
Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 1

In-Kernel Integration of Operating System and Infiniband Primitives for
High Performance Computing Clusters: a DSM Example

Liran Liss, Yitzhak Birk and Assaf Schuster

Technion – Israel Institute of Technology
{liranl@tx, birk@ee, assaf@cs}.technion.ac.il

Abstract
The Infiniband (IB) System Area Network (SAN) enables
applications to access hardware directly from user level,
reducing the overhead of user-kernel crossings during
data transfer. However, distributed applications that
exhibit close coupling between network and OS services
may benefit from accessing IB from the kernel through
IB’s native Verbs interface, which permits tight integration
of these services. We assess this approach using a
sequential-consistency Distributed Shared Memory (DSM)
system as an example. We first develop primitives that
abstract the low-level communication and kernel details,
and efficiently serve the application’s communication,
memory and scheduling needs. Next, we combine the
primitives to form a kernel DSM protocol. The approach is
evaluated using our full-fledged Linux kernel DSM
implementation over Infiniband. We show that overheads
are reduced substantially, and overall application
performance is improved both in terms of absolute
execution time and scalability.

1. Introduction
Infiniband (IB) [1] is a high-performance SAN

architecture that implements in hardware legacy software
protocol tasks such as reliability and multiplexing among
different connections. New hardware capabilities such as
Remote Direct Memory Access (RDMA) are also
supported. Applications can send and receive data at high
rates when accessing IB through user-level networking
interfaces, e.g., VIA [2]. However, since IB defines its
basic primitives in the kernel, kernel subsystems and
extensions can also exploit the new hardware.

In this paper, we assess the benefits of accessing IB
through the kernel for applications that exhibit close
coupling between network services and those of the
operating system. We use a software Distributed Shared
Memory (DSM) system as a context.

DSM is a runtime system that emulates shared memory
across a computing cluster [3, 4]. Software DSMs
implement an invalidation-based protocol using the
operating system’s page protection mechanism. Access
rights to invalidated pages are revoked, while a page fault
triggers a protocol action that updates the page.

Software DSM protocols vary widely. Some tolerate
the coarse sharing granularity induced by the OS/hardware
(the system page size) by using relaxed consistency

memory models (e.g., Lazy Release Consistency (LRC)
[4]), while others employ fine-grain sharing and retain the
intuitive Sequential Consistency (SC) memory model
[5, 6]. However, several observations hold for DSM
protocols in general:
• Each protocol invocation requires at least one system

call. These are usually multiple calls for changing page
protection or for synchronizing with application or
communication threads (using semaphores, mutexes,
etc.).

• The communication is inherently asynchronous. Various
request messages (Pages, Locks, Diff applications,
Barriers) arrive unexpectedly.

• Latency is important. A DSM system is intended for
parallel, computation-bound applications. An
application thread waiting for a remote response can
severely affect the parallel computation. In addition, the
communication workload comprises mostly small
packets, so high bandwidth does not suffice.

• Application data is frequently transferred among nodes.
This data is not processed by the DSM protocol, and its
destination address is known in advance.

Therefore, reducing expensive system calls and user-
kernel crossings, high responsiveness to asynchronous
events, and efficient data transfer in terms of buffer copies
and associated OS protocol processing are all required for
high performance.

The introduction of high-performance user-level SANs
to DSM systems [7, 8] eliminated OS protocol processing,
and reduced extra memory copying through remote
memory operations. Responsiveness, however, remains a
problem: constant polling is the most responsive method,
but wastes valuable CPU cycles; a separate
communication thread requires a context switch to and
from it; catching a signal depends on the receiving task
being scheduled. Also, memory protection system calls are
reported to constitute substantial overhead in user-level
implementations [9, 10]. Accordingly, DSM systems
appear well suited for evaluating the kernel/IB platform.

Previous work demonstrated the advantages of
integrating the kernel network protocol stack (TCP/IP)
with high-level protocols [11] or with the file cache [12] in
network servers. In this paper, we show that this approach
is beneficial even for SANs, wherein the network protocol
stack is implemented in hardware.

lesley
CCIT Report #428June 2003

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 2

Systems such as databases [13] and distributed file
systems [14] can benefit substantially from new hardware
capabilities such as reliable data transfer and RDMA.
However, researchers have pointed out that specialized
APIs would be needed in order to attain the full benefits
[15].

These observations have motivated us to evaluate the
integration of SAN access with other OS functions in the
kernel.

We designed and implemented a set of primitives, and
used them to construct a highly efficient Linux kernel/IB
platform. We then adapted Multiview [6], a fine-grain SC
DSM protocol, to this environment, and carried out an
extensive comparative performance evaluation of our
prototype implementation.

Our main findings are as follows. Common DSM
overheads were substantially reduced using our kernel/IB
platform: response latency for asynchronous events
improved by 33% relative to a user-level implementation,
and changing page protections for large page groups
performs an order of magnitude better than conventional
system calls. These improvements enabled our kernel/IB
DSM system to improve application execution time by up
to 23% relative to a corresponding VIA/IB
implementation. In addition, our system scales better than
the same DSM protocol implemented over a dedicated
hardware VIA platform (ServerNet-II).

