CCIT Report #432 June 2003

Optimizing Hybrid Multicast and Unicast Overlay
Networks

Oren Unger Israel Cidon
Department of Electrical Engineering, Technion Department of Electrical Engineering
and Zoran Microelectronics Technion - Israel Institute of Technology
Email: unger@tx.technion.ac.il Email: cidon@ee.technion.ac.il
Abstract

Overlay networks architecture should support high-performance and high-scalability at low costs. This becomes
more crucial when communication, storage costs as well as service latencies grow with the exploding amounts of data
exchanged and with the size and span of the overlay network. For that end, multicast methodologies can be used to
deliver content from regional servers to end users, as well as for the timely and economical synchronization of content
among the distributed servers. Another important architectural problem is the efficient allocation of objects to servers
to minimize storage, delivery and update costs.

In this work, we suggest a multicast based architecture and address the optimal allocation and replication of dy-
namic objects that are both consumed and updated. Our model network includes application servers which are potential
storage points connected in the overlay network, consumers which are served using multicast and/or unicast traffic and
media sources which update the objects using multicast communication. General costs are associated with distribution
(download) and update traffic as well as the storage of objects in the servers.

Optimal object allocation algorithms for tree networks are presented with complexiti#\ofin case of multicast
distribution andO(NN?) in case of hybrid unicast/multicast distribution. A special case of the hybrid distribution
problem automatically selects, for each user, between multicast and unicast distribution.

Using the techniques of the optimal tree algorithm we also present an efficient approximation algorithm for general
networks in case of multicast only distribution.

Index Terms

Content Distribution, Location Problems, Multicast, Overlay Networks, Tree Networks

I. INTRODUCTION

Recent years have witnessed tremendous activity and development in the area of content and services distribu-
tion. Geographically dispersed consumers and organizations demand higher throughput and lower response time for
accessing distributed content, outsourced applications and managed services. In order to enable high quality and re-
liable end-user services despite unpredictable Internet and Intranet conditions, organization and applications service
providers (ASPs) employ content distribution networks (CDN) and overlay networks. These networks bring content
and applications closer to their consumers, overcoming slow backbone paths, network congestions and physical la-
tencies. Multiple vendors such as Cisco [1], Akamai [2] and Digital Fountain [3] offer CDN services and overlay
technologies. Recently, more collaborative models such as distributed storage and peer-to-peer computational models
require both consumption and modification of the content by multiple, geographically distributed users [4, 5].

An overlay network is a set of application servers that are connected through the general Internet Infrastructure.
Naturally, organizations and ASPs try to optimize the overall cost of the overlay network mainly in terms of storage and
communication costs. Efficient allocation of information objects to the overlay network servers reduces the operational
cost and improves the overall performance. This becomes more crucial as the scale of services extend to a large number
of users over international operation where communication and storage costs as well as network latencies are high. The
optimization problem becomes more difficult as the service becomes dynamic and needs to be changed, updated and
synchronized frequently.

The popularity of multicast for distribution of the content is increasing with the introduction of real-time and multi-
media applications that consume high bandwidth and are delivered to a large number of consumers. Although multicast

lesley
CCIT Report #432 June 2003

is efficient for a large number of consumers, unicast can still be more effective for a small number of consumers, espe-
cially for a sparse distribution of the consumers.

Overlay multicast networks are overlay networks which use multicast as the transport protocol between the vertices
of the network [6]. Most of the overlay multicast networks are based on a single multicast tree that connects the
participating vertices [6—9]. A network wide single multicast tree, may suffer from scalability, reliability and QoS
problems as well as high communication costs due to the use of international and long distance links. Moreover, most
IP backbones (backbone of Internet providers and even private WAN backbone) are not IP multicast enabled. On the
other hand, multiple multicast trees, especially in LANs or campuses, rooted at regional servers, may take advantage
of underlying IP multicast support and scale better. It can also save long distance communication costs and provide
a better QoS by storing the high demand objects locally. The new approach suggested in this paper is to combine the
replication of mirrors/proxies used in CDNs with multicast based distribution/update and achieve better scalability of
the service while maintaining a low cost of storage and communication.

Our initial model is a tree graph that has a server located at each of its vertices. The vertices also include optional
entries to local consumers and media sources. Each server is assigned with a storage cost and each edge is assigned wit
distribution and update communication costs. The distribution demand of the consumers and the update requirements
of the media sources are known a-priory. The consumers are served from servers using multicast and/or unicast
communication. The media sources update and modify the objects within the servers. The update traffic between a
media source and the relevant servers is most efficiently conducted using multicast communication, since it can reduce
significantly the overall update transport and the update latency.

Our goal is to find an optimal allocation, e.g., the set of servers which store an object, with the minimum overall
(communication and storage) cost. The consumers are assigned to the servers in a way that each consumer is served b
exactly one server for an object. It is clear that by changing the number of copies, we introduce a tradeoff between the
storage/update costs that increase with the number of copies and the distribution cost that decreases with this number.

In [10], we presented an optimal allocation algorithm for the multicast only distribution on trees. In this work we
extend the problem in two new directions. The first direction is an optimal allocation algorithm for the hybrid uni-
cast/multicast distribution on trees with computational complexity @¥2). We present two different cases where the
mode of operation per consumer (multicast or unicast) is given a-priori or is automatically optimized by the algorithm
itself. The second direction is an algorithm for general networks in case of multicast only distribution. In the general
network case, we replace the fixed tree structure with a (approximated) Steiner tree as the suggested multicast tree
structure and apply the same optimization techniques over that tree. Once new content locations are assigned we can
apply this scheme repeatedly until it converges.

A. Related work

Application level multicast and overlay multicast protocols have been studied in recent years. Most of the works
are focused on the structure of the overlay topology (i.e. the way the multicast tree is constructed) for a single tree
[6-9]. Our work assumes the overlay network topology is a tree, but instead of focusing on the construction of such
a tree, we focus on the way the tree should be partitioned to multiple regional multicast trees while optimizing the
communication and storage cost.

The object allocation problem, also referred as the file allocation problem in storage systems [11] or data man-
agement in distributed databases has been studied extensively in the literature. Kalpakis et al. [12] and Krick et al.
[13] present a model of a network with unicast reads, multicast writes and storage costs. [12] presents a problem with
additional constrains for a tree network and the algorithm they suggest is less efficient than our hybrid distribution
algorithm. [13] deals with general networks and suggests an optimal algorithm in tree networks which is also less
efficient than our hybrid distribution algorithm. These works don't solve the multicast reads and multicast writes prob-
lem. Moreover, [12,13] use an MST based update in which a media source sends a unicast message to the closest
server (which stores an object) and the server itself forwards a multicast message over the MST to other servers (i.e.
- multicast is used only between the servers). This scheme does not employ properly the native IP multicast model
where a single source can send traffic directly to all the servers via a multicast tree. In terms of computational com-
plexity, our algorithm isO(N?), compared t@(N®) in [12] andO(N - diam(T) - log(deg(T))) in [13] (Worst case
is O(N? - log(N))). Additional works that address the severs/replicas placement problem for the read only unicast
distribution model can be found in [14-17].

Il. THE MODEL
A. Objects

For each objeat of the objects sab, we determine the set of servers which store a copy of the object. The algorithm
handles each object separately, so the costs described below are defined (and can be different) for each object

B. The tree network

Let T" = (V, E) be a tree graph that represents a communication network, Where{1,..., N} is the set of
vertices andt is the set of edges. The tree is rooted at any arbitrary vertex1). Each vertex in the tree represents a
network switch and a potential storage place for object copies. Each vertex in the tree is also an entry point of content
consumers and/or media sources to the network. Distribution demands of consumers connected tareqrtexided
by the network from the server at the closest vertex (or the closest multicast tree rogtadhit) stores a copy of the
object. An object update may be provided by any media source and is sent to all the vertices that store the object using
multicast.
Denote the subtree @f rooted at vertex asT;.
Denote the parent vertex of vertéin T (i#£r) as ;.
Denote the edge that connects veriea its parentirll’, (i, P;) ase; (e,=0).
Denote the set of edgesTy U e; asFE; (E,.=F).
Denote the set of vertices i asV; (V,.=V).
Denote the set of children vertices of verter T asCh; (For a leafi, Ch;=0).
Figure 1 displays a tree network with various costs related to its vertices and edges.

C. Storage cost

Let the storage cost of the object at vertda beSc;.
Denoted is the set of vertices that store the object.
The total storage cost of the objectis 4 Sc;.

== - Media Sources 2(Tu) =3
(#)- Stored copy
)" - Consumers
- Server
[
B [
12(Sc) g |
4(Ucd
1(Ucu,)
3(5c4)Ill 1(c

6(Td4)E

Fig. 1. An example of a tree network and various costs

D. Distribution traffic cost
Denote the cost per distribution traffic unit at edgesUcd; (Ucd;>0). Sincee, =0, Ucd,=0.

1) Multicast distribution traffic cost: The multicast distribution traffic provided to vertgx’dm;, is eitherT'd or 0.
Td is used when at least one consumer connecteddquires the object anlis used when no consumers connected
to i require the objeét
DenoteDmt; the set of edges in the distribution multicast tree rooted at vertéx¢®, Dmt;=0.

The total multicast distribution traffic cost}s,;cq 7'd - (3-cc ppt, Ucde).

2) Unicast distribution traffic cost: The cost per distribution traffic unit along a path between verticGesd j is
Dd; j = Zeepm_ Ucd., whereP, ; is the set of edges that connect vertéa vertex;. We defineP; ;=0 and Dd; ;=0.
Since the tree is undirecteff; ; = P; ;.

The total distribution traffic demand produced by all the consumers connected toaisrieku; (T'du;>0).
The total unicast distribution traffic cost}s, .y T'du; - minjeq Dd; ;. (If 35, k€® s.t. Dd; j=Dd, ;, andj<k theny,
the smallest index, is taken).

E. Multicast update traffic cost

Denote the cost per update traffic unit at edgasU cu; (Ucu;>0). Sincee, =0, U cu,.=0.
The total multicast update traffic generated by all the media sources connected ta iefex (7'u; >0).
DenoteUmt; ¢ as the set of edges of the multicast update tree from veres.

The total update traffic cost s,y Tu; - (ZeeUmti + U cue).

[1l. THE PROBLEM
The optimization problem is to find an object allocation that minimizes the total cost (storage and traffic):

ZSCZ' + Z Tu; - (Z Ucue) —+ ZTd . (Z Ucde> + ZTCZUZ' . Ijrélél Ddi’j

ied eV ecUmt; ¢ ied eeDmit; eV

We developed an algorithm that solves the above optimization problem. The algorithm is called HDT (Hybrid
multicast/unicast Distribution on Tree graphs). The HDT algorithm is presented in section VIII.

Based on the general optimization problem we derived additional novel problems which are solved in this paper:

1) Multicast only distribution - we omitted the unicast distribution traffic from the general problem (and its total
COStZz‘eV Tdu; - minj€<p Dd%])
For a tree graph, we developed an algorithm called MDT (Multicast Distribution on Tree graphs).
For a general graph, we developed an approximation algorithm called MDG (Multicast Distribution on General
graphs), which uses a variant of MDT.

2) Mutual Exclusive hybrid distribution - the algorithm automatically selects between multicast and unicast distri-
bution to consumers. We replace the unicast distribution costwjthy, 7T'du; - minjee Dd; j, whereV,. the
set of vertices which are served using unicast.
For a tree graph, we developed an algorithm called MX-HDT (Mutual eXclusive Hybrid Distribution on Tree
graphs).

V. OPTIMAL ALLOCATION PROPERTIES
These properties are the fundamentals of our technique.

A. Per edge update traffic

As described in section Il, a vertéxvhich is a root of a multicast update tree produces update traffic through
each edge € Umt; . The update traffic of such a tree is directed frotm ®. Since the location of the media sources
is known a-priory, when we look at a single edge, we can determine the update traffic that will pass through it in each
direction, in case there are copies stored in the subtrees connected to it (in both ends of the edge).

