
Efficient Multipath Routing Schemes
for Congestion Minimization

Ron Banner and Ariel Orda
Department of Electrical Engineering

Technion – Israel Institute of Technology
Haifa 32000, Israel

{ banner@tx, ariel@ee .technion.ac.il

Abstract

Unlike traditional routing schemes that route all traffic along a single path, multipath
routing strategies split the traffic among several paths in order to ease congestion. We
identify the major essential requirements of multipath routing. A multipath routing
scheme should limit the number of paths per destination, the end-to-end delay of each
path and the delay variance (delay-jitter) between different paths that ship traffic
towards the same destination. In spite of the important benefits provided by multipath
routing schemes, they got relatively little attention in the literature; moreover, most
studies focused on heuristic methods. This work provides the first comprehensive
study that establishes practical multipath routing strategies with provable
performance guarantees, in terms of load balancing and congestion minimization.

Keywords: Multipath Routing, Delay-Jitter, Load Balancing, QoS.

lesley
CCIT Report #429
June 2003

2

1. Introduction

1.1. General

Practical routing schemes typically focus on discovering a single “optimal” path for
routing, according to some desired metric. Accordingly, traffic is always routed over a
single path, which often results in substantial waste of network resources. Multipath
routing is an alternative routing scheme that distributes the traffic among multiple
“good” paths instead of routing all traffic along a single “best” path.

Multipath routing can significantly reduce congestion in “hot spots”, by deviating
traffic to unused network resources, thus improving network utilization and providing
load balancing [1]. Moreover, congested links usually result in poor performance and
high variance. For such circumstances, multipath routing can offer steady and smooth
data streams [2].

In spite of these important benefits, multipath routing schemes suffer from several
drawbacks. The first and most problematic one results from routing over paths with
variable latencies. Quoting [5]: “Since each of the redundant paths may have a
different latency involved, having packets take separate paths can cause packets to
always arrive out of order, increasing delivery latency and buffering requirements.”
Packet reordering causes TCP to enter a mode termed “fast retransmit”, which
consumes extra bandwidth as it attempts to unnecessarily retransmit reordered packets
that are assumed to have been lost. Hence, reordering can be detrimental to network
performance [5]. In order to avoid these drawbacks, the delay difference (also termed
delay jitter) must be small with respect to the packet serialization time. Quoting [6]:
“Delay differences greater than three times the packet serialization time can cause
terrible TCP performance.”

Another problem that arises in the use of multipath routing schemes is the
considerable overhead associated with establishing and maintaining many routes for
the same destination [7]. Moreover, the complexity of a scheme that distributes traffic
among multiple paths considerably increases as the number of paths increases.
Finally, there may be a limit on the number of explicitly routed paths that can be set
up between a pair of nodes, as is the case with label switched paths in MPLS.
Therefore, it is desirable to use as few paths as possible while at the same time exploit
the benefits of multipath routing. Fortunately, usually just a few paths are needed in
order to significantly exploit these benefits. Indeed, it has been concluded that
congestion is largely reduced when such one or two paths are identified in addition to
the traditional single path [8]; moreover, survivability techniques usually establish
only a single backup path for each active path [9].

The rest of this document is organized as follows. In the reminder of this section, we
outline our main contributions. In section 2, we introduce some terminology and
definitions, and formulate the main problems considered in this study. In section 3, we
present some background and survey related previous works. In section 4, we
consider multipath routing schemes with additive QoS requirements and end-to-end
reliability constraints. In section 5, we provide an approximation solution to the
fundamental multipath routing problem of minimizing congestion under a restriction
on the delay jitter. In section 6, we consider the problem of minimizing congestion

3

subject to a restriction on the number of paths per destination. Finally, in section 7, we
propose several directions for future work.

1.2 Our Contribution

To the best of our knowledge, this work provides the first comprehensive study that
establishes practical multipath routing strategies with provable performance
guarantees. Based on the literature, we identify the major essential requirements of
multipath routing. More specifically, we observe that, in practice, a multipath routing
scheme should restrict the number of paths per destination, the end-to-end delay of
each path and the delay-jitter among all paths. Accordingly, we establish multipath
routing schemes that address these requirements while balancing the network's loads.

We show that minimizing congestion under either delay or delay-jitter constraints is
computationally intractable. Accordingly, for both problems, we establish ε -optimal
approximation schemes; in particular, we note that this is the first scheme with
provable approximation bounds for the problem that restricts the delay jitter, which is
of major importance in the context of multipath routing [5],[6],[16],[17]. Finally, for
the scheme that restricts the end-to-end delay, we present an important application,
which minimizes the congestion under end-to-end reliability constraints.

Consider now the essential restriction on the number of routing paths per destination.
We show that minimizing the congestion under a restriction on the number of paths
per destination is computational intractable. However, for this problem we establish a

()11 r+ -approximation scheme that, for any 1r ≥ , violates the constraint on the

number of paths by a factor of at most r . Finally, we broaden the scope of this
problem by studying the dual problem, which restricts the congestion while
minimizing the number of paths per destination. For this problem we establish an r-
approximation scheme, which, for any r ≥ 1, violates the restriction on the congestion
by at most a factor of (1+1/r).

4

2. Model and Problems Formulation

This section formulates the general model and main problems that are addressed in
this study. We begin with a definition of a general communication network.
A network is represented by a directed graph (),G V E , where V is the set of nodes

and E is the set of links. Let N V= and M E= . A path is a finite sequence of

nodes ()0 1, , , hp v v v= " , such that, for 0 1n h≤ ≤ − , ()1,n nv v E+ ∈ . A path is simple if

all its nodes are distinct. A cycle is a path ()0 1, , , hp v v v= " together with the link

()0,hv v E∈ i.e., ()0 1 0, , , ,hv v v v" . Denote the set of all cycles in a network G by

()T G .

A commodity is a pair of nodes (),i j V V∈ × that is assigned with a non-negative

demand (),i jγ . Let β be the set of all commodities with positive demand

() () (){ },, , , 0i ji j i j V Vβ γ= ∈ × > . Given a commodity (),i j V V∈ × , we say that

node i is the source node of the given commodity and node j is the target node. If

1β ≤ , we say that the network has a single commodity flow demand. Otherwise, we

say that the network has a multi-commodity flow demand.

The set (),i jP is the collection of all directed paths from the source i to the destination

j in the network. In addition, let
()

(),

,

i j

i j V V
P P

∈ ×
� ∪ and let (,) (,)i j i j

simpleP P⊆ represents the

set of simple paths from i to j in the network. Finally, for each path p∈P(s,t) and link e∈E,

∆e(p) counts the number of occurrences of the link e in the path p. For example, given a non-
simple path p=(v0,v1,v2,v3,v1,v2,v4) and a link e=(v1,v2), we have ∆e(p)=2.

Each link e E∈ is assigned a weight ew +∈] and a capacity ec +∈] . We assume that

the link weighs ew constitute an additive metric. We consider a link state routing

environment, where each source node has an image of the entire network.

Definition 2.1 Given a (non-empty) path p , the weight ()W p of p is defined as the

sum of weights of its links, namely, () e
e p

W p w
∈

= ∑ .

Definition 2.2 Given a (non-empty) path p , the capacity ()C p of p is defined as the

capacity of its bottleneck link, namely, () { }e
e E

C p cMin
∈

= .

Definition 2.3 Let (),G V E be a network. A path flow is a real-valued function

{ }: 0f P +→ ∪\ that satisfies the following two properties:

Capacity constraints: For each e E∈ , () ()e e
p P

p f p c
∈

∆ ⋅ ≤∑ .

5

Flow demand: For each commodity (),i j V V∈ × , ()
()

()

,

,

i j

i j

p P

f p γ
∈

=∑ .

Definition 2.4 Given is a path flow { }: 0f P +→ ∪\ over a network (),G V E . A

link flow of a commodity (),i j V V∈ × is a real-valued function

{ }: 0f E V V +× × → ∪\ that satisfies, for each link e E∈ : () () (),i j
e e

p P

f p f p
∈

∆ ⋅∑� .

Denote
()

()

,

,

i j

e e
i j V V

f f
∈ ×
∑� .

Definition 2.5 Let (),G V E be a network. A cycle flow of a commodity (),i j V V∈ ×

is a real-valued function () { }: 0f T G V V +× × → ∪\ .

Note that, for a given link flow of a commodity (),i j V V∈ × , the path flow
() { },: 0i jf P +→ ∪\ is not necessarily unique. In addition, the path flow

representation (which is of size ()O P) may have exponential size (with respect to

the network representation). However, it follows from the flow decomposition
theorem [12] that any path flow assigned for a commodity (),i j V V∈ × (i.e. the

collection of pairs ()(),p f p for each (),i jp P∈) has a corresponding path flow with

at most M paths and cycles with a positive flow that share the same link flow
representation.

Definition 2.6 Given a network (),G V E and a link flow { }ef , the value e

e

f

c
is the

link congestion factor.

Definition 2.7 Given a network (),G V E and a link flow { }ef , the network

congestion factor is the largest link congestion factor in the network, i.e., max e

e E
e

f

c∈

 
 
 

.

As noted in [3],[11],[19] the network congestion factor provides a good indication of
congestion.

We now establish that minimizing the network congestion factor is equivalent for the
single commodity case to maximizing the flow i.e., the objective function of the well
known Max Flow Problem [12].

Theorem 2.1 Given a network (,)G V E two nodes { },s t capacities { }ec and a demand

γ . { }ef is a solution to the instance () { } { }, , , ,eG V E c s t of the Maximum Flow Problem

that transfers F γ≥ flow units from s to t iff { }ef F

γ
⋅ is a link flow that transfer γ flow

units from s to t such that the network congestion factor is minimized .

The proof to the Theorem appears in the Appendix.

6

We are now ready to formulate the main problems considered in this study. All these
minimize the network congestion factor subject to different considerations. We saw
that, in the single commodity case, minimizing the network congestion factor is
equivalent to maximizing the total throughput. Therefore, all these problems remain
equivalent for the single commodity case if we consider a different objective function,
namely that of maximizing the throughput. However, whereas maximizing the
throughput is not well defined for the multi-commodity case, minimizing the network
congestion factor is well defined both for the single commodity and the multi-
commodity cases.

We proceed to present the first problem. We are given a network with one or more
commodities that need to transfer some flow demand subject to some given QoS
requirements. The goal of a QoS multipath routing scheme is to identify several paths
for each commodity, each meeting the QoS requirement, such that the load over the
most utilized links in the network is minimized. This can be formulated as follows.

Problem RMP (Restricted Multipath) Given are a network (),G V E , for each link

e E∈ a weight 0ew > and a capacity 0ec > and, for each commodity (),i j V V∈ × ,

a demand (),i jγ and a weight restriction (),i jW . Find a path flow that minimizes the

network congestion factor, such that, if () (), ,
1

i j i jP P⊆ is the collection of all paths in
(),i jP that are assigned with a positive flow, then, for each (),

1
i jp P∈ , it holds that

() (),i jW p W≤ .

We shall later prove that Problem RMP is intractable. We will also show that the
solution can be used in order to support end-to-end reliability requirements in
multipath routing schemes.

Although Problem RMP captures a variety of QoS requirements in multipath routing,
it does not cope with the important delay-jitter problem mentioned in the Introduction.
Hence, we proceed to present a revised version of Problem RMP, which copes with
the delay jitter restrictions. We note that, when attempting to minimize congestion
subject to delay-jitter restrictions, we may end up with some unexpected behavior, as
illustrated by the following example.

Example: Consider the network depicted in Fig. 2.1. Suppose that the delay-jitter
restriction is 2 i.e., the end-to-end delay variance between any two paths that carry a
positive flow must be at most 2. It is easy to see that a solution that minimizes the
network congestion factor must allocate one flow unit to the path (s,t) and one flow
unit to the non-simple path (s,a,b,c,a,t).

7

w=7

This example illustrates that a solution that minimizes congestion subject to delay-
jitter restrictions may use network links in order to "accumulate" delay. Thus, network
links may be used for purposes different than their "traditional" goal, namely
transferring flow demands. Therefore, in order to control this phenomenon, we restrict
the number of hops that each path can use.

Problem RDJM (Restricted Delay-Jitter Multipath) Given are a network (),G V E ,

for each link e E∈ a weight 0ew > and a capacity 0ec > and, for each commodity

(),i j V V∈ × , a demand (),i jγ , an hop-count restriction 1≤H(i,j)≤N-1, a weight

restriction (),i jW , and a delay-jitter requirement (),i jJ . Find a path flow that minimizes

the network congestion factor, such that, if () (), ,
2

i j i jP P⊆ is the collection of all paths

in (),i jP that are assigned with a positive flow, then, for each (),
1 2 2, i jp p P∈ , it holds

that it holds that |p1|,|p2|≤H(i,j), W(p1),W(p2)≤W(i,j) and () () (),
1 2

i jW p W p J− ≤ .

Although the restriction on the hop count reduces the severity of the phenomenon that
was described in Fig. 2.1, it does not eliminate it completely. In Section 5, we explain
how the solution to Problem RDJM can be modified so that non-simple paths can be
avoided using a bounded buffer at the source node.

Problems RMP and RDJM did not limit the number of different paths over which a
commodity is shipped. However, as explained in the Introduction, in practice it is
essential to limit this number. Accordingly, we define the following K-Path Routing
(KPR) problem.

Problem KPR (K-Path Routing) Given are a network (),G V E , for each link e E∈

a capacity 0ec > , and, for each commodity (),i j V V∈ × , a demand (),i jγ and a split

restriction (),i jΚ . Find a path flow that minimizes the network congestion factor, such

that, if () (), ,
3

i j i jP P⊆ is the collection of all paths in (),i jP that are assigned with a

positive flow, then () (), ,
3

i j i jP ≤ Κ .

Fig. 2.1 Minimizing the congestion subject to delay jitter restrictions

c=1

w=1,c=1

w=1

s

t

c=1

w=1,c=1

c

w=1

c=1w=1

c=1

a b

8

3. Related Work

The limitations of current routing protocols in terms of traffic engineering have been
largely recognized. Such traffic engineering requirements were specified in [30].
Although multipath routing plays a major role in these requirements, most multipath
routing schemes suggested thus far entirely focused on heuristic methods.

Congestion Avoidance in Multipath Routing In [14], a multipath routing
scheme, termed Equal Cost Multipath (ECMP), has been proposed for balancing the
load along multiple paths of equal cost. However, since ECMP splits the traffic
equally, the flow distribution may not reflect the congestion state of the network. [31]
suggests a scheme based on periodically probing multiple paths and re-distribute the
traffic in order to balance the loads. In [15], explicit routing algorithms for traffic
engineering are considered. These schemes consider traffic engineering as an
optimization problem with an objective function that is identical to ours i.e.,
minimizing the network congestion factor. However, both [15] and [31] do not
consider QoS restrictions such as end-to-end delay or delay jitter. As a matter of fact,
the only restriction considered by [15] is a special case of a restriction that is
discussed by us i.e., that of limiting the number of paths allocated to each commodity.
More specifically, [15] restricts the flow demand of each commodity to travel only
over a single path. Moreover, for that case, only heuristic schemes were proposed.

Delay-Jitter & End-to-End Delay In spite of the major importance of restricting
the delay jitter in multipath routing schemes [5], [6], [16], [17] we are not aware of
any previous algorithmic solution that addresses this problem. In addition, we are not
aware of any prior work on multipath routing schemes that minimizes congestion
while using only paths with bounded delay, or any algorithmic solution to the
equivalent problem of maximizing the flow subject to a weight restriction on the
paths.

K Path Routing Problem KPR, which restricts the number of paths that are
allocated to each demand, contains as a special case the well-known unpalatable flow
problem [18], which has a 2-approximation scheme for the single source case [19]. In
[4], a 0.5-approximation scheme is provided for the k splittable flow problem in the
single commodity case. This problem maximizes the total flow under a restriction on
the number of paths that are allowed to carry a positive flow.

9

4. Solution of problem RMP

In this section we aim at solving problem RMP, i.e., the problem of minimizing
congestion subject to additive QoS requirements. In addition, we present an important
application that supports end-to-end reliability requirements. First we establish that
the problem is intractable.

