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Robust System Identification Using Speech

Signals
Israel Cohen

Abstract

An important component of a multichannel hands-free communication system is the identification of the coupling

between sensors in response to a desired source signal. In this paper,a robust system identification approach adapted to

speech signals is proposed. A weighted least-squares optimization criterion is introduced, which includes the probability

that the desired signal is present in the observed signals. An asymptotically unbiased estimate for the system’s transfer

function is derived, and a corresponding recursive on-line implementation is presented. We show that compared to a

competing nonstationarity-based method, a significantly smaller error variance is achieved and generally shorter observation

intervals are required. Furthermore, in case of a time-varying system,faster convergence and higher reliability of the system

identification are obtained. Evaluation of the proposed system identification approach is performed under various noise

conditions, including simulated stationary and nonstationary white Gaussian noise, and car interior noise in real pseudo-

stationary and nonstationary environments. The experimental results confirm the advantages of proposed approach.

Index Terms

Array signal processing, system identification, signal detection, acoustic noise measurement, speech enhancement,

spectral analysis, adaptive signal processing.

I. I NTRODUCTION

An important component of a multichannel hands-free communication system is the identification of the coupling

between sensors in response to a desired source signal [1], [2], [3]. This coupling, often referred to as the

acoustical transfer function (ATF) ratio, represents the relation between the impulse responses of the sensors

to the desired source. In reverberant and noisy environments, the coupling identification enables to construct an

adaptive blocking channel, for an accurate derivation of a reference noise signal, and an adaptive noise canceller, for

eliminating directional or coherent noise sources [4]. Furthermore, it also facilitates multichannel signal detection and

postfiltering techniques, which employ the transient powerratio between the beamformer output and the reference

signals [5], [6].

The author is with the Department of Electrical Engineering,Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

(email: icohen@ee.technion.ac.il; tel.: +972-4-8294731;fax: +972-4-8323041).

gitta
CCIT Report # 426     June 2003



2

Shalvi and Weinstein [1] have proposed to identify the coupling between sensors by using the nonstationarity

of the desired signal. They assumed that the sensors containadditive interfering signals whose cross-correlation

function is stationary, while the autocorrelation function of the desired signal is nonstationary. Then, dividing the

observation interval into a sequence of subintervals, and computing for each subinterval the cross power spectral

density (PSD) of the sensors, they obtained an overdetermined set of equations for the two unknown quantities: the

system’s transfer function and the (presumably stationary) cross-PSD of the primary sensor and a noise component.

An asymptotically unbiased estimate for the system’s transfer function was derived by using a weighted least-squares

(WLS) approach for minimizing the error variance under certain assumptions.

A major limitation of the nonstationarity-based system identification is that both the system identification and

noise estimation are carried out through the same WLS optimization criterion. The WLS optimization consists of

two conflicting requirements: One is minimizing the error variance of the system’s transfer function estimate, which

pulls the weight up to higher values in higher SNR subintervals. The other requirement is minimizing the error

variance of the noise estimate, which rather implies smaller weights in higher SNR subintervals. Another major

limitation of this method is that the observation interval should be adequately long, so that for all frequency bands it

includes quite a few subintervals that contain the desired signal. Unfortunately, in case the desired signal is speech,

in some frequency bands the presence of speech may be sparse,which implies a very long observation interval.

Furthermore, the system’s transfer function is assumed to be constant during the observation interval. Hence, very

long observation intervals also restrict the capability ofthis technique to track time-varying systems (e.g., tracking

moving talkers in hands-free communication scenarios [7],[8], [9]). Additionally, a fundamental assumption is that

the interfering signals remain stationary during the entire observation interval. This is a very restrictive assumption,

particularly in view of the generally long observation interval required for obtaining a reliable system identification

in case of speech signals.

In this paper, a robust system identification approach adapted to speech signals is proposed. The speech presence

probability in the time-frequency domain is incorporated into the optimization criteria for system identification and

noise spectra estimation. An estimate for the system’s transfer function is derived based on subintervals that contain

speech, while subintervals that do not contain speech are ofmore significance when estimating the noise spectra.

The estimate for the auto-PSD of the desired signal is obtained by applying a first-order recursive smoothing to

its Optimally Modified Log-Spectral Amplitude(OM-LSA) estimate [10]. The cross-PSD of the interfering signals

is estimated by using theMinima Controlled Recursive Averaging(MCRA) approach [11], [12]. Subsequently,

minimum variance WLS estimate for the system’s transfer function is derived, and a recursive on-line solution is

obtained based on the least-mean-square (LMS) algorithm. We show that the error variance obtained by using the

proposed method is significantly smaller than that obtainedby using the nonstationarity method. Furthermore, the

contribution of a given time-frequency bin to the error-variance minimization depends on the relative power of the

desired signal in that bin. The higher the SNR is, the shorterthe observation interval required for obtaining a reliable
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system identification. Whereas the nonstationarity method requires a relatively long observation interval, regardless

of the SNR, to retain the desired signal sufficiently nonstationary. Additionally, in contrast to the nonstationarity

method, in the proposed method the statistical properties of the interfering signals are allowed to change during time-

frequency windows that do not contain desired signal components. Accordingly, in case of a time-varying system,

faster convergence and higher reliability of the system identification are achieved by using the proposed method.

Evaluation of the proposed method is performed under various noise conditions, including simulated stationary and

nonstationary white Gaussian noise, and real car interior noise in pseudo-stationary and nonstationary environments.