IThe reason for using the same traffic rate for all vertices in multicast is the fact that the server determines the transmission rate, not each

customer as in the unicast case.

5

For each edge; we defineTu¢* andTwi". Tu"! is the total update traffic that is outgoing via verteand edge;
out of 73, in case there is at least one copy stored outsjdé&'«;" is the total update traffic that is incoming via vertex
7 and edges; into T;, in case there is at least one copy stored;in

Tud" Z Tuj = Tu; + Z Tul"

JEV; ceCh;
mn _ out out
Tu;" ZTuj—Tur — T
JEVi

B. Distribution traffic properties

Lemma 1:In the optimal allocation, in case of unicast distribution, if veftexserved from vertex, which satisfies
min;ce Dd; ;, andi is served through vertek (i.e. P; ;=F; yUP; ;), thenk must also be served fropn

Proof. P, j=P; UP;; = Dd; j=Dd; +Dd; ;. Suppose vertek is not served frony, but from a different
vertex!. Since the solution is optimal there must exisf;. ;<Ddy ;.

In that case we gebd, ;=Dd; ;,+Ddy < Dd; +Ddy, ; = a contradiction. |
Lemma 2:In the optimal allocation, each vertéxan only belong to at most one multicast distribution tree.

Proof: Suppose a vertexbelongs to more than one multicast distribution tree, then by disconnecting it from
the other trees and keeping it connected to only one multicast distribution tree we reduce the distribution traffic in
contradiction to the optimality of the cost. |

Lemma 3:In the optimal allocation, if vertexis served through its neighbrin T' (either parent or child), theh
andk are served from the same server.
Proof: The proof is a direct result of lemmas 1, 2. |
Corollary 1: The optimal allocation is composed of a subgrapliofvhich is a forest of unicast and multicast
distribution subtrees. Each subtree is rooted at a vertex where a copy is located and its leaves are vertices were no copy
is stored and there is distribution demand. Each edge and veriexam be part of at most one unicast and at most
one multicast distribution subtree.

V. TREE BASEDALGORITHMS TECHNIQUE

The main idea behind the algorithms is the observation that in tree graphs, since there is only one edge from each
vertexi to its parent, and due to lemma 3, if we consider the influence of the optimal allocation diitsidethe
optimal allocation withinT;, it is narrowed to a very small number of possibilities. We just have to consider the
possibility that there are or not copies outsifigand if i is served from such an external copy, where is it located),
there is or the isn’'t multicast distribution demand outsigle@nd also consider the possibility that no copy is located
within T; (only wheni#£r). We define scenarios that are possible for each vertex pain unicast distribution and
for vertex: in multicast distribution, which cover all these possible external influences on the optimal allocation within
T;. In addition, due to the same lemma 3, it is fairly easy and straight forward to calculate the optimal allocation for
vertex: andT; based on the optimal allocation calculated for eaendT,, wherec € Ch;.

As aresult, our algorithms for tree graphs are recursive algorithms that find the optimal allocation for a new problem
which is a subset of the original problem for verteandT;, based on the optimal allocation computed by its children
Ch; for their subsets of the original problem. (There are different new problems for the multicast/hybrid distribution
cases).

The algorithms are performed in two phases. The first phase is the cost calculation phase which starts at the leaves
and ends at the root, while calculating the optimal allocation and its alternate cost for each veriex ipairybrid
unicast/multicast distribution and each verté@xmulticast only distribution and for each scenario, based on the optimal
allocations calculated by the children of veridwr all their possible scenarios. The second phase is a backtrack phase
which starts at the root and ends at the leaves where the algorithm selects the scenario which is active in the optimal
allocation (in the optimal solution there can be only one actual scenario possible for each vertex) and allocates the
copies in the relevant servers. The second phase is needed since only in the root it is possible to find the optimal
allocation of the entire tree, and since the algorithm works in a recursive way, the root doesn’t know the entire optimal
allocation, but only the actual scenarios of itself and its children as well as the cost of the optimal allocation.

The algorithms calculate the optimal object allocation cost as well as the set of servers that will store the object.

VI. THE MDT ALGORITHM

The MDT algorithm was previously presented in [10], and this section provides a short reminder of that algorithm,
since its the simplest algorithm to understand.

Besides omitting the unicast distribution traffic, the algorithm assumes that the multicast distribution demand is the
same for all the vertices/{ € V', Tdm;=Td).

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack
phase. We will only remind the cost calculation phase.

For the new problem we define a new tree, which is a subtrée afnstructed ofl; ande;. We define 4 legal
scenarios for a vertexandT;.

A. The cost calculation phase

For each vertex the algorithm calculates fdF; 4 alternate costs, for the following possible scenarios:

Czi; - There is no copy located insidg (i#r). Edgee; will carry incoming distribution and outgoing update
traffic.

Chi; - Copies are located both inside and outsi@iéout not all the internal consumers demand is supplied from
copies inT;. Edgee; will carry incoming distribution and both incoming and outgoing update traffic.

Cbo; - Copies are located both inside and outsitland all the internal consumers demand is supplied from copies
in T;. Edgee; will carry both incoming and outgoing update (and maybe outgoing distribution) traffic.

Cio; - All the copies of the object are located only insifle Edgee; will carry incoming update (and maybe
outgoing distribution) traffic.

The algorithm calculates the costs as follows:

Cvi Td-Ucd; + Tud™ - Ucu; + sumd, if i #r
! 00, if i =7

) Td-Ucd; + Tui™ - Ucu; + Tud" - Ucu; + suml, if i #r & Ch; # 0
Cbzi — ? [o
0, ifi=r|Ch; =0
m out) P
Cho; — { (Tui + Tug) Ucu; + min{minl, min2} , !f i£r
o0, ifi=r

. Tul™ - Ucu; + min{minl, min2, min3} , if i # r
Cio; — } .)) .
min{minl, min2, min3}, ifi=r

where (various combinations of children scenarios):

suml = Z min {Czi., Cbo., Cbi.}
ceCh;

sum2 = Z min {Cxiy, Cboy, Cbiy}
kE€Ch; ke

sum3 = Z Cuxip,
keCh;,k#c

sumé4 = Z Cxi,
ceCh;

minl = Sc¢; + suml

min2 = min {T'd-Ucd, + Cbo. + sum2}
ceCh;

min3 = min {Td-Ucd. + Cio. + sum3}
ceCh;

note: suml, sum?2, sum3, sum4 equal0 andmin2, min3 equalcc if vertexi is a leaf C'h;=0).

The cost of the optimal allocation inT" is C'io,.

The computational complexity of MDT i©(N). The explanation for the complexity calculation, as well as proof
of optimality can be found in [10].

VIlI. THE MDG APPROXIMATION ALGORITHM

The problem of finding the optimal allocation for multicast only distribution traffic in general graphs is NP-hard.
Nevertheless, we can analyze the properties of the optimal solution and suggest an approximation algorithm for the
optimization problem, based on the optimal allocation algorithm we developed for tree graphs.

A. Model changes for the General Graph

Besides omitting the unicast distribution traffic from the problem, we replace the tree graph (described in II-B) with
a general graph:
Let G = (V, E) be a connected graph that represents a communication network, Wherél, ... N} is the set of
vertices and¥ is the set of edges.

The notation of an edgein the general graph is different from the one we defined in the tree graph. We dgfine
- the edge that connects verticesnd;.

In addition, we define the same distribution and update cost per traffic unit abgddee. Ucd.=Ucu.. Thisis a
reduction of the original traffic cost model, but it is still reasonable since in the real world usually the cost per traffic

unit is the same for all kinds of traffic.
Figure 2. displays a graph network with various costs related to its vertices and edges.

1 - Media Sources

~

1

(#)- Stored copy

= _ Consumers
" 4(Ucd
= - Server 24
] =Ucu,,)
I {
3(Scy)

Fig. 2. An example of a graph network and various costs.

B. The optimal allocation properties in general graphs

The Steiner tree problem [18] is defined as follows: given an undirected graph with a specified subset of vertices
called the terminals, find a tree with the minimum cost (lengths) of edges spanning all the terminals. According to this
definition, an optimal multicast tree in a general graph is a Steiner tree. The Steiner tree problem is NP-hard on general
graphs [19].

The property of lemma 2 is also valid in general graphs. Each vertex belongs to at most one multicast distribution
tree. If we look at the optimal allocation, we can see again a forest of multicast trees that cover all the multicast
consumers. Each media source is a root of a multicast update tree that connects it to all the vertices which store an
object. The optimal solution in a general graph is a forest of Steiner trees that connect all the media sources to all the
servers which store an object, and each server to the set of consumers which it serves. The total cost of the optimal
allocation is constructed of the storage cost, the multicast update Steiner trees costs and the multicast distribution
Steiner trees costs.

Since finding a Steiner tree in a general graph is NP-hard, it is obvious that finding a forest of Steiner trees is NP-hard
as well.

C. The approximation algorithm heuristics

Since the allocation problem in general graphs is NP-hard, we use our optimal algorithm for trees in order to find an
approximation to the optimization problem.
We defined an efficient iterative algorithm that starts with a random or preset allocation, and converges to an allocation
which is optimal in an approximated Steiner tree extracted from the general graph.
In the model described above, the multicast distribution demand is not the same for all the vertices in tHEgraph (
is eitherT'd or 0), so we use a variant of the MDT algorithm described in section VI to solve the optimization problem
on the tree. We refer to this modified algorithm as XMDT (eXtended MDT). The detailed XMDT algorithm (e.g. cost
calculation formulas as well as the pseudo code of that algorithm) can be found in appendix I. We also provide an
algorithm for calculating the allocation cost in the general graph. We will refer to the cost calculation algorithm as
COSTallac-

1) The MDG algorithm stepsThe approximation algorithm in the general graph is:

1) Start with a random allocation. The number of copies allocated is either a constant number or a percéntage of

- the number of vertices in the graph (network size) .

2) RunCOST,;.. on the initial allocation, save the initial allocation and sgt...s; to be the current cost.

3) Extract a Steiner tree from the general graph where the terminals are all the vertices with either distribution or

update demand and the vertices which store the object.

4) Run XMDT on the extracted Steiner tree. The algorithm will allocate copies in vertices of the extracted tree.

5) RunCOSTy;.. on the current allocation. If the cost is smaller thain.,s; Save the current allocation and

updatemin..s: t0 be the current cost.

6) Repeat steps 3 to 5 till there is no improvement in the allocation cost.

At the end of the algorithm, the saved allocation is the suggested approximated allocation, and the saved cost (in
mineost) IS the approximated cost.

Figure 3 describes the MDG algorithm flow chart.

2) Extracting a Steiner tree:The problem of finding a Steiner tree is NP-hard. There are several polynomial time
approximation algorithms for the problem. We selected the approximation algorithm suggested by Zelikovsky [20],
which has an approximation ratio @i /6 from the optimal solution. The Steiner points are the vertices that have
multicast or unicast demand, as well as the vertices which currently store a copy as the terminals for the Steiner tree
problem. We us&/ cd, (=U cu.) as the edge length.

3) Running the XMDT optimal algorithm on the tre&vhile extracting the Steiner tree, we also set the storage cost
and distribution and update demands for each vertex in the extracted tree according to the original ¢al\és get
a tree network on which the allocation problem can be solved using the optimal allocation algorithm for tree networks
(XMDT). The algorithm finds a new allocation for the given tree. The resulting allocation may be the same as the
previous one, especially if the extracted tree is similar to the previous one.

4) Calculating the cost for a given allocationThe total cost of the allocation is constructed of the storage cost, the
multicast update Steiner trees costs and the multicast distribution Steiner trees costs.

Calculating the cost of a given allocation is an approximation algorithm by itself. Given the set of vertices with media
sources and their update demand, the set of vertices which allocate the object and the set of vertices with consumers
and their distribution demand, we need to find the forest of Steiner trees (which was not seen by XMDT, since it was
running on a tree and not on the entire graph).

The storage cost of the allocation remajis4 Sc;.

