra, Pea(k O k), £=0 (51)
0, £
where we have used, ~ }fg
APPENDIXIII
DERIVATION OF (31)
By (30),
14 ay (bua)y (Poa)y — (52)

T—a, "7 (a0, (71 62 >'
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where, for notational simplicity, the argumeritsand ¢ are omitted. Denoting b§ = ¢, s/ ¢, the a priori SNR

at the primary sensor, and usig., = ¢ss + ¢, together with the assumption thaftt) is stationary ¢, . is

independent of the frame inde¥, we have

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(23]

[14]

1ta, = _ <£+1>e<(£+1)*1>e_1
tet (e+1™) (2+n™),
(€407 (CernE+n™) 1+ (1) (2™
<(§+1) 1> <€2(§+1) >£
3

_ {lern™) elern™) (e,
) (€+™) (eE+n™),
= 1 <§ SRl >l <1. (53)

e (eern™),
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Initialize variables on the first frame for all frequency bitts

quz(k,(]) = |X(k50)|2; ngz(kvo) = ngu(k,o) = Y(kvO) X*(k‘,O).

bss(k,0) = Py(k,0) =0; A(k,0)=1
For all time framey
For all frequency bing

Compute the recursively averaged periodograms(k, £) and ¢, ..(k, ¢) using (32) and (33).

Compute the signal presence probabifity:, £) using [10], the time-varying smoothing parameien k, ¢) using
(36), and the cross-PSD of the interfering signals, (k, £) using (35).

Compute the OM-LSA gain functio&'(k, £) using [10], and the recursively averaged periodograms of theedesir
signal ¢. < (k, £) using (34).

Compute the step-size parametdi, ¢) and the estimation errai(k, £) using (38) and (39).

If the time-frequency bin contains some desired signal energyg.,( in the event that
10 log,o[¢s (K, £)/dxz(k,€)] > —10dB), then update the estimate for the system’s transfer function

A(k, £) using (37).

Fig. 1. On-line speech-based system identification algaorit
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Fig. 2. Speech waveforms. (a) Clean sigs@l) at the primary sensor: “Draw every outer line first, then filthe interior.”; (b) Reverberated
clean signala(t) * s(t) at the reference sensor; (c) The observed noisy signal gortheary sensor (SNR= 4.0 dB); (d) The observed

noisy signal at the reference sensor (SNR-0.1 dB).
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Fig. 3. Signal leakage(¢) in stationary noise environment: (a) Nonstationarity-basgstem identification (SBE 9.1 dB); (b) Speech-
based system identification (SBF 18.5 dB); (c) On-line speech-based system identification (SBF3.9 dB).
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Fig. 4. Signal leakage(t) in nonstationary noise environment: (a) Nonstationaraged system identification (SBF 4.9 dB); (b) Speech-
based system identification (SBF 13.8 dB); (c) On-line speech-based system identification (SBF1.5 dB).
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Fig. 5. Average signal blocking factor (SBF) under varioes ooise conditions. Nonstationarity-based system ifleation in pseudo-
stationary (dasheds) and nonstationary (dash-dat) car noise environments; Speech-based system identificatipseudo-stationary (solid,

x) and nonstationary (dotted) car noise environments.





