
1

Network Classless Time Protocol

Based on Clock Offset Optimization
Omer Gurewitz, Israel Cidon and Moshe Sidi

Electrical Engineering Department

Technion, Haifa 32000

Israel

Abstract

Time synchronization is critical in distributed environments. A variety of network protocols, middleware and business
applications rely on proper time synchronization across the computational infrastructure and depend on the clock
accuracy. The ”Network Time Protocol” (NTP) is the current widely accepted standard for synchronizing clocks over
the internet. NTP uses a hierarchical scheme in order to synchronize the clocks in the network. In this paper we
present a novel non-hierarchical peer-to-peer approach for time synchronization termed CTP - Classless Time Protocol.
This approach exploits convex optimization theory in order to evaluate the impact of each clock offset on the overall
objective function. We define the clock offset problem as an optimization problem and derive its optimal solution. Based
on the solution we develop a distributed protocol that can be implemented over a communication network, prove its
convergence to the optimal clock offsets and show its properties. For compatibility, the CTP may use the exact format
and number of messages used by NTP. We also present methodology and numerical results for evaluating and comparing
the accuracy of time synchronization schemes. We show that the CTP substantially outperforms hierarchical schemes
such as NTP in the sense of clock accuracy with respect to a universal clock, without increasing complexity.

I. Introduction

Common distributed computation systems consist of a collection of autonomous entities linked via an
underlying network and do not share a common memory or a common clock. They are equipped with
distributed system software that enables the collection to operate as an integrated facility, and allow the
sharing of information and resources over a wide geographic spread. Clock synchronization is a critical piece
of the infrastructure for any such distributed system.

The notion “clock synchronization” relates to at least two different aspects of coordinating distant clocks.
The first aspect is “frequency synchronization” which relates to the task of adjusting the clocks in the network
to run with the same frequency. The second is “time synchronization” which relates to the task of setting
the clocks in the network so that they all agree upon a particular epoch with respect to a Universal Time-
Coordinated (UTC).

The basic difficulty in clock synchronization is that timing information tends to deteriorate over time and
distance. Particularly when the frequencies of two clocks are not identical and are not known in advance.
Even if the two clocks were initially time synchronized, over time they are drifting apart, hence they need
to be time-synchronized from time to time. Moreover, when two remote computers are exchanging timing
information, there is cumulative loss of accuracy along the path traversed by the messages exchanged, unless
message transmission time is known precisely.

The application of time synchronizing in distributed systems is diverse. Server log files are used in firewall,
VPN security-related activity, bandwidth usage and various logging, management, authentication, authoriza-
tion and accounting functions. Since they are a collection of information from different hosts, it is essential
that the time stamps be correct in order to coordinate the time of network events, which helps in understand-
ing and tracking the time sequence of network events. For example, Cisco routers use clock synchronization
in order to compare time logs from different networks for tracking security incidents, analyzing faults and
troubleshooting [1].

Wireless ad-hoc networks make particularly extensive use of synchronized time. In addition to the basic
requirements of traditional distributed systems, ad-hoc networks also use time synchronization for mobility
prediction [2] or in sensor networks for velocity estimations [3], source localization, or to suppress redundant
messages by recognizing that they describe duplicate detections of the same event by different sensors.
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Global Positioning Systems (GPS) provide accurate time synchronization but are scarce in computer net-
works. Moreover, an embedded GPS requires continuous reception of multiple satellites which is hard to
accomplish indoors or at secured data centers.

Network Time Protocol (NTP) is the current standard for synchronizing clocks on the Internet [4], [5], [6].
NTP is designed to distribute accurate and reliable time information to systems operating in diverse and widely
distributed internetworked environment. The architecture, protocols and algorithms establish a distributed
subnet of time servers, operating in a self organizing, hierarchical configuration where clocks are synchronized
to Universal Time-Coordinated (UTC). NTP suggests data filtering and peer selection algorithms in order to
reduce the offset which is the time difference between the clock and the “Universal Time”.

The main contribution of our paper is the introduction of the CTP - the Classless Time Protocol that
reduces offset errors using a novel non-hierarchical approach that uses a peer to peer protocol in which each
node sends and receives probe packets only to and from its neighbors to conduct measurements and adjust its
clock accordingly. The approach exploits convex optimization theory to evaluate the impact of each clock offset
on the overall objective function. We present a set of clock adjustments which provide the optimal solution
of a related optimization problem and suggest a methodology in order to evaluate the global accuracy of the
synchronization. Using numerical analysis we show that the CTP substantially outperforms the hierarchical
schemes in terms of clock accuracy while preserving similar protocol complexity.

The paper is organized as follows: In Section II we present the model used throughout the paper. Section
III discusses the underlying methodology and introduces the underlying optimization problem. Section IV
contains the analysis and presents the optimal clock assembly. We then propose in Section V the CTP and
show that its distributed version converges to the optimal solution. Several important properties of the CTP
are given in Section VI. Finally, numerical results are given in Section VII which demonstrate the performance
of the CTP, compare it with other schemes and show its advantages. The paper is conluded with a discussion
section.

II. The Model, assumptions and background

The goal of this paper is to introduce a novel distributed approach for time synchronization between each
clock in the network with a “Universal Time-Coordinated” (UTC) which is the local time in a group of nodes
which will be called the reference time nodes. For our analysis, we assume that the errors accumulated because
of skew between the clocks is negligible while the synchronization is taking place, hence throughout this work
clock synchronization means time synchronization with the UTC. However, CTP is still applicable to networks
where clock drifts are presented as long as CTP is operated frequently enough.

We split the model description into three aspects: the network, the delay and the measurements. We begin
by introducing the network model that is used. We end the section with a brief description of NTP.

A. The Network Model

A communication network is composed of a set of entities which are connected by physical links. Naturally
not all entities are interested in synchronizing their clocks, while others may not be capable of participating
in the protocol. We will focus throughout this paper on an underlying network which consists of the entities
that do participate in the clock synchronization protocol. The participating entities will be called nodes and
denoted by Λi for node i. Let N denote this set of nodes and let N = |N | be the number of nodes. We define
a directed link between two nodes as a directed path between the two nodes that does not contain any other
node in N . The directed link connecting nodes Λi and Λj will be denoted by eij and the collection of all
links by E . Note that each link can be composed of several physical segments. We will assume throughout
the paper that all links are bidirectional, namely if eij ∈ E , then eji ∈ E (if eij exists so does eji). Let us also
denote by Gi the set of nodes which are node Λi’s neighbors in the underlying network, i.e., one link away
from node Λi, and let |Gi| be the number of such neighbors.

We start with a model in which only one out of the N nodes is a “reference time node” (generalization for
several reference time nodes is given in Section VI); this “reference time node” will be denoted by Λ0.

Since clock synchronization is based on measurements taken by each node using probe packets, it is highly
dependent on the delay experienced by these probe packets. In the next subsection we will concentrate on
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the delay characteristics.

B. The Delay

The problem of synchronizing clocks is highly related to the problem of measuring one way link delays. If
the clocks of the two nodes at both ends of a link are synchronized, the task of measuring one way link delay
is simple: one end node sends a probe packet with its time stamp on it; the difference between the arriving
time and the transmission time is the one way link delay. Similarly, if the exact one-way link delay on a
specific link is known, the task of synchronizing the clocks at the two nodes on both ends of the link is simple:
one end node sends a probe packet with its time stamp on it; the difference between the arriving time and
the transmission time minus the link delay is the two clocks’ offset. In this subsection we concentrate on the
one-way link delay model and its measurement.

Due to the nature of delay, link delays cannot be negative. They may however have a minimum value greater
than zero. A common approach is to divide the delay into two basic components: The constant component is
the minimum delay and is usually associated with the propagation delay; the variable component is usually
related to the queueing delay.