Our approach has broad applicability beyond DSM.
The availability in the kernel of Infiniband’s software
primitives enabled us to integrate network and operating
system resources efficiently, which resulted in fewer user-
kernel crossings, less overhead in accessing OS functions,
and better control over the scheduling of network related
events. Such combined services can offer high
performance to applications through an appropriate user-
level API.

The remainder of the paper is organized as follows. In
section 2, we briefly review Infiniband and Multiview.
Our communication and memory-management primitives
are presented in section 3. The DSM protocol adaptation is
discussed in section 4. Performance results are
summarized in section 5, and Section 6 presents discussion
and concluding remarks.

2. Background
2.1 Infiniband

Infiniband is a switch-based serial I/O interconnect
architecture that provides low latency, high bandwidth
communication. Among its main features are
2.5/10/30Gb/s link speeds, Connection-based and
Connectionless communication modes, Unreliable as well
as Reliable services, and support for provision of quality
of service, all implemented directly in hardware. IB
defines two classes of end-point devices:

• Host Channel Adapters (HCAs) are used for connecting
computing nodes. HCAs must support the IB Verbs
interface [1-vol.1, ch.11], which defines the function
provided to the node by the channel adapter.

• Target Channel Adapters (TCAs) are used for
connecting I/O devices. The interface between the
interconnect and the target device is not specified.

For computing clusters, we focus on HCAs.
The Verbs interface defines the semantics for utilizing

various HCA resources (Fig. 1). The basic communication
end-point abstraction is the Queue Pair (QP), which
consists of a Send Work Queue and a Receive Work
Queue. Each queue must be associated with a Completion
Queue (CQ). Multiple queues (even from different QPs)
can be associated with a single CQ. A Verbs consumer
(any entity that makes use of the Verbs abstraction) posts
work requests (WR) to the work queues, which are then
processed asynchronously by the HCA hardware.

When a QP is configured for Signaled Completions,
completed WRs always insert a Completion Queue
Element (CQE) into the appropriate CQ. Alternatively, a
QP can be configured for Unsignaled Completions: in this
case, a successfully completed WR that was posted to the
Send Work Queue does not generate a CQE unless it was
explicitly requested to do so. A Verbs consumer can poll
a CQ for completions, or request Completion Notification
for a certain CQ when the next CQE is inserted.

Fig. 1: Infiniband queuing model

IB defines two data transfer models:
• Message-passing (channel semantics). Data is sent using

Send-WRs, and its destination in remote memory is
determined at the receiver by posting in advance
corresponding Receive-WRs.

• Remote Direct Memory Access (memory semantics). The
sender specifies memory locations at both ends, and
memory is either read or written according to the
corresponding RDMA-WR (Read or Write).

All communication buffers are referenced using virtual
memory addresses. To guarantee direct, safe access by
hardware, these buffers have to reside in registered virtual
memory regions that are pinned to physical memory (fixed
virtual-to-physical mappings).

Send Work Queue

HCA
Hardware

WQE

Receive Work Queue

WQE WQE

CQE

Completion Queue

CQE CQE

Queue Pair

Work
Completion

Work
Request

Verbs
Consumer

WQE WQE WQE
To the
fabric

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 3

Using the Verbs, operating systems can implement
software interfaces that enable applications to use IB
directly. The Verbs can also form the basis for kernel
primitives that expose IB to operating-system subsystems
and extensions.

2.2 The Multiview DSM protocol
Multiview is a technique for achieving sub-page

sharing granularity. It was first implemented in the
Millipage system [6]. Consider two variables that reside in
the same physical page. By mapping two virtual pages to
the same physical page, each variable can be accessed
through a different virtual page, enabling hardware
protection for a shared variable that is smaller than the
system page size. If access is attempted only to the
variables associated with such a virtual page, we get in
effect a smaller page to which we refer as a ‘mini-page’.

Our Multiview DSM implements a thin sequential
consistency protocol that consists of three entities: the
requestor (retrieves the required mini-page on behalf of a
faulting process), the manager (holds the state information
of all mini-pages in the system and manages page
requests), and the server (responds to manager requests for
protection changes and mini-page transfers). The manager
is statically distributed (with respect to mini-pages) in a
round-robin fashion.

A request is triggered by a page fault and forwarded to
the manager. After handling previous requests for the
same mini-page, the manager sends invalidation and page
transfer notices to one or more servers (on nodes currently
holding a valid copy of the page), which notify the
requestor once they complete their handling. After the
requestor receives all notifications and a possible mini-
page update, it sends an acknowledgement to the manager
and resumes the faulting process. Page faults can take two
or three hops (excluding the final acknowledgement),
depending on whether the manager node is also the
requestor, the server, or neither one of them. The protocol
is single-writer.

From this point on, the term ‘protocol’ will refer to the
DSM protocol mentioned above. However, in many cases
the mechanisms that we describe are also applicable to
other protocols / services.

3. Our primitives
We identified and implemented a set of primitives that

serve the communication, memory, and scheduling needs
of the protocol. Their implementation did not require any
modifications to the operating system.1 We next detail
these primitives, their associated Infiniband abstractions,
and the kernel mechanisms that we used.