4.1 Intractability of Problem RMP.

We show that Problem RMP can be reduced to the Partition problem [23].

Theorem 4.1 Problem RMP is NP-hard.

Proof First, let us define the single-commodity case of problem RMP as a decision
problem.

Given are a network (),G V E , for each link e E∈ , a weight 0ew > and a capacity

0ec > , and, for a commodity (),s t V V∈ × , a demand 0γ > and a weight restriction

W . Is there a path flow with network congestion factor of at most α such that, if path
p transfers a positive amount of flow then ()W p W≤ ?

Consider the following instance of the Partition problem; given an ordered set of
elements 1 2 2, , , na a a… that constitute a set A with size ()s a +∈] for each a A∈ ,

find a subset 'A A⊆ such that 'A contains exactly one element of 2 1, 2i ia a− for

1 i n≤ ≤ and () ()
' 'a A a A A

s a s a
∈ ∈ −

=∑ ∑ .

We transform Partition to RMP as follows (see also Fig. 1):
Given an element ia A∈ with size ()is a , define a unit capacity link i iu v→

with weight ()is a .

For each link 2 1 2 1 1i iu v i n− −→ ≤ ≤ , define a link 2 1 2 1i iv u− +→ and a

link 2 1 2 2i iv u− +→ . Assign to both a unit capacity and a zero weight.

For each link 2 2 , 1i iu v i n→ ≤ ≤ , define a link 2 2 1i iv u +→ and a

link 2 2 2i iv u +→ . Assign to both a unit capacity and a zero weight.

Define links 1 2,s u s u→ → and links 2 1 2,n nv t v t− → → . Assign to each a unit

capacity and a zero weight.

Set: ()1

2 a A

W s a
∈

← ⋅∑ and 2γ ← .

10

()3s a

Fig. 4.1: Reduction of Partition to RMP

We shall prove that it is possible to transfer 2 flow units over paths whose weights are
not larger than W without exceeding the network congestion factor of 1α = iff there
is a subset 'A A⊆ such that 'A contains exactly one element of 2 1, 2i ia a− for 1 i n≤ ≤

and () ()
' 'a A a A A

s a s a
∈ ∈ −

=∑ ∑ . (Remark: We refer to elements and their sizes

interchangeably.)

⇐ : Suppose there is a subset 'A A⊆ such that 'A contains exactly one of 2 1, 2i ia a−

for 1 i n≤ ≤ and () ()
' 'a A a A A

s a s a
∈ ∈ −

=∑ ∑ . Then, it is easy to see that the selection of the

links that represents the elements in 'A and the zero weight links that connect those
links constitutes a path. Also, it is easy to see that this path is disjoint to the path that
the complement subset 'A A− defines. Since all capacities equal to 1, we have two
disjoint paths that can transfer together exactly 2 units of flow without violating the

()6s a

()1s a ()2s a

()4s a

()5s a

()2 1ns a − ()2ns a

s

t

11

congestion constraint 1α = . The weight restriction is preserved since the two defined

paths have weight of ()1

2 a A

s a
∈

⋅∑ , which was defined to be the weight restriction W .

⇒ : Suppose there is a path flow that transfers two flow units over paths that are
not bigger than W . It is easy to see that all paths in the graph must be simple since the
graph is a DAG. Select one path that transfers a positive flow and denote it as p .

Define an empty set S . For every link in p , with weight ()is a , insert the element ia

into S . Since all links in the graph have one unit of capacity, the selected path p is
not able to transfer more than one unit of flow. Now, delete all the links that constitute
path p . Since p is simple and since it transfers at most one unit of flow, there must
be another path that is disjoint to the selected path that transfers a positive flow over
the links that were left in the graph. For each link in that path with size ()is a , insert

the element ia into a different set 'S . We will now prove that 'A S S= ∪ ,

'S S φ∩ = and, finally, () ()
'a S a S

s a s a
∈ ∈

=∑ ∑ .

Since S and 'S were constructed out of disjoint paths, it is obvious that 'S S φ∩ = .

Since every path must traverse either ()2 1is a − or ()2is a for each 1 i n≤ ≤ , and since

both paths are disjoint, { }2

1
'

n

i i
S S a A

=
∪ = = .

Since both paths have weights that are not longer than W , we have:

() () ()
'

, . 1
a S a S

s a W s a W
∈ ∈

≤ ≤∑ ∑

Since ()1

2 a A

W s a
∈

⋅∑� and 'S S A∪ = , we get:

() () () ()
'

2 . 2
a S a S a A

s a s a s a W
∈ ∈ ∈

+ = = ⋅∑ ∑ ∑

Note that if variables 1 2,x x satisfy 1x B≤ , 2x B≤ and in addition 1 2 2x x B+ = ⋅ , it

follows that 1 2x x B= = . Accordingly, we conclude from (1) and (2) that

() ()
'a S a S

s a s a W
∈ ∈

= =∑ ∑ .

Thus, problem RMP is NP hard. ■

12

Fig. 4.2 Program RMP

4.2 Linear Programming Formulation

In this section we present a linear programming formulation for Problem RMP. To
that end, we need some additional notation.

We are given a network (),G V E , for each link e E∈ a weight ew +∈] and a

capacity 0ec > , and, for each commodity (),i j V V∈ × a demand (),i jγ and a weight

restriction (),i jW . Let α be the network congestion factor. Define (), ,i j
ef
ω as the flow

of commodity (),i j over link (),e u v E= ∈ that has traversed through paths
(),i up P∈ of total weight ()W p ω= . Finally, for each v V∈ , denote by ()O v the set

of links that emanate from v , and by ()I v the set of links that enter that node, namely

() () (){ }, ,O v v l v l E= ∈ and () () (){ }, ,I v w v w v E= ∈ . Then, Problem RMP can be

formulated as the following linear program:

()

()

()

()
() ()

()

()

()

()
() ()

() () ()

, , , , ,

, , , , ,

0, , ,

()

Minimize

.

0 , , , { , } , 0,

0 , , , 1,

, ,

e

e

i j w i j i j
e e

e O v e I v

i j w i j i j
e e

e O i e I i

i j i j
e

e O i

s t

f f i j v V i j W

f f i j W

f i j

ω ω

ω ω

α

β ω

β ω

γ β

−

∈ ∈

−

∈ ∈

∈

 − = ∀ ∈ ∀ ∈ − ∀ ∈  

 − = ∀ ∈ ∀ ∈  

= ∀ ∈

∑ ∑

∑ ∑

∑

()
()

()

() ()

,

, ,

, 0

, ,

,

0 , 0 , , ,

i jW
i j

e e
i j

i j
e

f c e E

f i j e E

ω

β ω

ω

α

ω β

∈ =

≤ ⋅ ∀ ∈

= ∀ < ∀ ∈ ∀ ∈

∑ ∑

() () (), , ,0 , , , 0, ,

0

i j i j
ef i j W e Eω β ω

α

 ≥ ∀ ∈ ∀ ∈ ∀ ∈ 
≥

Note that the variables of the linear program are the link flows (){ }, ,i j
ef
ω and the

network congestion factor α .

In this linear programming formulation the objective function is to minimize the
network congestion factor. Constraints (1), (2) and (3) are nodal flow conservation
constraints. Equation (1) states that the traffic flowing out of node v , which has

traversed through paths (),i vp P∈ of weight ()W p ω= , has to be equal to the traffic

flowing into node v , through paths (),' i up P∈ and links (),e u v E= ∈ , such that

()' eW p w ω+ = ; since (),0, i jWω  ∈   , the weight restriction is preserved for each

commodity (),i j β∈ ; finally, equation (1) must be satisfied for each node other than

the source node and the destination node for each commodity with a positive demand.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

13

Equation (2) extends for each (),i j β∈ the validation of equation (1) to hold for

traffic that encounters node i after it has already traveled over paths with non-zero
weights. Informally, equation (2) states that "old" traffic that was already traversing
over at least one link must satisfy constraint (1). Equation (3) states that, for each
commodity (),i j β∈ , the traffic flowing out of source i , which has already traversed

paths of weight 0ω = , must be equal to the demand (),i jγ . Equation (4) is the link
capacity utilization constraint. Expression (5) rules out non-feasible flows, and
Expression (6) and (7) restricts all variables to be non-negative.

We can solve Program RMP using any polynomial time algorithm for linear
programming [24]. The solution to problem RMP is then achieved by decomposing

the link flow (){ }, ,i j
ef
ω into a path flow that satisfies the weight restriction. This is

done by Algorithm PFC, specified in Fig. 4.3, which is an (elaborated) generalization
of the Flow Decomposition Algorithm [12].

For each commodity (),i j V V∈ × the algorithm uses the link flow (){ }, ,i j
ef
ω in order to

define paths that transfer a total flow of (),i jγ flow units over paths that have total

weight not larger than (),i jW . At each iteration, the algorithm uses Procedure Path
Construction, specified in Fig. 4.4, in order to define a path with end-to-end weight of

at most (),i jW whose corresponding link flows (){ }, ,i j
ef
ω are all positive. The flow over

this path is defined to be equal to the smallest flow (), ,i j
ef
ω that belongs to the path.

Then, the algorithm subtracts the flow that traverses through that path from the

demand (),i jγ and from each variable (), ,i j
ef
ω in the path. The algorithm stops when the

demand (),i jγ is zeroed for each (),i j V V∈ × . Thus, the resulting path flow transfers
(),i jγ flow units from source i to destination j over paths with weight of at most (),i jW

for each (),i j V V∈ × .

14

Fig 4.3: Program RMP Algorithm Path Flow Construction (PFC)

We turn to explain the main idea behind Procedure Path Construction, which is
specified in Fig. 4.4. The procedure identifies a path 1 2

1 2 1: hee e
hp s u u u t−→ → →

whose corresponding link flows{ }11

1 2

,(,),(,)0,(,) , , , e ee h

h

w w s tw s ts t
e e ef f f

+ +
are all positive. This is

done by employing the following property that characterizes the solution to Program

RMP. If a positive flow ,(,)ew s t
ef
ω− enters through link e=(u,v) into node v∈V-{s,t},

then there exists a positive flow ,(,)
'

s t
ef
ω that emanates out of v through a link e'=(v,w).

Since each positive flow ,(,)s t
ef
ω must satisfy (),s tWω ≤ it follows that, if we follow

these positive flows from the source s, we establish a path that satisfies the weight
restriction (),s tW . We now prove that if we follow these positive flows for a finite
number of times we eventually find a positive flow that enters into the destination
i.e., we eventually identify a directed path from s to t. We note that this path is not
necessarily simple.

Lemma 1: Consider the nodes {uk} identified by Procedure Path Construction (Fig.

4.4) for the input { } { },(,)(,), , , i j
eG V E s t f ω . There exists an h, { }(,) /min ,s t

e
e E

h W w
∈

≤ such

that the sequence (u0,u1,…,uh) is a path from s to t with a weight of at most (),s tW .

Proof: It follows from constraint (3) that, if (),s tγ >0, then there exists some link

e0=(u0,u1) such that the variable
0

0,(,)s t
ef is positive. Then, from constraints (1) and (2),

it follows that, if u1≠j, then there exists some link e1=(u1,u2) such that the variable
0

1

,(,)ew s t

ef is positive. Thus, applying constraints (1) and (2) for any index k, it follows

(){ } (){ }(), , ,(,), ,i j i j
eG V E f ω γAlgorithm PFC

Initialization:
For each commodity (,)i j V V∈ × and each path ()(,) : 0.s tp P f p∈ ←

For each commodity (,)s t V V∈ × :
(),While 0 do:s tγ >

1. { } (){ }(), ,Path_Construction (,), , i j
eS G V E s t f ω← .

2.
()

{ } (),(,) ,(,) ,(,)

,
min , for each ,k k k

k k k
k k

s t s t s t
e e e k k

e S
f f f e S∆ ∆ ∆

∆ ∈
← − ∆ ∈ .

3. () ()
()

(){ }, , , ,

,
min k

k
k k

s t s t s t
e

e S
fγ γ ∆

∆ ∈
← − .

4. Denote path 1 2
1 2

see e
ss v v v t→ → → as p, where ke corresponds to

the pair (),k ke S∆ ∈ . ()
()

{ },(,)

,
min k

k
k k

s t
e

e S
f p f ∆

∆ ∈
← .

Return the path flow f.

15

Fig 4.5 Algorithm RMP

Fig 4.4: Procedure Path Construction

that, if there exists a positive variable ,(,)k

k

i j
ef
∆ where

[0, 1] lk el k
w

∈ −
∆ ∑ , then, unless

uk+1=t, there exists a link ek+1=(uk+1,uk+2) such that the variable
1

,(,)k ek

k

d s t

ef +

∆ +
is positive.

However, since it follows from constraint (5) that ,(,) 0s t
ef
ω = for each (,) ,s tWω > and

since ∆k>W for each () { }, /mins t
e

e E
k W w

∈
≥ , it follows that there exists a k,

() { }, /mins t
e

e E
k W w

∈
≤ , such that uk=t. Finally, as the procedure selects only positive

variables ,(,) ,s t
ef
ω it follows from (5) that (,)0, s tWω  ∈  . Thus the path (u0,u1,…,uk)

has a weight of at most (),s tW . ■

Note that each iteration of Algorithm PFC zeroes at least one variable ,(,)i j
ef
ω .

Therefore, Algorithm PFC iterates for no more than the number of variables { },(,)i j
ef
ω .

In addition, it follows from Lemma 1 that the complexity of Procedure Path

Construction is at most (),s tW for the input { } { },(,)(,), , , i j
eG V E s t f ω . Since

() { }, ,(,)s t i j
eW f ω≤ , it follows that Algorithm PFC has a polynomial complexity with

respect to the number of variables { },(,)i j
ef
ω that are used by Program RMP.

For completion, in Fig. 4.5 we specify Algorithm RMP, which solves Problem RMP.

In Algorithm RMP, the complexity incurred by solving Program RMP (step 1) is

polynomial in the number of variables { },(,)i j
ef
ω [13]. In addition, as shown, the

{ } { }(),(,)(,), , , i j
eG V E s t f ωProcedure Path Construction

Initialization
S φ← , 0u s← , 0 0∆ ← , 0k ←

While doku t≠

1. Select a positive variable k

kef
∆ such that ek�(uk,uk+1)∈E.

2. () 1, ,
kk k k k eS S e w+← ∪ ∆ ∆ ← ∆ + , 1k k← + .

Return S

() { } { }()(,) (,)G V,E ,{ },{ }, ,i j i j
e ew c WγAlgorithm RMP

1. { } () { } { }(),(,) (,) (,)G V,E ,{ },{ }, ,i j i j i j
e e ef w c Wω γ← RMP

2. { } { }(),(,) (,)(,), ,i j i j
ef G V E f ω γ← PFC

3. Return path flow f.

16

complexity of Algorithm PFC (step 2) is polynomial in { },(,)i j
ef
ω . Thus, the

complexity of Algorithm RMP is polynomial in the number of variables { },(,)i j
ef
ω that

are used by Program RMP.

Nonetheless, each commodity with a positive demand (),i jγ has at least
(),i jM W⋅

variables. Hence, the total number of variables that are used in order to formulate the

problem is ()

()

,

,

i j

i j

M W
β∈

⋅ ∑ , which may be exponential with respect to the input. Note,

however, that when the hop count metric is considered (i.e., 1ew ≡), the number of

variables formulating the problem is polynomial. Therefore, for that case we have a
polynomial solution.

4.3 Approximation Scheme for Problem RMP

In this section, we establish an approximation scheme for problem RMP. Specifically,

we present an approximation scheme for the case where the weight restrictions (),i jW

are of the same order of magnitude for each (),i j β∈ , namely
()

() ()
1 1

2 2

,

,
1

i j

i j

W
O

W
= for

every pair of commodities () ()1, 1 2 2,i j i j β∈ . We note that since end-to-end delays are

normally in the order of milliseconds, the case of
()

() ()
1 1

2 2

,

,
1

i j

i j

W
O

W
= for every pair of

commodities () ()1, 1 2 2,i j i j β∈ is the typical case.