The experimental results confirm that the proposed algorithm is advantageous to the nonstationarity-based algorithm.

The paper is organized as follows. In Section II, we formulate the system identification problem. In Section III,

we review the nonstationarity-based system identificationtechnique, which heavily relies on the stationarity of the

interfering signals and nonstationarity of the desired signal. In Section IV, we introduce a system identification

approach that is more appropriate to speech signals. The optimal estimate for the system’s transfer function is

derived based on the speech presence probability in the time-frequency domain. In Section V, we describe the

system identification algorithm and its on-line implementation. Finally, in Section VI, we present experimental

results, which demonstrate the improvement gained by the proposed approach.

II. PROBLEM FORMULATION

Let s(t) represent a desired source signal, denote byu(t) andw(t) additive interfering signals that are uncorrelated

with the desired signal, and leta(t) represent the coupling of the desired signal to the reference sensor. The signals

measured by a primary and reference sensors are given by

x(t) = s(t) + u(t) (1)

y(t) = a(t) ∗ s(t) + w(t) (2)

where∗ denotes convolution. Our objective is to identifya(t) in the general case whereu(t) is statistically correlated

with w(t).

An equivalent problem is to consider a linear time-invariant (LTI) system, whose inputx(t) and outputy(t) are

related by

y(t) = a(t) ∗ x(t) + v(t) (3)

where a(t) represents the impulse response of the system that we want toidentify, and v(t) denotes additive

noise. The system input is assumed to be the sum of a desired signal s(t) and statistically uncorrelated noiseu(t)

as in (1). Furthermore, the desired signal is presumably uncorrelated withv(t). It is easy to verify that the two

above-mentioned problems are equal, with

v(t) = w(t) − a(t) ∗ u(t) . (4)
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III. SYSTEM IDENTIFICATION USING NONSTATIONARITY

In this section, we review the system identification technique of Shalvi and Weinstein [1]. This method heavily

relies on the assumption thatv(t) is stationary, and that the desired signals(t) is nonstationary.

Dividing the observation interval intoM subintervals, and computing for each subintervalm (m = 1, 2, . . . ,M )

the cross-PSD betweeny andx, we obtain from (3)

φ(m)
y x (ω) = A(ω)φ(m)

x x (ω) + φv x(ω) , (5)

whereA(ω) is the Fourier transform ofa(t), and φv x(ω) is independent of the subinterval indexm due to the

stationarity ofv(t) andu(t), and the lack of correlation betweenv(t) ands(t). Let φ̂
(m)
y x (ω), φ̂

(m)
x x (ω) andφ̂

(m)
v x (ω)

be estimates forφ(m)
y x (ω), φ

(m)
x x (ω) andφv x(ω), respectively. Then

φ̂(m)
y x (ω) = A(ω) φ̂(m)

x x (ω) + φ̂(m)
v x (ω)

= A(ω) φ̂(m)
x x (ω) + φv x(ω) + ε(m)(w) , (6)

where

ε(m)(w) = φ̂(m)
v x (ω) − φv x(ω) . (7)

This can be written in a matrix form as

z
4
=

















φ̂
(1)
y x(ω)

φ̂
(2)
y x(ω)

...

φ̂
(M)
y x (ω)

















=

















φ̂
(1)
x x(ω) 1

φ̂
(2)
x x(ω) 1

...
...

φ̂
(M)
x x (ω) 1





















A(ω)

φv x(ω)



 +

















ε(1)(w)

ε(2)(w)
...

ε(M)(w)

















4
= Ĝθ + ε . (8)

The WLS estimate ofθ is obtained by




Â(ω)

φ̂v x(ω)



 = θ̂ = arg min
θ

(

z − Ĝθ
)H

W
(

z − Ĝθ
)

=
(

ĜHWĜ
)−1

ĜHWz (9)

where W is a positive Hermitian weight matrix,H denotes conjugate-transpose, andĜHWĜ is required to be

invertible.

Shalvi and Weinstein suggested two choices of a weight matrix. One choice is given by

Wm n =







Tm , m = n

0 , m 6= n
(10)



5

whereTm is the length of subintervalm, so that longer intervals obtain higher weights. In this case, (9) reduces to

Â(ω) =

〈

φ̂y x(ω) φ̂x x(ω)
〉

−
〈

φ̂y x(ω)
〉 〈

φ̂x x(ω)
〉

〈

φ̂2
x x(ω)

〉

−
〈

φ̂x x(ω)
〉2 (11)

with the average operation defined by

〈ϕ(ω)〉
4
=

∑M

m=1 Tmϕ(m)(ω)
∑M

m=1 Tm

. (12)

Another choice ofW that minimizes the covariance of̂θ is given by

Wm n =







Tm / φ̂
(m)
x x (ω) , m = n

0 , m 6= n
(13)

In which case, (9) yields

Â(ω) =

〈

1 / φ̂x x(ω)
〉 〈

φ̂y x(ω)
〉

−
〈

φ̂y x(ω) / φ̂x x(ω)
〉

〈

φ̂x x(ω)
〉 〈

1 / φ̂x x(ω)
〉

− 1
, (14)

and the variance of̂A(ω) is given by

var
{

Â(ω)
}

=
1

BT
·

φv v(ω) 〈1 / φx x(ω)〉

〈φx x(ω)〉 〈1 / φx x(ω)〉 − 1
(15)

whereT
4
=

∑M

m=1 Tm, andB = 1
∑

τ
w2(τ) is related to the window’s bandwidth that is pre-selected for the empirical

cross-spectrum estimation [1].