1 All our kernel extensions were implemented as loadable driver modules.
For convenience, we also customized the kernel to export additional
symbols. Otherwise, the kernel is unchanged.

3.1 Buffer management and flow control
While the data integrity needs of our system map

nicely to IB’s Reliable Connection service (we open such
a connection between every two nodes in the cluster), WR
processing and its associated buffer management are low-
level and complex. Therefore, we decided to provide the
protocol with simpler primitives for handling channel-
semantics operations. Application data or protocol meta-
data that are accessed in place by memory-semantics
operations are better left to the control of the protocol.

Send buffers are allocated on behalf of the protocol in
response to a buffer reservation request. After the protocol
signals that the buffer can be sent, a corresponding Send
WR is enqueued, and the buffer is reclaimed upon
completion. To ensure resource reuse while maintaining
acceptable performance, we provide an efficient scheme
for fast completion detection as follows. We configure the
QPs for Unsignaled Completions to prevent completion-
processing overhead for every posted WR. Additionally,
we decouple the detection of completed WRs from explicit
signaling requested by the protocol: when the protocol
requests a signaled completion, a notification is passed as
soon as the corresponding CQE is dequeued; also, a
signaled completion is requested occasionally for cleanup
purposes as necessary, but the protocol is not notified.

In many parallel systems, including our DSM, the
number of in-flight messages is bounded. Moreover,
unbalanced communication patterns are not uncommon in
parallel applications, and this bound can be reached
whenever all threads access new data following a
sequential phase. Finally, our protocol uses Send
semantics only for short control messages, so the
maximum buffer space for in-flight messages cannot be
very large. Therefore, we decided to allocate the maximum
number of receive buffers to every receive queue, thereby
eliminating the need for application-level flow control and
achieving efficient delivery for every message. (While the
flow control mechanism itself does not add much
overhead, a window size that is not matched to the
application’s bursty traffic pattern could pause the sender
often, wasting valuable CPU cycles for polling or
responding to an asynchronous event to complete the send
operation.) The scalability of this approach is limited only
by the physical resources in each node (memory and WQ
sizes). Therefore, flow control can be avoided altogether
when the bound is reasonable, or used with a window size
that is sufficiently large to capture common-case traffic.
The protocol is given access to receive buffers only during
a handler call (as in FM [16]), allowing the buffers to be
consumed and freed in a simple round-robin fashion.

3.2 Asynchronous-event handling
Request messages arrive from the fabric unexpectedly,

and must be handled with minimal latency. Furthermore,
the protocol may want to be notified whenever an

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 4

asynchronous operation such as RDMA Read completes.
IB addresses these issues by enabling a Verbs Consumer
to register a handler function and request completion
notification for each CQ. Once such notification is
requested, the next CQE inserted into that CQ triggers the
registered handler.

Since all connections are symmetric in our system and
an asynchronous message can arrive from any node at any
time, we chose to serve all WQs with a single CQ. We
allow the protocol to register a single completion handler,
and handle general CQE processing (dequeuing CQEs,
requesting notification and polling remaining CQEs) in a
centralized manner. Moreover, the use of a single CQ and
at most one outstanding completion notification request
jointly provide for atomic handling of events, so less
locking is needed when accessing shared data.

A remaining question is where to perform the
associated protocol processing whenever the asynchronous
notification handler is called. In our platform, the
completion notification is delivered as part of an interrupt
service routine (ISR), so calling the protocol handler
(while remaining in ISR context) would provide superb
latency. However, such a scheme does not allow the called
code to sleep (or to call any OS service that may block),
spin-lock or access user space, and implies that processing
should be extremely fast because other interrupts may be
disabled in this context.

Our protocol takes actions such as waking processes,
sending responses to the network, state manipulation, and
changing page protections. However, careful examination
reveals that executing asynchronous entry points of our
protocol inside ISR context is permissible. Waking
processes is a main function of ISRs, and posting a WR to
the network during interrupt context is supported by our
architecture. We address synchronization and locking
issues by a unique design of the protocol (section 4), and
by rescheduling asynchronous-event handling in process
context in the uncommon case of resource shortages (like
a taken lock). Changing page protections inside ISRs is
discussed below. Finally, our lightweight SC protocol
satisfies the requirement for fast processing.

Note that, although performing the associated protocol
processing inside a process context does not impose any of
the aforementioned restrictions, latency depends on the
process’ scheduling which can take considerable time and
increases overhead.

Remark. For events whose handling requires longer
processing, handling in the ISR is not adequate. In these
cases, the Linux Task Queue mechanism [17] is a good
solution. While most task queues execute in interrupt
context2 (and thus impose similar restrictions to ISRs),
they take place at a “safer” time (interrupts enabled) than

2 In Linux, ‘Interrupt-Context’ refers to any execution context that is not
related to a process. Examples include ISRs, Bottom-Halves, certain Task
Queues, and Tasklets.

ISRs. In addition, they are a fairly fast mechanism and do
not rely on process scheduling. Although we do without
task queues, the Immediate Task Queue (the fastest queue
in the system) can be considered for other protocols and
applications.