The following approximation scheme (Fig. 4.6) reduces the complexity of Algorithm
RMP by reducing the number of variables that are used by Program RMP. Since we

have already seen that the number of variables is ()

()

,

,

i j

i j

M W
β∈

⋅ ∑ , it follows that, in

order to have a polynomial number of variables (and therefore polynomial
complexity) it is essential to reduce the value of each weight restriction. To that end,
we scale the weight restriction of each commodity into a smaller integral value. As a
result, we must also scale the weight of each link. However, in order to ensure that the
optimal network congestion factor does not increase, we relax the new weight
restriction with respect to its original value. This is done by rounding up the weight
restrictions and rounding down the weight of each link.

17

{ } { } (){ }
()

(){ }
()

{ }
{ }

(){ }
()

(){ }
()

i,j i,j

i,j i,j

i,j

i,j

i,j

i,j

, , , , ,

network

capacities

weights

demands

weight restrictions

approximation parameter

e ee E e E

e e E

e e E

G c w W

G

c

w

W

β β

β

β

γ ε

γ

ε

∈ ∈ ∈ ∈

∈

∈

∈

∈

 
 
 

−

−

−

−

−

−

RM P Approximation Schem e

Parameters :

variables

i i i()

()
(){ } ()

(){ }

i i i()
i

i { }

max

min

i,j i,jmin max

i,j i,j

min

max

largest weight restriction

smallest weight restriction

, auxiliary graph

1 min , max

2

3 Construct network , as follows:

a.

b.

c.

e

W

W

G V E

W W W W

W

N

G V E

V V

E e E w W

β β

εδ

∈ ∈

−

−

−

← ←

⋅
←

←

← ∈ ≤

i

j i

()
()k ()

i i{ } i
j{ } i

(){ }
()

()k{ }
()

i,j
i,j

, ,

i,j i,j

For each :

, .

4 For each commodity i,j :

.

5 Solve instance , , , ,

of problem RMP using Algorithm RMP. Let path flow

e
e e e

i j i j
e e

e E e E

e E

w
w c c

W
W

G c w W
β β

δ
β

δ

γ
∈ ∈ ∈ ∈

∈

 ← ←  
∈

 
←  

 

�

(,) (,) (,)
simple 0 1 1 1

represent

the solution.

6 Construct a path flow as follows:

a. Let : map each path (, , , , , ,)i j i j i j
h h h h n

g

f

h P P v v v v v v v P− +→ ∈" " "

() ()

(,)
0 1 1 1 simple

(,)
simple

' (')

into a simple path (, , , , ,) .

b. For each , '

7. Return path flow .

i j
h h h n

i j

p h p p

v v v v v v P

p P f p g p

f

− +

=

∈

∈ ∑
" "

�

Fig. 4.6 RMP Approximation Scheme

18

Definition 4.1 Given an instance of problem RMP, *α is the network congestion
factor of the optimal solution.

Theorem 4.2 Given an instance { } { } (){ }
()

(){ }
()

i,j i,j

i,j i,j
, , , ,e ee E e E

G c w W
β β

γ
∈ ∈ ∈ ∈

of

problem RMP and an approximation parameter ε , the output of the RMP
Approximation Scheme, specified in Fig. 4.6, is a path flow f that satisfies the
following:

a. For each commodity (),i j β∈ , ()
()

()

,

,

i j

i j

p P

f p γ
∈

=∑ i.e., the flow demand

requirement is satisfied for all commodities.
b. If α∗ is the network congestion factor of the optimal solution, then, for each

e∈E, it holds that () (,)

*

,
() ()i j e ei j p P
p f p c

β
α

∈ ∈
∆ ⋅ ≤ ⋅∑ ∑ , i.e., the network

congestion factor is at most α∗.
c. For each commodity (),i j β∈ , if (),i jp P∈ and () 0f p > then

() () (),1 i jW p Wε≤ + ⋅ i.e., the end-to-end delay is violated by a factor of at

most (1)ε+ .

Proof
a. Since equation (3) in Program RMP specifies for each commodity (),i j β∈ ,

() ()0, , ,

()

i j i j
e

e O i

f γ
∈

=∑ , it follows that every path flow representation that

corresponds to link flow (){ }, ,i j
ef
ω must satisfy for each commodity

(),i j β∈ , ()
()

()

,

,

i j

i j

p P

f p γ
∈

=∑ .

b. Since the algorithm rounds down the link weights and rounds up the weight
restrictions, it follows that the resulting instance

i j i (){ }
()

()k{ }
()

i,j i,j

i,j i,j
, , , ,e eG w c W

β β
γ

∈ ∈
of problem RMP (that appears in line

(5)) relaxes the original constraints. Hence, the resulting network congestion
factor is at most α∗.

c. Define eθ to be the discretization error resulted from rounding the weight ew

of link e E∈ to a multiple of δ i.e., for each link e E∈ , e
e e

w
wθ δ

δ
 − ⋅  

� .

Note that 1e e
e e e

w w
w wθ δ δ δ

δ δ
   = − ⋅ ≤ − − ⋅ =     

. Since by construction, the

paths that are used by path flow f are simple, every such path contains at
most 1N − links. Therefore, the total error in evaluating the weight of these
paths is at most ()1N δ− ⋅ . Applying similar considerations, it is easy to see

that the discretization error resulting from rounding the weight restrictions to

multiples of δ is at most δ . Therefore, each path (),i jp P∈ that is used by

19

path flow f (i.e., () 0f p >) has total weight of at most

() () () () ()
min

, , , ,min 1i j i j i j i jW
W N W N W W W

N

εδ ε ε⋅
+ ⋅ = + ⋅ = + ⋅ ≤ + . ■

Given an instance of Problem RMP and an approximation parameter ε , we now show
that the proposed approximation scheme for Problem RMP is polynomial .

Theorem 4.3 Given an instance { } { } (){ }
()

(){ }
()

i,j i,j

i,j i,j
, , , ,e ee E e E

G c w W
β β

γ
∈ ∈ ∈ ∈

of

problem RMP and an approximation parameter ε , RMP Approximation Scheme has
a polynomial complexity with respect to the input and the approximation parameter
ε .

Proof Clearly, the complexity of RMP Approximation Scheme is determined by
step (5). As was already explained in section 4.2, the complexity of this step is
polynomial in the number of variables that are used by Program RMP to solve the
corresponding instance of step (5). Thus, in order to prove the theorem, we only need
to show that Program RMP solves instance

i i{ } i
j{ } i

(){ }
()

()k{ }
()

, ,

, ,
, , , ,i j i j

e e
e E e E i j i j

G c w W
β β

γ
∈ ∈ ∈ ∈

of step (5), using a polynomial

number of variables with respect to the input and the value of ε .

We first prove that, if max
ew W≤ for each e E∈ , then the number of variables

considered by Program RMP is at most max2 M Wβ⋅ ⋅ ⋅ . To that end, consider the set

of variables (){ }, ,i j
ef
ω that formulates Program RMP. For a link e E∈ and a

commodity (),i j β∈ , the number of variables (), ,i j
ef
ω that are used by Program RMP

is determined by the number of values that ω can take. Since equations (1) - (7) of

Program RMP refer both to the variable (), ,ew i j
ef
ω − and to the variable (), ,i j

ef
ω , for each

(),0, i jWω  ∈   , then for a given commodity (),i j β∈ and a link e E∈ , the set

l (){ }, ,i j
ef
ω where l () () (), , ,0, , ,i j i j i j

e e eW w W w w Wω      ∈ ∪ − − = −      contains all the

variables that are used by Program RMP. Since max
ew W≤ for each e E∈ , it follows

that the linear program uses, for a commodity (),i j β∈ and a link e E∈ , at most
() (), ,max max2i j i j

ew W W W W+ ≤ + ≤ ⋅ different variables. Thus, the total

number of variables in Program RMP is at most

() () ()

max max max max

, , ,

2 2 2 2
e E i j e E i j i j

W W M W M W
β β β

β
∈ ∈ ∈ ∈ ∈

⋅ = ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅∑ ∑ ∑ ∑ ∑ .

We shall now use this finding, namely that, if max
ew W≤ for each e E∈ , then the

number of variables for an instance { } { } (){ }
()

(){ }
()

i,j i,j

i,j i,j
, , , ,e ee E e E

G c w W
β β

γ
∈ ∈ ∈ ∈

of

Problem RMP is max2 M Wβ⋅ ⋅ ⋅ , in order to show that the number of variables for the

20

instance i i{ } i
j{ } i

(){ }
()

()k{ }
()

, ,

, ,
, , , ,i j i j

e e
e E e E i j i j

G c w W
β β

γ
∈ ∈ ∈ ∈

of step (5) is

N M
O

β
ε

 ⋅ ⋅ 
 
 

. Since, by construction, i { }max
eE e E w W= ∈ ≤ , it follows that, for

each e E∈ ,
max

maxe
e

w W
w W

δ δ
  = ≤ =     

. Thus, the number of variables in Program

RMP for instance i i{ } i
j{ } i

(){ }
()

()k{ }
()

, ,

, ,
, , , ,i j i j

e e
e E e E i j i j

G c w W
β β

γ
∈ ∈ ∈ ∈

is at most

kmax2 M Wβ⋅ ⋅ ⋅ . Hence, since k max
max W

W
δ

 
=  

 
, it follows that this number of

variables is at most
max

2 1
W

M β
δ

 
⋅ ⋅ ⋅ + 

 
. From the assumption that

()

() ()
1 1

2 2

,

,
1

i j

i j

W
O

W
= ,

for each () ()1, 1 2 2,i j i j β∈ , it follows that ()
max

min
1

W
O

W
= . Therefore, since

minW

N

εδ ⋅� , the total number of variables that are used by Program RMP in order to

solve instance i i{ } i
j{ } i

(){ }
()

()k{ }
()

, ,

, ,
, , , ,i j i j

e e
e E e E i j i j

G c w W
β β

γ
∈ ∈ ∈ ∈

of step (5) is at most

max max

min
2 1 2 1

N MW W N
M M O

W

β
β β

δ ε ε
 ⋅ ⋅    

⋅ ⋅ ⋅ + = ⋅ ⋅ ⋅ ⋅ + =     
     

. ■

4.4 Applications for Program RMP

Problem RMP may arise in several forms. In the single-commodity case, it adds an
additive restriction to the well-known Maximum Flow Problem, which applies to
paths that carry a positive flow. This restriction may be important in multipath routing
schemes where additive QoS metrics, such as delay and jitter, are considered. In this
section, we show that Program RMP can be used in order to support multipath routing
with end-to-end reliability requirements, i.e., when we need multipath routing
schemes that choose paths with a "good" probability of success.

The notion of reliability can be implemented by assigning to each link in the network
a failure probability and restricting all paths that carry positive flow to have an end-to-
end success probability that is larger than some given lower bound. This is formulated
by the following problem.

Problem ReMP (Reliable Multipath) Given are a network (),G V E , for each link

e E∈ , a failure probability 0ep ≥ and a capacity 0ec > , and, for each commodity

(),i j β∈ , a demand (), 0i jγ > and a success probability restriction (),i jΠ . Find a path

flow { }: 0f P +→ ∪ that minimizes the network congestion factor such that, if
(),i jp P∈ and () 0f p > , then () (),1 i j

e
e p

p
∈

− ≥ Π∏ .

21

We establish an approximation scheme for Problem ReMP that reduces Problem
ReMP into Problem RMP, as follows. The approximation scheme considers a set of

classes
1 2

1, 1 , 1 ,
N N

ε ε− −     + +    
     

where 0ε > is a given approximation parameter.

Then, each link with a success probability of 1 ep− is assigned with a weight i if
()1

1 1 1
i i

ep
N N

ε ε− + −
   + ≤ − ≤ +   
   

. Thus, restricting the end-to-end weight of each

simple path to B results with an end-to-end probability of at least
()

1
B N

N

ε − +
 + 
 

. Then,

the value of B is determined from the success probability restriction (),i jΠ . This value
is set to relax the original instance of Problem ReMP in order to get a network
congestion factor that is not larger than the optimal network congestion factor.
Finally, the number of variables that are produced for the corresponding instance of
Problem RMP is determined by the approximation parameter ε . Fig. 4.7 describes the
approximation scheme for Problem ReMP.

22

Fig. 4.7 ReMP Approximation Scheme

() { } { } (){ }
()

(){ }
()

()
{ }
{ }

(){ }
()

(){ }
()

i,j i,j

i,j i,j

i,j

i,j

i,j

i,j

, , , , , ,

, network

failure probabilities

capacities

demands

probability restrictions

approxima

e ee E e E

e e E

e e E

G V E p c

G V E

p

c

β β

β

β

γ ε

γ

ε

∈ ∈ ∈ ∈

∈

∈

∈

∈

Π

−

−

−

−

Π −

−

ReMP Approximation Scheme

Parameters :

max

tion parameter

1. Delete all links with failure probability 1 . Let be the resulting set of links,

and let be the link with the largest failure probability that is smaller than 1.

2.

ep E

p

=

()
max

1+

1 2

1

Define the following set of classes: 1, 1 , 1 , , 1 ,0 ,

where log .

3. To each link that satisfies 1

N

k

p

N N N

k

e E
N

ε

ε ε ε

ε

− −

−

       + + +      
       

 
 =
 
 

∈ +
()

()
()

()

1

1
,

,

1 1 , assign a weight

.

4. For each probability restriction that satisfies 1 1 , assign

a weight restriction 1.

5. S

i i

e

e

i i
i j

i j

p
N

w i

N N

W i

ε

ε ε

− + −

− + −

  ≤ − ≤ +   
   

=

   + ≤ Π ≤ +   
   

= +

() { } { } (){ }
()

(){ }
()

i,j i,j

i,j i,j

(,) (,)
simple

olve the instance , , , , , of problem

RMP using Algorithm RMP.

6 Construct a path flow as follows:

a. Let : m

e ee E e E

i j i j

G V E c w W

f

h P P

β β
γ

∈ ∈ ∈ ∈

→

() ()

(,)
0 1 1 1

(,)
0 1 1 1 simple

(,)
simple

' (')

ap each path (, , , , , ,)

into a simple path (, , , , ,) .

b. For each , ' .

7. Return

i j
h h h h n

i j
h h h n

i j

p h p p

v v v v v v v P

v v v v v v P

p P f p g p

− +

− +

=

∈

∈

∈ ∑
the path flow .f

23

Theorem 4.4 Given an instance () { } { } (){ }
()

(){ }
()

i,j i,j

i,j i,j
, , , , ,e ee E e E

G V E p c
β β

γ
∈ ∈ ∈ ∈

Π

of Problem ReMP and an approximation parameter ε , the ReMP Approximation
Scheme satisfies the following:

a. For each commodity (),i j β∈ , ()
()

()

,

,

i j

i j

p P

f p γ
∈

=∑ i.e., the flow demand

requirement is satisfied for all commodities.
b. The network congestion factor of the output is not larger than the network

congestion factor of the optimal solution.

c. If the output assigns to a path (),i jp P∈ a positive flow then

()
()

()
,

1
1

i j

e
e p

p
ε∈

Π
− ≥

+∏ ; i.e. the restriction on the probability of success is relaxed

by at most a factor of ()1 ε+ .

d. The scheme has a polynomial complexity with respect to the input and the
given approximation parameter ε .

Proof
a. In step (5) of the algorithm, an instance

i() { } i { } i
(){ }

()
(){ }

()

i,j i,j

i,j i,j
, , , , ,e ee E e E

G V E c w W
β β

γ
∈ ∈ ∈ ∈

of Problem RMP is

solved by Algorithm RMP that satisfies the flow demand requirements for
each commodity (),i j β∈ . Thus, the returned path flow f satisfies the flow

demand requirements of all commodities.

b. Let α be the network congestion factor of the resulting path flow and let *α
be the network congestion factor of the optimal solution. We have to prove
that *α α≤ . To that end, consider the given instance of Problem ReMP and
the corresponding instance of Problem RMP that was specified in step (5) of
the ReMP Approximation Scheme. We will prove that the set of feasible paths
of instance ReMP is contained in the set of feasible paths of instance RMP.
Proving that will show that the constraints over the transformed instance of
Problem RMP are relaxed with respect to the original constraints over the
given instance of Problem ReMP. To that end, we consider a feasible path p
with respect to the given instance of Problem ReMP. We will show that path
p is also feasible with respect to the instance of Problem RMP in step (5).