A major limitation of the WLS optimization in (9) is that both the identification ofA(ω) and the estimation

of the cross-PSDφv x(ω) are carried out using the same weight matrixW . That is, each subintervalm is given

the same weight, whether we are trying to find an estimate forA(ω) or for φv x(ω). However, subintervals with

higher SNRs are of greater importance when estimatingA(ω), whereas the opposite is true when estimatingφv x(ω).

Consequently, the optimization criterion in (9) consists of two conflicting requirements: One is minimizing the error

variance ofÂ(ω), which pulls the weight up to higher values in higher SNR subintervals. The other requirement

is minimizing the error variance of̂φv x(ω), which rather implies smaller weights in higher SNR subintervals. For

instance, suppose we obtain observations on a relatively long low-SNR interval of lengthT0, and on a relatively

short high-SNR interval of lengthT1 (T1 � T0). Then, the variance of̂A(ω) in (15) is inversely proportional to

the relative length of the high-SNR interval,T1/(T0 + T1). That is, including in the observation interval additional

segments that do not contain speech (i.e., increasingT0) increases the variance of̂A(ω). This unnatural consequence

is a result of the desire to minimize the variance ofφ̂v x(ω) by using larger weights on the segments that do not

contain speech, while increasing the weights on such subintervals degrades the estimate forA(ω).

Another major limitation of system identification using nonstationarity is that the interfering signals are required

to be stationary during the entire observation interval, and the observation interval should include quite a few

subintervals that contain the desired signal. Unfortunately, in case the desired signal is speech, in some frequency
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bands the presence of speech may be sparse, which implies a very long observation interval, thus constraining

the interfering signals to be stationary over long intervals. Furthermore, the system’s transfer functionA(ω) is

assumed to be constant during the observation interval. Hence, very long observation intervals also restrict the

capability of the system identification technique to track varyingA(ω) (e.g., tracking moving talkers in reverberant

environments).

IV. SYSTEM IDENTIFICATION USING SPEECHSIGNALS

In this section, we propose a system identification approachthat is adapted to speech signals. Specifically, we

assume that the presence of the desired speech signal in the time-frequency domain is uncertain, and employ the

speech presence probability to separate the tasks of systemidentification and cross-PSD estimation. An estimate

for A(ω) is derived based on subintervals that contain speech, whilesubintervals that do not contain speech are of

more significance when estimating the components ofφv x(ω).

Let the observed signals be divided in time into overlappingframes by the application of a window function

and analyzed using the short-time Fourier transform (STFT). Assuming the support of the window function is

sufficiently large compared with the duration ofa(t), (3) can be written in the time-frequency domain as

Y (k, `) = A(k)X(k, `) + V (k, `) (16)

whereA(k) is the transfer function of the system,k represents the frequency bin index (k = 1, 2, . . . ,K), and` is

the frame index (̀= 1, 2, . . . , L). Thus, similar to (5) we have

φy x(k, `) = A(k)φx x(k, `) + φv x(k, `) . (17)

Eqs. (1) and (4), and the assumption that the desired signals(t) is uncorrelated with the interfering signalsu(t)

andw(t), imply

φy x(k, `) = A(k)φs s(k, `) + φw u(k, `) . (18)

Writing this equation in terms of the PSD estimates, we obtain

φ̂y x(k, `) − φ̂w u(k, `) = A(k) φ̂s s(k, `) + ε(k, `) (19)

whereε(k, `) denotes an estimation error. This gives usL equations, which may be written in a matrix form as

ψ̂(k)
4
=

















φ̂y x(k, 1) − φ̂w u(k, 1)

φ̂y x(k, 2) − φ̂w u(k, 2)
...

φ̂y x(k, L) − φ̂w u(k, L)

















=

















φ̂s s(k, 1)

φ̂s s(k, 2)
...

φ̂s s(k, L)

















A(k) +

















ε(k, 1)

ε(k, 2)
...

ε(k, L)

















4
= φ̂s s(k)A(k) + ε . (20)
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Since the transfer functionA(k) represents the coupling between the primary and reference sensor with regards

to the desired source signal, the optimization criterion for the identification ofA(k) has to take into consideration

the probability that the desired signal is present in the observed signals (S(k, `) 6= 0). Specifically, letp(k, `) =

P {S(k, `) 6= 0 |x(t), y(t)} denote the conditional signal presence probability given the observed signals, and letP

represent a diagonal matrix with the elements[p(k, 1), p(k, 2), . . . , p(k, L)] on its diagonal. Then the WLS estimate

of A(k) is obtained by

Â(k) = arg min
A(k)

[P ε]
H

W [P ε]

= arg min
A(k)

[

ψ̂(k) − φ̂s s(k)A(k)
]H

P W P
[

ψ̂(k) − φ̂s s(k)A(k)
]

=
[

φ̂
T

s s(k)P W P φ̂s s(k)
]−1

φ̂
T

s s(k)P W P ψ̂(k) . (21)

The weight matrixW that minimizes the variance of̂A(k) is given by

W = [cov(P ε)]
−1

= P− [cov(ε)]
−1

P− (22)

whereP− is a generalized inverse ofP , i.e.,

P−

`,`′ =







[p(k, `)]
−1

, if ` = `′ andp(k, `) 6= 0

0 , otherwise.