3.3 Efficient page protection
Page-protection system calls are used extensively by

DSM systems, and are reported as a major source of
overhead. Beyond the overhead of the system call itself,
changing page protections involves acquisition of
semaphores and locks, expensive data structure
manipulation and often flushing the TLB. (In SMP
machines, this can require interruption of other processors
to flush their TLB and polling for completion.) Therefore,
we decided to implement a unique kernel manager for
virtual memory areas dedicated to DSM memory. Our
implementation achieves the following goals:
• No data structures are changed except the ones

necessary for the hardware (page tables).
• A single call can change any group of pages to any set

of protections.
• There are no sleeping operations. Locking is reduced to

acquisition of a single lock, which is nearly always free.
• Page protection changes can be attempted in interrupt

context. In the rare case that the lock is already being
held, the operation fails and should be retried by the
protocol.

A complete description of our memory manager will be
reported elsewhere.

4. DSM protocol adaptation
Application data movement in DSM systems is well

matched to IB’s memory semantics, because data is
transferred to well-known virtual addresses in memory.
Furthermore, memory semantics eliminate data copies
between the application's address space and dedicated
communication buffers. (This has been shown to improve
DSM performance by up to 15% [8].) Protocol control
messages such as page requests and lock acquisitions,
which generally require processing on the remote node,
are better matched to channel semantics. Therefore, we
decided to implement data movement and control
messages by RDMA-W and Send WRs, respectively,
using our communication and buffering primitives. Since
IB requires all virtual memory regions that participate in
communication to be pinned in physical memory, this
decision implies that the application problem size is
limited to the amount of physical memory. If the problem
size exceeds that of physical memory, communication
buffers can be used instead [8], or a hybrid approach can
be taken. For example, accessing part of the application
data directly using RDMA, and part of it using
communication buffers. Such partitioning can change
dynamically at certain phases of the application execution

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 5

(such as barriers). However, these solutions come at a cost
of additional data copying or expensive system calls when
buffers are re-registered. Note that for large problems,
virtual memory page thrashing due to insufficient physical
memory is likely to limit execution speed regardless of the
data transfer semantics.

In order to fully utilize the kernel/IB platform, we
decided to implement the entire protocol in kernel code.
This reduces user-kernel crossings to a minimum, as a user
process issues a system call only when it has to block (e.g.,
after suffering a DSM page fault). Furthermore, the
protocol’s asynchronous entry points are all implemented
in interrupt context based on our asynchronous event
handling and memory primitives, which cuts latency and
eliminates context switching due to network events. To
eliminate severe data races between interrupt and process
contexts, we defined a clean separation between tasks
performed by the synchronous and asynchronous portions
of the coherence protocol:
• Synchronous entry points (requestor threads) handle all

request bookkeeping tasks. These tasks access
coherence meta-data only for reading.

• Asynchronous entry points (message and WQ
completion handlers) handle only page protection tasks
and coherence meta-data manipulation. Protections are
granted when a reply for a page request arrives, and are
revoked when serving invalidation requests.

The control flow of our request model is as follows. A
requestor competes for exclusive access to bookkeeping
information. After access is granted, it checks whether a
new page request message needs to be generated. If the
page is already available, the requestor just returns. If an
outstanding request will also satisfy the new one, the
requestor is added to the proper wait queue after
incrementing a usage count. Otherwise, a new message is
sent to the appropriate manager, and the requestor is added
to the wait queue assigned for this request. Page
availability is determined by inspecting coherence meta-
data.
When an asynchronous reply signals the completion of the
request, necessary protection changes are performed,
coherence meta-data is updated, and the corresponding
wait queue is signaled. After reacquiring exclusive access,
a woken requestor decrements the request usage count and
returns. Resources can be reused once the usage count
drops to zero.

Since the synchronous entry points closely follow the
monitor synchronization paradigm, and asynchronous
entry points are executed atomically, the only feasible data
race is a read-write data race, whereby a process reads
coherence meta-data while an interrupt handler updates it.
However, this does not affect the correctness of the
protocol: when an interrupt signals that a page is available,
we prevent a new requestor from joining the
corresponding wait queue by using Linux's wait_event

primitive (which checks the sleep condition after the
process is put “half to sleep” [17]); when a page is
“stolen” by an interrupt handler while a requestor is
released, the requestor will simply generate another page
fault (the normal behavior).

Fig. 2 shows the control path among the system
components. In the common case, an asynchronous
operation that involves coherence meta-data updates,
protection changes, sending a response and waking up
processes, is executed to completion by the ISR itself.

Fig. 2: Our Kernel-IB system control path

Note that, in a sequential consistency DSM, barrier and

lock requests are simple actions that do not involve any
coherence information. We implemented them using a
similar approach. In order to reduce latency further, we
experimented both with selective polling (replacing
interrupts with polling whenever a process is expecting a
response and has nothing else to do) and fetching data with
RDMA-R when the remote processor need not be
disturbed. This situation arises during read page fault
handling, when the requested page is currently shared and
not available in the manager node. Thus, the requestor can
pull the page from a server node containing a valid copy
without changing its protections.