Calculate ming,q by
running COST ;. On
theinitial allocation

[l

Update min.q to be new4.| . Extract a Steiner tree
Savethe new alocation | | giventhe current allocation

[l

Run XMDT on the extracted
tree to get anew allocation

1l

Calculate new, .4 by
running COST ;. On
the new allocation

Generate aninitial
random allocation.

IS new < ming g ?

I[No

End. Cost isming,. Allocation is that of mincost)

Fig. 3. The flow chart of the MDG algorithm.

Each multicast update tree is a Steiner tree and is fairly easy to find. For each vertex with a media source, we
extract a Steiner tree that contains that vertex and all the vertices which store the object. The cost of such Steiner
tree rooted at vertexis the update traffic demarifiu; multiplied by the total edge lengths of the Steiner tree, i.e.

Tu; - (ZeeUsti » Ucue), WhereUsst; ¢ is the set of edges in the update Steiner tree rooted at

It is much difficult to find the multicast distribution forest, since each vertex can be connected to at most one
multicast tree. We use an approximation for that problem: extract a singe distribution-only Steiner tree that contains
all the vertices which store the object and all the vertices with positive distribution demand. For each vertex that stores
the copy, set the storage costtand for each vertex that doesn’t store the objecttolgnore the update demands of
the media sources. Use the original distribution demand values and unit cost per edge. Run XMDT on that tree. The
result is a forest of distribution trees. Please note that the extracted distribution-only Steiner tree may differ from the
Steiner tree used by XMDT to find the current allocation, since it doesn’t contain the vertices with only update demand
(i.e. - don’'t have a distribution demand).

D. MDG Simulation results

We've generated general graphs using the Internet Model by Zegura et al. [21, 22]. We defined two Transit/Stub
based models which differ in the way the network is partitioned to top level domains and local domains.

In all the graphs, the unit traffic cost per edge was taken from the Internet model, while the values of storage costs
and update/distribution demands were randomly generated using the following guidelines: Uniform distribution of the
storage cost in the range [df), 130] (average cost i80); 25% of the total number of vertices have distribution demand
(Td set to 4); A very small number (up to 3) of media sources Withset to 1.

We've run our approximation MDG algorithm on these graphs, and compared the results to several random alloca-
tions for each graph. The difference between the random allocations is the number of copies. RAND3, RANDS5 - an
allocation with an average number of 3, 5 copies respectively. RAND - an allocation with an average number of copies
which follows the average number of copies by MDG.

In each Internet model and for each network size, we defined ten (10) random graphs and ran MDG on each such
graph. We also generated the random allocations as described above. We've calculated the average cost and average
number of copies for each allocation type and each network size. The average costs are presented in table |.

We also generated charts of the average number of copies and average cost vs. the number of vertices in each
model. Each chart contains four (4) series - one of the MDG allocation and the other three are of the different random

10

Model 1
size |15/ 20| 25|30| 35|40 | 45| 50| 55|60 |65| 70| 75| 80| 85 | 90
MDG |371] 358|489|507| 739|981 | 811 | 79111371087/ 13041058 1486 165415221821
RAND |610| 646|902| 894|1350 1582 1392 1645/ 2044 2009 2308/ 18192545 2843 2644, 3415
RAND3|521| 586| 874| 909|1190, 1468 1361 141411834{1814/19671804{22172509 23452737
RAND5|593| 735|904| 9171|1209 15721326/ 1501/ 1759 1786 2038 1667|2276/ 25322339 3263
MDG/RND |0.55/0.55/0.56| 0.59| 0.64| 0.60| 0.52| 0.61| 0.58| 0.62| 0.60| 0.63| 0.63| 0.62| 0.58

Model 2
netsize | 15 21| 27| 33| 39| 45| 51| 57| 63| 69| 75| 81| 87 | 93
MDG cost | 329| 422| 597 | 610 | 843 | 840 |1113{1294/1190| 1417|1289| 1384| 1664| 2109
RAND cost | 579| 765|1017|1132| 1473| 1448| 1992| 2059| 2135| 2252| 2523| 2555| 3044| 3491
RANDS3 cost| 544 | 795|1030| 1076|1422 1309|1701| 1799| 1885| 2109| 2180| 2506| 2495| 3006
RANDS cost| 685| 738 | 987 | 1074| 1458| 1310| 1796| 1993| 1918 2196| 2287|2450 2621| 3075
MDG/RND |0.55|0.55| 0.59| 0.56| 0.58| 0.62| 0.61| 0.66| 0.60| 0.65| 0.55| 0.55| 0.61| 0.66

TABLE |
THE AVERAGE COSTS OF ALLOCATIONS IN GENERAL GRAPHS

allocations. Figure 4 displays these charts.

Average num. copies vs. number of vertices Average cost vs. number of vertices

16 4000

14 3500

121 3000

101 ~—MDG 2500 ~-MDG

" ~ -=-RAND 2000 N ~=—RAND
= /f\"' -+ RAND3 ——RAND3

6 1 X # |~ RANDS 1500 —¥-RANDS

2 500

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

#Vertices Model1 #Vertices

Cost

#Copies

Average num. copies vs. number of vertices Average cost vs. number of vertices
18 4000
16 3500
14 e
7 = 3000
@ 12 ~ —MDG 2500 | ~+-MDG
= 10 - RAND 0 -=-RAND
= 2000
8 s AL «ranD3| | § -+~ RAND3
% g i % RANDS 1500 —+ RANDS
: WyM < - /ﬂ
2 e e e T 500
o o
15 21 27 33 39 45 51 57 63 69 75 81 87 93 15 21 27 33 39 45 51 57 63 69 75 81 87 93

#Vertices Model2 #Vertices

Fig. 4. The number of copies and cost of allocations in general graphs

Our conclusions from the results are:

1) The average costs of the MDG algorithm allocations are significantly better than of the random allocations. The
average ratio between the MDG allocations costs and the random allocations édsteisoth models.

11

2) In both our Internet models, the average costs of the different random allocations produced almost similar costs.
This indicates that the number of copies didn’'t have much affect on the overall random allocations costs. This
can happen when the storage and update costs are relatively lower than the distribution costs (so the major part
of the cost is the distribution traffic, which is very sensitive to the location of copies).

3) It can be seen, in both models, that the average number of copies and the average costs of the MDG allocations
are increasing as the number of vertices grows. This behavior seems to be very reasonable - as there are more
consumers in the network it is better to add more copies. The average cost increases since the storage and traffic
costs increase as the network size and number of copies increase.

VIIl. THEHDT OPTIMAL ALGORITHM
In this section we describe the general algorithm that solves the optimization problem defined in section Il1.

A. The algorithm

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack

phase.

For the new problem we define a new trég;, which is a subtree df’ constructed of; (the subtree of rooted at

i), and the additional set of edges(connects vertexto its parent) and’; ; (the string that connects vertéxo j), in
casej¢T;.

The new optimization problem is defined as follows: Find the optimal allocation and its alternate £pstdgiven

the following assumptions:

1) There is a copy located at vertgx; € V. If j € V; vertexi is served by unicast distribution frogn If j ¢ V;
and vertex is served by unicast distribution from outsidgit is served fromj. Whenj; ¢ V;, since vertey is
not part of7; ; (just the path to it), its storage cost is ignored. Note: the difference between the gaselgf
andj ¢ V;, is thati has the entire data (including storage cost) regarding copies allocation Tsiolat only
the unicast distribution cost from copies located outdideFor j ¢ V;, i may decide that storing a copy in an
internal vertex and be served from that copy is less expensive than being served frohis is only relevant
for unicast distribution traffic.

2) There is orisn't a copy located insidé. Relevant for update/distribution multicast traffic. Also - the values of
4 must comply with this assumption.

3) Thereisorisn't a copy located outsi@ie Relevant for update/distribution multicast traffic. Also - the values of
4 must comply with this assumption.

4) When there are copies outsiflg is there a need for incoming multicast distribution. l.e. are there consumers in-
sideT; that are connected to a multicast distribution tree through eddenly relevant for multicast distribution
traffic.

5) When there are copies insidg is there a need for outgoing multicast distribution. l.e. are there consumers out-
sideT; that are connected to a multicast distribution tree through eddgenly relevant for multicast distribution
traffic.

Based on the above assumptions we define seven (7) scenarios that are possible for each vérjexTase

scenarios cover all the possible external influences on the optimal allocation Within

B. The cost calculation phase
For each vertex paif, j the algorithm calculates faf; ;, (vertex;j is assumed to allocate a copy of the object), seven
alternate costs, for the following seven possible scenarios:
Czn; ;- Cost of eXternal only object allocation ano incoming multicast distribution traffic. There is no copy
located insidél; (i#r) and there is no internal multicast demand. Edgwill only carry outgoing update
traffic. Legal only whery ¢ V.
Czi; j - Cost of eXternal only object allocation arlethcoming multicast distribution traffic. There is no copy located
insideT; (i#r) and there is an internal multicast demand. Eelg®ill carry incoming multicast distribution
and outgoing update traffic. Legal only wheet V.

12

C'in; j - Cost of Internal only object allocation arido outgoing multicast distribution traffic. All the copies of the
object are located only insid& and there is no external multicast demand. Eegeill carry incoming
update traffic. Legal only whepe V.

Cio; ; - Cost of Internal only object allocation an@utgoing multicast distribution traffic. All the copies of the
object are located only insidg and there is an external multicast demand. Eelgeill carry incoming
update and outgoing multicast distribution traffic. Legal only whenV;.

Cbn; j - Cost of Both sides object allocation atdb multicast distribution traffic. Copies are located both inside and
outsideT; and there is no multicast demand through eelg&dgee; will carry both incoming and outgoing
update traffic.

Cbi; ; - Cost of Both sides object allocation arldcoming multicast distribution traffic. Copies are located both
inside and outsid&; and there is an internal multicast demand through eglgeédgee; will carry incoming
multicast distribution and both incoming and outgoing update traffic.

Cbo; ; - Cost of Both sides object allocation ar@utgoing multicast distribution traffic. Copies are located both
inside and outsidg; and there is an external multicast demand through egdg&dgee; will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The algorithm calculates the alternate costs as follows:

Coone if j€V;
b TduZ Dd; j + Tu" - Ucu; + suml,if j ¢ V;
Cois - ifjeV;
- Td Ucd; + Tdu; - Dd; j + Tud" - Ucu; + sum2,if j ¢ V;
. ‘ , if €V,
Tdu; - Dd; j + Tui" - Ucu; + min {sumd, sum5, sum6, sum8, minl}, ey
.) 1
Cinj Tui™ - Ucu; + Sc; + sums3, if j =i
00, if j ¢V,
in] € Vk7
Td-Ucd; + Tdu; - Dd; j + Tui" - Ucu; + min {sumb, sum8 mznl} ke Ch,
y .. ?
Ciogj — Td-Ucd; + Tui™ - Ucu; + Sc; + sums3, if j=1
00, ifj ¢V,
in out : . if] € Vk7
Tdu; - Dd; j + (Tui™ + Tui™) - Ucu; + min {sum6, sum8, minl}, ke Ch,
i
(Tuﬁ” + Tuf“t) -Ucu; + Sc; + sum3, if =1
Cbnij — i .
’ min { min C'bniyl(*),
v | Jf ¢V
Tdu; - Dd; j + (Tul™ + Tud™) - Ucu; + min {min2, mind} }
in out if] € Vka
Td-Ucd; + Tdu; - Dd; j + Tu;" - Ucu; + Tui™ - Ucu; + sumT,
’ ke Ch;
0, if j =1
Chbi; ;
AN min {mln C’bzzl()
e | G ¢V
Td-Ucd; + Tdu; - Dd; j + (Tul™ + Tud") - Ucu; + minS}
n out . . if] € Vka
Td-Ucd; + Tdu; - Dd; j + (Tui™ + Tu?™) - Ucu; + min {sum8, minl}, ke Ch,
(]
Td-Ucd; + (Tul™ + Tud™) - Ucu; + Sc; + sums3, if j=1
CbOij —
’ min {mm Cboll(*)
e | : ifj ¢ Vi
Td-Ucd; + Tdu; - Dd; j + (Tul™ + Tud™) - Ucu; + min4}