This choice ofW yields an asymptotically unbiased estimate forA(k)

Â(k) =
(

φ̂
T

s s(k) [cov(ε)]
−1
φ̂s s(k)

)−1

φ̂
T

s s(k) [cov(ε)]
−1
ψ̂(k) (23)

whose variance is given by (see Appendix I)

var
{

Â(k)
}

=
(

φT
s s(k) [cov(ε)]

−1
φs s(k)

)−1

. (24)

The elements ofcov(ε) are asymptotically given by (see Appendix II)

cov (ε(k, `), ε(k, `′)) =







1−αs

1+αs

φx x(k, `)φv v(k) , ` = `′

0 , ` 6= `′
(25)

whereαs (0 ≤ αs < 1) is a smoothing parameter used for the empirical cross-spectrum estimation by the Welch’s

method. Substituting (25) into (23) and (24) we obtain

Â(k) =

〈

φ̂−1
x x(k, `) φ̂s s(k, `)

[

φ̂y x(k, `) − φ̂w u(k, `)
]〉

`
〈

φ̂−1
x x(k, `) φ̂2

s s(k, `)
〉

`

(26)

var
{

Â(k)
}

=
1 − αs

(1 + αs)L
·

φv v(k)
〈

φ−1
x x(k, `)φ2

s s(k, `)
〉

`

(27)

where the average operation is defined by

〈ϕ(k, `)〉`
4
=

1

L

L
∑

`=1

ϕ(k, `) . (28)
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Note that the estimatêA(k), as well as its variance, are independent of the speech presence probability, even though

the error minimization in the first line of (21) is subject to the conditional probability that the desired signal is

present in the observed signals. Furthermore, only frames that contain speech (φ̂s s(k, `) 6= 0) influence the values

of Â(k) andvar
{

Â(k)
}

. Including in the observation interval additional segments that do not contain speech does

not increase the variance of̂A(k).

For the comparison with the nonstationarity method, we replace the subinterval indexm in (15) with the frame

index `, and normalize the window function so thatB T0 = 1 whereT0 is the frame’s length. Accordingly, the

variance ofÂ(k) obtained using the nonstationarity method is

var
{

Â(k)
}∣

∣

∣

NS method
=

1

L
·

φv v(k)
〈

φ−1
x x(k, `)

〉

`

〈φx x(k, `)〉`
〈

φ−1
x x(k, `)

〉

`
− 1

(29)

Consequently, the ratio between the variance obtained by the proposed method and that obtained by the nonsta-

tionarity method is

ρ
4
=

var
{

Â(k)
}

∣

∣

∣

proposed method

var
{

Â(k)
}∣

∣

∣

NS method

=
1 − αs

1 + αs

·
〈φx x(k, `)〉`

〈

φ−1
x x(k, `)

〉

`
− 1

〈

φ−1
x x(k, `)

〉

`

〈

φ−1
x x(k, `)φ2

s s(k, `)
〉

`

. (30)

Let ξ(k, `)
4
= φs s(k, `)/ φu u(k) denote thea priori SNR at the primary sensor. Then substitutingφx x(k, `) =

φs s(k, `) + φu u(k) into (30) we obtain (see Appendix III)

ρ =
1 − αs

1 + αs

·
〈ξ(k, `) + 1〉`

〈

[ξ(k, `) + 1]
−1

〉

`
− 1

〈

[ξ(k, `) + 1]
−1

〉

`

〈

ξ2(k, `) [ξ(k, `) + 1]
−1

〉

`

<
1 − αs

1 + αs

(31)

Thus, the variance of̂A(k) obtained by using the proposed method is significantly smaller than that obtained by

using the nonstationarity method. Additionally, the contribution of a given time-frequency bin(k, `) to the quality

(error variance minimization) of the proposed estimator depends on the desired signal power contained in that

bin, φs s(k, `). The higher the SNR is, the fewer number of frames required for setting a certain upper limit to

the error variance. Whereas with the nonstationarity method, regardless of the SNR, a large number of frames is

necessary to account for the nonstationarity ofφx x(k, `). Furthermore, in the nonstationarity method, a fundamental

assumption is that the interfering signals remain stationary during the entire observation interval. This is a very

restrictive assumption, particularly in view of the generally long observation interval required for obtaining a reliable

A(k) estimate by using the nonstationarity method. On the other hand in the proposed method, not only a shorter

observation interval suffices, but also the statistical properties of the interfering signals are not required to be time-

invariant during time-frequency windows that do not contain desired signal components. Accordingly, in case of a

time-varying system, a faster convergence and higher reliability of the system identification is achieved by using

the proposed method.
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V. I MPLEMENTATION

Our algorithm requires estimates forφx x(k, `), φy x(k, `), φs s(k, `) andφw u(k, `). The first two estimates are

obtained by applying a first-order recursive smoothing to the periodograms|X(k, `)|
2 andY (k, `)X∗(k, `) of the

observed signals. Specifically,

φ̂x x(k, `) = αs φ̂x x(k, ` − 1) + (1 − αs) |X(k, `)|
2 (32)

φ̂y x(k, `) = αs φ̂y x(k, ` − 1) + (1 − αs)Y (k, `)X∗(k, `) (33)

where the smoothing parameterαs (0 ≤ αs < 1) determines the equivalent number of cross-periodograms that are

averaged,N` ≈ (1 + αs)/(1 − αs). Typically, speech periodograms are recursively smoothedwith an equivalent

rectangular window ofTs = 0.2 seconds length, which represents a good compromise betweensmoothing the noise

and tracking the speech spectral variations [13]. Therefore, for a sampling rate of8 kHz, a STFT window length of

256 samples and a frame update step of128 samples, we useαs = (Ts ·8000/128−1)/(Ts ·8000/128+1) ≈ 0.85.