Since p is a feasible path with respect to the given instance of Problem

ReMP, it satisfies () (),1 i j
e

e p

p
∈

− ≥ Π∏ . By the transformation to problem RMP,

each link e E∈ with a probability ep such that
()1

1 1 1
i i

ep
N N

ε ε− + −
   + ≤ − ≤ +   
   

is assigned with a weight value ew i= .

Therefore, ()1 1
ew

ep
N

ε −
 − ≤ + 
 

. In addition, each end-to-end reliability

24

constraint (),i jΠ such that
()

()
1

,1 1
i i

i j

N N

ε ε− + −
   + ≤ Π ≤ +   
   

is transformed into

a weight constraint (), 1i jW i= + that results with

()

()
,

,1

i jW
i j

N

ε −
 + ≤ Π 
 

.

Therefore, it follows that

()

() ()
,

,1 1 1

i j
e

e p

W w
i j

e
e p

p
N N

ε ε ∈

− −

∈

∑   + ≤ Π ≤ − ≤ +   
   

∏ .

Since

(),

1 1

i j
e

e p

W w

N N

ε ε ∈

− −∑   + ≤ +   
   

, we conclude that (),i j
e

e p

w W
∈

≤∑ . Thus, path

p is also feasible with respect to the instance of Problem RMP that is
specified in step (5).

c. We prove now that, if path (),i jp P∈ is assigned with a positive amount of

flow by the ReMP Approximation Scheme, then ()
()

()
,

1
1

i j

e
e p

p
ε∈

Π
− ≥

+∏ . Denote

the success probability of path p as ()pΨ . Then,

() ()
()1

1 1
ew

e
e p e p

p p
N

ε − +

∈ ∈

 Ψ = − ≥ + 
 

∏ ∏ .

Since the solution to Problem RMP consists of simple paths, and since each
simple path contains at most 1N − links, we conclude that:

()
() () ()() () (),1 1 1

1 1 1 1 (1)

i j
ew W p N W N

e p

p
N N N N

ε ε ε ε− + − + − − − −

∈

       Ψ ≥ + ≥ + ≥ + ⋅ +       
       

∏
.

From the way the algorithm transforms the probability restriction into a weight
restriction, we conclude that

()

()
(), , 1

,1 1 . (2)

i j i jW W
i j

N N

ε ε− − +
   + ≤ Π ≤ +   
   

Therefore, from (1) and (2):

()
() () () ()

()
() () ()

()

, ,1 1 1 1

, , ,
,

1 1 1 1

1 .
111

i j i jW N W N

N i j i j i j
i j

N

p
N N N N

N N
NN

ε ε ε ε

ε
ε εε

− − − − + − − −

−

       Ψ ≥ + ⋅ + = + ⋅ + ≥       
       

Π Π Π ≥ Π + = ≈ =  +     + ⋅+      

d. In order to prove that the complexity of the ReMP Approximation Scheme is
polynomial, it suffices to show that the number of variables formulating the
problem is polynomial with respect to the input and the approximation

25

parameter ε [24]. We saw in the proof for Theorem 4.3 that the number of
variables formulating any instance of problem RMP is never larger than

max2 M Wβ⋅ ⋅ ⋅ , where maxW is the largest weight restriction. Since, by

construction, ()
()

()
1

, ,1 1 1
i i

i j i jW i
N N

ε ε− + −
   = + ⇔ + ≤ Π ≤ +   
   

, it follows

that ()
()(), 1

, 1

i jW
i j

N

ε − −
 Π ≤ + 
 

. Thus, () ()(), ,

1

log 1i j i j

N

W
ε

+
Π ≤ − −

() (), ,

1

1 logi j i j

N

W
ε+

⇒ ≤ − Π . Let
()

(){ },min

,
min i j

i j β∈
Π Π� . The largest weight

restriction, namely maxW , must therefore satisfy,

()max min min

1

1 log 1 log
N

N
W

ε ε+
≤ − Π ≈ − Π . Therefore, the number of variables is

no larger than () ()min

min
log

2 1 log
N MN

M O
β

β
ε ε

 ⋅ ⋅ ⋅ Π   ⋅ ⋅ ⋅ − Π =      
. ■

26

5. Solution of Problem RDJM

In this section we aim at solving problem RDJM, i.e. the problem of minimizing
congestion while restricting the total weight of each path and the delay jitter among
all paths. Since Problem RMP is a special case of Problem RDJM, it follows that
Problem RDJM is NP-hard. Moreover, we show that even if we remove the weight
restriction from Problem RDJM, it remains NP hard i.e., the problem of minimizing
the congestion under just a delay jitter restriction is already intractable. To that end,
we define Problem Relaxed_RDJM that is a special case of Problem RDJM that sets
the weight restrictions of each commodity to infinite i.e., Problem Relaxed_RDJM is
a special case of Problem RDJM that has no weight restrictions.

5.1 Intractability of Problem Relaxed_RDJM

We show that problem Relaxed_RDJM can be reduced to problem RMP, which was
proven to be NP-hard (Section 4.1).

Theorem 5.1 Problem Relaxed_RDJM is NP hard.

Proof First, consider the single commodity instance of problem Relaxed_RDJM as a
decision problem.

Given are a network (),G V E , for each link e E∈ a weight 0ew > and a capacity

0ec > , and, for a commodity (),s t V V∈ × , a demand 0γ > and a delay-jitter

requirement J . Is there a path flow with network congestion factor of at most α such

that, if 1p and 2p transfer positive amounts of flow, then () ()1 2W p W p J− ≤ ?

Let i i i() i{ } i
j{ } i () i i, , , , , , , ,e e

e E e E
G V E c w s t W γ α

∈ ∈

� � � be a single commodity instance

of Problem RMP and let k
i

j{ }min min e
e E

w w
∈

� . The single commodity instance of Problem

RMP was formulated as a decision problem and proven to be NP-hard in section 4.1.
We transform RMP to Relaxed_RDJM as follows.

Define a network (),G V E that has the same nodes, links, capacities and weights as

the original network i i i(),G V E . In addition, add a new link ()' ,e s t= with a capacity

i
i

e
e E

c
∈
∑ , and a weight kminw . The source and target nodes (),s t� � as well as the network

congestion factor iα of RMP, remain unchanged in Relaxed_RDJM. Finally, set the

delay-jitter constraint J to be i k
minW w− and the flow demand γ to be i i

i
e

e E

cγ α
∈

+ ∑� .

It is easy to see that the transformed Relaxed_RDJM instance can be constructed in
polynomial time.

27

We now show that there is a path flow that satisfies the given instance of problem
RMP if and only if there is a path flow that satisfies the transformed instance to
problem Relaxed_RDJM.

⇐ : Suppose that there is a path flow for the transformed instance

() { } { } (), , , , , , , ,e ee E e E
G V E c w s t J γ α

∈ ∈
of problem Relaxed_RDJM and

consider the network (),G V E . By construction, removing the link 'e from E yields

a network { }(), 'G V E e− that is identical to the original network i i i(),G V E . We now

show that removing link 'e and the flow traversing through it, yields a path flow that

satisfies the instance i i i() i{ } i
j{ } i () i i, , , , , , , ,e e

e E e E
G V E c w s t W γ α

∈ ∈

� � � of problem

RMP.

Since the capacity of link 'e is
{ }'

e
e E e

c
∈ −
∑ and the network congestion factor is at most

α , it follows that link 'e could transfer at most
{ }

i i
i'

e e
e E e e E

c cα α
∈ − ∈

⋅ = ⋅∑ ∑ flow units.

Therefore, since the demand of Relaxed_RDJM is i i
i

e
e E

cγ γ α
∈

= + ⋅∑� , after removing

link 'e and the flow that was traversing through it, the total flow that traverses

through the network is at least i i
i

i i
i

i i
i

e e e
e E e E e E

c c cγ α γ α α γ
∈ ∈ ∈

 
− ⋅ = + ⋅ − ⋅ = 

 
∑ ∑ ∑� � flow units.

After removing link 'e , it is obvious that the maximum flow that can traverse through
the network without violating the capacity constraints is not larger than

{ }'
e

e E e

c
∈ −
∑ .

However, as the network congestion factor is α , the maximum flow that could
traverse through the network is not larger than

{ }'
e

e E e

cα
∈ −

⋅ ∑ . Since the demand of the

instance of Relaxed_RDJM is i i
i

e
e E

cγ γ α
∈

= + ⋅∑� , and since at most
{ }'

e
e E e

cα
∈ −

⋅ ∑ flow

units can traverse through the links in { }'E e− , at least
{ }'

e
e E e

cγ α
∈ −

− ⋅ ∑ flow units

have traversed through link 'e . Since

{ }

i i
i { }

i i
i

i i
i' '

e e e e e
e E e e E ee E e E e E

c c c c cγ α γ α α γ α α γ
∈ − ∈ −∈ ∈ ∈

− ⋅ = + ⋅ − ⋅ = + ⋅ − ⋅ =∑ ∑ ∑ ∑ ∑� � � , and since

0γ >� , we conclude that the link 'e has transferred a positive amount of flow. Since,

by construction, the weight of link 'e equals minw , and since each pair of paths that

carry a positive amount of flow has a delay jitter of at most J , the maximum weight

of a path that carries a positive flow is i
minJ w W+ = .

Therefore, for the network i i i(),G V E with weights j{ } ie
e E

w
∈

and capacities i{ } ie
e E

c
∈

, we

identified a path flow of at least γ� units such that, for each path (),s t
p P∈

� �
that

28

transfers a positive amount of flow, it holds that () iW p W≤ , as required by Problem

RMP.

⇒ : Suppose that there is a path flow for instance
i i i() i{ } i

j{ } i () i i, , , , , , , ,e e
e E e E

G V E c w s t W γ α
∈ ∈

� � � of problem RMP. We have to show

that there is a path flow for instance () { } { } (), , , , , , , ,e ee E e E
G V E c w s t J γ α

∈ ∈
of

problem Relaxed_RDJM. We construct it as follows:

Every path p in the network { }(), 'G V E e− is assigned with the flow of the

corresponding path ip in network i i i(),G V E .

Link 'e is assigned with flow
{ }'

e
e E e

cα
∈ −

⋅ ∑ .

We now show that the constructed path flow satisfies the requirements of the instance

() { } { } (), , , , , , , ,e ee E e E
G V E c w s t J γ α

∈ ∈
of Problem RDJM.

Clearly, the total flow transferred through network i i i(),G V E is now

{ }

i i
i'

e e
e E e e E

c cγ α γ α γ
∈ − ∈

+ = + =∑ ∑� � flow units.

Since the capacity of link 'e is
{ }'

e
e E e

c
∈ −
∑ , then the link congestion factor over 'e is

{ }

{ }

''

'
'

e
e E ee

e e
e E e

c
f

c c

α
α∈ −

∈ −

⋅
= =

∑

∑
. In addition, since the flow and the capacity of each link

{ }'e E e∈ − is equal to the flow and the capacity of the corresponding link ie E∈� in

network i i i(),G V E , the link congestion factor of every link { }'e E e∈ − is not larger

than iα (which equals to α). Therefore, the resulting network congestion factor is at
most α .

It is only left to be shown that the constructed path flow satisfies the delay jitter
constraints. Since 'e carries a positive amount of flow and its weight is minw , the

shortest path that transfers a positive amount of flow has a weight of minw . Therefore,

as the weight restriction is i ,W the difference between any two paths that carry

positive amounts of flow is no more than i minW w− , which is precisely the delay jitter

constraint J .

Thus, Problem Relaxed_RDJM is NP-hard. ■

29

5.2 Pseudo polynomial algorithm for Problem RDJM

In this section we present a pseudo-polynomial algorithm for the single commodity
case of problem RDJM. Based on this result, a practical routing scheme is derived in
Sections 5.3 and 5.4.

The pseudo-polynomial algorithm is based on solving the following variant of
Problem RMP.

5.2.1 Problem RRMP (Restricted RMP)

Given are a network G(V,E), two nodes s,t∈V, for each link e∈E a weight we>0 and a

capacity ce>0, a demand γ>0, a hop-count restriction 1≤H≤N-1 and upper and lower
weight restrictions U,L respectively. Find a path flow that minimizes the network
congestion factor such that, if PŒP(s,t) is the set of paths in P(s,t) that are assigned with

a positive flow, then, for each p∈P, it holds that |p|≤H and L≤ D(p)≤U.

Although Problem RMP doesn’t restrict the paths to have an hop count of at most N-
1, it is obvious that for any given instance of Problem RMP there exists an optimal
solution to Problem RMP that consists of only simple paths (indeed, Algorithm RMP
returns only solutions that consist of simple paths). Therefore, Problem RMP remains
NP-hard even if we add a new restriction that enforces to return only paths with hop
count of at most N-1. Thus, since this restricted version of Problem RMP is derived
from Problem RRMP by setting to zero the lower weight restriction and by setting to
N-1 the hop count restriction, it follows that Problem RRMP is NP hard.

5.2.2 Solving Problem RRMP

In this section we present a linear program for Problem RRMP. The program uses
some of the notations introduced in section 4.2. For convenience, we repeat these
definitions.

Let α be the network congestion factor. Define ,h
ef
ω to be the link flow over link

(),e u v E= ∈ that has traversed through paths (),s up P∈ such that e
e p

w ω
∈

=∑ and

p h= . Finally, for each v V∈ , denote by ()O v the set of links that emanate from v ,

and by ()I v the set of links that enter that node, namely () () (){ }, ,O v v l v l E= ∈ and

() () (){ }, ,I v w v w v E= ∈ . Then, Problem RRMP can be formulated as the following

linear program (Fig. 5.1).

30

Fig. 5.2: Algorithm RRMP

() ()
[] []

() ()
[] []

, 1,

, 1,

0,0

()

Minimize

.

0 , { , }, 0, , 0,

0 , 1, 1,

e

e

w hh
e e

e O v e I v

w hh
e e

e O s e I s

e
e O s

s t

f f v V s t U h H

f f U h H

f

ωω

ωω

α

ω

ω

γ

− −

∈ ∈

− −

∈ ∈

∈

− = ∀ ∈ − ∀ ∈ ∀ ∈

− = ∀ ∈ ∀ ∈

=

∑ ∑

∑ ∑

∑

,

0 0

,

,

0 , , 0 or 0

U l
h

e e
h

h
e

f c e E

f e E h

ω

ω

ω

α

ω
= =

≤ ⋅ ∀ ∈

= ∀ ∈ < <

∑∑

[] []
() [] []

,

,

0 , 0, , 0, ,

0 , , , , 0,

0

h
e

h
e

f U h H e E

f e I t L U h H

ω

ω

ω

ω
α

≥ ∀ ∈ ∀ ∈ ∀ ∈

= ∀ ∈ ∀ ∉ ∀ ∈

≥

Fig. 5.1: Program RRMP

Except for constraint (7), Program RRMP is quite similar to the one presented for
Problem RMP in section 4.2. Constraint (7) restricts the traffic that enters the target
node t to traverse only paths of total weight not larger than U and not smaller than L .

The path flow is then constructed from the output { },h
ef
ω by employing Algorithm

PFC_RDJM that is similar to Algorithm PFC that was described in Section 4. The
only difference between the algorithms is the specification of the procedure that
constructs in each iteration a path from s to t. This procedure incorporates to
Procedure Path Construction the hop-count restriction. Algorithm PFC_RDJM is
defined in the Appendix.

5.2.3 Solving Problem RDJM

We use Algorithm RRMP in order to establish an algorithm for Problem RDJM as

follows. Given an instance () { } { } { }, , , , , , , ,e eG V E s t w c J Hγ of problem RDJM,

() { }()G V,E , , ,{ },{ }, , , ,e es t w c L U HγAlgorithm RRMP

1. i { }.eE e E w U← ∈ ≤

2. { } () { }(), G V,E , , ,{ },{ }, , , ,h
e e ef s t w c L U Hω γ← RRMP

3. { } { }(),(,), , , ,h
ef G V E s t f ω γ← PFC_RDJM

4. Return path flow f.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

31

Fig. 5.3: Algorithm RDJM

we solve all the corresponding instances of Problem RRMP that have an upper weight
restriction U and a lower weight restriction L such that U L J− = . More precisely, we

solve for each { }max0,min ,L H w W J∈ ⋅ −   an instance

() { }()G V,E , , ,{ },{ }, , , ,e es t w c L L J Hγ + of Problem RRMP using Algorihm RRMP.