For our analysis, we assume that the two directions of a link connecting any two nodes in N are symmetric in
the sense of capacity and distance. Therefore, the constant component of the delay in the two directions is the
same (the propagation delay on the physical links comprising the logical link is the same in both directions).
We will not assume, though, that the traffic load (queueing delay) in the two directions is identical, neither we
assume any knowledge regarding their dependence. Consequently, in our model the total delay (propagation +
queueing) in the two directions is asymmetric, where the minimum that can be obtained in the two directions is
the same. Note that CTP (like NTP) also works in situations where the propagation delays in both directions
are asymmetric (but its objective function may need to be changed).

C. The Measurements

Our goal is to synchronize the nodes in the network with the reference node Λ0. The synchronization is
based on measurements taken by each node. This is carried out in the manner suggested by NTP [4], [5], [6]:
Each node is continuously sending probe packets (NTP packets) every so often to each one of its neighbors
(other nodes or reference time nodes). Time is stamped on packet k by the sender Λi upon transmission
(T k

i ). The receiver Λj stamps its local time both upon receiving a packet (Rk
j ), and upon retransmitting the

packet back to the source (T k
j ). The source Λi stamps its local time upon receiving the packet back (Rk

i ).

Each packet k will eventually have four time stamps on it: T k
i , Rk

j , T k
j and Rk

i . Such time stamps are part of

standard NTP messages1. We intend to estimate the clock offset by looking at the n most recent packets. We
assume that all packets transmitted by a node are delivered to its neighbors, and in the same order as they
were transmitted.

For each link eij ∈ E connecting the two nodes Λi and Λj , let xk
i,j be the one-way link delay experienced by

probe packet k while traveling from node Λi to Λj . The round trip delay of probe packet k between the nodes
Λi and Λj , which is the sum of the two one way link delays will be denoted by RTT k

ij (RTT k
ij = xk

i,j +xk
j,i). The

local time at node Λi when the time according to the “Universal Time” is t0 shall be denoted by Timei(t0);
obviously Time0(t0) = t0. The clock offsets from the “Universal Time” which are the quantities we are after
will be denoted by τ̂i for each Λi ∈ N . Note that τ̂i = Time0(t0) − Timei(t0) ∀t0 (for all t0 since we assume
there is no skew), and τ̂0 = 0. Let us also denote by ∆T k

ij the time difference between the transmission
of probe packet k by node Λi, according to node Λi clock, and the arriving time of the packet at node Λj

according to its own clock i.e., ∆T k
ij = Rk

j −T k
i . Note that the different times are taken according to different

clocks which are not necessarily synchronized, hence the computed time ∆T k
ij , is not the delay but rather the

one way link delay experienced by probe packet k while traveling between node Λi to Λj , plus the difference

1Note that it is sufficient to have only two time stamps on each packet, T
k
i and R

k
j , which eliminates the need for sending the

packet back by node Λj . Obviously, node Λj will send its own probe packets which will provide the two other entries T
k
j and R

k
i .

We suggest to use four time stamps for compliance with the NTP message format.
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between the two clock offsets,

∆T k
ij = xk

ij − τ̂i + τ̂j (1)

Note that ∆T k
ij can take negative values.

We will give a special significance to the packet that experiences the minimum delay over each of the directed
links (∀eij ∈ E). Therefore, we will give special notations to this packet and all the quantities related to it.
Let us denote by P ij the index of the packet which experienced the minimum delay among all transmitted
packets over the directed link eij and by ∆Tij the minimum obtained by it, ∆Tij = ∆TP ij

ij .

D. Network Time Protocol (NTP) Background

When discussing synchronizing clocks in a network, one usually refers to the “Network Time Protocol”
(NTP), which is the widely accepted standard for synchronizing clocks in the internet [4],[5],[6]. NTP suggests
a complete scheme for synchronizing clocks with respect to the UTC. In this subsection we briefly review a
few aspects of NTP which are relevant to this study.

According to NTP, each node Λi computes the round trip delay for each probe packet that traverses link
eij based on the four timing fields recorded on the packet. The computed round trip delay for packet k is:
RTT k

ij = (Rk
j − T k

i ) + (Rk
i − T k

j ). The node also estimates the clock offset of node Λi’s clock relative to

node Λj ’s clock as: 1
2

[

(Rk
j − T k

i ) − (Rk
i − T k

j )
]

. NTP suggests the “minimum filter”, which selects from the

n most recent samples the sample with the lowest round trip delay; the offset which relates to this sample
is the estimated clock offset relative to node Λj ’s clock. This method is based on the observation that the
probability that an NTP packet will find a busy queue in one direction is relatively low, and the probability
of a packet to find a busy queue in both directions is even lower. Each node estimates its relative clock offset
with respect to a selected group of its neighbors clocks, where neighbors which are closer to a reference time
node are preferred - giving NTP its hierarchical nature. Averaging on these offsets results in the clock offset
relative to the UTC.

III. Methodology

A. The Objective Function

The goal of synchronizing clocks in a network is simple. The clocks of all nodes in the network should
match the Universal Time-Coordinated (UTC). However, since there is no scheme that can ensure a per-
fect synchronization, a formalism is needed in order to evaluate how similar clocks are under a suggested
synchronization scheme. Such a formalism is also important for comparing the performance of different syn-
chronization schemes. In this subsection we will discuss the methodology we use for synchronizing clocks. We
mainly focus on deriving an objective function that should be optimized in order to achieve the best clock
synchronization (an evaluation function for assessing the quality of the synchronization).

We formulate the clock synchronization problem as an optimization problem. The variables are the set of
clock adjustments, which will be denoted by ~τ = {τ1, τ2, . . . , τN−1}, where τi denotes the clock adjustment of
node Λi. The input for the problem includes all the delay measurements.

The first issue under consideration when choosing an objective function is whether it should be local or
global. Our goal is to synchronize all clocks in the network with the universal time; the assessment on how
good the protocol is should be based on how close all the clocks are with respect to the universal time. Even
if we are only interested in synchronizing a single clock in the network, it is clear that the accuracy of that
clock depends on the accuracy of the clocks it is synchronized with, which are most probably its neighbors.
The accuracy of these clocks depends upon the accuracy of the clocks they are synchronized with, etc. Hence
the accuracy of a single clock with respect to the UTC relies on the accuracy of many clocks in the network.
Therefore it does not matter whether we synchronize a single clock or many clocks; the accuracy of the
synchronization is a function of the accuracy of many clocks in the network. Consequently, the objective
function which evaluates the synchronization scheme should be a global function that takes into account the
accuracy of all the clocks that participate in the procedure.
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Additional desirable properties of the objective function are that it is well defined for all clock movements
~τ (since any clock movement is legal), that it is a function of the conducted delay measurements (the only
data available) and that it will be easy to compute and implement in a distributed environment.

The only data available when adjusting the clocks is data collected through the NTP measurements. This
data is comprised of entries such as ∆T k

ij for each link eij ∈ E and for each probe packet k. In a synchronized
network these entries are simply the one way link delays (see (1)). In an ideal network where the only
delay experienced by any packet is the propagation delay, the one way link delay in one direction is equal
to the delay in the other direction, hence in such an ideal network which is also synchronized, we expect
∆T k

ij = ∆T k
ji = ∆Tij ∀eij ∈ E , k. Clearly, any clock adjustment influences all the measurements obtained

while using this clock, hence when adjusting a clock we should discard or modify previous measurements
obtained using this clock. Let us denote by ∆T

′

ij the modified entry ∆Tij on the link Λi to Λj . This entry
is influenced by two clocks only, node’s Λi clock and node’s Λj clock, which are at the two ends of the link
eij . If we move the clocks at the two nodes, Λi and Λj by τi and τj , respectively, the adjusted measurements,
∆T

′

ij and ∆T
′

ji will be:

∆T
′

ij = ∆Tij − τi + τj ; ∆T
′

ji = ∆Tji + τi − τj (2)

It is important to note that the sum ∆T
′

ij + ∆T
′

ji which in the ideal network is the round trip delay, does not
change.