To obtain an estimate for the PSD of the desired signal, we first estimate the STFT of the desired signal

by using theOptimally Modified Log-Spectral Amplitude(OM-LSA) estimation technique [10]. Subsequently, the

periodogram of the desired signal is recursively smoothed

φ̂s s(k, `) = αs φ̂s s(k, ` − 1) + (1 − αs)G
2(k, `) |X(k, `)|

2 (34)

whereG(k, `) denotes the OM-LSA gain function.

The cross-PSD of the interfering signals,w(t) andu(t), is estimated by using theMinima Controlled Recursive

Averaging(MCRA) approach [11], [12]. Specifically, past spectral cross-power values of the noisy observed signals

are recursively averaged with a time-varying frequency-dependent smoothing parameter

φ̂w u(k, `) = α̃u(k, `) φ̂w u(k, ` − 1) + β [1 − α̃u(k, `)] Y (k, `)X∗(k, `) (35)

where α̃u(k, `) is the smoothing parameter (0 < α̃u(k, `) ≤ 1), and β (β ≥ 1) is a factor that compensates the

bias when the desired signal is absent. The smoothing parameter is determined by the signal presence probability,

p(k, `), and a constantαu (0 < αu < 1) that represents its minimal value:

α̃u(k, `) = αu + (1 − αu)p(k, `) . (36)

The value ofα̃u is close to1 when the desired signal is present to prevent the noise cross-PSD estimate from

increasing as a result of signal components. It decreases linearly with the probability of signal presence to allow

a faster update of the noise estimate. The value ofαu compromises between the tracking rate (response rate to

abrupt changes in the noise statistics) and the variance of the noise estimate. Typically, in case of high levels of

non-stationary noise, a good compromise is obtained byαu = 0.85 [12].



10

Substituting the above spectral estimates into (26) we obtain an estimate forA(k). Alternatively, a recursive

on-line solution to (21) based on the LMS algorithm [14] is given by

Â(k, `) = Â(k, ` − 1) − µ
∂

∂A∗

[

p2(k, `)W``

∣

∣

∣
φ̂y x(k, `) − φ̂w u(k, `) − A φ̂s s(k, `)

∣

∣

∣

2
]∣

∣

∣

∣

A=Â(k,`−1)

= Â(k, ` − 1) + µ(k, `) φ̂s s(k, `) ε̂(k, `) (37)

where

µ(k, `) =
µ̃

φ̂x x(k, `) φ̂v v(k, `)
(38)

is a time-varying frequency-dependent step-size parameter,

ε̂(k, `) = φ̂y x(k, `) − φ̂w u(k, `) − Â(k, ` − 1)φ̂s s(k, `) (39)

is the estimation error, and by using the relationV (k, `) = Y (k, `) − A(k)X(k, `) we obtain

φ̂v v(k, `) = φ̂y y(k, `) +
∣

∣

∣
Â(k, ` − 1)

∣

∣

∣

2

φ̂x x(k, `) − 2<
{

Â(k, ` − 1)φ̂∗

y x(k, `)
}

. (40)

The update ofÂ(k, `) in (37) is carried out whenever the time-frequency bin(k, `) contains some desired signal

energy (e.g.,in the event that10 log10[φ̂s s(k, `)/φ̂x x(k, `)] > −10 dB). The implementation of the proposed on-line

system identification algorithm is summarized in Fig. 1.

VI. EXPERIMENTAL RESULTS

In this section, the proposed system identification approach is compared to the nonstationarity method in various

noise environments. The performance evaluation includes simulated stationary and nonstationary white Gaussian

noise (WGN), as well as pseudo-stationary and nonstationarynoise signals recorded in a car environment. A

quantitative comparison between the system identificationmethods is obtained by evaluating the signal blocking

factor (SBF), defined by

SBF = 10 log10

E
{

s2(t)
}

E {r2(t)}
[dB] (41)

whereE
{

s2(t)
}

is the energy contained in the clean speech signal, andE
{

r2(t)
}

is the energy contained in the

leakage signal

r(t) = a(t) ∗ s(t) − â(t) ∗ s(t) . (42)

The leakage signal represents the difference between the reverberated clean signal at the reference sensor and its

estimatêa(t) ∗ s(t) given the desired signal at the primary sensor. It has a majoraffect on the amount of distortion

introduced by the Transfer Function GSC [4]. The SBF measureis associated with the capability to block the

desired signal and produce a noise-only signal by computingv̂(t) = y(t) − â(t) ∗ x(t).

The first experiment was performed on a speech signal (femalespeaker) sampled at8 kHz. Similar to the

experiment in [1], the noiseu(t) is a stationary zero-mean gaussian process whose average power is a factor of
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2.5 larger than the average power of the speech (SNR= 4 dB). The impulse response of the reference sensor to the

desired signal is

a(t) = δ(t − 6T ) − 0.5 δ(t − 7T ) + 0.25 δ(t − 8T ) ,

whereT = 12.5 ms is the sampling period. In addition, the reference sensornoisew(t) is generated by

w(t) = g(t) ∗ u(t) ,

where

g(t) = −δ(t) − 0.5 δ(t − T ) + 0.1 δ(t − 2T ) .