Finally, the output of the algorithm is determined to be the solution of the instance
that has the minimal network congestion factor. The formal description of the
algorithm is described in Fig. 5.3.

Algorithm RDJM () { } { } { }(), , , , , , , , ,e eG V E s t c w J W H γ

()
{ }
{ }
()

min

, network

capacities

weights

, commodity

delay jitter restriction

weight restriction

demand

network congestion factor

path flow

e e E

e e E

G V E

c

w

s t

J

W

g

γ

α

∈

∈

−

−

−

−

−
−
−

−
−

Parameters :

Variables

Initialization:

minα ← ∞ .

g NIL← .

IF { }maxmin ,H w W J⋅ < Then

Apply Algorithm RRMP in order to solve the instance

() { } { }()maxG V,E , , ,{ },{ }, , 0, min , ,e es t w c L U H w W Hγ = = ⋅ of

problem RRMP. Let α be the network congestion factor of path
flow f .

ELSE
For each { }max0,min ,L H w W J∈ ⋅ −   :

Apply Algorithm RRMP in order to solve the instance

() { }()G V,E , , ,{ },{ }, , , ,e es t w c L L J Hγ + of problem RRMP. Let

α be the network congestion factor of path flow f .

minIf is smaller than , perform:α α
o minα α← .

o f g← .
Return path flow g .

32

Theorem 5.2 Given an instance () { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ of Problem

RDJM, Algorithm RDJM finds a path flow g that minimizes the network congestion

factor such that, if (),s tP P⊆ is the set of paths in (),s tP that are assigned with a
positive flow, then, for each 1 2,p p P∈ , it holds that 1 2, ,p p H≤ () ()1 2, ,W p W p W≤
and () ()1 2W p W p J− ≤ .

Proof It is clear that, on every iteration of Algorithm RDJM, the solution to instance

() { }()G V,E , , ,{ },{ }, , , ,e es t w c L L J Hγ + of problem RRMP transfers γ flow units from

s to t while satisfying the delay jitter constraint J, the hop count restriction H, and

the weight restriction W. In addition, since { }max0,min ,L H w W J∈ ⋅ −   it follows

that the upper weight restriction U L J= + is at most W. We need only prove that the
path flow g minimizes the network congestion factor. This is quite immediate, but
we present the details, for completeness. Algorithm RDJM examines all possible
instances of problem RRMP whose solution is feasible with respect to the given
instance of Problem RDJM. Since both optimization problems have the same
objective function, and since we output the path flow that results with the smallest
network congestion factor among all examined instances of problem RRMP, we get a

feasible path flow for instance () { } { } { }, , , , , , , ,e eG V E s t c w J W γ that has a minimal

network congestion factor. ■

5.3 Approximation Scheme for Problem RDJM

We now present an approximation scheme for problem RDJM for the case that

()maxw O J= , where J is the restriction on the delay jitter. We note that this

assumption is usually not restrictive. Indeed, in practice the bound on the delay jitter
for multipath routing schemes is set to three times the serialization time, which is
usually in the order of milliseconds [6]. Since the total delay of a link is also in the
order of milliseconds, the assumption that both delays have the same order of
magnitude is reasonable.

Since the complexity of Algorithm RDJM depends on the weight of the links, it is
possible to reduce its complexity by scaling the weight of each link down into smaller
integral values. Obviously, the delay jitter restriction must be scaled as well.
However, in addition to its scaling, it is also incremented by the value of the hop
count restriction H. This is done in order to ensure that the new delay jitter restriction
will be relaxed with respect to the original delay jitter restriction. Thus, the resulting
network congestion factor will not be larger then the optimal network congestion
factor, and the delay jitter restriction will be broken by at most a factor of ()1 ε+ . Fig.

5.4 describes the approximation scheme for Problem RDJM.

33

Fig 5.4: RDJM Approximation Scheme

() { } { } { }

()
{ }
{ }

, , , , , , , , , ,

, network

capacities

weights

delay jitter restriction

weight restriction

hop count

demand

approximation parameter

1

e e

e e E

e e E

G V E s t c w J W H

G V E

c

w

J

W

H

γ ε

γ
ε

∈

∈

−

−

−

−
−
−
−

−

RDJM Approximation Scheme

Parameters :

{ }

j i

j

() { } { } j{ } i i

min ,

2

2 W ,

3 For each :

.

4 Solve instance , , , , , , , , , of problem RDJM

using Algorithm RDJM, and ret

e
e

e ee E e E

J W

N

J
H J W

W
J

W
H J W

e E

w
w

G V E s t c w J W H

ε
δ

δ
δ

δ

δ

γ
∈ ∈

⋅
←

⋅
   + ≤     ← ←      + >  

∈

 ←   

urn the resulting path flow.

Theorem 5.3: Given are an instance () { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ of

problem RDJM and an approximation parameterε . The output of the RDJM
Approximation Scheme is a path flow f that satisfies the following:

a. ()(),s tp P
f p γ

∈
=∑ , i.e., the flow demand requirement is satisfied.

b. If *α is the network congestion factor of the optimal solution then, for each

e∈E, it holds that (,)

*() ()s t e ep P
p f p cα

∈
∆ ⋅ ≤ ⋅∑ i.e., the network congestion

factor is at most *α .

c. For each pair of paths p1,p2∈P(s,t), that transfer a positive amount of flow, it

holds that |p1|,|p2|≤H, D(p1),D(p2)≤D·(1+ε) and |D(p1)-D(p2)|≤J·(1+ε) i.e., the

hop count restriction is satisfied and both the end-to-end delay and the delay-
jitter restrictions are violated by a factor of at most (1+ε).

34

Proof
a. By construction, the output of the RDJM Approximation Scheme (Fig. 5.4) is

the output of Algorithm RDJM over an instance

() { } { } j{ } i i, , , , , , , , ,e eG V E s t c w J W H γ . Since Algorithm RDJM returns a path

flow f that transfer γ flow units from s to t, it follows that ()(),s tp P
f p γ

∈
=∑ .

b. Assume that W J≥ . Let α be the network congestion factor of the output and
let *α be the network congestion factor of the optimal solution. We have to
show that *α α≤ . To that end, we prove that the restrictions over the instance

() { } { } j{ } i i, , , , , , , , ,e eG V E s t c w J W H γ of line (4), are relaxed with respect to

the original restrictions of the given instance

() { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ of Problem RDJM. Since the

Algorithm rounds down the weight of each link, and round up the weight
restriction, it is easy to see that this restriction is relaxed with respect to the
original restriction. We turn to consider the delay jitter restrictions. To that

end, consider a pair of paths 1 2,p p E⊆ that satisfy () ()1 2W p W p J− ≤

with respect to the weights { }ew . We will prove that ()k ()k i
1 2W p W p J− ≤

with respect to the weights j{ }ew . In other words, we have to prove that

i ()k ()k i
1 2J W p W p J− ≤ − ≤ for the delays j{ }ew .Without loss of generality,

assume that () ()1 2W p W p≥ . Therefore, (i) () ()1 20 W p W p J≤ − ≤ . In order

to prove that ()k ()k i
1 2W p W p J− ≤ we first use the left hand side of (i) in order

to verify that i ()k ()k
1 2J W p W p− ≤ − .

() () () ()()
1 2

1 2 1 2 1 2

1 2

1 2 1 2

1 1
0 0 0

0 0 0

0 1

e e
e p e p

e e e e e e

e p e p e p e p e p e p

e e e

e p e p

W p W p W p W p w w

w w w w w w

w w w

δ δ

δ δ δ δ δ δ

δ δ δ

∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈

 
− ≥ ⇒ − ≥ ⇒ − ≥ ⇒ 

 
     

⇒ − ≥ ⇒ − ≥ ⇒ − ≥ ⇒     
     

     ⇒ − ≥ ⇒ +          

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

()k

1 2

1 2 1 2

1 2 1 2

1

1

0

0 0

e

e p e p

e e e e

e p e p e p e p

e e e e

e p e p e p e p

w

w w w w
p H

w w w w J
H H

W p

δ

δ δ δ δ

δ δ δ δ δ

∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

  − ≥ ⇒     
       ⇒ + − ≥ ⇒ + − ≥ ⇒              

         ⇒ − ≥ − ⇒ − ≥ − − ⇒                 

⇒ −

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

()k ()k ()k i
2 1 2 .

J
W p H W p W p J

δ
  ≥ − + ⇒ − ≥ −    

35

We now use the right hand side of (i) namely () ()1 2W p W p J− ≤ , in order to

prove that ()k ()k i
1 2W p W p J− ≤ .

() () () ()()
1 2

1 2 1 2 2

2 1 2

1 2 1 2

1 1

=

e e
e p e p

e e e e e

e p e p e p e p e p

e e e

e p e p e p

J J
W p W p J W p W p w w

w w w w wJ J J

w w wJ J

δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ δ

∈ ∈

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

 
− ≤ ⇒ − ≤ ⇒ − ≤ ⇒ 

 
      ⇒ ≤ + ⇒ ≤ + ≤ +            

        = + ⇒ − ≤                

∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

1 2 1 2

1 2 1 2

1 2

21

e e e e

e p e p e p e p

e e e e

e p e p e p e p

e e

e p e p

w w w wJ J

w w w wJ J
p

w w

δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈

⇒

       ⇒ − ≤ ⇒ − ≤ ⇒              
           ⇒ − + ≤ ⇒ − − ≤ ⇒                      

   ⇒ −      

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑
j j i ()k ()k i

1 2

1 2

2

1 2 .

e e

e p e p

e e
e p e p

w wJ J
p H

w w J W p W p J

δ δ δ δ∈ ∈

∈ ∈

      ≤ + ⇒ − ≤ + ⇒            

⇒ − ≤ ⇒ − ≤

∑ ∑

∑ ∑

Thus, *α α≤ for the case that W J≥ .

Assume now that W J< . Since all paths have positive weights, it follows that
all feasible paths that satisfy the weight and the delay jitter restrictions must
have weight in the range [0,W]. Thus, the optimal network congestion factor

of the given instance () { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ is equal to the

optimal network congestion factor of the instance

() { } { } { } i, , , , , , , , ,e eG V E s t c w J W H γ , where iJ W= . Since by construction

the algorithm solves such an instance, and since we have just proved that the

for the case that iJ W= the algorithm outputs a path flow with a network
congestion factor that is at most the optimum, it follows that the algorithm
outputs a path flow with a network congestion factor at most *α for the case
that W J< .

c. Since the instance () { } { } j{ } i i, , , , , , , , ,e ee E e E
G V E s t c w J W H γ

∈ ∈
that was

specified in line (4) has the same hop count restrictions as the original

instance () { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ , it is obvious that 1p H≤ ,

2p H≤ . It is left to be shown that () () ()1 2 1W p W p J ε− ≤ ⋅ + and

() () ()1 2, 1W p W p W ε≤ ⋅ + .

36

Without loss of generality, assume that () ()1 2W p W p≥ . Therefore,

() ()
1 2 1 2

1 2
e e

e e
e p e p e p e p

w w
W p W p w w δ δ

δ δ∈ ∈ ∈ ∈

   − = − ≤ ⋅ − ⋅ ≤      
∑ ∑ ∑ ∑

j() j

j j

1 2 1 2

1 2

1

1 1

.

e e
e e

e p e p e p e p

e e
e p e p

w w
w w

w w p

δ δ δ δ
δ δ

δ δ

∈ ∈ ∈ ∈

∈ ∈

    ≤ + ⋅ − ⋅ = + ⋅ − ⋅ =        

 
= − ⋅ + ⋅ 

 

∑ ∑ ∑ ∑

∑ ∑

Since 1p and 2p transfer positive amounts of flow, they satisfy the delay jitter

constraint of instance () { } { } j{ } i i, , , , , , , , ,e ee E e E
G V E s t c w J W H γ

∈ ∈
of line (4).

Therefore,

() () j j i i
1 2

1 2 1 1 .e e
e p e p

W p W p w w p J p J Hδ δ δ δ δ δ
∈ ∈

 
− ≤ − ⋅ + ⋅ ≤ ⋅ + ⋅ ≤ ⋅ + ⋅ 

 
∑ ∑

Since
{ }min ,

2

J W

N

ε
δ

⋅
=

⋅
and Problem RDJM defines the hop count restriction

H to be in the range 1 1H N≤ ≤ − , we conclude that

() () i ()1 2 1
J

W p W p J H H Nδ δ δ δ
δ

  − ≤ ⋅ + ⋅ ≤ + ⋅ + − ⋅ ≤    

() () ()1 1 2 1 .
2

J J
H N J N H J N J

N

εδ δ δ ε
δ

⋅ ≤ + + ⋅ + − ⋅ = + + ⋅ ≤ + ⋅ ⋅ = +  ⋅ 
■

Theorem 5.4: Given are an instance () { } { } { }, , , , , , , , ,e eG V E s t c w J W H γ of

problem RDJM and an approximation parameterε . For ()maxw O J= , the RDJM

Approximation Scheme has a polynomial complexity with respect to the input and the
approximation parameterε

Proof The complexity of the RDJM Approximation Scheme is determined by step
(4). The complexity of step (4) is determined by Algorithm RRMP that executes

Program RRMP for each k i{ } i
max0,min ,L H w W J ∈ ⋅ −  . Therefore we only have to

prove that the complexity of Program RRMP is polynomial, and that the total number

of iterations in Algorithm RRMP is polynomial (i.e. k i{ } i
maxmin ,H w W J⋅ − is

polynomial with respect to the input and the approximation parameter ε).

In order to show that Program RRMP is polynomial, we need to prove that the
program contains a polynomial number of variables [24]. From similar considerations
to those brought in the proof to Theorem 4.3, it is easy to see that the number of

variables { },h
ef
ω formulating Program RRMP in each iteration of Algorithm RRMP is

at most 2 M U H⋅ ⋅ ⋅ . In addition, Since for the instance

() { } { } j{ } i i, , , , , , , , ,e ee E e E
G V E s t c w J W H γ

∈ ∈
of step (4), Algorithm RDJM set a value

37

for U, that satisfies k i{ }maxmin ,U H w W≤ ⋅ , it follows that the total number of variables

in Program RRMP is at most k() k2
max max(i) 2 2M H w H M H w⋅ ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ . Thus, we

conclude that the total number of variables is at most

k k
{ }

2 2 2 2max max
max max min ,

2

2 2 2 2
J W
N

w w
M H w M N w M N M N εδ ⋅

⋅

  ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅       
.

Consider the case of W J≥ . Since ()maxw O J= , we conclude that the number of

variables that are formulating Program RRMP is at most

{ }

3 3
2 2max max max

min ,
22

4
2 2

J W J
NN

w w M N w M N
M N M N O

Jε ε ε ε⋅ ⋅
⋅⋅

    ⋅ ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ = ⋅ ⋅ ≤ =     ⋅    

.

Consider the case of W J< . Since Algorithm RRMP executes Program RRMP over

graph ()G V,E that contains only links e E∈ that satisfy ew W≤ it follows that

{ } max

3 3
2 2 2max max max

min ,
2 22

4
2 2 2 wJ W W

N NN

w w w M N M N
M N M N M N Oεε ε ε ε⋅⋅ ⋅

⋅ ⋅⋅

     ⋅ ⋅ ⋅ 
⋅ ⋅ ⋅ = ⋅ ⋅ ≤ ⋅ ⋅ ≤ =      

     
Thus, Program RRMP is polynomial.

In order to show that k i{ } i
maxmin ,H w W J⋅ − is polynomial with respect to the input and

the approximation parameter ε , it is sufficient to prove that k i
maxH w J⋅ − is

polynomial. Therefore it is sufficient to show that k
maxH w⋅ is polynomial with respect

to the input and ε . However since we have already established in (i) that the number

of variables is at most k2
max2 M H w⋅ ⋅ ⋅ , and we show that this number is polynomial, it

follows that k
maxH w⋅ must also be polynomial in the input and the approximation

parameter ε .