5. Performance evaluation
In this section we evaluate the performance of our

implementation. Results are reported for micro-
benchmarks as well as for complete applications. All
experiments were performed on a cluster of twelve SMP
PCs, running the Linux 2.4.18 operating system. Each
machine has two 733 MHz P-III processors, 512 KB L2
cache, 512 MB memory and a 32-bit, 33MHz PCI bus.
Every node employed a multi-port Mellanox MT21108
card [18], which provides IB switch and TCA (targets the
PCI bus) functionality. The device also has limited HCA
support in the form of a dedicated DMA engine. (We
implemented a subset of the HCA Verbs interface,
achieving full hardware performance for data transfers.)
Basic OS/IB operation latencies are reported in Table 1.
Node to node bandwidth varies from 52 MB/s for 256 byte
WRs up to 103 MB/s for 4 KB WRs.

Event

IB Abstraction
Memory

Protection

Page Tables Channel Adapter

User level

Protocol logic

Kernel
level

OS

Hardware

ISR

Scheduler

DSM services

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 6

Table 1: Basic OS/Infiniband operation latencies.
Operation Latency [µs]

Interrupt delivery 10
Page fault cost (fault to signal handler) 5
System call invocation 0.7
DSM-Protect (single page) 0.9
Post Work Request (software overhead) 2
RDMA-W one-way latency 8-9
SEND one-way latency 22-23
RDMA-R (completion detected by polling
memory)

9

RDMA-R + CQ update 30
Poll (empty) completion queue 7

5.1 Applications
Our application suite comprises eight applications:

Water-nsquad (Water), LU-contiguous (LU) and Barnes-
Hut (Barnes) from SPLASH-2 [19]; Integer-Sort (IS) from
the NAS parallel benchmarks [20]; Successive Over-
Relaxation (SOR) and the Traveling Salesperson Problem
(TSP) from the Treadmarks [21] benchmark applications;
N-Body (NBody) and N-Body-Write (NBodyW) are
computation kernels that imitate N-body applications [22].
See Table 3 in the appendix for the input datasets used for
each application.

5.2 Micro-benchmark results
Fig. 3 depicts the dramatic performance advantage of

our memory subsystem for page protection over user-level
calls to Linux’s mprotect function. The reported latencies
correspond to the time it takes to change an arbitrary page
group (not necessarily consecutive) to arbitrary
permissions (not necessarily the same). For a single page,
our memory primitives enable a change of page
protections in roughly half the time of the OS
implementation. For groups of 16-32 pages, they perform
more than an order of magnitude better than the required
multiple mprotect system calls. As our protocol currently
only handles single page faults, we utilize our memory
primitives mainly for supporting ISR protocol handling.

Fig. 3: Page protection latencies

To evaluate the handling of asynchronous events inside
interrupt handlers, we compared it with task queue
handling and with passing a signal to a user-level handler
(resembles VIA implementations) using a simple ping-
pong test. Polling is added for reference. As shown in
Table 2, kernel handling performs substantially better than
user context, with some advantage to ISR over Task
Queues.

Table 2: Round-trip time for different receive contexts

Polling ISR Task Queue Process
45µs 60µs 70µs 90µs

5.3 Primitives’ contributions and optimizations
We next evaluate the combined contribution of our

primitives and two optimizations to the whole system, on a
cluster of eight nodes utilizing two threads per node.

Fig. 4 compares the execution time of three benchmark
applications, between a kernel implementation based on
our primitives (Kernel-ISR), and a simulation of a VIA/IB
implementation (VIA-sim). An additional kernel
implementation that executes asynchronous events in task
queues (Kernel-TQ) is added for reference. The VIA
simulation was done by incorporating the following
changes into the system:
• Whenever a completion notification is issued, the

interrupt handler pushes a signal to the application,
which in turn passes control to the driver for receive
processing.

• Before each protocol action that would require a system
call, we insert a 1µs delay.

• We perform memory protection changes by calling the
OS implementation (sys_mprotect) rather than using
our memory primitive.

Otherwise, the system is unchanged.
The application execution time in Kernel-ISR was 23%

shorter than with VIA-Sim. While Kernel-TQ performed
better than VIA-Sim in Barnes and NBodyW, it is
substantially inferior to VIA-sim in TSP. Detailed
execution time examination revealed that page faults in
Kernel-TQ cost twice more than VIA-Sim, and as much as
four times more than Kernel-ISR. Combined with the race
for shared locks in this application, lock acquisitions result
in 50ms wait times, which dominate the total execution
time. We explain this phenomenon by the nature of task
queue invocations: the Immediate task queue (on which
we based the Task-Queue implementation) is run either
after system calls or after scheduler invocations [17]. In
TSP, synchronization is maintained using several shared
locks, and local computation is relatively uninterrupted by
page faults or system calls. Consequently, the Task
Queues are examined infrequently, resulting in poor
responsiveness to asynchronous requests and contention
for the shared locks. Note that the user process handles

0

50

100

150

200

250

0 4 8 12 16 20 24 28 32

Page Group Size

La
te

nc
y

us
ec

mprotect - 1 thread mprotect - 2 threads
dsm_protect - 1 thread dsm_protect - 2 threads

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 7

this situation better because of the high responsiveness of
the Linux signal-handling mechanism.