There are some functions that can comply with the properties described. For example, one can choose a
function that yields the average clock movement over all possible clock movements [7]. Alternatively, one can
take a function that minimizes the maximum link delay in the network, and then the second maximum link
delay, etc (Min-Max). Other approaches which are used in similar problems can be used as well [8].

Our proposal is a function that emphasizes the symmetric nature of the propagation delay, and exploit the
idea that once in a while there is a probe packet that suffers negligible or even no queueing delay, i.e., we
expect that on each link there will be a probe packet in a sequence of trials that after synchronizing the clock,
its entries will satisfy ∆T

′

ij ≈ ∆T
′

ji or ∆T
′

ij − ∆T
′

ji ≈ 0.

Based on this observation we suggest the objective function to be:

F (~τ) =
∑

∀ei,j∈E

(∆T
′

ij − ∆T
′

ji)
2

=
∑

∀ei,j∈E

(∆Tij − ∆Tji − 2τi + 2τj)
2 (3)

The goal is to minimize F (~τ) over ~τ ∈ IRN−1 since all clock adjustments are allowed.

In the next subsection we will further explain why the objective function depends only on the packet that
experienced the minimum delay on each link ∆Tij = mink[∆T k

ij ].

B. Measurements Filter

In any network which is not permanently overloaded one expects that once in a while each link will have
a probe packet which suffers no queueing delay at all or nearly no queueing delay. The issue is hence how
to identify these events. NTP suggests to find the packet pair that suffers the shortest round trip delay, and
relate to it as a packet that suffered no queueing delay. Clearly, in a sequence of packet exchanges between
two neighbors the probability of a packet pair to suffer no queueing delay in both directions is much smaller
than the probability of arbitrary two counter directions packets (not necessarily a pair) to suffer no queueing
delay in a different direction. Figure 1 demonstrates that the propagation delay bound obtained by taking
minimum delays on each direction of a link separately is better (tighter) than the one obtained by taking the
minimum round trip delay obtained by a single packet pair.

By measuring the delay on each directed link separately we increase the probability of hitting or getting
closer to the one way propagation delay which will lead to better clock synchronization.
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Fig. 1. Exchange of three NTP massages between nodes Λi and Λj . The minimum ∆Tij is obtained by packet 1,
mink ∆Tij = R1

j −T 1

i . The minimum ∆Tji is obtained by packet 3, mink ∆Tji = R3

i −T 3

j , while the minimum RTTij

is obtained by packet 2, mink RTTij = (R2

j −T 2

i )+(R2

i −T 2

j ). Hence the lower bound on the round trip propagation
delay based on the two separate packets that obtained the minimum one way trip delay is lower than that obtained
based on the packet which experienced the minimum round trip delay. R1

j − T 1

i ≤ R2

j − T 2

i , R3

i − T 3

j ≤ R2

i − T 2

j ,

hence (R1

j − T 1

i ) + (R3

i − T 3

j ) ≤ (R2

j − T 2

i ) + (R2

i − T 2

j )

IV. Analysis

Recall that our goal is to find the (row) offset vector ~τ = (τ1, τ2, . . . , τN−1) that minimizes the objective
function defined in (3). The feasible domain of the offset vector is IRN−1 since all values of clock adjustments
are allowed. In order to determine the optimal τi’s we first prove that there is a unique minimum for the
objective function over the feasible domain.

Proposition 1: The objective function given in (3) has a unique global minimum within the feasible domain.

The proof of the Proposition is given in Appendix A.

The optimal value of ~τ which minimizes (3) can now be obtained by partially differentiating (3) with
respect to each variable, τi ∀i ∈ {N\Λ0} (τ0 = 0 by definition) and equate it to zero.

∂F (~τ)

∂τ i
=

∂

∂τ i





∑

∀ehl∈E

(∆Thl − ∆Tlh − 2 · (τh − τl))
2





= −2 ·





∑

{l|eil∈E}

(∆Til − ∆Tli − 2 · (τi − τl))

−
∑

{l|eli∈E}

(∆Til − ∆Tli − 2 · (τl − τi))





= −4
∑

{l|eil∈E}

(∆Til − ∆Tli − 2 · (τi − τl)) = 0 (4)

For all i 6= 0 such that Λi ∈ N , the equation set described in (4) can be written as:

2|Gi| · τi −
∑

{l|eil∈E}

2τl =
∑

{l|eil∈E}

(∆Til − ∆Tli) (5)

The set of equations (5) can be written in a matrix form as:

~τ · A = ~∆ (6)

where the (N − 1) × (N − 1) matrix elements of A are:

aij =

{

2|Gi| if i = j

−2δij otherwise
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with δij = 1 if link eij ∈ E , and zero otherwise. The raw vectors’ ~τ and ~∆ elements are simply τ(i) = τi and
∆(i) =

∑

{l|eil∈E}
(∆Til − ∆Tli) for i = 1, 2, . . . , N − 1.

Corollary 1: In the optimal solution each node satisfies the relation:
∑

{l|eil∈E}
(∆Til −∆Tli − 2 · (τi − τl)) = 0

∀Λi ∈ N\{0}.
Proof: In Proposition 1 we show that (4) has a unique solution which is the optimal one. Since (4) is equivalent
to (6), there is a unique solution to

∑

{l|eil∈E}
(∆Til −∆Tli −2 · (τi − τl)) = 0 ∀i ∈ N\{0}, which is the optimal

one. Q.E.D.

V. The Classless Time Protocol (CTP)

In the previous section we introduced the optimal values of the offsets τi’s that minimize the objective
function (3). Obviously, the most straightforward method to solve the optimization problem is to use a
centralized protocol. Each node transmits its minimum measurements (∆Tij) to a centralized entity which
collects all the measurements and computes the clock adjustments that should be made by each node according
to ~τ = ~∆ · A−1. The centralized entity transmits to each node the clock adjustment it should perform, as
well as the new ∆Tij according to τi and τj . Each node updates its measurements, and keeps tracking of the
link delays (via probe packets). Whenever a lower value for ∆Tij is obtained on one of the links, the entry
is modified. Once in a while the nodes update the centralized entity with the modified measurements. Since
this protocol is not hierarchical and is based on peer-to-peer measurements we call it CTP - Classless Time
Protocol.

A more challenging approach is to synchronize the clocks in a distributed fashion. Fortunately, the CTP
can be transformed into a distributed protocol that converges to the optimal offset values as we describe in
the sequel. The basic structure of the distributed CTP is that each node Λi, besides node Λ0, maintains a
record in which it holds the entries ∆Tij , ∆Tji and ∆ij = ∆Tij −∆Tji for each neighbor Λj ∈ Gi. In order to
maintain the record, each node periodically transmits a probe packet over each of its outgoing links, attains
a min∆Tij and min ∆Tji and changes its record accordingly.