Therefore, the RDJM Approximation Scheme has a polynomial complexity with
respect to the input and the given approximation parameter ε . ■

5.4 Converting Non-Simple Paths into Simple Paths

As was already explained in Sec. 2 the optimal solution to Problem RDJM may use
non-simple paths in order to transfer the flow demand from the source s to the
destination t. In the definition of Problem RDJM we used the hop count restriction in
order to control this phenomenon. In this section we present a simple approach that
completely avoids this phenomenon using a bounded buffer at the source node. To
that end, we transform each non-simple path in the solution of Problem RDJM into a
simple path. Then, we identify the delay difference δ between the delay of the non-
simple path and the delay of the simple path. Finally, we assign the traffic to the
simple path but first delay it for δ units of time using a buffer at the source node.

Clearly, for each path in the solution to Problem RDJM, the delay difference δ is
always smaller than the weight (delay) restriction W. In addition, each path that
transfers ()f p flow units and is delayed by δ time units consumes ()f p δ⋅ units of

38

buffer space. Thus the buffer size at the source node is at most

() () ()
p P p P p P

f p f p W W f p Wδ γ
∈ ∈ ∈

⋅ ≤ ⋅ = ⋅ = ⋅∑ ∑ ∑ . As TCP requires at least one

bandwidth-delay product of buffer space at each end of the connection [42], such
buffer space requirements are reasonable.

39

6. Solution of Problem KPR

In this section we aim at solving Problem KPR, i.e. the problem of minimizing
congestion subject to a restriction on the number of routing paths. In [10] the problem
of maximizing the flow subject to a restriction on the number of routing paths was
proven to be NP-hard. Since we establish in Theorem 2.1 the equivalence between
these two objective functions it follows that Problem KPR is NP-hard. Therefore, we
present an efficient approximation scheme for the problem. We begin by introducing
the following auxiliary problem.

6.1 Problem σ-IR (σ- Integral Routing)

In this section we formulate Problem σ-IR and solve it. We begin with the following
definition.

Definition 6.1 Given are a network (),G V E , for each link e E∈ a capacity 0ec > ,

and, for each commodity (),i j V V∈ × , a demand (),i jγ and a value (),i jσ +∈\ . The

path flow of commodity (),i j is said to be (),i jσ -integral, if every path (),i jp P∈ is

assigned with a flow value that is integral in (),i jσ .

Problem σ-IR (σ- Integral Routing) Given are a network (),G V E , for each link

e E∈ a capacity 0ec > and for each commodity (),i j V V∈ × , a demand (),i jγ and a

value (),i jσ +∈\ . For each commodity (),i j V V∈ × , find a (),i jσ -integral path flow

that satisfies the demand (),i jγ and minimizes the network congestion factor.

We shall establish a solution to Problem σ-IR for the case of a single commodity. To
that end, we first show that the optimal network congestion factor is always an
element of a predefined finite set.

6.1.1 What are the possible network congestion factors?

In this subsection we observe that the optimal network congestion factor must belong

to a set that consist of at most M
γ
σ

⋅ elements.

Definition 6.2 Given an instance () { } { }, , , , , ,eG V E s t c γ σ of Problem σ-IR, We

say that the given instance has a feasible solution, if network (),G V E consists of a

directed path from source s to target t.

We note that a given instance may have a feasible solution even in the case where it is
not possible to transfer the entire flow demand without violating the capacities
constraints. In that case the optimal network congestion factor will have a value that is
larger than 1.

40

Theorem 6.1 Given an instance () { } { }, , , , , ,eG V E s t c γ σ of Problem σ-IR that has

a feasible solution. The optimal network congestion factor must be a member in set

, 0, ,
e

i
e E i i

c

σ γ
σ

 ⋅  ∈ ∈ ∈    
] .

Proof Let F be the set of all σ -integral flow vectors that transfer γ flow units from

s to t, and let α be its corresponding set of network congestion factors i.e.,

{ }max e
e

e E
e

f
f F

c
α

∈

   = ∈   
   

. Since the given instance has a feasible solution, it follows

that F φ≠ , and therefore α φ≠ .By the definition of α , it follows that for each

α α∈ , there is a flow vector { }ef F∈ and a link e E∈ such that e ef cα= ⋅ . On the

other hand, since all flow vectors in F are σ -integral and transfer at most γ flow

units over each link, it follows that for each { }ef F∈ and for each e E∈ , ef

σ
∈] and

ef γ≤ . Thus, combining both arguments, it follows that, for each α α∈ there is a

link e E∈ such that ecα
σ
⋅

∈] and ecα γ⋅ ≤ . In other words, for each α α∈ there is

a link e E∈ , and an integer i ∈ such that
e

i

c

σα ⋅
= and

ec

γα ≤ . Finally, since

ec

γα ≤ , it follows that
e e

i

c c

σ γ⋅
≤ and therefore i

γ
σ

≤ . Thus, we conclude that for each

α α∈ there is a link e E∈ , and an integer i
γ
σ

≤ such that
e

i

c

σα ⋅
= . Therefore,

, 0, ,
e

i
e E i i

c

σ γα
σ

 ⋅  = ∈ ∈ ∈    
] .

Since the set α contains the network congestion factors that corresponds to all σ -
integral flow vectors that transfer γ flow units from s to t, it follows that the optimal

network congestion factor, denoted by *α , must also be an element in that set, i.e.,
*α α∈ . ■

We henceforth use α in order to denote the set , 0, ,
e

i
e E i i

c

σ γ
σ

 ⋅  ∈ ∈ ∈    
] .

Observe that M
γα
σ

≤ ⋅ . In addition, note that the set α may contain values that are

larger than 1. However, since the optimal solution of Problem σ-IR has the minimum
network congestion factor, these infeasible values will be considered only when there
are no feasible solutions for the given instance.

41

6.1.2 Procedure Test

Before solving Problem σ-IR, we introduce Procedure Test that is specified in Fig.

6.1. This procedure is given an instance () { } { }, , , , , ,eG V E s t c γ σ of Problem σ-IR

and a congestion restriction α . If there exists a solution to the given instance such
that the network congestion factor is at most α , then the procedure returns it.
Otherwise, the procedure returns Fail.

We explain now the main idea behind Procedure Test. Initially, the procedure
multiplies all link capacities by a factor of α in order to satisfy the restriction on the
network congestion factor. Then it rounds down the capacity of each link to a multiple
of σ , and applies any standard Maximum Flow Algorithm over the resulting network.
Since all link capacities are σ -integral, the maximum flow algorithm determines a
σ -integral link flow that transfers a maximum flow demand. If this link flow
transfers from s to t at least γ flow units, then the procedure returns it. Otherwise the
procedure fails. The formal description of the procedure is specified in Fig. 6.1.

{ } { }()

()
{ }

, , , , , ,

network

, commodity

capacities

demand

integrality restriction

network congestio

e

e

G s t c

G

s t

c

γ σ α

γ
σ
α

−

−

−

−
−
−

Procedure Test

Parameters :

i

() i{ }
{ }

n factor

1. For each

.

2. Let , , , be an instance of the Maximum Flow Problem.

Solve this instance using the method [25]. Denote by

e
e

e

e

e E

c
c

G s t c

push relabel f

α
σ

∈

⋅ ←   

−

{ }

the respective solution, and by the total transferred flow from to .

3. If

the link flow

Else
e

F s t

F

f

γ
σ

σ

≥

⋅Return

Return Fail

Fig. 6.1: Procedure Test

42

Definition 6.3 We say that Procedure Test succeeds whenever it does not return Fail.

Lemma 6.1 If Procedure Test succeeds for an input () { }, , , , , ,eG s t c γ σ α , then the

returned link flow { }ef can be decomposed into a σ -integral path flow that transfers

at least γ flow units with a network congestion factor of at most α .

Proof Suppose that Procedure Test succeeds with an input () { }, , , , , ,eG s t c γ σ α .

Therefore, by construction, the solution { }ef to the instance () i{ }, , , eG s t c of the

Maximum Flow Problem transfers at least
γ
σ

flow units. Thus, it is easy to see that

the returned link flow { }efσ ⋅ , transfers a total flow of at least
γσ γ
σ

⋅ = units. In

addition, since the solution to the instance () i{ }, , , eG s t c satisfies the capacity

constraint i
e ef c≤ , for each link e E∈ , it follows that i

e ef cσ σ⋅ ≤ ⋅ holds for each

e E∈ and therefore the link flow { }efσ ⋅ satisfies, i e
e e e

c
f c c

ασ σ σ α
σ
⋅ ⋅ ≤ ⋅ = ⋅ ≤ ⋅  

,

for each link e E∈ . Hence, the returned link flow transfers at least γ flow units for

the instance () { }, , , eG s t c , such that the network congestion factor is at most α . It

remains to be shown that link flow { }efσ ⋅ can be decomposed into a σ -integral path

flow. To that end, note that the capacities of the instance () i{ }, , , eG s t c are integral.

Therefore, the Push -Relabel method returns an integral link flow [25]. Since the link
flow { }ef has only integral values, the returned link flow { }efσ ⋅ is σ -integral.

Thus, by employing the Flow Decomposition Algorithm [12], a σ -integral path flow
can be decomposed out of the returned σ -integral link flow.

Theorem 6.2 Given are an instance () { }, , , , ,eG s t c γ σ of Problem σ-IR and an

input () { }, , , , , ,eG s t c γ σ α for Procedure Test. Denote by *α the optimal network

congestion factor corresponding to () { }, , , , ,eG s t c γ σ . Then, Procedure Test

succeeds iff *α α≥ .

Proof
⇒ : Suppose that Procedure Test succeeds for the input { } { }, , , , , ,eG s t c γ σ α .

Therefore, by Lemma 6.1, there exists a solution for the instance { } { }, , , , ,eG s t c γ σ
of Problem σ-IR, such that the network congestion factor is at most α . Therefore,

*α α≥ .

⇐ : Suppose that *α α≥ . Therefore, there exists a solution for the instance

() { }, , , , ,eG s t c γ σ of Problem σ-IR with a network congestion factor of at most α .

43

In other words, there exists a σ -integral path flow that transfers at least γ units of

flow over the instance { } { }, , , eG s t cα ⋅ of the Maximum Flow Problem. Since the

path flow is σ -integral, we can reduce the capacities { }e e E
cα

∈
⋅ to become multiples

of σ without affecting the capability to transfer the flow demand γ . Therefore, it is

possible to transfer γ units of flow over the instance (), , , ec
G s t

α σ
σ

 ⋅   ⋅    
of the

Maximum Flow Problem. Hence, it is possible to transfer
γ
σ

units of flow over the

instance () () i{ }, , , , , ,e
e

c
G s t G s t c

α
σ

 ⋅   =    
of the Maximum Flow Problem.

Thus, by construction, Procedure Test does not return Fail, i.e., it succeeds. ■

6.1.3 Solving Problem σ-IR

We now solve problem σ-IR for the single commodity case. To that end, we introduce

Algorithm σ-IR, specified in Fig. 6.2. Given an instance { } { }, , , , ,eG s t c γ σ of

Problem σ-IR, Algorithm σ-IR finds the smallest α α∈ (where the set α is defined
in subsection 6.1.1) such that Procedure Test succeeds for the input

{ } { }, , , , , ,eG s t c γ σ α . Since Theorem 6.1 establishes that the set α must contain the

optimal network congestion factor, Algorithm σ-IR discovers the optimal network

congestion factor. Finally, as Procedure Test succeeds with 1α α∈ , it must succeed

with every 1α α≥ , Algorithm σ-IR employs a binary search in order to efficiently

discover the smallest α α∈ for which Procedure Test succeeds. Algorithm σ-IR is
formally described as follows.

44

Fig. 6.2 Algorithm σ-IR

{ } { }()

{ }
{ }

, , , , ,

network

, commodity

capacities

demand

integrality restriction

:

netw

e

e e E

G s t c

G

s t

c

γ σ

γ
σ

α

∈

−

−

−

−
−

−

Algorithm σ - IR

Parameters :

Variables

{ }

{ } { }()

ork congestion factor

link flow

Perform a binary search over the set in order to find the smallest

such that , , , , , , .

the binary search has

e e E

e

f

G s t c

α α α

γ σ α

∈
−

∈

≠

1.

Test FAIL

2. If

{ } { }()

min

failed i.e., there is no such that

, , , , , , , .

Denote by the network congestion factor that was output in the search

eG s t c

α α

γ σ α

α

∈

≠Test FAIL Return Fail

Else

{ } { } { }()
{ }

{ } ()

min

1

process.

Perform, , , , , , , .

Execute the [12] over the link flow , in

order to obtain a path flow : 0 . Let be the res

e e

e

i i

f G s t c

Flow Decomposition Algorithm f

f P p
ξ

γ σ α

+
=

←

→ ∪

3. Test

4.

\

()()
1

ulting set of

paths that transfer a positive flow.

, .i i i
p f p

ξ

=
5. Return

In order to prove that Algorithm σ-IR identifies an optimal solution for Problem σ-IR,
we first establish that, if Algorithm σ-IR fails, then there is no feasible solution for the
given instance. Then we prove that, if it succeeds, then it identifies an optimal
solution.

Theorem 6.3 Given is an instance { } { }, , , , ,eG s t c γ σ of Problem σ-IR. If

Algorithm σ-IR returns Fail, then there is no feasible solution for the given instance.

Proof By construction, if Algorithm σ-IR fails then there is no α α∈ such that

{ } { }(), , , , , , FAILeG s t c γ σ α ≠Test . Thus, according to Theorem 6.2, the optimal

network congestion factor, denoted by *α , is larger then the largest element in set α .

45

Thus, *α α∉ . Finally, according to Theorem 6.1, it follows that there is no feasible

solution for the instance { } { }, , , , ,eG s t c γ σ . ■

Theorem 6.4 Given is an instance { } { }, , , , ,eG s t c γ σ of Problem σ-IR. If Algorithm

σ-IR does not fail, then it returns a σ -integral path flow that transfers at least γ flow
units from s to t, such that the network congestion factor is minimized. Thus,
Algorithm σ-IR identifies an optimal solution for Problem σ-IR.

Proof Since Algorithm σ-IR does not fail, it follows by construction that the value

minα , identified in step (2) of the algorithm, satisfies

{ } { }()min, , , , , , FAILeG s t c γ σ α ≠Test . Thus, by Lemma 6.1, the returned link flow

{ }ef can be decomposed into a σ -integral path flow that transfers at least γ flow

units, such that the network congestion factor is at most minα .Finally, this path flow is
constructed using the Flow Decomposition Algorithm (step 3).

It remains to be shown that minα is the optimal network congestion factor for the

given instance. However, this is obvious, since minα is defined to be the smallest

α α∈ such that { } { }(), , , , , , FAILeG s t c γ σ α ≠Test . Therefore, it follows by

Theorem 6.2, that minα equals to the smallest α α∈ such that *α α≥ , where *α
denotes the optimal network congestion factor for the given instance. However, since

we established in Theorem 6.1 that *α α∈ , it follows that *
minα α= . ■

Theorem 6.5 The complexity of Algorithm σ-IR is ()log log ,O N T N M
γ
σ

  + ⋅    
,

where (),T N M is the running time of the Push-Relabel Algorithm.

Proof We saw in section 6.1.1 that M
γα
σ

≤ ⋅ . Since Algorithm σ-IR executes a

binary search over the set α in order to find the smallest α α∈ such that

{ } { }(), , , , , ,eG s t c γ σ α ≠Test FAIL , it follows that Procedure Test is executed at

most ()()logO α times. Note that ()log log M
γα
σ

 ≤ ⋅ = 
 

log log 2 log logM N
γ γ
σ σ

= + ≤ ⋅ + . Since the most time consuming part of Procedure

Test is the execution of the Push-Relabel Algorithm, the procedure consumes

()(),O T N M operations. Thus the time complexity of Algorithm σ-IR is

()log log ,O N T N M
γ
σ

  + ⋅    
. ■

46

6.2 Approximation Scheme for Problem KPR

We now employ the solution to Problem σ-IR in order to derive an efficient
approximation scheme for Problem KPR. This scheme is based on the following
results.