Figure 2 shows the clean speech signals at the primary and reference sensors, and the observed noisy signals.

We have applied the nonstationarity-based system identification algorithm (14) to a4-s observation interval

(32 000 samples) that was arbitrarily divided into disjoint subintervals of128 samples length. As is suggested in

[2], only subintervals in which speech is active (SNR in the subinterval is greater than0 dB) were taken into

account. The leakage signalr(t) is plotted in Fig. 3(a). The resultant SBF is9.1 dB.

Figures 3(b) and (c) show the leakage signals obtained by using the proposed algorithms. Off-line speech-based

system identification (see (26)) yields a SBF of18.5 dB, whereas the on-line speech-based system identification(see

(37)) yields a SBF of13.9 dB. Both algorithms achieve a significantly higher SBF than the nonstationarity-based

algorithm.

In the second experiment, a nonstationary WGNu(t) was simulated by increasing the stationary WGN at a rate

of 6 dB/s for a period of two seconds, and then decreasing it back to the original level at the same rate. We used

again the same speech signal, and the same impulse responses, a(t) andg(t), of the reference sensor to the desired

signal and the primary sensor noise (SNR= −5.2 dB at the primary sensor). The leakage signals produced by the

above-mentioned algorithms are shown in Fig. 4. As in the stationary noise environment, the proposed speech-

based algorithms achieve significantly higher SBF’s than the nonstationarity-based algorithm. Furthermore, the

performance degradation of the proposed algorithms, when compared to the stationary noise case, is less substantial

than that of the nonstationarity-based algorithm. This is due to the fact that in the proposed algorithms the noise cross-

PSD estimate is continuously updated during speech presence and absence, whereas in the nonstationarity-based

algorithm the noise is assumed stationary and the system identification is completely based on the nonstationarity

of the desired signal alone.

In the third experiment, two microphones with10 cm spacing are mounted in a car on the visor. Clean speech

signals are recorded at a sampling rate of8 kHz in the absence of background noise (standing car, silentenvironment).

Car noise signals are recorded while the car speed is about60 km/h, and the window next to the driver is either

closed or slightly open (about5 cm; the other windows remain closed). The noise PSD is pseudo-stationary in the

former case, while varies substantially in the latter case due to wind blows and passing cars. The input microphone

signals are generated by mixing the speech and noise signalsat various SNR levels in the range[−10, 10] dB.
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Figure 5 shows experimental results of the average SBF obtained under various car noise conditions using the

competing system identification algorithms. Clearly, the proposed system identification method is considerably more

efficient than the nonstationarity-based method even in thepseudo-stationary noise environment. The rationale is

that subintervals with low SNR are more useful for noise estimation, whereas subintervals with high SNR are

more useful for system identification. Therefore, by weighting the subintervals for noise estimation differently than

the weighting for system identification, improved performance is achieved. Moreover, the proposed algorithm is

less sensitive to variations in the noise statistics in casethe noise is nonstationary. For a given input SNR, the

performance of the proposed algorithm in anonstationarynoise environment might be even slightly better than that

obtained in a stationary noise environment. This is relatedto the fact that for a given input SNR and nonstationary

noise, there are necessarily subintervals where the instantaneous noise power is lower than its average, and these

subintervals are given higher weights in the system identification process. On the contrary, the performance of the

nonstationarity-based algorithm, which is based on the nonstationarity of the desired signal alone, essentially is

impaired in nonstationary noise environments.

VII. C ONCLUSION

We have proposed a robust system identification approach forthe coupling between sensors in response to speech

signals. The optimization criterion takes into account theprobability that the desired speech is present in the received

signals. Nevertheless, the estimate for the system’s transfer function and its variance are independent of the speech

presence probability, but require the auto-PSD of the desired signal and the cross-PSD of the interfering signals.

The auto-PSD of the desired signal is estimated by recursively smoothing the log-spectral amplitude estimate of

the signal. The cross-PSD of the interfering signals is estimated by applying a time-varying frequency-dependent

recursive smoothing to the cross-PSD of the observed signals, and compensating the bias in accordance with the

MCRA method. We showed that the proposed minimum variance WLSestimate for the system’s transfer function

yields a significantly smaller error variance than that obtained by the nonstationarity method. Generally shorter

observation intervals are required for obtaining a reliable system identification, and also the interfering signals are

not required to be stationary during absence of the desired signal. In case of a time-varying system,e.g., moving

talkers in hands-free communication scenarios, the proposed method allows to faster and more reliably track the

variations. Using the proposed method for the identification of the acoustical transfer function ratios, as part of the

transfer-function generalized sidelobe canceller(TF-GSC) [2], [4], leads to improved adaptation of the blocking

matrix and the noise canceller, and facilitates multichannel signal detection and postfiltering techniques, which

employ the transient power ratio between the beamformer output and the reference signals [15], [6], [16].
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APPENDIX I

ASYMPTOTIC VARIANCE OF Â(k)

Substituting (20) into (21), we obtain

Â(k) − A(k) =
[

φ̂
T

s s(k)P W P φ̂s s(k)
]−1

φ̂
T

s s(k)P W P ε

≈
[

φT
s s(k)P W P φs s(k)

]−1

φT
s s(k)P W P ε (43)

where we have assumed that to a first order approximationφ̂s s(k) is sufficiently close toφs s(k). From (32)-(35),

φ̂y x(k, `), φ̂w u(k, `) and φ̂s s(k, `) are unbiased estimates forφy x(k, `), φw u(k, `) and φs s(k, `), respectively.