The suggested distributed optimization is iterative. There are many iterative methods that can be used
[9], [10]. In the distributed CTP in each iteration, a subset of nodes, which can include any number of nodes
between one node to all nodes beside Λ0, performs a “Clock Adjustment Procedure”. According to this
procedure, the node adjusts its clock by τi = 1

2|Gi|

∑

j∈Gi
∆ij , where τi > 0 indicates that the clock should

be moved forward and τi < 0 indicates clock movement backward. After each clock adjustment, node Λi

modifies all its record, ∆Tnew
ij = ∆T old

ij − τi, ∆Tnew
ji = ∆T old

ji + τi and ∆new
ij = ∆old

ij − 2τi. In addition, it
transmits its clock change to all its neighbors. When node Λj receives a notification regarding a clock change
performed by one of its neighbors, it modifies the record entries related to this node, ∆Tnew

ji = ∆T old
ji + τi,

∆Tnew
ij = ∆T old

ij − τi and ∆new
ji = ∆old

ji + 2τi and performs the “Clock Adjustment Procedure”. Note that
the total record changes performed after each iteration due to the clocks adjustments in both node Λi and Λj

clocks are ∆Tnew
ij = ∆T old

ij − τi + τj , ∆Tnew
ji = ∆T old

ji − τj + τi and ∆new
ij = ∆old

ij − 2τi + 2τj . A pseudocode of
the distributed CTP is given in Appendix B.

Next we show that by performing the distributed CTP, the clock offsets will converge to the optimal values,
and each clock in the network will converge eventually to the clock that would have been obtained by executing
the centralized protocol. We start by showing that no matter how many nodes adjust their clocks during a

single iteration, the objective function
∑

eij∈E

(

∆T old
ij − ∆T old

ji − 2τi + 2τj

)2
=

∑

eij∈E
(∆ij)

2 is not bigger

than prior to the adjustment.

Let us denote by [h] all values that relate to the h-th iteration. For instance, τ
[h]
i denotes the clock adjustment

performed by node Λi in the h-th iteration, ∆
[h]
ij denotes the value of ∆ij after the h-th iteration, etc.

Proposition 3: If a set of arbitrary nodes, denoted by Ψ, move their clock by τ
[h]
i = 1

2|Gi|

∑

j∈Gi
∆

[h−1]
ij , the

new sum
∑

∀ekl∈E
(∆

[h]
kl )2 is not bigger than the sum prior to the adjustment.

The proof appears in Appendix C.

Proposition 4: When the clock adjustment operation is applied by all nodes in all iterations, the set of clocks
converges to the set of clocks which minimizes the objective function (3) i.e., the set of clocks that would have
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been obtained by performing the centralized protocol.

Proof: Proposition 3 suggests that the series S[h] =
∑

eij∈E
(∆

[h]
ij )2 obtained in each iteration, is a non increasing

series. Since the series is bounded from below by zero, it must converge. We will show that it converges to
the optimal value which results by solving (6).

Let us assume that the series S[h] converges to Θ, and prove that:

Θ = min
~τ∈IRN−1







∑

∀ei,j∈E

(∆Tij − ∆Tji − 2τi + 2τj)
2







(7)

Based on Proposition 3 and according to (12) in Appendix C:

S[h] = S[h−1] − 4
∑

eij∈E

(

τ
[h]
i + τ

[h]
j

)2 h→∞
−→ Θ

⇒
∑

eij∈E

(

τ
[h]
i + τ

[h]
j

)2 h→∞
−→ 0

⇒ τ
[h]
i + τ

[h]
j

h→∞
−→ 0 ∀eij ∈ E

Since τ0 = 0 we have:

τ0 = 0 ⇒ τ
[h]
i

h→∞
−→ 0 ∀Λi ∈ G0

⇒ τ
[h]
j

h→∞
−→ 0 ∀Λj ∈ GΛi∈G0

⇒ · · · ⇒ τ
[h]
i

h→∞
−→ 0 ∀Λi ∈ N

⇒ τ
[h]
i =

1

2|Gi|

∑

j∈Gi

∆
[h]
ij = 0 ∀Λi ∈ N \ Λ0

⇒
∑

j∈Gi

∆
[h]
ij = 0 ∀Λi ∈ N \ Λ0

According to Corollary 1 the consequence of all nodes adjusting their clocks according to the optimal
solution which is unique, is that for each node

∑

j∈Gi
∆ij = 0, consequently Θ must be the optimal solution.

Q.E.D.

VI. CTP Properties

In this section we provide additional properties of the CTP that further illustrate its advantages for syn-
chronizing clocks in networks with respect to a UTC.

We begin by showing the CTP performance in an ideal case.
Property 1: In the ideal case, where on each unidirectional link in the network at least one packet experienced

no queueing delay, the CTP ensures that all clocks in the network will be perfectly synchronized with respect
to the UTC.

Proof: Since in the ideal case there is at least one packet on each link that has experienced no queuing
delay and since the propagation delay on all bidirectional links is symmetrical, there exists a solution in which
∆Ti,j = ∆Tj,i ∀Λi,Λj including Λ0. Hence, there is a solution in which F (~τ) defined in (3) gets the value
0. Since F (~τ) is always greater than or equal to zero, this solution must be the optimum. This solution gives
the true clock offsets, otherwise some of the ∆Ti,j must be negative, which is not possible. Q.E.D.

Next we show the effect of having a number of UTCs.
Property 2: When using the CTP there is no restriction on the number of reference time nodes (UTC), and

there can be as many UTCs as one wishes.
Proof: Assume we have an N nodes E links network with m reference time nodes. The objective function

is the one suggested in (3), i.e. F (~τ) =
∑

∀ei,j∈E
(∆Tij − ∆Tji − 2τi + 2τj)

2. The goal is to minimize F (~τ)
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over ~τ ∈ IRN−m where τi = 0 ∀Λi ∈ {set of m reference time nodes}. Let us look at a corresponding
N − m + 1 nodes, E links network. In this network there is only one reference time node. The set of links
is similar to the set of links in the first network, where any link connecting a node to any reference time
node is replaced by a corresponding link which connects the node to the single reference time node in the
corresponding network. The goal now is to optimize

∑

∀ei,j∈E
(∆Tij −∆Tji−2τi +2τj)

2 over ~τ ∈ IRN−m where
τ0 = 0. The set of equations is exactly the same which means that the same set of measurements ∆Tij , results
in the same optimization point with the same set of clock offsets. Furthermore given a set of measurements
where all the reference time nodes are indistinguishable (all called Λ0) there is no way of telling to which out
of the two networks these measurements belong. Therefore running the CTP on a network with one or more
reference time nodes without differentiating between the reference time nodes will yield the right clock offsets
which optimize (3). Q.E.D.

Finally, we show how nodes influence each other when the CTP is performed. To this end, we first define
the term influence. We say that node Λk clock is influenced by node Λj if the clock offset obtained by node
Λk after performing the CTP depends on node Λj ’s clock offset and the measurements taken by it, i.e. if the
value obtained for τk by solving (5), depends on the value obtained for τj and the entries ∆Tji ∀Λi ∈ Gj . We
say that node Λj influences node Λk clock, if node Λk clock is influenced by node Λj . We can now state the
following property:

Property 3: Using the CTP node Λk clock is influenced by another node Λi only if there exists a simple
path from node Λk to UTC which passes through node Λi.

The proof of this property is given in Appendix D.

The importance of Proposition 3 is both practical and intuitive. The practical importance is that by
knowing the network topology we can compute the clock adjustments separately for the different groups. This
aspect is particularly important for the distributed algorithm suggested in section V since each node should
base its clock adjustment only on neighboring nodes that participate in a simple path from it to the UTC.

Property 3 also provides very good insight to the excellent results which are presented in Section VII. It
also clarifies one of the reasons that makes CTP better than other schemes for most network topologies, and
not less significant makes CTP not worse than hierarchical schemes such as NTP for network topologies which
are ”tailored” for hierarchical schemes, such as tree topology. For example let us look at the tree topology
network suggested in Figure 2.a. The only nodes that influence node Λk are the nodes Λa and Λ0 which are
the nodes along the path between nodes Λk and Λ0. On the other hand by adding a new link between nodes
Λk and Λb we add a new simple path between nodes Λk and Λ0, hence by using the CTP node Λk’s clock will
be also influenced by node Λb and the rest of the nodes along the path.