13

(*) The minimum value can be calculated once during the calculation of @a¢th;, j€V;, given that these values are calculated prior to
calculating anyC'b?; 5, j¢V;

Various costs for the
vertex pairs (i,)):

- anl,] _ = - CXII,J

~o
./‘

Fig. 5. An optimal allocation example, the actual scenarios and the distribution forest

where (various combinations of children scenarios):
suml = Z Cany,

keCh;
sum2 = Z min {Cany, ;, Cxiy ;}
keCh;
sum3 = Z min {Cany, ;, Cxiy ;, Cbny, ;, Cbiy, ; }
keCh;
sumd = Cinyg ; + Z Cxny
1€Chy 4k
sumb = Clioy ; + Z min {Cany ;, Cxiy ;}
1ECh; I£k
sumb = Cbny, j + Z min {Czny j, Cbny ;}
1€Chy 1k
sum7 = min {Cbny, ;, Cbiy ;} + Z min {Czny j, Cxi; ;, Cbny ;, Cbiy j}
1€Ch I #k
sum8 = Cboy, ; + Z min {Cany ;, Cxiy j, Cbny j, Cbig j}
1€Chy 1#k
minl = min{Cbny;j, Cbiy,;} + min {Cbom,j + l; min {Czny 5, Cwiy j, Cbny 5, Cbiy,j } }
m#k €Ch;,

I£k,I#m

min2 = min {Cbn;” + Z min {Cany ;, Cbny ;} }
keCh; 1€Chy 1k

mind = min {min {Cbny, ;,Chiy ;} + Z min {Czny ;, Cxij ;, Cbny j, Cbiy ;} }
keCh; 1€Chy 1k

14

mind = min {C’bok,j + Z min{C’mnlJ,Cxil7j,Cbnl7j,C'bil7j}}
keCh; 1€Chy 1k

note: suml, sum2, sum3, sum4, sumb, sum6, sum7 andsumg8 equal0, minl, min2, min3 andmin4 equaloo if
vertex: is a leaf Ch;=0). Also sum1, sum4, sum6 andmin2 equaloco in case vertex satisfiesI'dm; > 0

The cost of the optimal allocation inT" is minjcy Ciny. ;.
The proof of optimality of the algorithm and a detailed explanation about the combinations are given in appendix II.

C. Backtracking for content allocation

While calculating the alternate costs for each vertex fpdirthe algorithm remembers for each alternate cost (sce-
nario), if a copy needs to be stored at veriexd the relevant scenario of each cliilthat was used in the calculation
(unless the scenario iy, ; or xiy ;, Since it has no copy stored in its subtree). This is important for the backtracking
phase, and allows accurate placement of the copies while backtracking.

The backtrack phase is recursive, starts at the root and ends at the leayesaofstop earlier if no child has a copy
in V;.). For each vertex, the algorithm determines the actual scenario in the optimal allocation, if a copy should be
stored at (will happen if(i,) pair was selected for an actual scenario) and if it is necessary to keep advancing towards
the leaves of". The algorithm uses the backtrack information that was saved earlier..

Figure 5 demonstrates an optimal allocation, the various actual scenarios selected during the backtrack phase, and
the distribution forest for that allocation.

D. Computational complexity of HDT

In the cost calculation phase, each vertex in theidéthe algorithm calculates up @V alternate costs. Each cost
calculation require®(|Ch;|+1). Therefore the total complexity of cost calculation for vertex(7-N)-O(|Ch;|+1).
The total complexity of the cost calculation phase for the entire treg js; (7 - N) - O(|Ch;| + 1).
The complexity of the backtrack phase for vertex O(|Ch;| + 1).
|V|=N and the total number of children in the treeN's-1 (only the rootr is not a child).
Therefore:

Oupr = Y _(T-N+1)-O(|Chi| + 1) = O((7T- N + 1) - Y (|Chy| + 1)) =
i€V i€V
O(7-N+1)-(2-N—1)) = O(N?)

The computational complexity of HDT is O(N?).

IX. THE MX-HDT OPTIMAL ALGORITHM

A variant of the original model in which the consumers connected to a vertex are served (distribution traffic) either
by unicast or multicast but not both. The decision of which protocol to use is done by the network in order to reduce
the total cost.

A. Model changes

The mutual exclusive hybrid model assumes that only one of unicast/muticast distribution traffic is provided to each
vertex. The advantage of multicast over unicast is the aggregation of multiple streams into a single stream. On the other
hand, unicast is much easier to control (in terms of flow control). We can say that the effective bandwidth requirements
of a single unicast stream are smaller than a single multicast stream. Therefore, we modified the model as follows:

1) For each vertex, both T'du; andT'dm; are defined and satisfyf'dm;, is eitherT'd or 0. T'du; = ¢ - Tdm;.

0 < ¢ < 1. l.e. - unicast requires less bandwidth per stream.

2) A vertex can only be served either by unicast or by multicast. The selection is done automatically by the system

in order to optimize the overall cost.

15

B. Optimal solution properties

Although the optimal solution properties presented in section IV are still valid here, the property described in lemma
1 is redefined to fit the current model this way: In the optimal allocation, in case of unicast distribution, ifiisrtex
served from vertey, which satisfiesnin;co Dd; ;, andi is served through vertek (i.e. P, ;=F; ; UP} ;), then if
another vertex is served by unicast distribution through vertex must also be served frogn The modification here
implies thatk itself may not be served by unicast distribution.

We also add an important property, to the specific case of mutual exclusive distribution traffic:

Lemma 4:In the optimal allocation, if there is multicast distribution traffic through veitethen vertexi must
belong to a multicast distribution tree (this property is not correct for unicast distribution).

Proof: Suppose there is multicast distribution traffic through veiteandi is served by unicast distribution.

In this casei belongs to both kinds of distribution trees, and this is a contradiction of the mutual exclusive traffic
condition. Note: the opposite is not a contradiction, i.e. if there is unicast distribution traffic through i/éréex-
another verteX is served by unicast distribution throughthen vertex may be served either by multicast or unicast
distribution. |

As suggested in corollary 1, and based on the above properties, the optimal allocation is composed of a subgraph of
T which is a forest of distribution (multicast and/or unicast) subtrees. Each subtree is rooted at a vertex where a copy is
located and its leaves are vertices were no copy of the object stored. An éfigaimbe part of at most one multicast
distribution tree. If a vertex belongs to a multicast distribution tree, it may still path unicast distribution through its
edge.

C. The algorithm

As described in section V, the algorithm is performed in two phases, the cost calculation phase and the backtrack

phase.

For the new problem we define a new trég;, which is a subtree df’ constructed of; (the subtree of rooted at

i), and the additional set of edges(connects vertexto its parent) and’; ; (the string that connects vertéxo j), in
casej¢T;.

The new optimization problem is defined as follows: Find the optimal allocation and its alternate €pstgiven

the following assumptions:

1) In case of unicast distribution, when a copy is located at vertgxe V. If j € V; vertex: is served by unicast
distribution fromjy. If j ¢ V; and vertex is served by unicast distribution from outsidgit is served fromy.
Whenj ¢ V;, since vertexj is not part ofZ; ; (just the path to it), its storage cost is ignored. Note: whenV;,

1 knows only the unicast distribution cost from copies located outgjdémay decide that storing a copy in an
internal verteX and be served from that copy is less expensive than being served.from

2) There is or isn’t a copy located insidé. Relevant for update/distribution multicast traffic. Also - the values of
J must comply with this assumption.

3) Thereis orisn’'t a copy located outsidle Relevant for update/distribution multicast traffic. Also - the values of
J must comply with this assumption.

4) In case of multicast distribution traffic, when there are copies oufGidare there consumers insidgthat are
connected to a multicast distribution tree through egge

5) In case of multicast distribution traffic, when there are copies iriBjdare there consumers outsidigthat are
connected to a multicast distribution tree through egge

Based on the above assumptions we define seven (7) scenarios that are possible for each verjexTaEse

scenarios cover all the possible external influences on the optimal allocation Within

Figure 6. demonstrates the distribution forest with the different possible scenarios of the vertices and’Edges in

D. The cost calculation phase

For each vertex pair, j the algorithm calculates fdf; ;, (vertexj is assumed to allocate a copy of the object), seven
alternate costs, for the following seven possible scenarios:
Czn,; ;- Cost of eXternal only object allocation ando incoming multicast distribution traffic. There is no copy
located insid€el; (i#£r) and there is no internal multicast demand. Edgwill only carry outgoing update
traffic. Legal only whery ¢ V.

16

Various costs for the
\Cl Nys vertex pairs (i j):

AN

,. 7 Unlcast Dlstrlbutlon
Tree boundarles g

-~ \

10/ 11 C12 0l

R
\.// \\._.z-’ ., o

Fig. 6. An allocation, scenarios and distribution forest example

Ci; ; - Cost of Xternal only object allocation arlehcoming multicast distribution traffic. There is no copy located
insideT; (i#r) and there is an internal multicast demand. Eelgaill carry incoming multicast distribution
and outgoing update traffic. Legal only whert V;.

C'in; j - Cost of Internal only object allocation arido outgoing multicast distribution traffic. All the copies of the
object are located only insid& and there is no external multicast demand. Edgeill carry incoming
update traffic. Legal only whepe V;.

Cio; ; - Cost of Internal only object allocation an@utgoing multicast distribution traffic. All the copies of the
object are located only insidg and there is an external multicast demand. Eelgeill carry incoming
update and outgoing multicast distribution traffic. Legal only whenV;.

Cbn; j - Cost of Both sides object allocation amdb multicast distribution traffic. Copies are located both inside and
outsideT; and there is no multicast demand through eedg&dgee; will carry both incoming and outgoing
update traffic.

Cbi; ; - Cost of Both sides object allocation arldcoming multicast distribution traffic. Copies are located both
inside and outsid&; and there is an internal multicast demand through eglgeédgee; will carry incoming
multicast distribution and both incoming and outgoing update traffic.

Cbo; ; - Cost of Both sides object allocation ar@utgoing multicast distribution traffic. Copies are located both
inside and outsidg; and there is an external multicast demand through egdg&dgee; will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The result of the property described in lemma 4, is that for each scenario which contains multicast distribution
through edge (scenariosri; ;, i0; j, bi; ; andbo; ;), vertex: must be part of a multicast distribution tree and can’t
be served by unicast distribution. On the other hand, for each scenario which does not contain multicast distribution
through edgel, vertexi may still belong to a multicast distribution tree (as a leaf) or may be served by unicast
distribution.