Hence,

E {ε(k, `)} = E
{

φ̂y x(k, `) − φ̂w u(k, `) − A(k) φ̂s s(k, `)
}

= φy x(k, `) − φw u(k, `) − A(k)φs s(k, `) = 0 .

Accordingly ε is zero mean, which implies that̂A(k) is asymptotically an unbiased estimate forA(k).

The choice ofW that minimizes the variance of̂A(k) is given by

W = [cov(P ε)]
−1

= P− [cov(ε)]
−1

P− (44)

whereP− is a generalized inverse ofP , i.e.,

P−

`,`′ =







[p(k, `)]
−1

, if ` = `′ andp(k, `) 6= 0

0 , otherwise.

The variance ofÂ(k) is given by

var
{

Â(k)
}

=
[

φT
s s(k)P W P φs s(k)

]−1

φT
s s(k)P W P cov(ε)P WH Pφs s(k)

[

φT
s s(k)P WH P φs s(k)

]−1

(45)

Substituting (44) into (45), we obtain

var
{

Â(k)
}

=
(

φT
s s(k) [cov(ε)]

−1
φs s(k)

)−1

(46)

where we used the identityP−P φs s(k) = φs s(k), since by definitionφs s(k, `) reduces to zero whenever the

speech presence probabilityp(k, `) is zero.

APPENDIX II

ASYMPTOTIC COVARIANCE OF ε

From (18) and (19), we have

ε(k, `) =
[

φ̂y x(k, `) − φy x(k, `)
]

−
[

φ̂w u(k, `) − φw u(k, `)
]

− A(k)
[

φ̂s s(k, `) − φs s(k, `)
]

(47)
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Using the relations

V (k, `) = Y (k, `) − A(k)X(k, `) = W (k, `) − A(k)U(k, `)

and

φx x(k, `) = φs s(k, `) + φu u(k, `)

we obtain

ε(k, `) =
[

φ̂v x(k, `) − φv x(k, `)
]

−
[

φ̂v u(k, `) − φv u(k, `)
]

(48)

Since the estimate forφv u(k, `) is derived based on frames that do not contain speech (φ̂v u(k, `) is not updated

during speech presence,i.e., whenp(k, `) 6= 0), we have

cov {p(k, `)ε(k, `), p(k, `′)ε(k, `′)} = p(k, `)p(k, `′)cov {ε(k, `), ε(k, `′)}

= p(k, `)p(k, `′)cov
{

φ̂v x(k, `), φ̂v x(k, `′)
}

= cov
{

p(k, `)φ̂v x(k, `), p(k, `′)φ̂v x(k, `′)
}

(49)

Then, for the purpose of WLS optimization (i.e., minimization of [P ε]H W [P ε]), the elements ofcov(ε) can be

substituted withcov
{

φ̂v x(k, `), φ̂v x(k, `′)
}

.

Cross-spectrum estimation by using Welch’s method [17] implies

var
{

φ̂v x(k, `)
}

≈
1

N`

φx x(k, `)φv v(k, `) (50)

whereN` is the number of cross-periodograms that are averaged. Applying a first-order smoothing with a smoothing

parameterαs (0 ≤ αs < 1) for the empirical cross-spectrum estimation

φ̂v x(k, `) = αs φ̂v x(k, ` − 1) + (1 − αs)V (k, `)X∗(k, `) ,

and assuming that observations in the time-frequency domain associated with different frames are statistically

independent, we have

cov (ε(k, `), ε(k, `′)) =







1−αs

1+αs

φx x(k, `)φv v(k) , ` = `′

0 , ` 6= `′
(51)

where we have usedN` ≈
1+αs

1−αs

.

APPENDIX III

DERIVATION OF (31)

By (30),
1 + αs

1 − αs

· ρ =
〈φx x〉`

〈

φ−1
x x

〉

`
− 1

〈

φ−1
x x

〉

`

〈

φ−1
x x φ2

s s

〉

`

. (52)
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where, for notational simplicity, the argumentsk and ` are omitted. Denoting byξ = φs s/ φu u the a priori SNR

at the primary sensor, and usingφx x = φs s + φu u together with the assumption thatu(t) is stationary (φu u is

independent of the frame index̀), we have

1 + αs

1 − αs

· ρ =
〈ξ + 1〉`

〈

(ξ + 1)
−1

〉

`
− 1

〈

(ξ + 1)
−1

〉

`

〈

ξ2 (ξ + 1)
−1

〉

`

=

〈

(ξ + 1)
−1

〉

`

〈

(2 ξ + 1) (ξ + 1)
−1

〉

`
− 1 +

〈

(ξ + 1)
−1

〉

`

〈

ξ2 (ξ + 1)
−1

〉

`
〈

(ξ + 1)
−1

〉

`

〈

ξ2 (ξ + 1)
−1

〉

`

=

〈

(ξ + 1)
−1

〉

`

〈

ξ (ξ + 1)
−1

〉

`
−

〈

ξ (ξ + 1)
−1

〉

`
〈

(ξ + 1)
−1

〉

`

〈

ξ2 (ξ + 1)
−1

〉

`

+ 1

= 1 −

〈

ξ (ξ + 1)
−1

〉2

`
〈

(ξ + 1)
−1

〉

`

〈

ξ2 (ξ + 1)
−1

〉

`

< 1 . (53)

REFERENCES

[1] O. Shalvi and E. Weinstein, “System identification usingnonstationary signals,”IEEE Trans. Signal Processing, vol. 44, no. 8, pp. 2055–

2063, 1996.