0

3

6

9

12

15

Barnes NBodyW TSP

Ex
ec

ut
io

n
Ti

m
e

se
c

Kernel-ISR Kernel-TQ VIA sim

Fig. 4: Execution time vs. protocol execution context

We also tested the effects of load on the system (an

additional load of a single CPU-intensive process was run
on each node to simulate occasional interference by other
users of a cluster). In this configuration, the gap between
Kernel-ISR and VIA-Sim increased considerably in all
applications, indicating that the responsiveness of user-
process message handling is much more sensitive to load.

The introduction of selective polling reduced page fault
latencies by 3-7%. Note that, unlike the ping-pong test
summarized in Table 2, in a typical 3-hop page fault only
the final receiver polls (although other nodes could be
polling at the same time, this does not occur frequently).
Overall application performance improved by up to 6%.
However, when the number of application threads per
node was greater than the number of CPUs in each
machine, polling only degraded performance.

Finally, we evaluated the use of RDMA-R WRs (rather
than RDMA-W) in read-faults whenever data retrieval did
not require interrupting the remote processor. While read-
fault latencies increased by 2-3% on average (mostly due
to the relatively slow CQ update for RDMA-Rs in our
architecture), the total execution time of most applications
improved slightly. The main contribution of using RDMA
reads in our system is thus to mitigate the interference of
remote read requests with the computation of the node
providing the data (recall that all nodes play both roles at
different times).

5.4 Application performance
We evaluated the performance and scalability of our

implementation using eight benchmark applications. We
also compared the speedup with our implementation to
that of a true VIA implementation on the same computing
nodes, identical benchmark code, and a similar DSM
protocol. The VIA implementation ran over Windows NT
with the ServerNet-II VIA interconnect, whose
performance is comparable to our hardware (13µs send

latency, 180MB/sec bandwidth). Because of the
differences, the VIA/ServerNet speedups are provided
mainly in support of a scalability comparison.
Nonetheless, the results do provide a strong indication
regarding the relative execution times and overheads of the
two implementations.

The speedups relative to a sequential execution are
reported for all applications in Fig. 5(a-h). Recall that our
nodes are dual-SMP machines, so an execution with two
threads per node utilizes twice as many CPUs as an
execution with a single thread per node. See the appendix
for runtime statistics (Table 3) and an execution time
breakdown (Fig. 6) for each application.

Relatively “well behaved” applications (SOR, LU, IS
and TSP) achieve good speedups on both implementations.
Nevertheless, our kernel/IB platform consistently exhibits
better scalability, which is most noticeable in TSP. In
more demanding applications such as Water, Nbody,
NbodyW and Barnes, the scalability advantage of our
kernel/IB implementation over VIA is even more
pronounced.

The combination of a relatively large number of page
faults and extremely high synchronization rate limits the
scalability of the Water benchmark. The VIA
implementation exhibits poor speedups and does not scale
beyond six nodes. The kernel/IB implementation, in
contrast, still achieves acceptable speedups on a cluster of
twelve nodes for a single thread per node. However, for
two threads per node, our system does not scale from eight
to twelve nodes. This is because of a computation
imbalance that results in long barrier times.

Despite a high page fault rate, the NBody application
manages to get a speedup of 15 on 24 processors on our
architecture. NbodyW, in contrast, performs much worse
due to a sequential phase that exhibits a mismatch in
sharing granularity (a single thread reads and writes all
bodies): as the number of processors increases, this phase
dominates the execution time. We added for reference a
theoretical curve (for two threads per node) based on the
execution time on a single node and perfect speedup of the
parallel phases, as well as the upper speedup limit. For
both of these applications, the VIA implementation
demonstrates inferior scalability.

Barnes is the most demanding application in terms of
page faults because of the high degree of true sharing. This
in turn, introduces imbalances that result in high barrier
times, which affect both implementations.

For most applications, our system scales similarly
while running one or two threads per node. This can be
attributed to the small footprint of asynchronous-event
handling in our system, which does not involve thread-
switching overhead within the same CPU.

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 8

Fig. 5: Application speedups vs. number of nodes. (A single node with a single processor is used as the baseline.)
Legend: Diamond (blue) – VIA/NT, single thread per node; Square (pink) – Kernel/IB, single thread per node;
 Triangle (yellow) – Kernel/IB, two thread per node; Dashed line (green) – NBodyW Theoretical curve and limit.

a. TSP

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12

b. LU

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12

c. SOR

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12

d. IS

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12

e. NBody

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12

f. NBodyW

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

g. Barnes

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

h. Water

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 9

 Remark. The speedup differences are more noticeable
than those observed relative to our VIA simulation in the
previous subsection. This points to the conservative
approach taken in the simulation, and strengthens the
confidence in our findings.

6. Discussion and conclusions
In this section we elaborate on some of the general

lessons learned from our implementation. We detail some
of the Infiniband features/aspects that were not exploited,
discuss topics for future research, and point out insights
that go beyond DSM systems.