The algorithm calculates the costs as follows:

Coms if jeV;
J TduZ Dd; j + Tud™ - Ucu; + suml,if j ¢ V;

Ciis if jeV;
I Td Ucd; + Tul™ - Ucu; + sum?2,if j ¢ V;

Cini,j —

CZ'OZ‘J' —

C’bnm —

Cbiid‘ —

CbOiJ' —

17

Tul™ - Ucu; + min {sum4, sum5, sum6, sum8, minl}, it ‘]7{:66‘27%
Tuﬁ” -Ucu; + S¢; + sum3, if j =i
%, it ¢ V;
in . . if j € Vi,
Td-Ucd; + Tu" - Ucu; + min {sumb, sum8, minl}, e Che
(2
Td~Ucdi+Tu§”-Ucui+Sci+sum3, if j=1
%, it ¢ V;
(Tul™ + Tud™) - Ucu; + min {sum6, sum8, min1} itj €V,
' ' ' ’ ’ © keCh
(Tul™ + Tud™) - Ucu; + Sc; + sums3, if j =1

min § min Cbnu(*),
v } if j ¢ Vi

(Tul™ + Tud™) - Ucu; + min {min2, mind}

| if j € Vi,
Td-Ucd; +Tui" - Ucu; + Tuf“t -Ucu; + sumT, k€ Ch;
- if j—
min {min Cbii,l(*),
eV; ' Jf 5 ¢V,
Td-Uecd; + Tu" - Ucu; + Tud™ - Ucu; + min3}
in out 3 ; if] € Vk’
Td-Ued; + (Tuf" + Tuf") - Ueu; +min {sum8, min1}, ", _ A
T
Td-Ued; + (Tu" + Tuf") - Ucu; + Se; + sums3, if j =
min {min Cho; ™,
leV; ’

. , ¢V
Td-Ucd; + Tul™ - Ucu; + Tud" - Ucu; + min4}

(*) The minimum value should be calculated efficientlg®?; ;, jeV; are calculated prior to calculating af¥?; ;, j¢V;

where (various combinations of children scenarios):

suml = Z Cany, ;

keCh;

sum2 = Z min {Cany, ;, Cxiy ;}

keCh;

sum3 = Z min {Cany, ;, Cxiy 5, Cbny, ;, Cbiy, ; }

keCh;

sum4 =Tdu; - Dd; j + Cinyg ; + Z Cany j

1€Ch; Ik

sumd = Cioy, j + Z min {Czny,j, Cwiy,;}
leChy,l#k

sumb = T'du; - Dd; j + Cbny, j + Z min {Cxny ;, Cbny ;}

1€Chy 12k

sum7 =min {Cbny, j, Cbiy ;} + Z min {Czny ;, Cziy ;, Cbny j, Cbig ;}

1€Ch; 14k

sum8 = Cboy, ; + Z min {Cany ;, Cxiy j, Cbny j, Cbig j}
1€Chy 1k

18

minl =min {Cbny, ;, Cbiy ;} + mecmin L {C’bom,j + Z min {Cany ;, Cxiy j, Cbny j, Cbig ;i } }

gl 1€Ch;;,
1#k,1#m
min2 =Tdu; - Dd; ; + krélé%l {Cbn;w' + Z min {Cxny ;, Cbny ;} }
1€Ch I#k
mind = min { min {Cbny, j, Cbiy, ;} + Z min {Cxny ;, Cxiy ;, Cbny j, Cbig j} }
kechl I iz I b i i
1€Chy 14k
mind = klélCI’I}ILL {Cbolw' + Z min {Cxzny ;, Cxiy 5, Cbny j, Cbig 5} }

leChy,l#k

note: suml, sum2, sum3, sumd, sumb, sum6, sum7 andsum8 equal0, minl, min2, min3 andmin4 equaloo if
vertexi is a leaf C'h;=0).

The cost of the optimal allocation inT" is minjcy Ciny. ;.

The proof of optimality of the algorithm and a detailed explanation about the combinations are given in appendix
[l

E. Backtracking for content allocation

The backtracking phase of MX-HDT is similar to that of HDT (described in subsection VIII-C).

Figure 6 demonstrates an optimal allocation, the various actual scenarios selected during the backtrack phase, and
the distribution forest for that allocation.

The pseudo code and backtrack details of the algorithm are given in appendix III.

F. Computational complexity of MX-HDT

The computational complexity of MX-HDT is O(N?)
The calculation of the complexity of MX-HDT is the same as of HDT (described in subsection VIII-D).

X. CONCLUSIONS

In this work, we addressed a content location problem in overlay networks with update from multiple media sources
and content distribution to users that employ multicast transport.

We developed optimal content allocation algorithms for tree networks with computational compleityvoffor
multicast only distribution traffic and®(N?) for hybrid multicast and unicast distribution traffic. The algorithms are
recursive and are based on dynamic programming. These algorithms can easily be converted to distributed algorithms
due to the independent calculations at each vertex (which are only based on information from its neighbors) and due
to the hierarchical data flow

In addition to the optimal algorithms on tree networks, we presented an approximation algorithm for the multicast
only distribution traffic problem on general graph. The approximation algorithm is based on the optimal algorithm for
tree networks, while the extraction of trees from the general graph is done using Steiner tree approximation. We ran
our algorithm on a synthetic Internet based network and compared it to various random placements. The placements
generated by our approximation algorithm achieved significantly better overall costs (a ratio of 60% compared to the
random placements costs).

APPENDIX |
THE XMDT OPTIMAL ALGORITHM

In this appendix we present, without a proof of optimality, the XMDT algorithm used in the MDG algorithm flow
and its pseudo code.

In the algorithm description (subsection I-A) we provide only the cost calculation formulas, while in the pseudo
code (subsection I-B) we provide both the cost calculation and backtrack phases.

19

A. The cost calculation phase

For each vertex the algorithm calculates fdF; seven alternate costs, for the following possible scenarios:

Cxn;

Cﬂ?ii

Cz’ni

CiOi

Chbi;

C bOi

- Cost of eXternal only object allocation ando incoming multicast distribution traffic. There is no copy
located insidél; (i#£r) and there is no internal multicast demand. Edgwill only carry outgoing update
traffic.

- Cost of eXternal only object allocation ancicoming multicast distribution traffic. There is no copy located
insideT; (i#r) and there is an internal multicast demand. Eelgaill carry incoming multicast distribution
and outgoing update traffic.

- Cost ofInternal only object allocation arido outgoing multicast distribution traffic. All the copies of the
object are located only insid& and there is no external multicast demand. Eedgeill carry incoming
update traffic.

- Cost of Internal only object allocation an@utgoing multicast distribution traffic. All the copies of the
object are located only insid&; and there is an external multicast demand. Eelgeill carry incoming
update and outgoing multicast distribution traffic.

- Cost ofBoth sides object allocation amdb multicast distribution traffic. Copies are located both inside and
outsideT; and there is no multicast demand through eedg&dgee; will carry both incoming and outgoing
update traffic.

- Cost of Both sides object allocation andcoming multicast distribution traffic. Copies are located both
inside and outsid&; and there is an internal multicast demand through eglgeédgee; will carry incoming
multicast distribution and both incoming and outgoing update traffic.

- Cost of Both sides object allocation ar@utgoing multicast distribution traffic. Copies are located both
inside and outsidg; and there is an external multicast demand through egg&dgee; will carry both
incoming and outgoing update and outgoing multicast distribution traffic.

The algorithm calculates the alternate costs as follows:

Cns {Td Ucd; + Tud" - Ucu; + suml, if i # r
(2

ifi=r

d-Ucd; + Tud™ - Ucu; + sum2, if i #r

Ciy — if i =7

Tul™ - Ucu; + min{minl, min2, min3, mind, min5} , if i # r

Cing — mln{mml min2, min3, min4 mm5} ifi=r

ifi=r

Tul™ - Ucu; + Tud™ - Ucu; + min{minl, min2, min3} , if i #r
ifi=r

Cbn;

Td-Ucd; + Tu™ - Ucu; + Tud™ - Ucu; + sum3, if i #r & Ch; # 0

Ifi:’I“HChZ':@

Ciio: { Td - Ucd; + Tui™ - Ucu; + min{minl, min3, min5} , if i #r
Cbi; «— {

. . ZTL Out
Chos { Td-Ucd; + (Tu2 + Tu;) Ucu; + min{minl, min3}, II z #r
00, ifi=r

where (various combinations of children scenarios):

suml = Z Czxn,
ceCh;

sum2 = Z min {Cxn., Cxi.}
ceCh;

sum3 = Z min {Czn., Czi., Cbn., Cbi.}
cEChi

20

minl = Sc¢; + sum3

min2 = Clelrlél;LlZ {C’bnc + Z min {Cxng, C’bnk}}
keCh; ke

mind = 6161%1;11Z {C’boC + Z min {Cxng, Cxig, Chng, C’bzk}}
keChy ke

mind = CIEHCI'IhlZ {Cmc + Z C:vnk}

kEChy ke

minb = Jin {Czoc + Z min {Czng, C'mk}}
keChi,k#c

note: suml, sum2 and sum3 equal0, min2, min3, min4 andmin5 equalco if vertex : is a leaf Ch;=0). Also
suml, min2 andmin4 equaloc in case vertex satisfiesI'dm; > 0

The cost of the optimal allocation inT" is C'in,..

B. Partial Pseudo code of XMDT

We assume that the vertices are ordered by breadth first ordering. Vestéxe root anch must be a leaf.
We also assume the is the maximal number that exists in the computer.
Variables starting wittBT" are used for the backtrack process, and store a vertex number or the cost/vertex data.
The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.
Cost calculation phase
fori=nn—1,n-2,...,2,1do
if Ch; = 0 then /* a leaf */
if T'dm; = 0 then /* No multicast demand */
Cxn; +— o0
else
Can; «— Tud" - Ucu;
end if
Cuxi; « Td - Uced; + Tud™ - Ucu;
Cin; «— Tuﬁ" -Ucu; + Se¢; ; BT-Cin; < (i,”local”)
Cio; « Td-Ucd; + Tul™ - Ucu; + Sc; ; BT-Cio; « (i,”local”)
Chn; — (Tui" + Tuf“t> -Ucu; + Sc¢; ; BT-Cbn; « (i,”local”)
Cbi; < oo ; BT-Cbi; « ()
Cbo; — Td-Ucd; + (Tui" + Tuf“t) -Ucu; + Se¢; ; BT-Cbo; « (i,”local”)
else
/* calculate sum1, sum2, sum3 (and sum4) */
suml «— 0; sum2 «— 0
sum3 «— 0; BT-sum3 «— 0
sumd «— 0 ; BT-sum4 «— ()
foreache in Ch; do
suml «— suml + Czn,
* updatemin {Czn., Cxi.} */
Cminz,. «— Cxn,

* updatemin {Czn., Cbn.} */
Cminn, < Cxn. ; Cminne type < "none”
[* updatemin {Czn., Czi., Cbn., Cbi.} */
Cmine « Cane ; Cming ype < "none”
if (Cxi. < Cmin,) then
Cminzx, — Cuxi,
Cmine < Cwi. ; Cmineype «+— "none”
end if
if (Cbn. < Cmin.) then
Cminne < Cbn, ; Cminng gype < "bn”
Cmine < Cbne ; Cmine gype < 7bn”
else if Cbn. < Cminn,) then
Cminn. < Cbn. ; Cminne gype < "bn”
end if
if (Cbi. < Cmin.) then
Cmine < Cbic ; Cmine gype < " bi”
end if
sum?2 «— sum?2 + Cminx,
sum3 «— suml + Cmin ; BT-sum3 < BT-sum3 U (¢, Cminc type)
sum4 «— sumd + Cminn, ; BT-sum4 «— BT-sum4 U (¢, Cminne,ype)
end do
[* calculate minl, min2, min3, min4, min5 */
minl < Se¢; + sum3 ; BT-minl < BT-sum3 U (i, ”local”)
min2 «— oo ; BT-min2 «— ()
min3 «— oo ; BT-min3 «— 0
mind «— oo ; BT-mind — ()
minbd «— oo ; BT-minb «— ()
foreachc in Ch; do
tmp — Cbn, + sumd — Cminn,
if (tmp < min2 & T'dm; > 0) then
min2 « tmp ; BT-min2 «— (¢,”bn”) U (BT—sum4\ (c, Cminnc,type))
end if
tmp «— Cbo. + sum3 — Cmin,
if (tmp < min3) then
min3 «— tmp ; BT-min3 «— (¢,”bo”) U (BT-Sum3\ (c, Cmincytype))
end if
tmp «— Cing + suml — Cxn,
if (tmp < mind & Tdm; > 0) then
mind «— tmp ; BT-min4 — (c,
end if
tmp «— Cio. + sum2 — Cminx,
if (tmp < minb) then
minb « tmp ; BT-minb — (c,
end if
end do
[* calculate the optimal costs */
if 4 # 1 then /* not root */
if T'dm; = 0 then /* No multicast demand */
Cxn; «— 00
else
Cxn; «+ Td-Ucd; + Tuf“t -Ucu; + suml

” g

Zn”)

”

2‘077)

22

end if
Cxi; « Td - Ued; + Tul™ - Ucu; + sum?2

Cbi; — Td-Ucd; + (Tuin + Tuf“t> - Ucu; + sum3 ; BT-Cbi; +— BT-sum3
end if
[* calculate optimalC'in; cost and BT data */
ind = argmin{minl, min2, min3, mind, min5}
Cin; «— Tuﬁ” -Ucu; + ming,g ; BT-Cing; <— BT-min;,q
end if
end do

The optimal cost i€'in;.