0

k

a

(a)
0

k

a

(b)

b

Fig. 2. The nodes that influence node Λk’s clock in tree topology and non tree topology networks.

VII. Numerical Results

A. The Underlying Network

In order to evaluate the accuracy of clock synchronization and convergence rate achieved using CTP, we
applied it on a random network topology and compare CTP to several versions of NTP. The network con-
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struction is based on a Breadth First Search (BFS) principle. We start with a single “Reference Time Node”,
restrict the hop distance of each node to the “Reference Time Node” to be at most a certain number of hops.
The connectivity between the nodes is randomly selected. The propagation delay of each link is chosen once
for both directions of any existing link based on uniform distribution (∼ U [0, 10]). The queuing delay of
each directed link is chosen as Erlang distribution where the number of exponentials (α) and the mean time
between events (θ) are randomly selected between 1 to 10 and between 0.1 to 1, respectively. The parameters
are sampled once for each directed link. The initial clocks’ offsets with respect to the “Reference Time Node”
are randomly chosen with a uniform distribution between -10 to 10 (∼ U [−10, 10]).

On each link, eight packets are transmitted as suggested by NTP and ∆Tij are measured based on these
packets.

B. The Results

We separate the numerical results into three different parts. In the first part we examine the measurement
filter based on one way measurements as suggested in Section III-B. In the second part we evaluate the
performance of our scheme by implementing the centralized protocol suggested in Section V. The third part
examines the CTP suggested in Section V.

We start by investigating the measurement filter. As explained in Section III-B, by measuring delay sepa-
rately on each link direction, we increase the probability of finding a packet that experiences no queuing delay
or nearly no queuing delay which leads to better clock synchronization.

In Figure 3 we compare the upper bound of the round trip propagation delay obtained by two different
methods: 1) Selecting the packet that experiences the minimum round trip delay out of the n recent packets;
2) Based on the same n packets but selecting the two packets that experienced the minimum delay in each
direction separately. We examine the results for window size n = 8 as suggested in [4]. Since the measurement
filter is relevant on a per link basis, we examine it on a thousand nodes network, where over each link only
one node is initiating probe packets and estimating the round trip propagation delay while the other node
only replies.

Figure 3 shows the distribution of the round trip propagation delay error based on the two methods, i.e.,
the distribution of the minimum round trip delay experienced by a single packet minus the actual round
trip propagation delay, and the distribution of the minimum round trip delay obtained by two packets minus
the actual round trip propagation delay. We denote in the graph the two schemes ”single packet” and ”two
packets”, respectively.

As expected it can be seen that the measurement filter suggested in Section III-B provides a much better
(tighter) bound to the propagation delay, which means that the clock adjustment based on it is more accurate.
For instance, we observe from the figure that the probability that the error will be less than 5 unit is 0.41 for
the ”one way method”, while it is only 0.26 for the ”round trip method”. Note that due to the nature of the
measurement filter of picking the minimum round trip delay based on two separate measurements, all links,
with no exception, attain a bound which cannot be worse than the one attained using the other filter.

0
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single packet

two packets

Fig. 3. Distribution of delay errors

Next we examine the clock adjustments (~τ) that minimize the objective function suggested in Section III-
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A. The clock adjustments are determined by applying the centralized protocol suggested in V. In order to
evaluate our results we compare them with three hierarchical schemes.

In the first scheme, denoted by Hierarchical-1, each node selects among its neighbors which are one hop
closer to the “reference time node” than itself, the one with the smallest RTTij , i.e., the neighbor with the

lowest round trip delay bound as suggested by NTP. The clock offset is computed as: τi =
∆T k

ij−∆T k
ji

2 . Node
Λi clock is adjusted by τi. We start with nodes that are one hop away from the “reference time node”,
move to nodes that are two hops away from the “reference time node”, etc. The second scheme, denoted by
Hierarchical-2, is similar to the Hierarchical-1 scheme, but this time ∆Tij and ∆Tji are selected based on the
measurement filter suggested in Section III-B. This modification not only changes the quantity of the offset as
demonstrated in Figure 3, but may also change the neighbor for which node Λi chooses to adjust its clock in
respect with. In the third scheme, denoted by Hierarchical-3, each node computes its clock offsets,

∆Tij−∆Tji

2 ,
with respect to all its neighbors which are one hop closer to the “reference time node” than itself. The node
moves its clock by the average clock offset. Again ∆Tij and ∆Tji are selected separately. The protocol is
hierarchical starting with the nodes that are one hop away from the “reference time node” and advancing till
it reaches the nodes that are the furthest from the “reference time node”.

We operated the CTP and the three hierarchical schemes in three networks and adjusted the clocks ac-
cordingly. Figures 4 and 5 show the results on 490 and 1092 node networks, respectively. The y axis on each
graph presents the fraction of nodes with clock offset, with respect to the UTC, not greater than the clock
offset depicted by the x value. Figure 6 depicts the results in a 1292 node network. The y axis presents the
probability density function (fraction of nodes out of the 1292 nodes) with the clock offsets described by the
x axis.

Figures 4, 5 and 6 clearly demonstrate the significant improvement in terms of clock accuracy of the CTP
over all hierarchical schemes. For example, it can be seen in the graphs that about one third of all nodes
in the 490 node network and about 38% of the nodes in the 1092 node network have their clock offset with
respect to the UTC not greater than one time unit after performing the CTP. In Hierarchical schemes-1, -2
and -3, only 8%, 10% and 11% for the 490 node network, and 9%, 11% and 13% for the 1092 node network
get the same result, respectively. In Figure 6 it can be seen that after performing the CTP 95% of the nodes
will have their clocks less than 5 time units from the UTC and all the nodes will have their clocks less than 10
time units from the UTC. Looking at the three hierarchical schemes it can be seen that between -5 to 5 time
units from the UTC lie only 38%, 40% and 50% of the nodes for the hierarchical-1, -2 and -3 respectively. The
error bounds for the hierarchical scheme are [−29.63, 50.55], [−23.28, 50.79] and [−20.27, 33.06] respectively.

In order to demonstrate the clock offset dispersion around the UTC clock, we draw graphs 7 and 8. In these
graphs, the x axis is the node ID. The y axis is the clock offset with respect to the UTC after performing each
one of the schemes. Figure 7 depicts the clock offset dispersion on a 263 node network while Figure 8 relates
to a 1014 node network. In both graphs it can be seen as expected that the CTP which is a global scheme
keeps all offsets in a very narrow region which means small errors in the adjusted clocks. The other schemes
are characterized by a much wider clock offset domain. Furthermore, the CTP keeps the region about the
same regardless of the distance from the UTC while in the hierarchical scheme the farther you get from the
UTC (higher node ID) the wider the region is.

The third part of our numerical analysis is dedicated to the convergence rate of the distributed CTP. We
examined the clock offset after 0, 1, 3, 5 and 10 iterations with respect to the optimal solution as given in
(6). Figure 9 describes the fraction of nodes with clock offset with respect to the optimal clock offset not
greater than t in a 169 node network. We start with a clock offset which is uniformly distributed, hence the
offset from the optimal solution varies between 0 to 12 time units (0 iterations). It can be seen in the graph
that before we start there are only 8% within half a time unit from the optimal solution. However 35%, 77%,
97%, 99% are within half a time unit from the optimal solution after the first, third, fifth and tenth iteration,
respectively.
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Fig. 4. The fraction of nodes with clock offset with respect to the reference time node that is not greater than t, on a
490 node network.
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Fig. 5. The fraction of nodes with clock offset with respect to the reference time node that is not greater than t, on a
1092 node network.