6.1 DSM conclusions and opportunities
Our communication, memory, and event-handling

primitives substantially reduce common DSM overheads.
ISR event-handling reduces the response time for
asynchronous messages by 33% relative to user-level
signal handlers, and our memory services outperform the
corresponding system calls for changing the protection of
page groups by an order of magnitude. While the full
benefits of our memory services were not realized in our
protocol (only single-page groups were used), we expect
them to substantially improve the performance of DSM
protocols that require multiple instantaneous page-
protection changes (e.g. RC protocols, adaptive granularity
SC protocols [22]). We have shown how a high-level
protocol can be split between interrupt and process
contexts, and employ these primitives to reduce
complexity. Our kernel/IB DSM system performs up to
23% better than a simulated VIA/IB implementation. (In
view of the way in which the simulation was carried out,
the comparison is quite accurate.) Our system also scales
better than the same DSM protocol implemented over a
dedicated hardware VIA platform (ServerNet-II). As
anticipated, applications that exhibit a high computation-
to-communication ratio and already achieve good
performance on DSM systems, benefit only marginally
from our platform. Likewise, the performance of
applications with poor locality and fine-grain access
patterns (such as FFT computations) will remain low.
However, there remains a large class of applications that
exhibit fine-grain sharing, which may benefit substantially
from the kernel/IB platform. For example, the NBody and
Water applications more than doubled their scalability
compared to the VIA/ServerNet implementation
mentioned in section 5.4.

Infiniband is well matched to the communication needs
of DSM systems. Its built-in flow control, reliability, and
RDMA capabilities eliminate the need for processing in
the majority of the data transfers. We found the main
contribution of RDMA reads to be reduced interference
with remote nodes, and expect it to be more noticeable for
larger clusters, especially for unbalanced page requests
among nodes. Furthermore, Atomic operations (which
were not supported by our hardware) can drastically

reduce the number of remote CPUs interrupted to process
a protocol action. Relaxed consistency DSMs can benefit
greatly from IB’s broadcast support [8].

Finally, our approach can be extended to implement a
completely synchronous sequential consistency system on
hardware platforms that can trigger TLB invalidations
from I/O devices: necessary locking could be achieved by
atomic operations, and page protections could be changed
by manipulating the page tables using RDMA and flushing
the TLB remotely. (A DSM that eliminates asynchronous
protocol processing using special support in the network
interface card has been demonstrated in [9], but it presents
a Release Consistency model.) We believe that such an
implementation can reduce all overheads in the system
dramatically, because it replaces the distributed processing
on behalf of a page request with pipelined IB requests.

6.2 Beyond DSM
The mechanisms developed in this work have broad

applicability. Our communication primitives, which
abstract the low-level WR processing model, enable a
dramatic complexity reduction. They provide protocols
with send-receive semantics that are both easy to use and
efficient (0-copy and minimal processing overhead).

High performance communication alone does not
suffice for low-latency message handling – the
responsiveness of the receiving context plays an important
role as well. For systems that demand predictable low-
latency responses, the ability to generate a response during
interrupt handling offers a good solution. For applications
that require more processing time, the commonly used
Linux Task Queue mechanism offers comparable average
responsiveness. However, it has less predictable response
times and is more sensitive to load – in some runs we
measured an average response time of over 300µs.

The availability in the kernel of Infiniband’s software
primitives enabled us to integrate network and operating
system resources efficiently. This approach resulted in
fewer user-kernel crossings, less overhead in accessing OS
functions, and better control over the scheduling of
network related events. Note that applications do not need
to be implemented in the kernel in order to take full
advantage of the platform: integration of OS and network
services in the kernel can provide high performance to
applications through an appropriate user-level API.

In this paper, network and memory operations served
to demonstrate our approach through a DSM API.
However, it has additional applications: combining the
SAN with the file cache (for Web and File Servers), task
management (for Remote-execution/Process-migration
facilities) and more.

Appendix
Table 3 presents the input set size and runtime statistics

for each benchmark application.

Technical Report #1367, EE Dept., Technion, Isreal, June 2003.

 10

Table 3: Benchmark application data sets and runtime statistics
Application

Input Set

Shared Memory

Size
Page Faults /

sec Barrier / sec
Lock /

sec
RDMA

Write Bandwidth
RDMA Read
Bandwidth

Send
Bandwidth

 Barnes 16K bodies 3.2 MB 4256 1.8 0 3.9 MB/s 174 KB/s 228 KB/s

 IS 224 numbers x 10 2 KB 138 76 0 18 KB/s 0 19 KB/s

 LU 1024x1024 8.3 MB 129 35 0 0.8 MB/s 625 KB/s 21 KB/s

 Nbody 8K bodies 0.52 MB 1089 4.3 0 1.8 MB/s 44 KB/s 81 KB/s

 NBodyW 8K bodies 0.52 MB 826 2.3 0 1.2 MB/s 23 KB/s 50 KB/s

 Ocean 1026x1026 238 MB 647 88 76 0.5 MB/s 0 84 KB/s

 SOR 4096x4096x10 67 MB 21 11 0 83 KB/s 0 4.3 KB/s

 TSP 19 Cities Tour 1.4 MB 313 0 28 1.3 MB/s 26 KB/s 30 KB/s

 Water 512 Molecules 0.3 MB 882 19 857 2.7 MB/s 482 KB/s 157 KB/s

The statistics were gathered from a single node in a
parallel computation consisting of eight nodes.