Backtrack phase
The backtrack phase for allocation of copies is recursive and can easily be described using a recursive function.
The recursion starts by callirdlocate(1, ”in”).
procallocate (i, type) {
if type = "i0” then
foreach(c, ctype) in BT-C'io; do
call allocate(c, ctype)
end do
else iftype = ”in” then
foreach(c, ctype) in BT-C'in; do
call allocate(c, ctype)
end do
else iftype = "bn” then
foreach(c, ctype) in BT-Cbn; do
call allocate(c, ctype)
end do
else iftype = "bo” then
foreach(c, ctype) in BT-Cbo; do
call allocate(c, ctype)
end do
else iftype = ”bi” then
foreach(c, ctype) in BT-Cbi; do
call allocate(c, ctype)
end do
else iftype = "local” then
allocate a copy at
end if
return

APPENDIXII
MORE ONHDT - PROOF AND PSEUDO-CODE

This appendix contains additional details on the HDT algorithm that were not included in section VIII.

A. Proof of HDT Optimality

The proof is based on induction. Lemma 5 is the induction base.
Lemma 5:For all scenarios, and for all verticgs V" the algorithm optimally allocates the objectin;, wheni is
a leaf of

23

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at verhere is a copy located @i therefore
Czn;; andCzi; ; can't exist (set tao). Cbi;; is also impossible, since there is no need for incoming multicast
distribution traffic when stores a copy. The valid possible scenariosiafe, io; ;, bn; ; andbo; ; which differ
in the assumptions thatis or isn’'t the only vertex which stores a copy and there is or isn’'t outgoing multicast
distribution traffic fromT;. Sincei stores a copy, there must be incoming update traffic through €dgehe
optimal cost is constructed from the storage cost, the incoming update traffic thegugihd the additional
outgoing update and/or distribution traffic througlwvhen appropriate({io; ;, Cbn; ;, Cbo; ;).

2) j#i (j¢V;). A string P;; is connected td;. According to the definition of the problem, there’s a copy of the
object located at vertexand if i is served from outsid@é;, i is served (unicast distribution) from that vertgx
There is a copy located outsidg thereforeC'in; ; andC'io; ; can’t exist (set taxo). The scenariosn; ; and
xi;,; assume that it costs more to store an object (@and to keep it updated) than to be served franiThe
scenariarn; ; is valid only if T'dm; = 0 (elseCxn; ; = oo sincesuml = oo whenT'dm; > 0). The optimal
cost is the outgoing update traffic throughand the incoming unicast (frognto ¢) and/or multicast distribution
traffic throughe;. The scenarioén; ;, bi; ; andbo; ; assume that it is cheaper to store a copyaithough;j has
a copy. Since stores a copy, the costs calculatedoy ;, bi; ; andbo; ; must be used accordingly (achieved by
settingmin2, min3 andmin4 to co for a leaf vertex).

|

Lemma 6 constructs the induction step for the recursive proof of optimality.

Lemma 6:Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertex
which is a child ofi (T,, ceCh;) for all scenarios and for all verticeg V', then the algorithm optimally allocates the
object inT; for all the scenarios and for all verticgsV'.

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at verfehere is a copy located @} therefore
Czn;; andCzi; ; can't exist (set tao). Cbi;; is also impossible, since there is no need for incoming multicast
distribution traffic when stores a copy. The valid possible scenariosiafe, io; ;, bn; ; andbo; ; which differ
in the assumptions thatis or isn’t the only vertex which stores a copy and there is or isn’t outgoing multicast
distribution traffic fromT;. The vertices in each subtr@g, kcCh; may be served by unicast and/or multicast
either from vertexi or from copies located internally in the subtree. (The minimum of the following legal
scenarios for eackeCh;: Cxny j, Cxiy j, Cbny, ;, Cbiy ; = sum3). Sincei stores a copy, there must be
incoming update traffic through edge The optimal cost is constructed from the storage costtae optimal
costs calculated by the childremufn3), the incoming update traffic through, and the additional outgoing
update and/or distribution traffic throughwhen appropriate({io; ;, Cbn; ;, Cbo; ;).

2) jeVi, keCh; (no string is connected), the algorithm allocates a copy of the object at veriéghere is a copy
located afl; thereforeC'zn; ; andCxi; ; can’t exist (set tao), and there must be incoming update traffic through
edgee;.

For each of the scenarios where no copy of the object is allocated olisféle; ; andio; ;) or copies are also
located outsidé; (bn; ;, bi; ; andbo; ;), one the following children combinations hold:

a) There are copies allocated only inside(at least at vertex), and there is no outgoing multicast distribution
traffic from T}, (scenariciny ;). In this case the rest of the childréaCh;, [#k must fulfil scenariarn;
(sumd).

This combination is valid only wheidm; = 0 (elsesum4 is set toco) and only for scenarion; ;, since
there can be no outgoing multicast distribution traffic frém

b) There are copies allocated only insifig(at least at vertex), and there is outgoing multicast distribution
traffic from T}, (scenaridioy, ;). In this case the rest of the childréaC'h;, [k must not allocate a copy in
T; (scenariosen, j Or xi; ;) (sumb).

This combination is valid only for scenarios; ; andio; ;.

c) There are copies allocated both insifie(at least at verte¥) and outsideT}, but there is no multicast

distribution through edge;, (scenaridn,, ;). In this case the rest of the childréaC'h;, [#k may allocate

3)

24

a copy inT; but must not be served by incoming multicast distribution thraugiirough edge;) (scenarios
xny ; or bng ;) (suméb).

This combination is valid only whei'dm; = 0 (elsesum6 is set tooo) and only for scenariog; ; and
bn; ;, since there can be no outgoing multicast distribution traffic filgm

d) This combination is only valid for scenarte; ;. In this scenario there is incoming multicast distribution
through edges;.

There are copies allocated both insifig (at least at vertey) and outsidel,, ande,. Vertexi is part

of a multicast distribution tree, through edge(one of scenarioén,, ;, biy ;). In this case the rest of the
childrenleCh;, I#k may allocate a copy iff;, and may be served by incoming multicast distribution
traffic throughi (ande;) (sum?).

e) There are copies allocated both insigdat least at vertex) and outsidd},, and there is outgoing multicast
distribution through edge;, (scenaridoy, ;). In this case the rest of the childréaCh;, [k may allocate
a copy inT;, and may be served by incoming multicast distribution traffic through vérfard edges;,)
(sumg).

This combination is not valid for scenarig; ;, due to lemma 2.

f) There are copies allocated both insifig (at least at vertey) and outsidel}, (scenariodny, ; or biy ;),
but there is outgoing multicast distribution through some edglk=C'h;, £k (scenaricho ;). In this case
the rest of the childremeCh;, m#k, m#l may allocate a copy iff;,,, and may be served by incoming
multicast distribution traffic through(and edges;) (minl).

This combination is not valid for scenarbe; ;, due to lemma 2.

For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is

constructed from that combination cost (min betweem4, sumb, sum6, sum7, sum8 or minl), the unicast
distribution cost frony to ¢, the cost of update traffic through(incoming only forC'in; ;, Cio; ;, both incoming
and outgoing forC'bn; ;, Cbi; ;, Cbo; ;) and the cost of multicast distribution traffic through(outgoing for
Clio; j, Cbo; j, incoming forCbi; ;).

Jjé¢Vi. A string P;; is connected td;. According to the definition of the problem, there’s a copy of the object
located at vertey and ifi is served from outsid&;, 7 is served (unicast distribution) from that vertex. There is
a copy located outsidé; thereforeC'in; ; andC'io; ; can’t exist (set tax), and there must be outgoing update
traffic through edge;.

For the scenarian; ;, which means that no copy is locatedfinand there is no incoming multicast distribution
traffic to7;, only one children combination is possible - all the childkesC'h; must fulfil scenariany, ; (sum1).
This scenario is valid only whefidm,; = 0 (elsesuml1 is set tooo).

For the scenaria:i; ;, which means that no copy is locatedh but there is incoming multicast distribution
traffic to 73, all the childrenkeCh; must fulfil scenariacny, ; or xiy, ; (sum2).

For each of the scenarios where copies are also located ifis{de; ;, bi; ; andbo; ;), the unicast distribution
source of vertex, may be an internal vertex (i.ei may not be served fronji by unicast distribution). In
such a case, the unicast distribution souréeV; and the corresponding coSt?; ; will be used (expression
mingey; Cb?;;). In casei is served fromj by unicast distribution, it must not store an object and one the
following children combinations hold:

a) This combination is only valid for scena#ig; ;. In this scenario there is no multicast distribution through
edgee;. There is at least one vertéx kcCh; which has at least one copy allocatedlin and does not
produce outgoing multicast distribution traffic (scenariq ;). In this case the rest of the childréaCh;,
I#£k may allocate a copy iff;, but must not be served by incoming multicast distribution throiu¢dnd
edgee;) (scenariosen; ; or bny ;) (min2).

This combination is valid only whelidm,; = 0 (elsemin2 is set tooo)

b) This combination is only valid for scenarbe; ;. In this scenario there is incoming multicast distribution
through edge;. There is at least one vertéxkcCh; which has at least one copy allocatedjn and may
or may not be served by incoming multicast distribution througscenariosn,, ; or biy ;). In this case
the rest of the childreheCh;, £k may allocate a copy iff;, and may be served by incoming multicast
distribution traffic through (ande;) (min3).

c) There is outgoing multicast distribution through some vektexc Ch; (scenaridoy, ;). In this case the rest

25

of the childreieCh;, Ik may allocate a copy ifi;, and may be served by incoming multicast distribution
traffic through vertex (andk) (min4).
This combination is not valid for scenarbe; ;, due to lemma 2.
For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is
constructed from that combination cost (min betweem1, sum?2, min2, min3 or min4), the unicast distribu-
tion cost fromj to 4, the cost of update traffic through (outgoing only forCzn; ;, Cxi; ;, both incoming and
outgoing forCbn; ;, C'bi; ;, Cbo; ;) and the cost of multicast distribution traffic through(outgoing forCbo; ;,
incoming forCxzi; ;, Cbi; ;).
|
Theorem 1:When the algorithm endsyin;cy Cin, ; holds the optimal allocation cost and the allocation of copies
is optimal.