Theorem 6.6 Given are an instance () { } (){ } (){ }, ,, , , ,i j i j
eG V E c γ Κ of Problem

KPR and a value 1r ≥ . If the optimal network congestion factor of the given instance

is *α , then, for ()
()

()

,
,

,K

i j
i j

i j r

γσ =
⋅

, the optimal network congestion factor for the

instance { } (){ } (){ }, ,, , ,i j i j
eG c γ σ of Problem σ-IR is at most *1

1
r

α + ⋅ 
 

.

Proof Consider the optimal solution of the instance

() { } () (){ }, ,1
, , , 1 ,i j i j

eG V E c
r

γ  + ⋅ Κ  
  

of problem KPR. Obviously, the optimal

network congestion factor is *1
1

r
α + 

 
. Round down the path flow of the considered

optimal solution to be a multiple of
()

()

,

,K

i j

i jr

γ
⋅

for each path (),i jp P∈ . Therefore, the

resulting path flow is
()

()

,

,K

i j

i jr

γ
⋅

-integral for each (),i jp P∈ . In this process, the flow

over each path is reduced by at most
()

()

,

,K

i j

i jr

γ
⋅

flow units. Since there are no more than

(),i jΚ paths, the demand of each commodity is reduced by at most
(),i j

r

γ
flow units.

Since initially each commodity transferred (),1
1 i j

r
γ + ⋅ 

 
flow units, it follows that,

after the rounding, each commodity transfers at least (),i jγ flow units.

Thus, we identified a path flow that satisfies the instance { } (){ } (){ }, ,, , ,i j i j
eG c γ σ of

Problem σ-IR, where ()
()

()

,
,

,K

i j
i j

i j r

γσ =
⋅

for each (),i j V V∈ × . In addition, since in this

process we only reduce flow, the network congestion factor is at most *1
1

r
α + 

 
. ■

Theorem 6.7 Given an instance { } (){ } (){ }, ,, , ,i j i j
eG c γ σ of Problem σ-IR, for each

commodity (),i j V V∈ × , the total number of paths (),i jp P∈ that transfer a positive

amount of flow is at most
()

()

,

,

i j

i j

γ
σ

 
 
 

.

47

Proof Since, for each commodity (),i j V V∈ × , the flow is (),i jσ -integral, each path
(),i jp P∈ that transfers a positive amount of flow must transfer at least (),i jσ flow

units. Therefore, for each commodity (),i j V V∈ × , there are no more than
()

()

,

,

i j

i j

γ
σ

 
 
 

different paths. ■

We are now ready to define an approximation scheme for Problem KPR, and evaluate
its performance. To that end, we employ Algorithm σ-IR that solves Problem σ-IR for
the single commodity case.

KPR Approximation Scheme Given a single commodity instance

{ }{ }, , , ,eG s t c γ Κ of Problem KPR and a real number 1r ≥ , define a single

commodity instance { }{ }, , , ,eG s t c γ σ of Problem σ-IR, with
K r

γσ =
⋅

, and solve it

through Algorithm σ-IR.

Given an instance of Problem KPR, it follows from Theorem 6.6 that the KPR
Approximation Scheme returns a solution with a network congestion factor that is

larger by a factor of at most
1

1
r

 + 
 

than the optimal network congestion factor. In

addition, by Theorem 6.7, it follows that the returned solution consists of at most

K

K

r

r

γ γ
γσ

 
   = = ⋅        
 ⋅ 

different paths with positive flow. We summarize the above

discussion as follows.

Corollary 6.1 Given are a single commodity instance (){ }, , , ,eG s t c γ Κ of Problem

KPR and a real number 1r ≥ . The KPR Approximation Scheme produces at most

K r⋅   paths with a network congestion factor that is at most
1

1
r

 + 
 

times larger

than the optimal network congestion factor of the given instance. ■

Since we proved that the complexity of Algorithm σ-IR is

()log log ,O N T N M
γ
σ

  + ⋅    
, and since

K r

γσ =
⋅

, it follows that the

complexity of the KPR Approximation scheme is

() ()() ()() () () ()() ()()log log K , log log K log ,O N r T N M O N r T N M+ ⋅ ⋅ = + + ⋅ , i.e.,

polynomial in the input size.

In [10], a 0.5-approximation scheme is presented for the problem of maximizing flow
under a restriction on the number of paths. In Theorem 2.1 we establish a reduction
between the minimization of the network congestion factor and the maximization of
the flow. In the following we prove that this reduction is an approximate preserving

48

reduction. More specifically, we prove that the reduction of Theorem 2.1 maps r-

approximates solutions to the congestion minimization problem into
1

r
− approximate

solutions to the flow maximization problem. Hence, our solution to Problem KPR for
r=1 provides an alternative solution to the problem of [10], with equal performance
guarantees. Moreover, our approach generalizes the result of [10] to any r≥1.

Theorem 6.8 Given are a network (,)G V E two nodes { },s t capacities { }ec and a

demand γ . If { }ef is a link flow that transfers γ flow units from s to t such that the

network congestion factor α is larger by a factor of at most r than the optimal

network congestion factor, then { }1
efα

⋅ is
1

r
approximation to the instance

() { } { }, , , ,eG V E c s t of the maximum flow problem.

The proof to the Theorem appears in the Appendix

For completeness we provide an approximate preserving reduction that maps
1

r
− approximate solutions of the flow maximization problem into r-approximates

solutions of the congestion minimization problem.

Theorem 6.9 Given are a network (,)G V E two nodes { },s t and capacities { }ec . If

{ }ef is a link flow that transfers 'F flow units from s to t such that { }ef is an

1

r
− approximation to the instance () { } { }, , , ,eG V E c s t of the Maximum Flow Problem

then { }'ef F

γ
⋅ is a link flow that transfer γ flow units from s to t with a network

congestion factor larger by a factor of at most r than the optimal network congestion
factor.

The proof to the Theorem appears in the Appendix

6.3 Extensions to Problem KPR

In this section we briefly describe some additional results that are related to Problem
KPR. More specifically, one result deals with the dual problem, which restricts the
network congestion factor and minimizes the number of paths for routing and another
result adds a cost restriction.

6.3.1. Problem MPR

Problem MPR is defined as follows:

Problem MPR (Minimum Paths for Routing) Given are a network G(V,E), two

nodes s,t∈V, A capacity ce>0 for each link e∈E, a demand γ>0 and a restriction on the

network congestion factor α. Find a path flow with a network congestion factor of at

49

most α, such that, if PŒP(s,t) is the set of all paths in P(s,t) that are assigned with a
positive flow, then |P| is minimized.

A solution to Problem MPR can be derived by employing the KPR Approximation
Scheme (specified in section 6.2) as follows.

Given an instance of Problem MPR, denote by *K the number of different paths that
carry a positive flow in the optimal solution. Observe that *K must take values only
in the range []1, M (since every link flow can be decomposed into the sum of at most

M paths and cycles that carry a positive flow). Therefore, given an instance

() { }, , , , ,eG s t c γ α of Problem MPR a real number 1r ≥ , one can define, for each

[]K 1, M∈ , an instance () { }, , , , , KeG s t c γ of Problem KPR, and solve the resulting

instance using the KPR Approximation Scheme for the given r. If the resulting

network congestion factor is larger than
1

1
r

α + ⋅ 
 

, a smaller value of K shall be

chosen, otherwise a larger one shall be chosen. We terminate when we get the

smallest K such that the network congestion factor is at most
1

1
r

α + ⋅ 
 

. This

approximation scheme shall be termed as the MPR Approximation Scheme.

Theorem 6.10Given an instance () { }, , , , ,eG s t c γ α of Problem MPR, the MPR

Approximation Scheme finds a path flow with at most *K paths that transfer at least

γ units of flow, such that the network congestion factor is at most
1

1
r

α + ⋅ 
 

.

Proof By construction, the output of the MPR Approximation Scheme is a path flow
that transfers at least γ flow units such that the network congestion factor is at most

1
1

r
α + ⋅ 

 
. Therefore, we only need to prove that the number of defined paths is

indeed *K . Denote by **K the number of different paths that the MPR Approximation

Scheme calculated for the instance () { }, , , , ,eG s t c γ α . We have to prove that
* **K K≥ . By construction, **K is the smallest []K 1, M∈ such that the optimal

network congestion factor for the instance () { }, , , , , KeG s t c γ of Problem KPR is

smaller than
1

1
r

α + ⋅ 
 

. Therefore, for the instance () { } **, , , , , K 1eG s t c γ − , the

KPR Approximation Scheme returns a network congestion factor that is larger than
1

1
r

α + ⋅ 
 

. Since, for a given instance () { }, , , , , KeG s t c γ of Problem KPR and a

real number 1r ≥ , the KPR Approximation Scheme finds a path flow with a network

congestion factor that is at most
1

1
r

 + 
 

times larger than the optimum, the optimal

network congestion factor for the instance () { } **, , , , , K 1eG s t c γ − of Problem KPR

50

is larger than α . Therefore, since the optimal solution for the given instance of
Problem MPR produces a network congestion factor of at most α we conclude that

* **K K 1> − , hence * **K K≥ . ■

We note that, by employing Procedure Test (introduced in section 6.1) directly, a
better time complexity approximation scheme can be derived. We omit the detailed
description of this approximation scheme, and only note that, instead of solving an

instance () { }, , , , , KeG s t c γ of Problem KPR for each []K 1, M∈ , we execute

Procedure Test directly, for each []K 1, M∈ , with an input

() { } 1
, , , , , , 1+eG s t c

r
γ σ α  ⋅ 

 
such that

K r

γσ =
⋅

.

6.3.2 Problem BCKPR

Another restriction that can be added to Problem KPR is a "cost", as follows.

Problem BCKPR (Bounded Cost K-Path Routing) Given are a network (),G V E ,

for each link e E∈ , a capacity 0ec > and a weight (i.e., “cost”) 0ew > , and, for each

commodity (),i j V V∈ × , a demand (),i jγ , a split restriction (),i jΚ and a weight

("cost") restriction (),i jC . Find a path flow that minimizes the network congestion
factor, subject to the following:

() (), ,i j i j
e e

e E

w f C
∈

⋅ ≤∑ .

If () (), ,i j i j
xP P⊆ is the collection of all paths in (),i jP that are assigned with

positive flow, then () (), ,i j i j
xP ≤ Κ .

An approximation scheme for Problem BCKPR for the single commodity case can be
derived by substituting the Maximum Flow algorithm in Procedure Test with a
Minimum Cost Flow algorithm [12]. Then, if e e

e E

w f C
∈

⋅ ≤∑ , Procedure Test will

return Fail and a larger network congestion factor will be chosen by Algorithm σ -IR.
We omit the precise description of the approximation scheme and its proof.

51

7. Future research

During this work we observed that multipath routing offers many advantages in
contexts that are not necessarily related to congestion avoidance or load balancing. In
the following we present a brief description of some ideas for future research.

Multipath routing and survivability

Multipath routing can be used in order to improve resilience and avoid congestion.
The combination of both benefits can be obtained by employing the idea of diversity
coding [3], which adds redundant information to the data stream, like error detection
and correction codes. Then, in order to increase fault tolerance, the redundant
information is routed along paths that are disjoint to the paths that are used to transfer
the original data stream. Therefore, it is desired to develop new multipath routing
schemes that also engage the diversity coding concept. For example, it is desired to
develop schemes for multipath routing that maximize the total flow (or minimize the
congestion) and satisfy a fundamental property that restricts each path that transfer
positive data flow to have an adequate set of disjoint paths with enough bandwidth to
protect this flow.

Multipath routing and security

Splitting the traffic among several node-disjoint paths has the advantage that no node
(except the source and the target) gets to see the whole data stream. Therefore, in
practice, reconstructing the data stream is possible only at the target node. This
inherent advantage of multipath routing can be used in order to enhance security.

In order to exploit this idea, we should identify several node-disjoint paths, and
transfer a limited portion of the total flow demand over each. This limitation is a key
point, since otherwise a single path could transfer about all of the flow.

Accordingly, it is desirable to incorporate this notion into multipath routing schemes
in order to satisfy security requirements.

Energy efficiency and multipath routing

In wireless networks, where nodes have limited power resources (batteries), energy
conserving routing must be employed in order to maximize the network lifetime, i.e.,
the time until the first battery drains-out [29]. Since energy consumption is
proportional to a node's transmission rate, it is easy to see that splitting the traffic
among several paths can prolong the network lifetime, i.e., the time until the first
battery drains out. Therefore, it is of interest to design and explore practical multipath
routing schemes that incorporate energy conservation policies for such environments.

Recovery schemes for multipath routing

Multipath routing can provide additional benefits in networks where resource
reservation must be made before data can be sent along a route (e.g. ATM). Consider
for example a routing scheme that uses multipath routing in order to reduce
congestion. Then, in case of a failure in one of the paths, we may split the data stream

52

that was traveling over the failed path among the remaining paths, without any
additional path computation or resource reservation. This fast recovery property can
be obtained in several ways. For example, it may be employed by a restriction that,
upon a path failure, the sum of the spare capacities of the remaining paths is not
smaller than the flow that was traveling over the failed path.

Distributed multipath routing schemes

So far, we considered multipath routing schemes that employed source routing; hence,
all routing decisions were determined at the source node. Although source routing is
simple and intuitive, there are many cases that the use of hop-by-hop routing is
preferable. Hence, investigation of distributed multipath routing schemes is called for.

Designing practical distributed multipath routing schemes raises several challenges.
One major challenge is to limit the buffer space usage at each node in the network. In
other words, if ()vh i denotes the number of next hops that are allocated for a target i

in the routing table of a node v , a distributed multipath routing scheme needs to cope
with the restriction that ()v

i V

h i
∈
∑ cannot exceed the available buffer space at node

v V∈ .

Dynamic multipath routing schemes

So far, we have investigated multipath routing schemes where all demands are known
in advance. However, in practice, demands may arrive one at a time without any a-
priory knowledge regarding future demands. Therefore, it is important to investigate
on-line multipath routing schemes that don't rely on such a-priory knowledge.

We note that we are currently working on this issue and have obtained some
important results.

53

Appendix

This Appendix contains the proofs of Theorems 2.1, 6.8 and 6.9. In addition, it
provides a formal specification of Algorithm RDJM_PFC.

Theorem 2.1 Given a network (,)G V E two nodes s,t capacities { }ec and a demand γ .

{ }ef is a solution to the instance () { } { }, , , ,eG V E c s t of the Maximum Flow Problem

that transfers F γ≥ flow units from s to t iff { }ef F

γ
⋅ is a link flow that transfer γ

flow units from s to t such that the network congestion factor is minimized .

Proof
⇒
It is easy to see that, since { }ef is a vector that satisfies the capacity and flow

conservation constraints, then the vector { }ef F

γ
⋅ must also satisfy these constraints. In

addition, since { }ef transfers F flow units from s to t i.e.,
() ()e ee O s e I s

f f F
∈ ∈

− =∑ ∑
then it follows that ()() () () ()e e e ee O s e I s e O s e I s

f f f f F
F F F F

γ γ γ γ γ
∈ ∈ ∈ ∈

− = ⋅ − = ⋅ =∑ ∑ ∑ ∑

flow units. Thus, { }ef F

γ
⋅ is a link flow that transfers γ flow units from s to t. It is left

to be shown that the value max e

e E
e

f

c F

γα
∈

 
⋅ 

 
is the minimum of all link flows that

transfer γ flow units from s to t. Since there must be a link that satisfies e ef c= , it

follows that
F

γα = . By way of contradiction, suppose that there exists a link flow

{ }ef that transfers γ flow units from s to t such that max e

e E
e

f

c F

γα
∈

 
= < 

 
. Consider the

vector ef

α
 
 
 

. Obviously, the network congestion factor is 1 and therefore the capacity

constraints are satisfied. Since the flow conservation constraints are also satisfied, the

vector ef

α
 
 
 

is a link flow. It is given that
() ()e ee O s e I s

f f γ
∈ ∈

− =∑ ∑ . Therefore,

()() () () ()

1e e
e ee O s e I s e O s e I s

f f
f f F

F

γ γ
γα α α α∈ ∈ ∈ ∈

− = ⋅ − = > =∑ ∑ ∑ ∑ . Thus, link flow ef

α
 
 
 

transfers more than F flow units from s to t.
⇐

Suppose that { }ef is a link flow that transfers γ flow units from s to t such that the

network congestion factor is minimized. We have to show that e

F
f

γ
 ⋅ 
 

is a link flow

54

that transfers F flow units from s to t. Since { }ef satisfies the flow conservation

constraint it follows that e

F
f

γ
 ⋅ 
 

also satisfies the flow conservation constraints. We

will prove that link flow e

F
f

γ
 ⋅ 
 

satisfies the capacity constraints. To that end, we

observe that the network congestion factor of { }ef is at most
F

γ
. Proving that will

show that the maximum network congestion factor is not larger than 1 and thus the
capacity constraints are satisfied.

Suppose that the link flow { }ef has a network congestion factor that is larger than
F

γ

and consider the link flow { }ef that was defined to be the solution to the instance

() { } { }, , , ,eG V E c s t of the Maximum Flow Problem that transfers F γ≥ flow units

from s to t. It is easy to see that the link flow { }efF

γ
⋅ transfers γ flow units from s to

t. In addition since the link flow { }ef is a solution to the Maximum Flow Problem, it

follows that there exists one link e E∈ such that e ef c= . Thus, the network congestion

factor of link flow { }efF

γ
⋅ has a network congestion factor that is equal to

F

γ
.

Obviously, this contradicts the optimality of { }ef .

It is left to be shown that the link flow e

F
f

γ
 ⋅ 
 

transfers F flow units from s to t. To

that end, we employ the fact that { }ef transfers γ flow units from s to t as follows.

()() () () ()e e e ee O s e I s e O s e I s

F F F F
f f f f Fγ

γ γ γ γ∈ ∈ ∈ ∈
− = ⋅ − = ⋅ =∑ ∑ ∑ ∑ . ■

Theorem 6.8 Given are a network (,),G V E two nodes { }, ,s t capacities { }ec and a

demand γ . If { }ef is a link flow that transfers γ flow units from s to t such that the

network congestion factor α is larger by a factor of at most r than the optimal

network congestion factor, then { }1
efα

⋅ is a
1

r
approximation to the instance

() { } { }, , , ,eG V E c s t of the maximum flow problem.

Proof

Since { }ef is a link flow, it follows that the vector { }1
efα

⋅ satisfies the conservation

constraints. In addition since the network congestion factor of { }ef is ,α it follows

that the vector { }1
efα

⋅ has a network congestion factor of 1. Thus, the capacity

55

constraints are satisfied. Thus, { }1
efα

⋅ is a link flow. We will show now that if F is

the total traffic that the optimal solution to the instance () { } { }, , , ,eG V E c s t of the

maximum flow problem transfers from s to t, then { }1
efα

⋅ transfers at least
F

r
.

To that end, denote by { }*
ef the optimal solution that transfers γ flow units from s to t

such that the network congestion factor is minimized. In addition, let *α be the
network congestion factor of link flow { }*

ef . It follows from Theorem 2.1 that

*
e

F
f

γ
 ⋅ 
 

is the optimal solution to the instance () { } { }, , , ,eG V E c s t of the maximum

flow problem. Therefore, there exists a link e E∈ such that *
e e

F
f c

γ
⋅ = . Thus, there

exists a link e E∈ such that
*

e

e

f

c F

γ
= . Thus, *

* *

F
F

F r r

γ γ γα
α α

= ⇒ = ⇒ =
⋅

. Therefore,

we will only prove that link flow { }1
efα

⋅ transfers at least
*r

γ
α⋅

flow units.

To that end, recall that { }ef transfers γ flow units from s to t i.e.,

() ()e ee O s e I s
f f γ

∈ ∈
− =∑ ∑ . Therefore,

() ()

1 1
e ee O s e I s

f f
α α∈ ∈

− =∑ ∑

()() ()

1
e ee O s e I s

f f
γ

α α∈ ∈
= ⋅ − =∑ ∑ . Finally, since *rα α≤ ⋅ , it follows that link flow

{ }1
efα

⋅ transfers at least
*r

γ γ
α α

≥
⋅

flow units. ■

Theorem 6.9 Given are a network (,)G V E two nodes { },s t and capacities { }ec . If

{ }ef is a link flow that transfers 'F flow units from s to t such that { }ef is a

1

r
− approximation to the instance () { } { }, , , ,eG V E c s t of the Maximum Flow Problem,

then { }'ef F

γ
⋅ is a link flow that transfer γ flow units from s to t with a network

congestion factor larger by a factor of at most r than the optimal network congestion
factor.

Proof
It is easy to see that, since { }ef is a vector that satisfies the capacity and the flow

conservation constraints then the vector { }'ef F

γ
⋅ must also satisfy these constraints. In

addition, since { }ef transfers F' flow units from s to t i.e.,
() ()

'e ee O s e I s
f f F

∈ ∈
− =∑ ∑ ,

56

then it follows that ()() () () ()
'

' ' ' 'e e e ee O s e I s e O s e I s
f f f f F

F F F F

γ γ γ γ γ
∈ ∈ ∈ ∈

− = ⋅ − = ⋅ =∑ ∑ ∑ ∑ .

Thus, { }'ef F

γ
⋅ is a link flow that transfers γ flow units from s to t. It is left to be

shown that, if *α is the optimal network congestion factor, then it follows that the

network congestion factor of link flow { }'ef F

γ
⋅ is at most *r α⋅ . To that end, denote

by { }*
ef the optimal solution to the instance () { } { }, , , ,eG V E c s t of the Maximum Flow

Problem and by F the total flow that link flow { }*
ef transfers from s to t. We

established (Theorem 2.1) that the link flow { }*
efF

γ
⋅ transfers γ flow units from s to t

while minimizing the network congestion factor. Thus,
*

* max e

e E
e

f

c F

γα
∈

 
= ⋅ 

 
. Since { }*

ef

is a maximum flow, it follows that there exists a link e E∈ such that *
e ef c= .

Therefore,
*

* max e

e E
e

f

c F F

γ γα
∈

 
= ⋅ = 

 
. In order to complete the proof we have to show

that max
'

e

e E
e

f
r

c F F

γ γα
∈

 
⋅ ≤ ⋅ 

 
. However, Since { }ef is a

1

r
− approximation to the

instance () { } { }, , , ,eG V E c s t of the Maximum Flow Problem, it follows that
1

'F F
r

≥ ⋅ .

Thus, max max max
1'

e e e

e E e E e E
e e e

f f f
r

c F c c FF
r

γ γ γα
∈ ∈ ∈

 
    

= ⋅ ≤ ⋅ = ⋅ ⋅     
    ⋅

 

. Finally, since e ef c≤ for

each e E∈ , it follows that { } *max max max
'

e e

e E e E e E
e e

f f
r r r r

c F c F F F

γ γ γ γα α
∈ ∈ ∈

   
= ⋅ ≤ ⋅ ⋅ ≤ ⋅ = ⋅ = ⋅   

   
.

■

We provide now a specification for Algorithm RDJM_PFC, which was informally
described in Section 5.2.2. The algorithm is used by Algorithm RRMP that is
specified in Fig 5.2. As was already explained, the algorithm constructs a feasible

path flow out of the given link flow { },h
ef
ω . The algorithm employs Procedure

Path_Construction_RDJM, specified in Fig (A.2). Algorithm RDJM_PFC is specified
as follows (Fig. A.1)

57

{ }{ } { }(),_ (,), , ,h
eG V E s t f ω γAlgorithm PFC RDJM

Initialization:
For each path ()(,) : 0.s tp P f p∈ ←

While 0 do:γ >

1. { }{ }().Path_Construction_RDJM (,), , h
eS G V E s t f ω← .

2.
()

{ } (), , ,

, ,
min , for each , ,k k k k k

k k k
k k

e e e k k k
e S

f f f e Sη η η

η
η∆ ∆ ∆

∆ ∈
← − ∆ ∈ .

3.
()

{ },

, ,
min k k

k
k k k

e
e S

f η

η
γ γ ∆

∆ ∈
← − .

4. Denote the path 1 2
1 2

see e
ss v v v t→ → → as p, where ke corresponds to

the triplet (), ,k k ke Sη∆ ∈ .

5. ()
()

{ },

, ,
min k k

k
k k k

e
e S

f p f η

η

∆

∆ ∈
← .

Return the path flow f.

Fig. A.1: Algorithm PFC_RDJM

{ } { }(),(,), , , h
eG V E s t f ωProcedure Path_Construction_RDJM

Initialization
S φ← , 0u s← , 0 0∆ ← , 0 0η ← , 0k ←

While doku t≠

1. Select a positive variable ,k k

kef
η∆ such that ek�(uk,uk+1)∈E.

2. () 1 1, , , 1
kk k k k e k kS S e w η η+ +← ∪ ∆ ∆ ← ∆ + ← + , 1k k← + .

Return S

Fig. A.2: Procedure Path_Construction_RDJM

58

References

[1] S. Iyer, S. Bhattacharyya, N. Taft, N. McKeoen, C. Diot, “A measurement Based
Study of Load Balancing in an IP Backbone”, Sprint ATL Technical Report,
TR02-ATL-051027, May 2002.

[2] D. Bertsekas and R. Gallager, “Data networks”, Prentice-Hall, 1992.

[3] A. Tsirigos and Z. J. Haas, “Multipath Routing in Mobile Ad Hoc Networks or
How to Route in the Presence of Topological Changes”, In Proceedings of IEEE
MILCOM 2001, pages 878-883, October 2001.

[4] M. Kodialam and T. V. Lakshman, “Restorable Dynamic Quality of Service
Routing”, IEEE Communications Magazine, vol. 40, no. 6, June 2002.

[5] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-Hop
Selection”, IETF RFC 2991, 2000.

[6] C. Villamizar, “OSPF Optimised Multipath (OSPF-OMP)”, Internet Draft <draft-
ietf-ospf-omp-02.txt>, 1998.

[7] S. Nelakuditi and Zhi-Li Zhang, “On Selection of Paths for Multipath
Routing”, In Proc. IWQoS, 2001, Karlsruhe, Germany.

[8] I. Cidon, R. Rom and Y. Shavitt, “Analysis of Multi-Path Routing”, IEEE
Transactions on Networking, 7:885–896, 1999.

[9] W. Lai, Ed. and D. McDysan, Ed.,” Network Hierarchy and Multilayer
Survivability”, IETF RFC 3386, November 2002.

[10] G. Baier, E. Koehler and M. Skutella, “On the k -Splittable Flow Problem”, In
Proceedings of the 10th Annual European Symposium on Algorithms (ESA),
2002.

[11] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, “On-Line Routing of
Virtual Circuits with Applications to Load Balancing and Machine Scheduling”,
Journal of the ACM, vol. 44, no. 3, pages 486-504, May 1997.

[12] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory,
Algorithm, and Applications", Prentice Hall, 1993.

[13] D.D. Sleator and R.E. Tarjan, "Amortized efficiency of list update and paging
rules", Communications of the ACM, vol. 28, no. 2, pages 202-208, February
1985.

[14] J.Moy, ”OSPF Version 2”, IETF RFC 2328, April 1998.

[15] Y. Wang and Z. Wang, “Explicit Routing Algorithms For Internet Traffic
Engineering”, In Proceedings of ICCN'99, Boston, October 1999.

59

[16] Yanxia Jia, Ioanis Nikolaidis and P. Gburzynski, "Multiple Path QoS Routing",
Proceedings of ICC'01 Finland, pages 2583-2587, June 2001.

[17] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing for the
Next Generation High-Speed Networks: Problems and Solutions”, IEEE network
Magazine, Special Issue on Transmission and Distribution of Digital Video, vol.
12, num. 6, pages 64-79, December 1998.

[18] J.Kleinberg, “Single-Source Unsplittable Flow”, in proceeding of the 37th annual
symposium on foundations of computer science, October 1996 pages 23-25.

[19] Y. Dinitz, N. Garg and M. X. Goemans, “On the Single –Source Unsplittable
Flow Problem”, Combinatorica , 19, pages 68-77.

[20] F. Shahrokhi and D. Matula, “The Maximum Concurrent Flow Problem” Journal
of ACM, vol. 37, no. 2, pages 318-334, 1990.

[21] O. Hauser, M. Kodialam and T.V. Lakshman “Capacity Design of Fast Path
Restorable Optical Networks“, IEEE/ACM Transactions on Networking,
October 2000.

[22] A. Pitsillides, S. Nikolopoulos and D. Tipper,”Addressing Network Survivability
Issues by Finding the K-best Paths Through a Trellis Graph'', Proceedings of
IEEE INFOCOM '97, Kobe, Japan, April 1997.

[23] M. R. Garey and D. S. Johnson, "Computers and Intractability", W.H. Freeman
and Co., 1979.

[24] N. Karmarkar, "A New Polynomial-Time Algorithm For Linear Programming",
Combinatorica, vol. 4, pages 373-395, 1984.

[25] A. V. Goldberg and R. E. Tarjan, "A New Approach to The Maximum Flow
Problem", Journal of ACM, vol.35, no. 4, pages 921-940, 1988.

[26] A. Bley, "On the Complexity of Vertex-Disjoint Length-Restricted Path
Problems", Konrad-Zuse-Zentrum fur Informationstechnik Berlin Tech, Report
SC-98-20, 1998.

[27] G. Ausiello, P.Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and
M. Protasi, "Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximation Properties", Springer-Verlag, 1999.

[28] E. Comer, "Internetworking with TCP/IP Volume I: Principles, Protocols and
Architecture", Prentice Hall, 3rd edition, 1995.

[29] G. Zussman and A. Segall, "Energy Efficient Routing in Ad Hoc Disaster
Recovery Networks", In Proceedings of IEEE INFOCOM 2003, April 2003.

60

[30] D. Awduche, J. Malcolm, M. O'Dell, and J. McManus, "Requirements for traffic
engineering over MPLS" , Internet Draft <draft-awduche-mpls-traffic-eng-00.txt>,
April, 1998.

[31] A. E. I. Widjaja, "Mate: MPLS Adaptive Traffic Engineering", Internet Draft
<draft-widjaja-mpls-mate-00.txt>, August, 1998.

[32] S. Plotkin, "Competitive Routing of Virtual Circuits in ATM Networks", IEEE J.
Selected Areas in Communications, vol. 13, pages 1128-1136, August 1995.

[33] J.M. Akinpelu, "The Overload Performance of Engineered Networks With Non-
Hierarchical and Hierarchical Routing", AT&T Bell Laboratories Technical
Journal, vol. 63, no. 7, September 1984.

[34] G.R. Ash, "Dynamic Network Evolution, with Examples from AT&T's Evolving
Dynamic Network", IEEE Communications Magazine, pages 26-39, July 1995.

[35] B.R. Hurley, C.J.R. Seidl and W.F. Sewell, "A Survey of Dynamic Routing
Methods for Circuit-Switched Traffic", IEEE Communications Magazine, vol.
25, no. 9, September 1987.

[36] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts, "On-line
Load Balancing of Temporary Tasks", In Proceedings of Workshop on
Algorithms and Data Structures, pages 119-130, August 1993.

[37] R. Ogier, B. Bellur, and N. Taft-Plotkin, "An Efficient Algorithm for Computing
Shortest and Widest Maximally Disjoint Paths", SRI International Technical
Report ITAD-1616-TR-170, November 1998.

[38] N. Taft-Plotkin, B. Bellur, and R. Ogier, "Quality-of –Service Routing Using
Maximally Disjoint Paths", In Proceedings of IEEE IWQoS99, pages 119-128,
London, UK, January 1999.

[39] M. Kodialam and T. V. Lakshman, "Restorable Dynamic Quality of Service
Routing", IEEE Communication Magazine, vol. 40, no. 6, June 2002.

[40] A. Ouorou, P. Mahey, and J.-Ph. Vial, "A Survey of Algorithms For Convex
Multicommodity Flow Problems", Management Science, vol. 46, pages 126-
147, January 2000.

[41] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell and J. McManus,
"Requirements for Traffic Engineering Over MPLS", IETF RFC 2702,
September 1999.

[42] J. Semke, J. Mahdavi, and M. Mathis, "Automatic TCP buffer tuning", In Proc.
ACM SIGCOMM'98 Conference, 1998.

[43] V. Paxson, "End-to-End Routing Behavior in the Internet", in proc. ACM
SIGCOM, 1996.