VIII. Discussion

In this paper we introduced a new methodology for time synchronization by utilizing an objective function
that evaluates the impact of local clock offsets on the overall objective. The suggested objective function is
optimized to the case where the capacity and propagation delays of all links is symmetrical (similar to the
rationale used by NTP round-trip delay halving). However, it can also be applied to cases where links are not
symmetric.

We suggest a protocol for clock adjustments that minimizes the objective function. The suggested solution
borrows techniques known in solving optimization problems. Obviously, any additional knowledge regarding
the links or clocks in the network can be incorporated as a set of constraints with the proper modifications
of solving constrained optimization problems. Our distributed network protocol, CTP, converges to the set
of clock adjustments that minimizes the objective function. While there are additional protocols that can be
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Fig. 6. The fraction of nodes with clock offset with respect to the reference time node that is between x − 1 and x

(PDF), on a 1292 node network.
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Fig. 8. The clock offset dispersion on a 1014 node network

used, we chose a protocol which is easy to implement and requires only minor modifications to the format
and number of messages used by NTP. Numerical results illustrate that our approach works well in various
randomly chosen networks, and substantially outperforms hierarchical schemes such as NTP.
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Appendix A

To prove Proposition 1 we will first prove two simple Lemmas.

Lemma 1: The objective function F (~τ) given in (3) can be expressed in a quadratic form.
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Fig. 9. The fraction of nodes in a 169 node network with clock offset with respect to the set of optimal clock offsets
(optimal solution) not greater than t, during the implementation of the suggested distributed protocol.
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Proof: The objective function (3) given by F (~τ) =
∑

∀ei,j∈E
(∆Tij − ∆Tji − 2τi + 2τj)

2 can be written in
quadratic form as follows:

F (~τ) = ~τP~τT + ~q~τT + r (8)

where the (N − 1) × (N − 1) matrix elements of P are:

1

4
Pij =

{

|Gi| if i = j

−δij otherwise

with δij = 1 if link eij ∈ E , and zero otherwise. The (N − 1) row vector elements of ~q are:

1

4
qi =

∑

Λj∈Gi

(∆Tji − ∆Tij)

and
r =

∑

ei,j∈E

(∆Tij − ∆Tji)
2

Lemma 2: The matrix P is a positive definite matrix.
Proof: The matrix P is a symmetric matrix since Pi,j = Pj,i = −δij . In order to show that it is positive
definite we will show that ~τP~τT > 0 ∀~τ ∈ IRN−1 except ~τ = ~0.

~τP~τT =
N−1
∑

i=1



|Gi| · τ
2
i −

N−1
∑

j=1

δijτiτj





=
∑

ei,j∈E\Λ0

(

τ2
i − 2τiτj + τ2

j

)

+
∑

{ei,0|Λi∈G0}

τ2
i

=
∑

ei,j∈E\Λ0

(τi − τj)
2 +

∑

{ei,0|Λi∈G0}

τ2
i

Hence ~τP~τT ≥ 0 ∀~τ ∈ IRN−1. In order for ~τP~τT to equal zero τi should be equal zero for all Λi ∈ G0, and
as a consequence all nodes Λj which are neighbors of node Λ0’s neighbors (Λj ∈ {Gi|Λi ∈ G0}), etc. Since the
network is connected we will have that ~τP~τT = 0 if and only if τi = 0 ∀Λi ∈ N (~τ = ~0). Hence we conclude
that the matrix P is positive definite.

Proof of Proposition 1: ¿From Lemma 1 that proves that the objective function F (~τ) has a quadratic form we
conclude that F (~τ) is a convex function. Furthermore, Lemma 2 proves that P is a positive definite matrix.
Consequently, F (~τ) is a strictly convex function [11], [12].

Since we are adjusting the original measurements (∆Tij) according to the clock movements, any clock
adjustment ~τ is a round trip delay conserving (∆T

′

ij +∆T
′

ji = ∆Tij +∆Tji), hence any ~τ = (τ1, τ2 . . . , τN−1) ∈

IRN−1 is feasible. IRN−1 is clearly a convex set. Since the objective function is a strictly convex function
there exists at most one global minimum of F . Since the objective function is quadratic, the optimal value is
attained within the feasible domain.

It is interesting to note that for unconstrained quadratic optimization of the form F (~τ) = ~τP~τT + ~q~τT + r

for the special case in which P is a positive definite matrix, the unique optimal point is ~τopt = −(1
2)~qP−1 and

F (~τopt) = r − (1
4)~qP−1~qT [11], [12].

This concludes the proof of Proposition 1.

Appendix B

In this appendix we describe simple, conceptual version of the distributed CTP using pseudo-code formu-
lation.
We consider a connected network (N , E) and assume that there is a Data-Link control protocol associated with
each link, that ensures data reliability, where reliability implies that all packets produced by a source node
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are delivered to the destination node in finite time, and in the same order as they were transmitted (FIFO
assumption). We also separate the algorithm into two phases. The first phase is responsible for conducting
the measurements, and pass them through the measurement filter explained in Section III-B. The second
phase takes care of the clock adjustment based on the measurements, and is in charge of the convergence to
the optimal point discussed in Section IV. In the protocol presented here the two phases are separated. We
restrict our algorithm to a single time execution, which implements the ideas presented in the paper. The
second phase is operated in a loop with no termination conditions.

Protocol :
Messages:

MSG1(Ti) - The message sent by node Λi which carries the time stamp of its transmission time
MSG2(Ti, Rj , Tj) - The message sent by node Λi which carries the time stamps of the transmission time, the
receiving time by the node on the other side of the transmitted link, and the transmission time by the same
node on the same link on the direction, Ti, Rj , Tj respectively.
MSG3(∆T i

j,i) - The message sent by node Λi to notify its neighbor Λj its updated ∆Tj,i).
MSG4(τi) - The message sent by node Λi to notify its neighbors regarding the time it adjusted its clock, in
order for them to modify their ∆Tij , and ∆Tji.

Variables:

Gi - set of Λi neighbor nodes.
|Gi| - degree of Λi.
∆Tij - the minimum time difference obtained over all packets, between the reception time of a packet by node
Λj according to its own clock, and the transmission time of the packet according to node Λi clock.
∆Tji - the minimum time difference obtained over all packets, between the reception time of a packet by node
Λi and the transmission time of the packet by node Λi clock, each according to the local time.
τi - the clock adjustment conducted by node Λi.
clocki - the clock at node Λi.
Ni(j) - level of last message received from neighbor Λj .
L - the number of messages exchanged by a node before performing the clock adjustment procedure.

Initialization()
1 ∆Tij ← ∞
2 ∆Tji ← ∞
3 τi ← 0
4 l ← 0

Filter Algorithm()
1 for Start1
2 do Ni(j) ← 0 ∀Λj ∈ Gi

3 if l < L

4 then Ti ← Clock

5 Send MSG1(Ti) to all Λj ∈ Gi

6 if l = L

7 then Send MSG3(∆T i
j,i) to all Λj ∈ Gi

8 l ← (l + 1)
9 for MSG1(Tj) from Λj

10 do Ri ← Clock

11 if l = 0
12 then Start1
13 if ∆Tji > Ri − Tj

14 then ∆Tji ← Ri − Tj

15 Ti ← Clock

16 Send MSG2(Tj , Ri, Ti) to Λj
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17 for MSG2(Ti, Rj , Tj) from Λj

18 do Ri ← Clock

19 Ni(j) ← 1
20 if ∆Tij > Rj − Ti

21 then ∆Tij ← Rj − Ti

22 if ∆Tji > Ri − Tj

23 then ∆Tji ← Ri − Tj

24 if Ni(k) = 1 ∀Λk ∈ Gi

25 then Start1
26 for MSG3(∆T

j
ji) from Λj

27 do Ni(j) ← 1
28 if ∆Tij > ∆T

j
ji

29 then ∆Tij ← ∆T
j
ji

30 if Ni(k) = 1 ∀Λk ∈ Gi

31 then Start2

Clock Adjustment Algorithm()
1 for Start2
2 do Ni(j) ← 0 ∀Λj ∈ Gi

3 τi ←
1

2|Gi|

∑

l∈Gi
(∆Til − ∆Tli)

4 Clock ← Clock + τi

5 for ∀Λj ∈ Gi

6 do ∆Tij ← ∆Tij − τi

7 ∆Tji ← ∆Tji + τi

8 Send MSG4(τi) to all Λj ∈ Gi

9 for MSG4(τj) from Λj

10 do Ni(j) ← 1
11 ∆Tij ← ∆Tij + τj

12 ∆Tji ← ∆Tji − τj

13 if Ni(k) = 1 ∀Λk ∈ Gi

14 then Start2
15 l ← (l + 1)

Appendix C

Proof of Proposition 3: Since nodes belong to set Ψ adjust their clock by 1
2|Gi|

∑

j∈Gi
∆ij and nodes which are

not in the set do not adjust their clock at all let us denote:

τ
[h]
i =











1
2|Gi|

∑

j∈Gi
∆

[h−1]
ij if Λi ∈ Ψ

0 otherwise

(9)

S[h] =
∑

eij∈E

(

∆
[h]
ij

)2
=

∑

eij∈E

(

∆
[h−1]
ij − 2τ

[h]
i + 2τ

[h]
j

)2

=
∑

eij∈E

(

(∆
[h−1]
ij )2 − 4∆

[h−1]
ij τ

[h]
i + 4∆

[h−1]
ij τ

[h]
j +

+4(τ
[h]
i )2 + 4(τ

[h]
j )2 − 8τ

[h]
i τ

[h]
j

)

=
∑

eij∈E

(

∆
[h−1]
ij

)2
− 4

∑

eij∈E

(

τ
[h]
i + τ

[h]
j

)2
+
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+
∑

eij∈E

(

8(τ
[h]
i )2 + 8(τ

[h]
j )2 − 4∆

[h−1]
ij τ

[h]
i + 4∆

[h−1]
ij τ

[h]
j

)

(10)

Let us concentrate on the third part:

∑

eij∈E

(

8(τ
[h]
i )2 + 8(τ

[h]
j )2 − 4∆

[h−1]
ij τ

[h]
i + 4∆

[h−1]
ij τ

[h]
j

)

= 4
∑

eij∈E

(

2(τ
[h]
i )2 + 2(τ

[h]
j )2 − ∆

[h−1]
ij τ

[h]
i − ∆

[h−1]
ji τ

[h]
j

)

= 4
∑

Λi∈N

∑

Λj∈Gi

(

2(τ
[h]
i )2 − ∆

[h−1]
ij τi

)

= 4







∑

Λi∈N

(

2(τ
[h]
i )2|Gi|

)

−
∑

Λi∈N

τ
[h]
i

∑

Λj∈Gi

∆
[h−1]
ij







(11)

When passing from the second to the third row we sum over the nodes instead of summing over the links.

Based on (9) for τ
[h]
i 6= 0 we have

∑

j∈Gi
∆

[h−1]
ij = 2|Gi|τ

[h]
i , we can write 11:

4







∑

Λi∈N

(

2(τ
[h]
i )2|Gi|

)

−
∑

Λi∈N

τ
[h]
i

∑

Λj∈Gi

∆
[h−1]
ij







= 4







∑

Λi∈Ψ

(

2(τ
[h]
i )2|Gi|

)

−
∑

Λi∈Ψ

τ
[h]
i · 2|Gi|τ

[h]
i







= 0

Putting it back to (10) we have:

S[h] =
∑

eij∈E

(

∆
[h−1]
ij

)2
− 4

∑

eij∈E

(

τ
[h]
i + τ

[h]
j

)2

= S[h−1] − 4
∑

eij∈E

(

τ
[h]
i + τ

[h]
j

)2
(12)

This means that unless all τ
[h]
i ’s are zero the sum after the next iteration is smaller than prior to the

iteration.

Appendix D

Proof of Property 3: Let node Λk be an arbitrary node in N . We divide the nodes in the network with respect
to node Λk into two groups. The first group denoted by Θk includes all nodes that participate as intermediate
nodes in at least one simple (cycle free) path between Λk and Λ0. The second group denoted by Ψk includes
the rest of the nodes (Ψk ≡ N \ Θk). Figure 10 illustrates the two groups. Throughout the proof we will use
the notation Λx Ã Λy to denote a simple path from node Λx to Λy.

The proof is a direct consequence of the five Lemmas below.
Lemma 1: Any simple path from Λk to Λ0 passes only through nodes in Θk.

Proof: Immediate consequence of Θk definition. Q.E.D.
Lemma 2: Θk is not an empty set, specifically nodes Λ0 and Λk are in Θk.

Proof: The network is connected, hence there is at least one simple path between any two nodes, specifi-
cally between Λk and Λ0. This path passes through both nodes which makes them belong to Θk. Q.E.D.

Lemma 3: Any two nodes in Θk can be arranged such that there is a simple path from Λk to one of them,
and another simple path from the other to Λ0, where the two paths do not pass through any common node.

Proof: Let us look at the two nodes Λa,Λb ∈ Θk. Since both nodes are in Θk each one of them must
participate as an intermediate node in at least one simple path between nodes Λk and Λ0. Let us denote the
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Fig. 10. Network partition into groups with respect to Λk.

simple path Λk Ã Λa Ã Λ0 by pa, and the simple path Λk Ã Λb Ã Λ0 by pb. When referring to only part
of a path we will denote which path the segment was extracted from, e.g. Λx

pa
Ã Λy will refer to the path

between nodes Λx and Λy which is a fragment of the path pa.

Let Λx be the last node which is mutual to both paths Λk
pa
Ã Λ0 and Λk

pb
Ã Λb, i.e. Λx is an intermediate

node on both paths, pa and Λk
pb
Ã Λb and the path Λx

pb
Ã Λb does not pass through any other node which is

in pa. Note that Λx can be Λk, Λa or Λb in the cases where there are no mutual nodes in the two paths pa

and Λk
pb
Ã Λb, if Λa is an intermediate node in Λk

pb
Ã Λb and there are no mutual nodes in the paths Λa

pb
Ã Λb

and Λa
pa
Ã Λ0, or Λb is an intermediate node in pa, respectively.

If Λx is reached before Λa on the path Λk
pa
Ã Λ0, then the two paths Λk

pa
Ã Λx

pb
Ã Λb and Λa

pa
Ã Λ0 comply

with the Lemma (Figure 11(a)). Otherwise, if Λx is reached after Λa on the path Λk
pa
Ã Λ0 the two simple

paths that satisfy the Lemma are Λk
pa
Ã Λa and Λb

pb
Ã Λx

pa
Ã Λ0 (Figure 11(b)). Note that for the second case

we use the bidirectional nature of the links to reverse the path Λx
pb
Ã Λb. Q.E.D.
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k a
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Fig. 11. Illustration of the two scenarios in the proof to Lemma 3. The two disjoint simple paths that can be extracted
from the two paths Λk Ã Λa Ã Λ0 and Λk Ã Λb Ã Λ0.