Proof: The proof is conducted by the induction where lemma 5 is the base and lemma 6 is the step. For each
jeV, Cin, ; represents an optimal allocation of the objects wherg served fromj. The minimalCin, ; is the
optimal cost of the original optimization problem. In addition, the c@sis., ;, Cxi, j, Cbn, j, Cbi, ; and Cbo,. ;
are illegal since there can't be copies allocated out$ijde= 7" andC'io,. ; is illegal there can't be distribution traffic
throughr outside ofT". []

B. Partial Pseudo code of HDT

We assume that the vertices are ordered by breadth first ordering. Vastéxe root anch must be a leaf.
We also assume the is the maximal number that exists in the computer.
Variables starting wittBT" are used for the backtrack process, and store a vertex number or the cost/vertex data.
The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.
Cost calculation phase
fori=n,n—-1,n—2,...,2,1do
[* calculate costs fof, i */
sum3 «— 0 ; BT-sum3 «— ()
foreachk in Ch; do
if Caxny; <= Cwip; & Cang; <= Cbny; & Cany; <= Cbiy,; then
sum3 « sum3 + Cany;
else ifCxiy; <= Cbny; & Cwiy; <= Cbiy,; then
sum3 < sum3 + Cxiy ;
else ifCbny,; <= Cbiy; then
sum3 «— sum3 + Cbny,; ; BT-sum3 «— BT-sum3 U (k,4,”bn”)
else
sum3 «— sum3 + Cbiy; ; BT-sum3 < BT-sum3 U (k,1,”bi”)
end if
end do
Cxn;; < 00 ; Cwi;; «— 00 ; Cbiyj +— 00
Cing; — Tuﬁ" -Ucu; + Sc; + sum3 ; BT-Cin; ; < BT-sum3 U (i, 1, " local”)
CZ'OM —Td- UCdZ + Cznm , BT-C’L'OZ'J‘ — BT-CZHM
Cbnm‘ — C’LTLM + Tul‘-’“t -Ucu; ; BT-Cbnm' — BT-C’L'TLZ'J'
Cbo;; «+ Cio;; + Tud"t - Ucu; ; BT-Cbo;; «+ BT-Cio; ;
[* updatemin,ey, Cb?;; */
Jminn < U Jming < 1) Jmino < 1
/* calculate costs fotf, j wherej € V., k € Ch; */
foreachk in Ch; do
foreachj in Vj, do

sumd «— Cinyj ; BT-sumd — (k,j,”in”)
sumb « Cioy, j ; BT-sumb « (k, j,”i0”)
sumb «— Cbny, ; ; BT-sum6 «— (k,j,”bn”)
if Cony ; <= Cbiy ; then
sum7 «— Cbny, ; ; BT-sumT < (k,j,”bn”)
else
sum7 «— Cbiy j ; BT-sum7 — (k, j,”bi”)
end if
sum8 « Cboy, ; ; BT-sum8 «— (k,j,”bo”)
foreachl in Ch; \ k do
sumd « sum4 + Cany
if Cany; <= Cwiyj;then
sumd « sumb + Cxny
else
sumd «+ sumb + Cwiy ;
end if
if Cxny; <= Cbny ; then
sumb < sumb + Cxny
else
sumb «— sumb + Cbny ; ; BT-sumb «— BT-sum6 U (I, j,”bn”)
end if
Cming «— Canyj; ; Cming gype < "none”
if Czi; < C'ming then
Cming «— Cxiyj ; Cming ype < "none”
end if
if Cbny; < Cmin, then
Cming < Cbnyj ; Cming ype < "bn”
end if
if Cbi;; < Cming then
Cming < Cbiyj ; Cming gype < " bi”
end if
sumT «— sum7 + Cming ; BT-sumT7 < BT-sumT U (I, j, Cming type)
sum8 «— sum8 + C'miny ; BT-sum8 «— BT-sum8 U (I, j, Cing type)
end do
[* calculate minl (derived from sum7) */
minl «— oo ; BT-minl « ()
foreachl in Ch; \ k do
tmp « Cboy ; + sum7 — C'min,
if (tmp < minl) then
minl «— tmp ; BT-minl «— (I, 7,”bo”) U (BT-sum7\ (1,7, Cminl,type))
end if
end do
if Tdm; > 0then /* There is multicast demand */
sumd «— oo ; BT-sum4 «— 0 ; sumb < oo ; BT-sumb « ()
end if
Cxn;j « 00 ; Cwi;j « 00
[* calculate optimalC'in; ; cost and BT data */
MiNyq = min{sumd, sumb, sum6, sum8, minl}
MiNgype = argmin{ sum4, sumb, sumb, sum8, minl}
Cing j < Tdu; - Dd; ; + Tuﬁ" ~Ucu; + mingg ; BT-Cin; j <+ BT-mingpe

26

Cbi;j «+ Td-Ucd; + Tdu; - Dd; j + (Tuﬁ" + Tu;-’“t> -Ucu; + sum7; BT-Cbi; j < BT-sum7
* updateminyey, Cb?;; */

if C’bni,j < Cbni,jminn then

end if

if Cbi@j < CbZZ

—J

jmin thEN
jmini
end if
if CbOi,j < CbO@jmmo then
Jmino < J
end if
end do
end do
[* calculate costs fot, j wherej ¢ V; */
foreachj in V'\ V; do
suml <« 0; sum2 «— 0
/* min2, min3, min4 are derived from sum6, sum8, sum8 */
sumb «— 0 ; BT-sumb «— 0 ; sum8 «— 0 ; BT-sum8 «—
foreachk in Ch; do
suml « suml + Cxny
if Cl'nk,j <= CSE’L'ij then
sum2 « sum?2 + Cany, ;
else
sum2 < sum?2 + C'wiy, ;
end if
Cminng < Cany, ; ; Cming gype < "none”
if Cbny, ; < C'minny, then
Cminny, < Cbig j ; Cminng gype <+ 7bn”
end if
sumb «— sumb + Cminny, ; BT-sumb «— BT-sum6 U (k, j, Cminny ype)
Cminby, « Cbny; ; Cminby, gype < 7bn”
if Cbikd‘ < C'minb;, then
Cminby < Cbiy j ; Cminby, gype < " bi”
end if
Cminy < Cxnyj ; Cming gype < "none”
if Cxiy; < Cming then
Cminy, « Cziy ; ; Cmving gype < "none”
end if
if Cbny, ; < C'miny then
Cminyg < Cbny,j ; Cming gype < "bn”
end if
if Cbiy; < Cminy, then
Cminy, <« Cbig j ; Cming type < " bi”
end if
sum8 «— sum8 + Cminy, ; BT-sum8 «— BT-sum8 U (k, j, Cming type)
end do
/* calculate min2, min3, min4 (derived from sum6,sum8) */
min2 «— 0o ; BT-min2 «— 0 : min3 «— oo ; BT-min3 «— 0 ; mind «— oo ; BT-mind «— ()
foreachk in Ch; do
tmp «— Cbny, ; + sumb — Cminny,
if (tmp < min2) then

28

min2 « tmp ; BT-min2 — (k,j,”bn”) U (BT—sumG \ (K, J, sz’nnmype))
end if
tmp — Cminb, + sum8 — C'miny
if (tmp < min3) then
min3 « tmp ; BT-min3 — (k, j, Cminby type) U (BT-su'm8\ (k, 7, Cmink,type))
end if
tmp « Cboy, ; + sum8 — Cminy,
if (tmp < mind) then
mind — tmp ; BT-mind — (k,7,”7bo”) U (BT-sumS \ (k, J, Cmink7type))
end if
end do
if T'dm; > 0then /* There is multicast demand */
suml < 0o ; min2 «— oo ; BT-min2 «— ()
end if
Can;j < Tdu; - Dd; j + Tud" - Ucu; + suml

Cbo; j «— Td-Ucd; + T'du; - Dd; ; + (Tui" + Tuf“t) -Ucu; + mind ; BT-Cbo; j «+— BT-min4

if Cboiyjmino < CbO@j then
CbOiJ‘ — Cboi7jmi7zo ; BT-CbOiJ‘ — BT'CbOi,jmmo
end if
end do
end do

/* find the optimal cost */

Jmin < 1

forj=n,n—1,n—2,...,2do
if Cinl,j < Cinlyjmm then
end if

end do

The optimal cost i€)iny ;...

Backtrack phase
The backtrack phase for allocation of copies is recursive and can easily be described using a recursive function.
The recursion starts by callirjlocate(1, jin, "in”).
procallocate (i, j, type) {
if type = "i0” then
foreach(k, [, ktype) in BT-C'io; ; do
call allocate(k, I, ktype)
end do
else iftype = ”in” then
foreach(k, , ktype) in BT-C'in; ; do
call allocate(k, [, ktype)
end do
else iftype = "bn” then
foreach(k, [, ktype) in BT-Cbn, ; do
call allocate(k, [, ktype)
end do
else iftype = "bo” then
foreach(k, [, ktype) in BT-Cbo; j do
call allocate(k, [, ktype)

29

end do
else iftype = ”bi” then
foreach(k, [, ktype) in BT-Cbi; ; do
call allocate(k, [, ktype)
end do
else iftype = "local” then
allocate a copy at
end if
return

APPENDIXIII
MORE ONMX-HDT - PROOF AND PSEUDO-CODE

This appendix contains additional details on the HDT algorithm that were not included in section IX.

A. Proof of MX-HDT Optimality

The proof of the MX-HDT optimality is very similar to the proof of the HDT optimality. The difference in the proof
is the justification of selecting either unicast or multicast distribution for each vertex (but not both), which was not
relevant for the HDT algorithm.

The proof is based on induction. Lemma 7 is the induction base.

Lemma 7:For all scenarios, and for all verticgs V' the algorithm optimally allocates the objectdi;, wheni is
a leaf of T’

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at verlhere is a copy located @} therefore
Czn;; andCuxi; ; can't exist (set tao). Cbi; ; is also impossible, since there is no need for incoming multicast
distribution traffic when stores a copy. The valid possible scenariosiafe, io; ;, bn; ; andbo; ; which differ
in the assumptions thatis or isn’'t the only vertex which stores a copy and there is or isn’'t outgoing multicast
distribution traffic fromT;. Sincei stores a copy, there must be incoming update traffic through €dgehe
optimal cost is constructed from the storage cost, the incoming update traffic thegugihd the additional
outgoing update and/or multicast distribution traffic througwhen appropriate({io; ;, Cbn; ;, Cbo; ;).

2) j#i (j¢Vi). A string P;; is connected td;. According to the definition of the problem, there’s a copy of
the object located at vertekandi is served (unicast distribution) from that vertex {ifs served by unicast
distribution from outsidel;). There is a copy located outsidé thereforeC'in; ; andClio; ; can’t exist (set to
00). The scenariosn; ; andxi; ; assume that it costs more to store an objeét(end to keep it updated) than
to be served frony. The scenarian; ; implies thati is served by unicast distribution. The optimal cost is the
outgoing update traffic throughy and the incoming unicast (fromto ¢) and/or multicast distribution traffic
throughe;. The scenariosn; ;, bi; ; andbo; ; assume that it is cheaper to store a copyatthough; has a copy.
Sinces stores a copy, the costs calculated#oy ;, bi; ; andbo; ; must be used accordingly (achieved by setting
min2, min3 andmin4 to oo for a leaf vertex).

|

Lemma 8 constructs the induction step for the recursive proof of optimality.

Lemma 8:Assume that the algorithm optimally allocates the object to servers in every subtree rooted at vertex
which is a child ofi (T,, ceCh;) for all scenarios and for all verticeg V', then the algorithm optimally allocates the
object inT; for all the scenarios and for all verticgs V.

Proof: According to the definition of the new optimization problem, either one of the following possibilities
holds.

1) j=i (no string is connected), the algorithm allocates the object at verfhere is a copy located @} therefore
Czn;; andCzi; ; can't exist (set tao). Cbi;; is also impossible, since there is no need for incoming multicast
distribution traffic when stores a copy. The valid possible scenariosiafe, io; ;, bn; ; andbo; ; which differ

30

in the assumptions thatis or isn’'t the only vertex which stores a copy and there is or isn’'t outgoing multicast
distribution traffic fromT;. The vertices in each subtr@g, kcCh; may be served by unicast and/or multicast
either from vertex; or from copies located internally in the subtree. (The minimum of the following legal
scenarios for eacheCh;: Cxny ;, Cxig j, Cbny j, Cbig ; = sum3). Sinceid stores a copy, there must be
incoming update traffic through edge The optimal cost is constructed from the storage costtae optimal
costs calculated by the childremun3), the incoming update traffic through, and the additional outgoing
update and/or multicast distribution traffic througtwhen appropriate({io; ;, Cbn; ;, Cbo; ;).

2) jeVi, keCh; (no string is connected), the algorithm allocates a copy of the object at veriéhere is a copy
located afl; thereforeC'zn; ; andC'zi; ; can’t exist (set tac), and there must be incoming update traffic through
edgee;.

For each of the scenarios where no copy of the object is allocated oiftsféte; ; andio; ;) or copies are also
located outsid€’; (bn; j, bi; ; andbo; ;), one the following children combinations hold:

a) There are copies allocated only insidg(at least at vertex), and there is no outgoing multicast distribution
traffic from 7j, (scenarian; ;). In this case the rest of the childréaC'h;, [k must fulfil scenariacn; ;.
Vertexi must be served using unicast distribution from veptéxum4).

b) There are copies allocated only insifie(at least at vertex), and there is outgoing multicast distribution
traffic from 7}, (scenaridioy ;). In this case the rest of the childréaC'h;, Ik must not allocate a copy in
T; (scenariosen ; or x4y ;) (sumb). Vertexi is part of a multicast distribution tree, so it must be served by
multicast distribution.