[2] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamforming and nonstationarity with applications to speech,”

IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1614–1626, August 2001.

[3] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained

adaptive filters,”IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2677–2684, October 1999.

[4] S. Gannot, D. Burshtein, and E. Weinstein, “Theoreticalperformance analysis of the general transfer function GSC,”Technion - Israel

Institute of Technology, Haifa, Israel, CCIT Technical Report 381, May 2002.

[5] I. Cohen, “Multi-channel post-filtering in non-stationary noise environments,” Technion - Israel Institute of Technology, Haifa, Israel,

Technical Report, EE PUB 1314, April 2002.

[6] I. Cohen, S. Gannot, and B. Berdugo, “An integrated real-time beamforming and postfiltering system for non-stationary noise environments,”

to appear in special issue of EURASIP JASP on Signal Processing for Acoustic Communication System, 2003.

[7] M. S. Brandstein and H. F. Silverman, “A practical methodology for speech source localization with microphone arrays,”Computer, Speech,

and Language, vol. 11, no. 2, pp. 91–126, April 1997.

[8] Y. Huang, J. Benesty, and G. W. Elko,Microphone Arrays for Video Camera Steering, ch. 11, pp. 239–259.

[9] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein,Robust Localization in Reverberant Rooms, ch. 8, pp. 157–179.

[10] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,”Signal Processing, vol. 81, no. 11, pp. 2403–2418,

October 2001.

[11] ——, “Noise estimation by minima controlled recursive averaging for robust speech enhancement,”IEEE Signal Processing Letters, vol. 9,

no. 1, pp. 12–15, January 2002.

[12] I. Cohen, “Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging,”IEEE Trans. Signal

Processing, May 2003.

[13] R. Martin, “Noise power spectral density estimation based on optimal smoothing and minimum statistics,”IEEE Trans. Speech and Audio

Processing, vol. 9, no. 5, pp. 504–512, July 2001.

[14] B. Widrow and S. D. Stearns, Eds.,Adaptive Signal Processing. Prentice-Hall, 1985.



16

[15] I. Cohen and B. Berdugo, “Microphone array post-filtering for non-stationary noise suppression,” inProc. 27th IEEE Internat. Conf.

Acoust. Speech Signal Process., ICASSP-2002, Orlando, Florida, 13–17 May 2002, pp. 901–904.

[16] ——, “Two-channel signal detection and speech enhancement based on the transient beam-to-reference ratio,” inProc. 28th IEEE Internat.

Conf. Acoust. Speech Signal Process., ICASSP-2003, Hong Kong, 6–10 April 2003, pp. V 233–236.

[17] P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging overshort modified

periodograms,”IEEE Transactions on Audio and Electroacoustics, vol. AU-15, no. 2, pp. 70–73, June 1967.



17

Initialize variables on the first frame for all frequency binsk:

φ̂x x(k, 0) = |X(k, 0)|2; φ̂y x(k, 0) = φ̂w u(k, 0) = Y (k, 0) X∗(k, 0).

φ̂s s(k, 0) = Ps(k, 0) = 0; Â(k, 0) = 1

For all time frames̀

For all frequency binsk

Compute the recursively averaged periodogramsφ̂x x(k, `) and φ̂y x(k, `) using (32) and (33).

Compute the signal presence probabilityp(k, `) using [10], the time-varying smoothing parameterα̃u(k, `) using

(36), and the cross-PSD of the interfering signalsφ̂w u(k, `) using (35).

Compute the OM-LSA gain functionG(k, `) using [10], and the recursively averaged periodograms of the desired

signal φ̂s s(k, `) using (34).

Compute the step-size parameterµ(k, `) and the estimation error̂ε(k, `) using (38) and (39).

If the time-frequency bin contains some desired signal energy (e.g., in the event that

10 log
10

[φ̂s s(k, `)/φ̂x x(k, `)] > −10 dB), then update the estimate for the system’s transfer function

Â(k, `) using (37).

Fig. 1. On-line speech-based system identification algorithm.
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Fig. 2. Speech waveforms. (a) Clean signals(t) at the primary sensor: “Draw every outer line first, then fill inthe interior.”; (b) Reverberated

clean signala(t) ∗ s(t) at the reference sensor; (c) The observed noisy signal at theprimary sensor (SNR= 4.0 dB); (d) The observed

noisy signal at the reference sensor (SNR= −0.1 dB).
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Fig. 3. Signal leakager(t) in stationary noise environment: (a) Nonstationarity-based system identification (SBF= 9.1 dB); (b) Speech-

based system identification (SBF= 18.5 dB); (c) On-line speech-based system identification (SBF= 13.9 dB).
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Fig. 4. Signal leakager(t) in nonstationary noise environment: (a) Nonstationarity-based system identification (SBF= 4.9 dB); (b) Speech-

based system identification (SBF= 13.8 dB); (c) On-line speech-based system identification (SBF= 11.5 dB).
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Fig. 5. Average signal blocking factor (SBF) under various car noise conditions. Nonstationarity-based system identification in pseudo-

stationary (dashed,∗) and nonstationary (dash-dot,◦) car noise environments; Speech-based system identification in pseudo-stationary (solid,

×) and nonstationary (dotted) car noise environments.