Lemma 4: Each node in Ψk has a corresponding node in Θk, which will be called its root node with respect
to Λk, such that all paths from it to node Λ0 pass through the root node without passing any other node in
Θk before reaching the root node. In Figure 10 for example node Λ5 is the root node of nodes Λ3, Λ8 and all
the rest of the nodes in the area which is marked as Ψ5

k.

Proof: We will prove the Lemma by contradiction. We will assume that there is a node in group Ψk that
does not have a root node and we will show that this contradicts the definition of Ψk.

Let us assume that node Λξ ∈ Ψk does not have a root node. Since the network is connected there must
be at least one simple path from Λξ to Λ0. This path must traverse at least one node in group Θk (Λ0 ∈ Θk

according to Lemma 2), hence if Λξ does not have a root node there must be at least two simple paths from
node Λξ to Λ0 which differ in the first node along the path which belongs to group Θk. Let us denote these
two nodes by Λa, Λb ∈ Θk and the two paths Λξ Ã Λa and Λξ Ã Λb by pa and pb, respectively. Let Λw be
the last node in the path Λξ Ã Λa which is also in Λξ Ã Λb (Figure 12). Note that node Λw is not in Θk
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since Λa and Λb are the first two nodes along the two paths pa and pb which are in group Θk. The two paths
Λw

pa
Ã Λa and Λw

pb
Ã Λb do not share any mutual node beside node Λw itself (Figure 12).

According to Lemma 3 since Λa and Λb are in Θk, we can find two simple paths such that one is from Λk

to one of the nodes and the other is from the second node to Λ0 that do not share any mutual node. Let us
assume without loss of generality that node Λa is the first node, and Λb is the second node, hence there are
two simple paths Λk Ã Λa and Λb Ã Λ0 which do not share any common node.

Now let us look at the path Λk Ã Λa
pa
Ã Λw

pb
Ã Λb Ã Λ0. This path is a simple path from node Λk to Λ0

which passes through node Λw, hence node Λw must be in Θk by definition, but this is a contradiction to the
assumption that Λa and Λb are the first two nodes in paths pa and pb which belong to Θk, which means that
any node that is not in Θk (participates as an intermediate node in at least one simple path between nodes
Λk and Λ0) must have a root node. Q.E.D.

b 0

w

a

p a a

b

k

w

b p
b

0 k a

k

w

�

Fig. 12. Illustration of the proof of Lemma 4. If Λξ ∈ Ψk does not have a root node there must be a simple path from
node Λk to Λ0 traversing node Λw ∈ Ψk.

As a consequence of Lemma 4 we can partition group Ψk into smaller groups in which each group comprises
all nodes that share a common root node in group Θk. Let us denote by Ψi

k the subgroup which relates to
root node Λi ∈ Θk (Figure 10). Let us also denote by Φi

k the set of all links which connect the nodes in group
Ψi

k, including the links connecting the nodes in Ψi
k to their root node Λi; and by Φk (without the superscript)

the set of links connecting the nodes in Θk among themselves.

Lemma 5: The union of Θk and all the sets Ψi
k, Λi ∈ Θk span all the nodes in the network, i.e.

⋃

Λi∈Θk
Ψi

k

⋃

Θk ≡
N and the intersection of any two such groups is an empty set, i.e. a node belongs to exactly one group.
The union of Φk and all Φi

k, Λi ∈ Θk span the entire links in the network, i.e.
⋃

Λi∈Θk
Φi

k

⋃

Φk ≡ E . The
intersection of any two such groups is an empty set.

Proof: The network is connected hence all nodes have at least one simple path to Λ0. Therefore each
node either belongs to Θk or to one of the Ψi

k. According to Lemma 4 each node not in Θk has a single root
node, hence each node belongs to exactly one group. The second part of the Lemma is a direct consequence
of the first part. Each link in the network either connects two nodes that belong to the same group (Θk or
one of the Ψi

k) or connects a node in Ψi
k to its root node in Θk, which makes it belong to exactly one group.

Q.E.D.

Now we turn to prove Property 3. We will show that the clock offset obtained by node Λk is the same
whether all nodes were running the CTP or only the nodes in group Θk independently from the rest, i.e. node
Λk’s clock is not influenced by nodes which do not participate in a simple path between nodes Λk and Λ0.

We will start from the objective function F (~τ) suggested in (3) over all links. We will partition the sum to
the smaller groups Φk and all Φi

k, Λi ∈ Θk which according to Lemma 5 span all E (note that by attaching
subgroup Φi

k to each node Λi ∈ Θk some of the subgroups might be empty).
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min
~τ







∑

∀ei,j∈E

(∆Tij − ∆Tji − 2τi + 2τj)
2







= (13.a)

min~τ

{

∑

∀ei,j∈Φk
(∆Tij − ∆Tji − 2τi + 2τj)

2 + (13.b)

∑

∀Λl∈Θk

(

∑

∀ei,j∈Φl
k

(

∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j

)2
)}

Let us separate each sum over all links in Φl
k into two partial sums. The first is over all links which are

connecting nodes in Ψl
k to the root node Λl, Sl

1 = {el,j |j ∈ Ψl
k, j ∈ Gl}, and the second sum is over the rest

of the links which connect nodes in Ψl
k among themselves, Sl

2 = Φl
k \Sl

1. Let us also change variables and let:

τ ′
i =

{

τi if Λi ∈ Θk

τi − τl if Λi ∈ Ψl
k

(13.b) will take the form:

min
~τ







∑

∀ei,j∈Φk

(∆Tij − ∆Tji − 2τi + 2τj)
2 + (13.c)

+
∑

∀Λl∈Θk

(

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l − 2τl + 2τj)
2+

∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τi + 2τj)
2
)}

=

min
~τ ′







∑

∀ei,j∈Φk

(

∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j

)2
+ (13.d)

+
∑

∀Λl∈Θk

(

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l − 2τl + 2τ ′
j + 2τl)

2

+
∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τ ′
i − 2τl + 2τ ′

j + 2τl)
2
)}

=

min
~τ ′







∑

∀ei,j∈Φk

(

∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j

)2
+ (13.e)

+
∑

∀Λl∈Θk

(

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l + 2τ ′
j)

2

+
∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j)
2
)}

=

As can be seen from (13.e), the first sum
∑

∀ei,j∈Φk

(

∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j

)2
depends only on τ ′

i ’s which

belong to nodes in Θk, and each component of the second sum,
(

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l + 2τ ′
j)

2 +
∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j)
2
)

, depends only on τ ′
i ’s which belong

to nodes in Ψl
k. According to Lemma 5 the groups Θk and Ψl

k ∀Λl ∈ Θk are disjoint (have no common
nodes), hence each term depends on a different set of τi’s and the minimum of the sum equals the sum of the
minimums, i.e. (13.e) takes the form:

min
{τ ′

h
|Λh∈Θk}

∑

∀ei,j∈Φk

(

∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j

)2
+ (13.f)

+
∑

∀Λl∈Θk

{

min{τ ′

h
|Λh∈Ψl

k
}

[

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l + 2τ ′
j)

2

+
∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j)
2
]}
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(13.f) completes the proof of the property since according to (13.f) the minimum over group Φk could be
computed separately where the clock movements τ ′

i Λi ∈ Θk are the exact clock movements, τ ′
i = τi. Note

that the rest of the clock adjustments can also be computed separately based on the minimum obtained for
each group Φl

k,

min
(

∑

∀el,j∈Sl
1

(∆Tl,j − ∆Tj,l + 2τ ′
j)

2 +
∑

∀ei,j∈Sl
2

(∆Tij − ∆Tji − 2τ ′
i + 2τ ′

j)
2
)

and then based on the computed

τi Λi ∈ Θk we can compute τj Λj ∈ Ψl
k as τj = τ ′

j − τl Q.E.D.
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