The normalized execution time break down for all
applications in our suite is shown in Fig. 6. (The times
reported are measured from user level and do not take into
account asynchronous handling time.) The measurements
where taken on node 0 only, for two- and eight- node
configurations utilizing a single thread per node. Note that
in Barnes and NBodyW, node 0 executes a sequential
phase. Therefore, average barrier times for other nodes
will be substantially longer.

Fig. 6: Normalized execution time breakdown

Acknowledgment. The authors are grateful to Mellanox
Technologies Inc. for providing the required Infiniband
hardware and related technical support.

References
1. Infiniband Trade Assoc. – Infiniband Spec. http://www.infinibandta.com/.
2. Virtual Interface Architecture Specification. http://www.viaarch.org/.
3. K. Li and P. Hudak, Memory Coherence in Shared Virtual Memory Systems.

ACM Trans. Comp. Sys., 7(4):321-359, Nov. 1989.

4. P. Keleher, A.L. Cox, and W. Zwaenepol, Lazy Consistency for Software
Distributed Shared Memory. In Proc. of the 19th Annual Symposium on
Comp. Arch., p. 13-21, May 1992.

5. D.J. Scales and K. Gharachorloo, Shasta: a system for supporting fine-grain
shared memory across clusters. In Proc. of the 8th SIAM Conference on
Parallel Proc. for Sci. Comp., Mar. 1997.

6. A. Itzkovitz and A. Schuster, MultiView and Millipage:Fine-Grain Sharing in
Page-Based DSMs. In Proc. Conf. on OS Design and Implementation, 1999.

7. M. Banikazemi, J. Liu, D.K. Panda, and P. Sadayappan, Implementing
TreadMarks over Virtual Interface Architecture on Myrinet and Gigabit
Ethernet: Challenges, Design Experience, and Performance Evaluation. In
Int’l. Conf. on Parallel Processing (ICPP), 2001.

8. M. Rangarajan and L. Iftode, Software Distributed Shared Memory over
Virtual Interface Architecture: Implementation and Performance. In Proc. 4th
Annual Linux Showcase and Conf., 2000.

9. A. Bilas, C. Liao, and J.P. Singh, Using Network Interface Support to Avoid
Asynchronous Protocol Processing in Shared Virtual Memory Systems. In
Proc. 26th Int’l. Symp. on Comp. Arch., 1999.

10. R. Samanta, A. Bilas, L. Iftode and J.P. Singh Home-based SVM protocols for
SMP clusters: Design and Performance. In Proc. 4th Int’l. Symp. on High-
Perf. Comp. Arch. (HPCA), 1998.

11. P. Joubert, R.B. King, R. Neves, M Russinovich and J.M. Tracy. High-
Performance Memory-BasedWeb Servers: kernel and User-Space
Performance. In Proc. USENIX Annual Tech. Conf., 2001.

12. V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-lite: A unified I/O buffering
and caching system. In OS Design and Impl.(OSDI), 1999.

13. Oracle, Oracle Net VI Protocol Support, a technical white paper.
http://www.vidf.org/Documents/whitepapers/Oracle_VI.pdf, 2001.

14. K. Magoutis, S. Addetia, A. Fedorova, M.I. Seltzer, J.S. Chase, A.J. Gallatin,
R. Kisley, R.G. Wickremesinghe, and E. Gabber, Structure and Performance
of the Direct Access File System. In Proc. USENIX Annual Tech. Conf., 2002.

15. Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J.F. Philbin and K. Li,
Experiences with VI Communication for Database Storage. In Proc. 29th Intl.
Symp. on Comp. Arch.(ISCA), 2002.

16. S. Pakin, V. Karamacheti and A. Chien, Fast Messages: Efficient, Portable
Communication for Workstation Clusters and Massively-Parallel Processors.
IEEE Concurency, 5(2): 60-73, 1997.

17. A. Rubini and J. Corbet. Linux Device Drivers, 2nd Edition. O’reilly books.
Online version: http://www.xml.com/ldd/chapter/book/.

18. Mellanox Technologies. http://www.mellanox.co.il/.
19. S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, The SPLASH-2

Programs: Characterization and Methodological Considerations. In Proc. of
the 22nd Annual Int’l. Symp. on Comp. Arch. (ISCA'95), 1995.

20. D. Bailey, J. Barton, T. Lasinski, and H. Simon, The NAS parallel
benchmarks. Tech. Rep. RNR-91-002, NASA Ames, Aug. 1991.

21. P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, Treadmarks:
Distributed shared memory on standard workstations and operating systems. In
Proc. of the USENIX Conference, pages 115-131,1994.

22. N. Niv and A. Schuster, Transparent Adaptation of Sharing Granularity in
Multiview-Based DSM Systems. In Int’l. Conf. on Par. and Distr. Proc. Symp.,
Apr. 2001.

0%

20%

40%

60%

80%

100%

2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8

TSP LU SOR IS Nbody NBodyW Banres Water

Application Read Fault Write Fault Lock Barrier