This combination is valid only for scenarios; ; andio; ;.

c) There are copies allocated both insifie(at least at verte¥) and outsider},, but there is no multicast
distribution through edge;, (scenaridhn,, ;). In this case the rest of the childréaCh;, [k may allocate
a copy inT; but must not be served by incoming multicast distribution thraugfirough edge;) (scenarios
xny ; or bny ;). Vertex: must be served using unicast distribution from vert€xum6).

d) This combination is only valid for scenarte; ;. In this scenario there is incoming multicast distribution
through edges;.

There are copies allocated both insifie (at least at vertey) and outsidel,, ande,. Vertexi is part

of a multicast distribution tree, through edge(one of scenariosn,, ;, biy ;). In this case the rest of the
childrenleCh;, I#k may allocate a copy iff;, and may be served by incoming multicast distribution
traffic throughi (ande;) (sum?).

e) There are copies allocated both insigdat least at vertex) and outsidd},, and there is outgoing multicast
distribution through edge;, (scenarido, ;). In this case the rest of the childréaCh;, [k may allocate
a copy inT;, and may be served by incoming multicast distribution traffic through vérfard edge:;,)
(sum8). Vertexi is part of a multicast distribution tree, so it must be served by multicast distribution.
This combination is not valid for scenarig; ;, due to lemma 2.

f) There are copies allocated both insifig (at least at vertey) and outsidel}, (scenariodny, ; or biy ;),
but there is outgoing multicast distribution through some edglk=C'h;, Ik (scenaricho ;). In this case
the rest of the childremeCh;, m##k, m#l may allocate a copy iff;,,, and may be served by incoming
multicast distribution traffic through(and edge;) (minl).

This combination is not valid for scenarbe; ;, due to lemma 2.
For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is con-
structed from that combination cost (min betweem4, sumb, sum6, sum?7, sum8 or minl), the cost of up-
date traffic througle; (incoming only forC'in; ;, Ciio; j, both incoming and outgoing far'bn; ;, Cbi; ;, Cbo; ;)
and the cost of either unicast distribution frghnto 7, or multicast distribution traffic through edgdoutgoing
for Cio; ;, Cbo; ;, incoming forC'bi; ;).

3) j¢Vi. Astring P;; is connected td;. According to the definition of the problem, there’s a copy of the object
located at vertey andi or any vertexv € V; may be served (unicast distribution) from that vertex (if they are
served by unicast from outsidg). There is a copy located outsidgthereforeC'in; ; andClio; ; can’t exist (set
to o0), and there must be outgoing update traffic through eglge
For the scenarian; ;, which means that no copy is locatedfinand there is no incoming multicast distribution
traffic to7;, only one children combination is possible - all the childkesCh; must fulfil scenariacny, ;. Vertex

31

1 must be served using unicast distribution from veriéxum1).

For the scenaria:i; ;, which means that no copy is locatedh but there is incoming multicast distribution

traffic to7; (i is part of a multicast distribution tree), all the childreaC'h; must fulfil scenariacny, ; or xiy, ;

(sum2).

For each of the scenarios where copies are also located ihs{de; ;, bi; ; andbo; ;), the unicast distribution
source of vertex (if ¢ is served or passes unicast distribution traffic), may be an internal vertexriay not be

the unicast distribution source dWhen there is unicast distribution traffic throughln such a case, the unicast

distribution sourcé,/cV; and the corresponding coSH?; ; will be used (expressiomin;cy; Cb?;;). In case:

is served frony by unicast distribution, it must not store an object and one the following children combinations

hold:

a) This combination is only valid for scena#ig; ;. In this scenario there is no multicast distribution through
edgee;. There is at least one vertéx keCh; which has at least one copy allocatedlin and does not
produce outgoing multicast distribution traffic (scenariq ;). In this case the rest of the childréaCh;,

I#£k may allocate a copy iff;, but must not be served by incoming multicast distribution throiu¢dnd
edgee;) (scenariosen; ; or bny ;) (min2).

b) This combination is only valid for scenard; ;. In this scenario there is incoming multicast distribution
through edge;. There is at least one vertéxk<Ch; which has at least one copy allocated’jn and may
or may not be served by incoming multicast distribution througscenariogn,, ; or biy ;). In this case
the rest of the childreheCh;, £k may allocate a copy iff;, and may be served by incoming multicast
distribution traffic throughi (ande;) (min3).

c) There is outgoing multicast distribution through some vektede Ch; (scenaridoy, ;). In this case the rest
of the childreneCh;, [k may allocate a copy ifl;, and may be served by incoming multicast distribution
traffic through vertex (andk) (min4).

This combination is not valid for scenarig; ;, due to lemma 2.
For each such scenario the minimal (optimal) valid children combination is selected, and the optimal cost is
constructed from that combination cost (min betweem1, sum2, min2, min3 or min4), the cost of update
traffic throughe; (outgoing only forCxzn; ;, C'zi; j, both incoming and outgoing faron; ;, C'bi; ;, Cbo; ;) and
the cost of either unicast distribution frojnto 4, or multicast distribution traffic through edd€outgoing for
Cbo; j, incoming forCxzi; ;, Cbi; ;).
|
Theorem 2:When the algorithm endsyin ;< Cin, ; holds the optimal allocation cost and the allocation of copies
is optimal.

Proof: The proof is conducted by the induction where lemma 7 is the base and lemma 8 is the step. For each
jeV, Cin, ; represents an optimal allocation of the objects wherg served fromj. The minimalCin, ; is the
optimal cost of the original optimization problem. In addition, the c@sis:, ;, Cxi, j, Cbn, ;, Cbi, ; and Cbo, ;
are illegal since there can't be copies allocated out$ide= 7" andC'io,; is illegal there can't be distribution traffic
throughr outside ofT". |

B. Partial Pseudo code of MX-HDT

We assume that the vertices are ordered by breadth first ordering. Vastéxe root anch must be a leaf.
We also assume the is the maximal number that exists in the computer.
Variables starting wittBT" are used for the backtrack process, and store a vertex number or the cost/vertex data.

The algorithm is performed in two phases. The first one is for calculating the optimal cost and the backtrack info
for later.
We only provide part of the first phase due to the large number of scenarios and combinations. The main idea in the
pseudo code provided is to show the combinations of children scenarios and to demonstrate the generation of backtrack
info.

The cost calculation phase of MX-HDT is almost similar to the one of HDT (described in subsection 1I-B). In the
following pseudo code, we only highlighted some of the differences.
Cost calculation phase
fori=n,n—1,n—2,...,2,1do

[* calculate costs fof, i */
sum3 «— 0; BT-sum3 «— 0

Cxn;; «— 00 ; Cxij; < 0o ; Cbi;; +— 00
Cin;; — Tui" - Ucu; + S¢; + sum3 ; BT-Cin;; <+ BT-sum3 U (1,1, local”)

CbOm’ — CZ'OZ‘,Z' + Tuf“t -Ucu; ; BT-CbOM — BT—CZ'OM
[* updatemin, ey, Cb?;; */
Jminn <= 5 Jmini < ¥} Jmino < 1
[* calculate costs fof, j wherej € Vi, k € Ch; */
foreachk in Ch; do
foreachj in V}, do

sum4 «— T'du; - Dd; j + Cing ; ; BT-sum4 < (k,j,”in”)
sumb « Clioy, j ; BT-sumb « (k, j,”i0”)

sumb «— T'du; - Dd; j + Cbny, ; ; BT-sumb — (k,7,”bn”)

Cbi; j «—Td-Ucd; + (Tui" + Tuf“t) -Ucu; + sumT ; BT-Cbi; j <+ BT-sumT7

1* updateminlevi Cb?i’l */

end do
end do
[* calculate costs fot, j wherej ¢ V; */
foreachj in V' \ V; do

[* calculate min2, min3, min4 (derived from sum6,sum8) */
min2 «— 0o ; BT-min2 «— 0 ; min3 «— oo ; BT-min3 «— 0 ; mind «— oo ; BT-mind «— ()
foreachk in Ch; do
tmp « T'du; - Dd; j + Cbny, ; + sumb — Cminny, ‘
if (tmp < min2) then
min2 « tmp ; BT-min2 — (k, j,”bn”) U (BT—sumG \ (k, 7, C’minnmype))

end if
end do
i : | « T4 . i |)
st —oe—mind—oet BT wmind—— ()
eneHF

Czn;j < Tdu; - Dd; j + Tud"t - Ucu; + suml

Cbo; j «+— T'd-Ucd; + (Tui" + Tuf“t) -Ucu; +min4 ; BT-Cbo; j «+ BT-min4

if Cboi,j,,mw < CbOiVj then
CbOi’j — Cboi,jmmo ; BT—CbOi,j «— BT-Cbo;
end if
end do
end do

»Jmino

32

33

/* find the optimal cost */

Jmin < 1

forj=nn—1,n—-2,...,2do
if Ciny; < Cingj,,,, then
end if

end do

The optimal cost i€)iny ;...

Backtrack phase
The backtrack phase of MX-HDT is similar to the backtrack phase of HDT described in appendix Il, subsection II-B.

REFERENCES

[1] Cisco, http://lwww.cisco.com/
[2] Akamai, http://www.akamai.com/
[3] Digital Fountain, http://www.digitalfountain.com/
[4] WebDAV, http://www.webdav.org/
[5] Scale8, http://www.scale8.com/
[6] S. Shiand J. Turner. Routing in Overlay Multicast Networks. In Proc. of IEEE INFOCOM, June 2002.
[7] P. Francis. "Yoid: Extending the Internet multicast architecture”, April 2000.
[8] J. Jannatti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek and J. OToole. Overcast: Reliable multicasting with an overlay network. In
Proceedings of the Fourth Symposium on Operating Systems Design and Implementation, pp. 197-212, October 2000.
[9] D. Helder and S. Jamin. Banana tree protocol, an end-host multicast protocol. Technical Report CSE-TR-429-00, University of Michigan,
2000.
[10] I. Cidon and O. Unger, Optimal content location in IP multicast based overlay networks, In Proceedings of the 23rd ICDCS workshops,
May 2003.
[11] L. W. Dowdy and D. V. Foster. Comparative Models of the File Assignment Problem. ACM Computing Surveys, 14(2) pp. 287-313, 1982.
[12] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal Placement of Replicas in Trees with Read, Write, and Storage Costs. IEEE Transac-
tions on Parallel and Distributed Systems, 12(6) pp. 628-637, June 2001.
[13] C.Krick, H. Racke, and M. Westermann. Approximation Algorithms for Data Management in Networks. In Proceedings of the Symposium
on Parallel Algorithms and Architecture, pp. 237-246, July 2001.
[14] 1. Cidon, S. Kutten, and R. Sofer. Optimal allocation of electronic content. In Proceedings of IEEE Infocom, Anchorage, AK, April 22-26,
2001.
[15] L. Qiu, V. N. Padmanabham, and G. M. Voelker. On the placement of web server replicas. In Proc. 20th IEEE INFOCOM, 2001.
[16] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz and Yuval Shavitt. Constrained Mirror Placement on the Internet, IEEE Infocom
2001.
[17] J. Kangasharju and J. Roberts and K. Ross. Object Replication Strategies in Content Distribution Networks, In Proceedings of WCW’01:
Web Caching and Content Distribution Workshop, Boston, MA, June 2001.
[18] S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks, Vol. 1 (1971), pp. 113-133.
[19] M. R. Garey, R. L. Graham and D.S. Johnson. The complexity of computing Steiner minimal trees. SIAM J. Appl. Math., 32 (1977) pp.
835-859.
[20] A. Z. Zelikovsky. The 11/6—approximation algorithm for the Steiner problem on networks. Algorithmica 9 (1993) 463-470.
[21] Ellen W. Zegura, Ken Calvert and S. Bhattacharjee. How to Model an Internetwork. Proceedings of IEEE Infocom '96, San Francisco, CA.
[22] GT-ITM: Georgia Tech Internetwork Topology Models, http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz

