
Efficient Algorithms for Computing Disjoint QoS
Paths

Ariel Orda∗ and Alexander Sprintson†1
∗Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel 32000

Email: ariel@ee.technion.ac.il
†Parallel and Distributed Computing Group, California Institute of Technology, Pasadena, California, USA 91125

Email: spalex@caltech.edu

Abstract

Networks are expected to meet a growing volume of requirements imposed by new applications such as multimedia streaming
and video conferencing. Two essential requirements are support ofQuality of Service (QoS) and resilience to failures.

In order to satisfy these requirements, a common approach is to use two disjoint paths between the source and the destination
nodes, the first serving as aprimary path and the second as arestorationpath. Such approach, referred to aspath restoration, has
several advantages, the major one being the ability to switch promptly from one path to another in the event of a failure. A major
issue in this context is how to identify two paths that satisfy the QoS constraints imposed by network applications. Since network
resources, e.g., bandwidth, are allocated along both primary and restoration paths, we need to consider also the overall network
performance. Accordingly, in this paper we study the fundamental problem of finding two disjoint paths that satisfy the QoS
constraints at minimum cost. We present approximation algorithms with provable performance guarantees for this fundamental
network problem.

Index Terms: Routing, Restoration, Disjoint Paths, Quality of Service.

I. I NTRODUCTION

Networks are expected to meetQuality of Service(QoS) requirements imposed by new applications, such as multimedia
streaming and video conferencing. This is facilitated by current efforts to provide resource reservations and explicit path
routing, e.g.,MultiProtocol Label Switching(MPLS). On the other hand, physical network infrastructures may be prone to
failures. Therefore, a major challenge in this context is todevelop adequate network mechanisms for establishing connections
that satisfy QoS requirements and are also resilient to failures. It has been recognized that, for many practical settings, the
speed and capacity of links do not allow to provision restoration pathsafter the failure. Thus, the restoration paths must be
provisioned in advance, i.e.,beforea failure occurs.

This goal can be achieved by provisioning two disjoint QoS paths between the source and destination nodes. This approach
is widely used because of its ability to switch promptly fromone path to another in the event of a failure. The disjoint path
strategy has many additional advantages. First, it allows to use various protection schemes, such as 1+1 protection or 1:1
protection [1]. With 1+1 protection, traffic is simultaneously transmitted on both paths, which allows instantaneous recovery
from link failures. Alternatively, with 1:1 protection, traffic is transmitted along aprimary path, and, upon a failure of one
of its links, the traffic is switched to arestorationpath. Second, the disjoint path strategy requires minimal network support,
because failure detection and restoration can be implemented at the application level of the source. Finally, the disjoint path
strategy provides a greater flexibility to application designers, as they can choose a protection scheme (e.g., 1+1 or 1:1) that
is most adequate for each particular application.

To facilitate seamless recovery to a restoration path in theevent of a failure, it is necessary to reserve network resources
(e.g., bandwidth) on both the primary and restoration paths. Such resources should be consumed in a networkwide efficient
manner. A common way for modelling the impact of such resource consumption on each link is by associating “costs” with the
links. Accordingly, a major problem is to find two disjoint paths between source and destination nodes that satisfy end-to-end
QoS constraints at minimum cost. This problem is the subjectof this study.

QoS constraints occur naturally in a number of practical settings, involving bandwidth and delay-sensitive applications, such
as voice over IP, audio and video conferencing, multimedia streaming, etc. QoS constraints can be divided intobottleneck
constraints, such as bandwidth, andadditiveconstraints, such as delay or jitter. Bottleneck QoS constraints can be efficiently
handled by pruning links that do not satisfy them. The problem is then effectively reduced to finding two disjoint paths of
minimum cost; this problem was extensively investigated inthe literature [2]. Accordingly, in this study we focus on additive
QoS constraints, which are more difficult to handle.

QoS routing has been the subject of several recent studies and proposals (see [3], [4] for comprehensive surveys). However,
the problem of finding two disjoint QoS paths got little attention. Similarly, path restoration and routing over alternate paths has
also attracted a large body of research (see, e.g., [5], [6]). Most of the proposed solutions, however, considered only bottleneck

1Part of this work was done while A. Sprintson was with the Department of Electrical Enginnering, Technion.

lesley
CCIT Report #434

lesley
June 2003

QoS constraints. The few studies that did consider additiveconstraints (e.g., [7]), focused on heuristic approaches and did not
provide proven performance guarantees.

To the best of our knowledge, this is the first study to providea solution with provable performance guarantees for this
fundamental network problem. The problem is clearlyNP-hard since even the basic problem of finding a single optimalpath
that satisfies an additive QoS constraint is intractable [8]. Furthermore, it turned out that a special case of our problem with
no cost minimization, i.e., finding two disjoint paths that (both) satisfy an additive QoS constraint, isNP-hard. Thus, any
practical scheme is necessarily sub-optimal and incurs some violation of the QoS constraint. In this paper we present solutions
that incur a small violation of the QoS constraint and whose cost guaranteed to be within a certain factor away from the
optimum.

Our paper makes the following contributions. First, we introduce theminimum constrained flow (MCF)problem, which is
an elaborated variant of the minimum-cost flow problem, and relate it to our problem. Specifically, we show that, by solving
the MCF problem, we can obtain a solution to our disjoint-paths problem with the smallest possible violation of the QoS
constraint. Second, this relation between our problem and network flow problems allows to employ methods and techniques
from the theory of network flows, such aspath augmentationandcycle-cancellation. While the path augmentation method is
widely used for finding disjoint paths, our study is the first to enhance it with thecycle-cancellationmethod, thus improving
the performance of our disjoint QoS paths algorithms. Third, we investigate the fundamental trade-offs between the cost of the
identified solution, the violation of the QoS constraint andthe computational complexity of the algorithm. Finally, wepresent a
family of algorithms that allows to find a solution that is adequate for any particular setting, such as a solution with minimum
violation of the QoS constraint, minimum cost, etc.

Due to the fundamental nature of the considered problem, ourresults can be used in a variety of practical applications. For
example, in MPLS networks, there is a requirement to protectLabel Switched Paths (LSP)[9]. Accordingly, our methods can
be used for identification of disjoint LSPs that satisfy QoS constraints. In ATM networks, alternate paths can be used upon a
crankback[10]. In the Differential Services framework [11], abandwidth brokeris responsible for establishing suitable paths
that satisfy service level agreements (SLA). Here too, it isdesirable to compute several disjoint QoS paths in order to facilitate
failure resilience and prevent congestion.

We note that disjoint paths can be used for other purposes, beyond path protection. First, sending data on disjoint paths
improves network utilization and reduces congestion. In fact, sending data on diverse paths is a major tool of traffic engineering.
Second, routers may use a precomputation approach in order to improve response time [12]. The key idea is to compute several
QoS paths in advance and store them in a database. Upon arrival of a connection request, a suitable path is selected through a
simple, fast procedure. Since network topology can change,precomputing disjoint paths increases the probability that at least
one path is valid. Finally, disjoint QoS paths can be used in the context ofmultipath routing. With multipath routing, traffic
is sent along multiple paths in order to increase bandwidth and the probability of delivery. Multipath routing can be useful in
wired [13] and wireless (Ad hoc) Networks [14].

The remainder of the paper is organized as follows. In Section II, we present the network model and formulate the problems
considered in this paper. In Section III, we present basic concepts of network flows and establish a relation between the
considered problem and network flow problems. In Section IV,we present a simple approximation algorithm for our problem.
In Section V, we present a cycle-cancellation approach and show how to use it in order to minimize delay violation. In Sections
VI and VII, we show how to improve the computational complexity of that scheme. In Section VIII, we establish a lower
bound for the problem. Finally, conclusions are presented in Section IX.

II. M ODEL AND PROBLEM FORMULATION

In this section, we describe the network model and the main problem addressed in this paper. For simplicity of exposition,
we use the termdelay requirementsin order to generically refer toadditive QoS constraints.

A. The Network Model

We represent thenetworkby a directed graphG(V,E), whereV is the set of nodes andE is the set of links. We denote by
N andM the number of network nodes and links, respectively, i.e.,N = |V | andM = |E|. An (s, t)-path is a finite sequence
of distinct nodesP = (s = v0, v1, · · · , t = vn), such that, for0 ≤ i ≤ n − 1, (vi, vi+1) ∈ E. Here,n = |P | is thehop count
of P . The subpath ofP that extends fromvi to vj is denoted byP(vi,vj). A cycle is a path whose source and destination
nodes are identical.

Each link l ∈ E offers a delay guaranteedl. The delayD(P) of a pathP is the sum of the delays of its links, i.e.,
D(P) =

∑

l∈P dl. In order to satisfy QoS constraints, certain resources such as bandwidth and buffer space must be reserved
along QoS paths. In order to optimize the global resource utilization, we need to identify QoS paths that consume as few
network resources as possible. Accordingly, we associate with each link l a nonnegative costcl, which estimates the quality
of the link in terms of resource utilization. The link cost may depend on various factors, e.g., the link’s available bandwidth
and its location. The costC(P) of a pathP is defined to be the sum of the costs of its links, i.e.,C(P) =

∑

l∈P cl. We shall
assume that all parameters (both delay guaranties and costs) are positive integers.

Alg. Approx. Ratio Complexity

2DP-1 (1.5, 1.5(1 + ε)) O(MN(1
ε

+ log log N))

2DP-2 (1 + 1
k
, k(1 + γ)) O(MN ·OPT log k · log(CD))

2DP-3 (1 + 1
k
, k(1 + γ)(1 + ε)) O(MN3

ε
log(CD))

2DP-4 (1 + 1
k
, k(1 + γ)(1 + ε)) O(MN2k2 log k

ε
log(CD))

TABLE I

PERFORMANCE CHARACTERISTICS OF PRESENTED ALGORITHMS.

B. QoS paths

A fundamental problem in QoS routing is to identify a minimumcost path between a sources and a destinationt that
satisfies some delay and bandwidth constraints. BottleneckQoS constraints, such as bandwidth, can be efficiently handled by
simply pruning links that do not satisfy the QoS constraint.Thus, in the rest of the paper, we only consider delay (i.e., additive)
constraints. Accordingly, the fundamental problem is to find a minimum cost path that satisfies a given delay constraint.This
can be formulated as aRestricted Shortest Pathproblem.

Problem RSP (Restricted Shortest Path): Given a source nodes, a destination nodet and a delay constraintD, find an
(s, t)-pathP such that

1) D(P) ≤ D, and
2) C(P) ≤ C(P̂) for any other(s, t)-path P̂ that satisfiesD(P̂) ≤ D.

In general, Problem RSP is intractable, i.e.,NP-hard [8]. However, there exist pseudo-polynomial solutions, which give rise
to fully polynomial approximation schemes2 (FPAS), whose computational complexity is reasonable (see[15]–[17]). The most
efficient scheme, presented in [17], has a computational complexity of O(MN(1

ε + log log N)), and computes a path with
delay of at mostD and cost of at most(1 + ε) times the optimum. We shall refer to that scheme as AlgorithmRSP.

C. Problem Statement

We are now ready to formulate the problem that we consider in this study. The first problem seeks to identify two disjoint
QoS paths of minimum total cost.

Problem 2DP (2-Restricted Link Disjoint Paths): Given a source nodes, a destination nodet and a QoS requirementD,
find two link-disjoint (s, t)-pathsP1 andP2 such that:

1) D(P1) ≤ D andD(P2) ≤ D;
2) C(P1) + C(P2) ≤ C(P̂1) + C(P̂2) for every other pair of link-disjoint(s, t)-pathsP̂1 and P̂2 that satisfyD(P̂1) ≤ D

andD(P̂2) ≤ D.
We denote byOPT the cost of an optimal solution to Problem 2DP for(G, s, t,D).
Problem 2DP includes Problem RSP as a special case; hence, itis NP-hard. In addition, as discussed below (in Section VIII),

it is intractable to find a solution that does not violate the delay constraint of at least one of the paths. Furthermore, inmost
cases, we cannot provide an efficient solution without violating the delay constraint in both primary and restoration paths.
Accordingly, we introduce the following definition of(α, β)-approximations.

Definition 1 ((α, β)-approximation): Given an instance(G, s, t,D) of Problem 2DP, an(α, β)-approximate solution(P1, P2)
to Problem 2DP is a solution for which:

1) D(P1) + D(P2) ≤ 2αD;
2) the total cost of two paths is at mostβ times more than that of the optimal solution, i.e.,C(P1) + C(P2) ≤ βOPT .
In general, the path with minimum delay amongP1 and P2 serves as a primary path. Thus, the primary and restoration

paths violate the delay constraint by factors of at mostα/2 andα, respectively, i.e.,D(P1) ≤ αD andD(P2) ≤ 2αD.

D. Our results

We introduce four approximation algorithms for Problem 2DP. Table I shows the approximation ratio achieved by each
algorithm and its complexity.

The parametersε and k capture the trade-off between the violation of the delay constraint, the cost of the approximation
and the computational complexity of the algorithms. For example, Algorithm 2DP-2 achieves an approximation ratio of
(1 + 1

k , k(1 + γ)) for a positive integerk, whereγ is a small value bounded by2(log k+1)
k . Thus, choosingk = 4 yields a

(2.25, 5.5)-approximation solution to Problem 2DP. In general, smaller values ofk yield solutions with lower delay violation
at the expense of higher costs and running times.

2A Fully Polynomial Approximation scheme(FPAS) provides a solution whose cost is at most(1+ ε) times more than the optimum with a time complexity
that is polynomial in the size of the input and1/ε.

Algorithm 2DP-4 is the main contribution of this paper. The algorithm achieves, for fixedε > 0 and any integerk > 0,
the approximation ratio of(1 + 1

k , k(1 + γ)(1 + ε)), i.e, the primary and restoration paths violate the delay constraint by a
factor of (1 + 1

k) and2(1 + 1
k), respectively. Thus, the violation of delay by the primary path can be minimized by choosing

sufficiently large values ofk.

III. PRELIMINARIES: NETWORK FLOWS

In order to establish an efficient solution to Problem 2DP, weemploy ideas and techniques from the theory of network
flows. The solution to our problem, that is two disjoint paths, can be conveniently represented as aflow. Accordingly, in this
section we briefly present the concept of network flow. A comprehensive survey on the theory of network flows can be found
in [18].

We consider flow networks in which each link is associated with a nonnegativecapacity. We assume that for any pair
of nodesu and v, the flow network does not contain two links in opposite directions ((v, u) and (u, v)). We note that this
assumption does not impose any loss of generality, because by a suitable transformation we can always define a network that
is equivalent to any given network but satisfies the above assumption: the transformation splits each nodev into two nodesv′

andv′′ corresponding to node output and input links, and replaces each original link(v, u) by a link (v′, u′′) with the same
capacity, cost and delay; it also adds a link(v′′, v′) of zero cost and delay and infinite capacity to each nodev.

We proceed to introduce the fundamental concept ofnetwork flows. We restrict ourselves tounary flows, i.e., flows that take
the value of 0 or 1 in each of the links.

Definition 2 (Unary Flow): A unary (s, t)-flow f is a binary functionf : E → {0, 1} that satisfies the following two
properties:

1) For all l = (u, v) ∈ E, it holds thatfl ∈ {0, 1};
2) For all v ∈ V \ {s, t}, it holds that

∑

w:(w,v)∈E

f(w,v) =
∑

w:(v,w)∈E

f(v,w).

For clarity, we say that each linkl ∈ G for which fl = 1 belongsto the flow f and thatf includesall links for which
fl = 1.

Definition 2 uses thelink representation, i.e., the flow is described by means of a function associated with each link of
the network. Alternatively, a unary flow can also be represented by a set of pathsP = {P1, · · · , Pk} and cyclesW =
{W1, · · · ,Wx}, such that exactly one unit of flow is sent along each path and cycle. We refer to this representation as a
path and cyclerepresentation. Note that given apath and cyclerepresentation of a flowf , it is easy to determine the link
representation: the flowfl on each linkl that belongs to a path inP or to a cycle inW is 1, while the flow on any other
link is 0. Similarly, given a link representationf of a flow, we can determine its path and cycle representation by using the
flow decomposition algorithm [18].

The valueof a flow f is defined as follows:
|f | =

∑

v:(s,v)∈E

f(s,v) (1)

A flow of zero value contains only cycles and no paths. Such a flow is referred to as acirculation.
The costC(f) of a flow f is defined as follows:

C(f) =
∑

(u,v)∈E

c(u,v) · f(u,v) (2)

We introduce the notion of thedelayD(f) of flow f .

D(f) =
∑

(u,v)∈E

d(u,v) · f(u,v) (3)

Note that a flowf with |f | = 2 can be decomposed into two disjoint paths whose total delay and cost is at mostD(f) and
C(f), respectively. Thus, our goal is to find a flow whose delay and cost are no more than2αD andβOPT , respectively.

A. Minimum Constrained Flow Problem

We proceed to introduce theminimum constrained flow(MCF) problem. The problem seeks a minimum cost(s, t)-flow f
such that|f | = 2 andD(f) ≤ D, whereD is a given delay constraint.

Problem MCF (Minimum Constrained Flow Problem): Given a graphG, a source nodes, a destination nodet and a delay
requirementD, find an(s, t)-flow f such that:

1) |f | = 2;
2) D(f) ≤ 2D;
3) C(f) ≤ C(f̂) for any other flowf̂ that satisfies|f̂ | = 2 andD(f̂) ≤ 2D.

The cost of an optimal solution to Problem MCF for(G, s, t,D) is denoted byOPT 1. Note that Problem MCF is a relaxation
of Problem 2DP. In particular, instead of imposing a delay constraint for each of the two paths, Problem MCF requires that
the total delay of two paths be no more than2D. Thus, if (P1, P2) is a feasible solution to Problem 2DP, then the flow
f = {P1, P2} is a feasible solution to Problem MCF. We conclude that the cost of the optimal solution to Problem MCF is
lower than that of Problem 2DP, i.e.,OPT 1 ≤ OPT .

IV. SIMPLE APPROXIMATION ALGORITHM

In this section we present our first approximation algorithm, which achieves an approximation ratio of(1.5, 1.5(1+ ε)). The
computational complexity of the algorithm isO(MN(1

ε + log log N)), which is identical to that of the approximation scheme
for Problem RSP [17].

The idea of the algorithm is to identify a suitable flowf betweens and t such that|f | = 2 and then decompose it into
two disjoint pathsP̂1 and P̂2. The algorithm employs thepath augmentation approach[18], which is a standard approach for
network flow and disjoint path problems.

The first step of the algorithm is to compute a pathP1 between the source node and destination nodess andt that satisfies
the delay constraintD. The pathP1 is constructed by applying Algorithm RSP for(G, s, t,D, ε). This path defines a flow
f = {P1} whose value is one unit.

The next step is to augment this flow in order to increase its value to 2. To that end, we construct aresidual networkG(f)
imposed by the flowf . Intuitively, the residual network consists of links that can admit more flow.

Definition 3 (Residual Network): Given a networkG with unit capacities and flowf , the residual networkG(f) is
constructed as follows. For each link(u, v) ∈ G for which f(u,v) = 0, we add toG(f) a link (u, v) of the same delay
and cost as inG. For each link(u, v) ∈ G for which f(u,v) = 1, we add toG(f) a reverselink (v, u) to G(f) of zero cost
and zero delay.

A flow f̂ in the residual networkG(f) is referred to as anaugmenting flow. Having identified the flowf̂ , we canaugment
the flow f along the flowf̂ by performing the following steps:

1) Omit from f each link(v, u) whose reverse link(u, v) appears inf̂ .
2) Add to f each link(v, u) ∈ f̂ whose reverse link(u, v) does not appear inf .

With the augmentation paths approach, the flowf is augmented along flows that consist of a singleaugmenting path. In
particular, our algorithm identifies an augmenting pathP2 in G(f) that satisfies a delay constraint of2D. To that end, we
apply Algorithm RSP for(G(f), s, t, 2D, ε). Then, we augment the flowf along the pathP2. For each linkl that belongs to
P2 if fl = 0 we setfl = 1, otherwise we setfl = 0. The value of the resulted flowf is 2.

The final step is to decompose the flowf into two pathsP̂1 andP̂2, such thatD(P̂1) ≤ D(P̂2). For this purpose we employ
the following flow decomposition algorithm. We start at the source nodes and select a link(s, v) for which f(s,v) = 1. If v
is a destination node, we stop; otherwise, there must be a link (v, u) for which f(v,u) = 1. This process is repeated until we
either encounter a destination nodet or revisit a previously examined node. In the former case we obtain an(s, t)-pathP and
in the latter case we obtain a cycleW . If we obtain a directed pathP , we redefinefl = 0 for each linkl in P . Similarly, if
we obtain a cycleW , we redefinefl = 0 for each linkl in W . We repeat this process till we discover two paths betweens
and t.

The detailed description of the approximation algorithm, referred to as 2DP-1, appears in Fig. 1.
The correctness of our algorithm is based on the following lemma.
Lemma 1:Let G(f) be the residual network ofG imposed byf = {P1}. Then, there exists a pathP ′

2 ∈ G(f) such that
D(P ′

2) ≤ 2D andC(P ′

2) ≤ OPT .
Proof: Let Ĝ ⊆ G be a network imposed by links that belong toP opt

1 , P opt
2 andP1. Let Ĝ(f) be the residual network

of Ĝ imposed by the flowf = {P1}. Clearly, Ĝ(f) ⊆ G(f). We prove that there exists a pathP ′

2 ∈ Ĝ(f) that satisfies the
conditions of the lemma.

By way of contradiction, assume that such a path does not exist. Then, by thePath Augmentation Theorem[18], the flow
f = {P1} is a maximum flow inĜ. However, there exists a flowf ′ = {P opt

1 , P opt
2 } of higher value, resulting in a contradiction.

Note that pathP ′

2 includes only links that belong toP opt
1 , P opt

2 as well as links originated fromP1, whose delay and cost
are zero. As a result,D(P ′

2) ≤ D(P opt
1) + D(P opt

2) ≤ 2D andC(P ′

2) ≤ C(P opt
1) + C(P opt

2) ≤ OPT .
SinceĜ(f) ⊆ G(f), it holds thatP ′

2 ∈ G(f) and the lemma follows.
Let (G, s, t,D) be an instance of Problem 2DP and let(P opt

1 , P opt
2) be an optimal solution for this instance, i.e.,D(P opt

1) ≤
D, D(P opt

2) ≤ D and C(P opt
1) + C(P opt

2) = OPT (see Fig. 2(a)). Note that the pathP1 computed in Step 1 might share
links with the optimal paths (see Fig. 2(b)). We note also that

C(P1) ≤ (1 + ε)min{C(P opt
1), C(P opt

2)} ≤

≤ (1 + ε)
OPT

2
.

Algorithm 2DP-1 (G, s, t,D, ε)
input:

G - the graph
s- source node
t -destination node
D- the delay constraint
ε- the approximation ratio

output:
(P̂1, P̂2)- An approximate solution to Problem 2DP.

1 Identify pathP1 in G such thatD(P1) ≤ D by using
Algorithm RSP

2 f ← {P1}
3 Construct the residual networkG(f) of G imposed byf :
4 Add to G(f) each link inG that does not belong toP1

5 for each link(u, v) ∈ P1 do
6 Add a link (v, u) to G(f) with

d(v,u) = 0 andc(v,u) = 0

7 Identify pathP2 in G(f) such thatD(P2) ≤ 2D
by using Algorithm RSP

8 Augment flowf along pathP2:
9 for each linkl(u, v) ∈ P2 do

10 if f(v,u) = 0 then
11 f(v,u) ← 1

12 else
13 f(v,u) ← 0

14 Decompose flowf into two paths,P̂1 and P̂2

such thatD(P̂1) ≤ D(P̂2)

15 return P̂1 and P̂2

Fig. 1. Algorithm 2DP-1

Fig. 2(c) depicts the residual graphG(f) imposed by the flowf = {P1}. Each residual linkl ∈ G(f) is assigned zero delay.
By Lemma 1, there exists a pathP ′

2 ∈ G(f) betweens and t whose delay is at most2D and whose cost is at mostOPT
(see Fig. 2(d)). Thus, Algorithm RSP, invoked for(G(f), s, t, 2D), returns a pathP2, whose cost is at most(1 + ε) · OPT
(see Fig. 2(e)). We conclude that:

D(P1) + D(P2) ≤ 3D

and
C(P1) + C(P2) ≤ 1.5(1 + ε)OPT .

PathsP̂1 andP̂2 include links that belong toP1 andP2, excluding links that were assigned zero cost and delay (seeFig. 2(f)).
Hence,

D(P̂1) + D(P̂2) ≤ D(P1) + D(P2) ≤ 3D

and
C(P̂1) + C(P̂2) ≤ C(P1) + C(P2) ≤ 1.5(1 + ε)OPT .

Choosing the minimum delay path amongP̂1 andP̂2 as a primary path, results in a(1.5, 1.5(1+ε)) approximation algorithm
for Problem 2DP. The algorithm invokes Algorithm RSP twice,hence its computational complexity isO(MN(1

ε +log log N)).
We summarize our discussion by the following theorem.
Theorem 1:Algorithm 2DP-1 computes, inO(MN(1

ε + log log N)) time, a (1.5, 1.5(1 + ε))-approximate solution for
Problem 2DP.

V. M INIMIZING THE DELAY V IOLATION

In the previous section we presented Algorithm 2DP-1 that provides a(1.5, 1.5(1+ε)) approximate solution for Problem 2DP.
Fig. 3(a) demonstrates an instance(G, s, t,D) of Problem 2DP, for which algorithm 2DP-1 has the worst-casedelay violation,
i.e., α = 1.5. For D = 2, the optimal solution isP opt

1 = {s, v1, v2, t} andP opt
2 = {s, v3, v4, t} (see Fig. 3(b)). The costOPT

of the optimal solution is2. We now apply 2DP-1 to the instance(G, s, t,D). The algorithm selectsP1 = {s, v1, v2, v3, v4, t}
because it is the minimum cost path among all paths inG that satisfy the delay constraint 2 (see Fig. 3(c)). Fig. 3(d) depicts
the residual networkG(f) of G imposed by flowf = {P1}. The only path betweens and t in G(f) is P2 = {s, v3, v2, t},
with delay 4 and cost 0. The algorithm returns the pathsP̂1 = {s, v1, v2, t} and P̂2 = {s, v3, v4, t}, as depicted in Fig. 3(e).

(b)
(a)

s
 t
 s
 t

opt

P

1
 opt

P

1

opt

P

2
 opt

P

2

(c)

s
 t

opt

P

1

opt

P

2

1

P

(d)

s
 t

opt

P

1

opt
P

2

'

2

P

(e)

s
 t

2

P

(f)

s
 t

1

ˆ
P

2

ˆ
P

Fig. 2. Execution of Algorithm 2DP-1(a) An optimal solution(P opt
1 , P opt

2) to Problem 2DP (b) PathP1 (c) Residual networkG(f) of G imposed by
flow f = {P1} (d) PathP ′

2 (e) PathP2 (f) PathsP̂1 and P̂2.

Note thatD(P̂1) = D(P̂2) = 3. Thus, we conclude that the path augmentation strategy alone cannot achieve a delay ratio(α)
better than 1.5.

The basic idea of the algorithm is to find cycles with negativedelays and to augment flowf along these cycles. This allows
to reduce the delay of the solution and achieve a smaller delay ratio. For example, Fig. 3(f) shows the residual networkG(f)
of G imposed by the flowf = {P̂1, P̂2}, constructed fromG by substituting each linkl(u, v) ∈ f by a link l′(v, u) and setting
dl′ = −dl and cl′ = 0. The residual networkG(f) contains two negative delay cycles: the first cycle is formedby two links
betweens andv1, while the second cycle is formed by two links betweenv4 andt. Each cycle has delay−1 and cost1. Thus,
if we augment the flow along each of these cycles, the total delay of the flow is improved by−1 at cost1. By identifying two
cycles, we find a flow whose delay and cost are4 and2. This flow can be decomposed into two paths whose total delay is at
most4, achieving the approximation ratio of(2, 1).

Algorithm 2DP-2 gets as input the networkG, the source and destination nodess and t, a delay constraintD and
approximation parameterk. The algorithm includes the following steps. First, we invoke Algorithm 2DP-1 for(G, s, t,D, 1

N),
which identifies two pathsP1 andP2. These paths impose a flowf0 = {P1, P2}. If D(f0) ≤ 2D(1 + 1

k), then the algorithm
halts and returns pathsP1 andP2. Otherwise, we identify a negative delay cycle in the residual graphG(f0) of f0 and augment
flow f0 along this cycle. We repeat this process until the delayD(f) of the resulted flowf is lower or equal to2D(1 + 1

k).
Finally, we decompose the flowf into two disjoint pathsP̂1 and P̂2.

More specifically, we introduce the following Procedure IMPROVEFLOW. The procedure gets as input flowf0 and an
approximation parameterk. We begin by settingf = f0 and constructing the residual graphG(f) of G imposed by flowf .
The residual graph is constructed according to Definition 3,with the following exception: the delay of a reverse link(v, u)
is set to−d(u,v), where (u, v) is the link in the original network that corresponds to(v, u). Next, we find a cycleW in
G(f) that minimizes the delay/cost ratio, i.e., the cycle for which D(W)

C(W) is minimal among all cycles inG(f). Such a cycle
is determined by using theminimum cost-to-time ratio cycle algorithm, presented in [18]. Next, we augment flowf along
W . This process (i.e., finding cycles and circulation augmentation) terminates when the delayD(f) of f is lower or equal to
2D(1 + 1

k). Finally, flow f is decomposed into two paths,̂P1 and P̂2, such thatD(P̂1) ≤ D(P̂2). The formal description of
Algorithm 2DP-2 appears in Fig. 4.

The following theorem establishes the main properties of Algorithm 2DP-2. Its proof appears in the next section.
Theorem 2:Algorithm 2DP-2 computes, inO(MN ·OPT log k log(CD)) time, a(1 + 1

k , k(1 + γ)) approximate solution
for Problem 2DP, whereγ ≤ 2(log k+1)

k .

A. Analysis of Algorithm2DP-2

In this section we analyze the performance of Algorithm 2DP-2 and establish its computational complexity. We use the
following variant of theAugmenting Cycle Theorem, taken from [18].

Theorem 3:(Augmenting Cycle Theorem, [18]) Let f and f0 be any two feasible network flows such that|f0| = |f |.
Then,f equalsf0 plus the circulationf̄ in G(f). Furthermore,D(f) = D(f0) + D(f̄).

(d)

s
 t

(0,1)
 (2,0)

(0,1)

(2,0)

(0,0)

(0,0)
(0,0)

(0,0)

(0,0)

V

1
 V

2

V

3

V

4
(c)

s
 t

V

1

(1,0)
 (1,0)
(0,0)

(0,0)

(0,0)

V

2

V

3

V

4

(a)

s
 t

(0,1)
 (2,0)

(0,1)

(2,0)

V

1

(1,0)
 (1,0)
(0,0)

(0,0)

(0,0)

V

2

V

3

V

4

(b)

s
 t

(0,1)
 (2,0)

(0,1)

(2,0)

V

1

(0,0)

(0,0)

V

2

V

3

V

4

t

(e)

s

(2,0)

(2,0)

(1,0)
 (1,0)

(0,0)

(0,0)

V

1

V

2

V

3

V

4

(f)

s
 t

(0,1)
 (-2,0)

(0,1)

(-2,0)

(-1,0)
 (-1,0)
(0,0)

(0,0)

(0,0)

V

1

V

2

V

2

V

3

V

4

Fig. 3. Execution of Algorithm 2DP-1. Associated with each link are its delay and cost. (a) The original network (b) The optimal solution pathsP opt
1 =

{s, v1, v2, t} andP opt
2 = {s, v3, v4, t} (c) PathP1 = {s, v1, v2, v3, v4, t} (d) The residual network induced by flowf (e) PathsP̂1 and P̂2 returned by

Algorithm 2DP-1 (f) The residual networkG(f) of G imposed by the flowf = {P̂1, P̂2}.

Proof: The proof follows the same lines as in [18], substituting thecostcl andC(f) by dl andD(f) for each linkl and
each flowf , respectively.

Recall thatOPT 1 is the cost of an optimal solution to Problem MCF. We prove that there exists a circulation̄f in G(f0)
such thatD(f̄) ≤ −(D(f) − 2D), C(f̄) ≤ OPT 1.

Lemma 2:Let f be an(s, t)-flow in G such that|f | = 2 and D(f) ≥ 2D, and letG(f) be the residual network ofG
imposed byf . Then, there exists a circulation̄f in G(f), such thatD(f̄) ≤ −(D(f) − 2D), C(f̄) ≤ OPT 1.

Proof: Let f∗ be the optimal solution to Problem MCF. Note thatD(f∗) ≤ 2D. Let Ĝ be a subgraph ofG that includes
only links l for which hold eitherfl = 1 or f∗

l = 1. By Theorem 3, there exists a circulation̄f in the residual grapĥG(f)
of Ĝ imposed byf such thatD(f∗) = D(f) + D(f̄). SinceD(f∗) ≤ 2D, we haveD(f̄) ≤ 2D − D(f) = −(D(f) − 2D).
We observe that all links with positive cost in̂G(f) belong tof∗. Thus, the cost of̄f is at mostOPT 1. We also observe that
Ĝ(f) ⊆ G(f). Thus,f̄ belongs toG(f) and the lemma follows.

Lemma 2 implies that there exists a circulation̄f in G(f), such thatD(f̄) ≤ −(D(f) − 2D) and C(f̄) ≤ OPT 1. Since
the delayD(f̄) of circulation f̄ is negative, it holds thatD(f̄)

C(f̄)
≤ D(f̄)

OPT 1

≤ −D(f)−2D
OPT 1

. As circulationf̄ includes a number of

cycles, there must be a cycleW ∈ f̄ for which it holds thatD(W)
C(W) ≤ − (D(f)−2D)

OPT 1

.
Corollary 1: Let f be an(s, t)-flow in G such that|f | = 2 and D(f) ≥ 2D, and letG(f) be the residual network ofG

imposed byf . Then, there exists a cycleW in G(f) for which it holds thatD(W)
C(W) ≤ − (D(f)−2D)

OPT 1

.
Proof: By Lemma 2, there exists a circulation̄f in G(f), such thatD(f̄) ≤ −(D(f) − 2D) andC(f̄) ≤ OPT 1. Such

a circulation is a set of cycles and the average ratioD(W)
C(W) for the cycles in this set isD(f̄)

C(f̄)
≤ −D(f)−2D

OPT 1

. Hence, there exists

at least one cycle such thatD(W)
C(W) ≤ −D(f)−2D

OPT 1

.
In the next lemma we prove that the cost of each negative delaycycle identified by Procedure IMPROVEFLOW is at least1

and at most(2k + 1)OPT 1.
Lemma 3:Let W be a cycle identified in the line 7 of Procedure IMPROVEFLOW. Then, it holds that1 ≤ C(W) ≤

(k + 1)OPT 1.
Proof: Let W be an augmenting cycle inG(f). It is easy to verify that flowf contains no cycles, i.e.,f includes two

disjoint (s, t)-paths. It follows that any cycle inG(f) must include at least one link that does not belong tof . Since all links
in W have non-negative cost, it follows that the total cost ofW is at least 1.

We proceed to prove thatC(W) ≤ (2k + 1)OPT 1. By Corollary 1, D(W)
C(W) ≤ −D(f)−2D

OPT 1

, henceC(W) ≤ −D(W)OPT 1

D(f)−2D . We
note thatD(W) ≥ −D(f), otherwise augmentation off by W would result in an(s, t)-flow in G whose delay is negative,

Algorithm 2DP-2 (G, s, t,D, k)

1 (P1, P2)←2DP-1(G, s, t, D, 1
N

)

2 f0 ← {P1, P2};
3 if D(f0) ≤ 2D(1 + 1

k
) then

4 return P1 andP2

5 f ←IMPROVEFLOW(G, f0, D, k)

6 Decompose flowf into two paths,P̂1 and P̂2, such that
D(P̂1) ≤ D(P̂2)

7 return P̂1 and P̂2

Procedure IMPROVEFLOW(G, f0, D, k)

1 f ← f0

2 while D(f) > 2D(1 + 1
k
) do

3 Construct the residual networkG(f) of G
imposed byf :

4 Add to G(f) each linkl in G for which fl = 0
5 for each link(u, v) in G for which f(u,v) = 1 do
6 Add a link (v, u) to G(f) with

d(v,u) = −d(u,v) andc(v,u) = 0

7 Find a cycleW in G(f) that minimizesD(W)
C(W)

8 Augment flowf alongW
9 return f

Fig. 4. Algorithm 2DP-2

which contradicts the fact that all links inG have positive delay. Thus, it follows thatC(W) ≤ D(f)OPT 1

D(f)−2D ≤ OPT 1

1−2D/D(f) .

SinceD(f) ≥ 2D(1 + 1
k), we haveC(W) ≤ (D+D/k)OPT 1

D/k = (k + 1)OPT 1.
Lemma 4:Let f be a flow inG, G(f) be the residual network ofG imposed byf . Let W be a cycle inG(f) andf ′ be a

flow resulting from augmentingf alongW . Then,D(f ′) = D(f) + D(W) andC(f ′) ≤ C(f) + C(W).
Proof: Each link with positive delay inW is added tof̄ . For each linkl in W with negative delaydl, we delete fromf

a link whose delay is|dl|. Hence,D(f ′) = D(f) + D(W). Since flowf ′ includes links fromf andW and since each link
in W has positive cost, it follows thatC(f ′) ≤ C(f) + C(W).

Lemma 4 implies that an augmentation of a flowf by a cycleW decreases the delayD(f) of f by |D(W)| (sinceD(W) is
negative) and increases its cost byC(W). In the following, we prove that the number of iterations needed in order to achieve
D(f) ≤ D(2 + 1

k) is at most2OPT 1 log k.
Our prove uses theGeometric Improvement Approach. In particular, we use the following theorem, taken from [18].
Theorem 4:Suppose that an algorithm A iteratively minimizes some value z such thatz0 is the initial value ofz, zi is

the value ofz at thei-th iteration andz∗ the minimum objective function value. Furthermore, suppose that the algorithm A
guarantees that, for every iterationi,

zi − zi+1 ≥ ζ(zi − z∗) (4)

for some constantζ with 0 < ζ < 1. Then, within2/ζ consecutive iterations, it holds thatz ≤ z∗ + z0
−z∗

2 . Furthermore, the

algorithm A terminates after at most2 log(z∗
−z0)

ζ iterations.
Proof: See [18].

Theorem 5:Procedure IMPROVEFLOW returns a flowf with delayD(f) ≤ 2D(1+ 1
k) and costC(f) ≤ (k +2 log k +1+

1.5
N)OPT 1. The computational complexity of Procedure IMPROVEFLOW is O(MN · OPT 1 log(CD) log k).

Proof: Consider the main loop of Procedure IMPROVEFLOW, i.e., the loop that begins at line 2. We denote byfi the
state of flowf at the beginning of iterationi (at line 7). Further, we denote byWi the cycle that has been identified at iteration
i and byCi the cost ofWi, i.e., Ci = C(Wi).

First, we prove that the procedure stops within2 log k
OPT 1

iterations, i.e., at some iterationj ≤ 2 log k
OPT it holds thatD(fj) ≤

2D(1 + 1
k). By Lemma 3, at each iterationi we identify a cycleWi whose cost is at least1. Corollary 1 implies that the

delay of the cycle is at least− (D(fi)−2D)
OPT 1

. Thus, by Lemma 4, the delay of flowf is reduced by at least(D(fi)−2D)
OPT 1

at each

iteration. By Theorem 4, after at most2 log k
OPT 1

iterations, it holds thatD(f) ≤ 2D + D(f0)−2D
k ≤ 2D(1 + 1

k).
Second, we prove that the procedure returns a flowf whose cost is at mostC(f0) + (2k + 2 log k + 2.5)OPT 1. Let j be

the last iteration of the procedure. We show that the total cost of all cycles identified in the firstj − 1 iterations is at most
2 log kOPT 1. We assume, by way of contradiction, that

∑j−1
i=1 C(Wi) ≥ 2 log kOPT 1. We consider two cases. In the first case

all cyclesW1, · · · ,Wj−1 have cost of exactly1. Then, at each iteration, the delay of flowf decreases by at leastD(fi)−2D
OPT 1

.

Thus, by Theorem 4, afterj−1 iterations, the delay of flowf is at most2D+ D(f0)−2D
k ≤ 2D(1+ 1

k), which contradicts the fact

that j − 1 is not a last iteration. The last inequality follows from thefact thatD(f0) ≤ 3D (by Theorem 1). Now we consider
the second case, in which the cost a eachWi may be more than 1. In this case, at iterationi, the delay of flowf decreases
by at leastD(fi)−2D

OPT 1

C(Wi). We note that augmenting of flowf along cycleWi is equivalent to augmenting it along|C(Wi)|
cycles of cost1 and delay−(D(fi)−2D)

OPT 1

. Thus, if
∑j−1

i=1 C(Wi) ≥ 2 log kOPT 1, then cyclesW1, · · · ,Wj can be substituted
by 2 log kOPT 1 cycles of cost 1. This implies that after iterationj − 1 we haveD(fj−1) ≤ 2D(1 + 1

k), and again we have a
contradiction. By Lemma 3, the cost of the cycleWj identified at the last iteration is at most(k+1)OPT 1. Thus, the total cost
of flow f returned by Procedure IMPROVEFLOW is at most(k + 1 + 2 log k)OPT 1 + C(f0) ≤ (k + 2 log k + 1 + 1.5

N)OPT 1.
Finally, we analyze the computational complexity of Procedure IMPROVEFLOW. We proved that the procedure performs at

most 2 log kOPT 1 iterations. The running time of each iteration is dominatedby the time required to identify a cycle that
minimizes D(W)

C(W) . Such a cycle is identified by invoking theminimum cost-to-time ratio cycle algorithm[18], which incurs
O(MN log(CD)) time. We conclude that the computational complexity of the procedure isO(MN · OPT 1 log k log(CD)).

We are ready now to prove Theorem 2.
Theorem 2:Algorithm 2DP-2 computes, inO(MN ·OPT log k log(CD)) time, a(1 + 1

k , k(1 + γ)) approximate solution for
Problem 2DP, whereγ ≤ 2(log k+1)

k .
Proof: The computational complexity of Algorithm 2DP-2 is dominated by the time required to identify pathsP1 andP2

in (line 1) and the running time of Procedure IMPROVEFLOW. By Theorem 1 The computational complexity of Algorithm 2DP-
1 isO(MN2) (by Theorem 1). By Theorem 5, Procedure IMPROVEFLOW requiresO(MN log k ·OPT 1 log(CD)) time. Since
N ≤ OPT andOPT 1 ≤ OPT , the computational complexity of Algorithm 2DP-2 isO(MN · OPT log k · log(CD)).

By Theorem 5, Procedure IMPROVEFLOW returns a flowf with delayD(f) ≤ 2D(1 + 1
k) and costC(f) ≤ (k + 2 log k +

1 + 1.5
N)OPT 1 ≤ k(1 + γ)OPT , whereγ ≤ 2(log k+1)

k . We conclude that Algorithm 2DP-2 computes a(1 + 1
k , k(1 + γ))

approximate solution for Problem 2DP.

VI. M INIMIZING THE COMPUTATIONAL COMPLEXITY

While Algorithm 2DP-2 provides a good approximate solution for Problem 2DP, its computational complexity is proportional
to the costOPT of the optimal solution. The algorithm can be used in settings in which the cost of each link is a relatively
small value. However, for settings with high cost values, its computational complexity may be prohibitive. Accordingly, in
this section we present Algorithm 2DP-3 whose computational complexity does not depend on the values of links costs. The
algorithm uses the same ideas as Algorithm 2DP-2 and, in addition, employs thecost scalingapproach [16] in order to reduce
the computational complexity.

Algorithm 2DP-3 begins by invoking Algorithm 2DP-1, which identifies two pathsP1 and P2. These paths form a flow
f0 = {P1, P2} and we construct the residual networkG(f0) of G imposed by flowf0. In the previous section we showed that
there exists a circulation̄f in G(f0), such thatD(f̄) ≤ −(D(f) − 2D), C(f̄) ≤ OPT 1 (Lemma 2). Algorithm 2DP-2 uses
this fact to reduce the delay of the flowf0. In particular, it invokes Procedure IMPROVEFLOW, whose running time depends
on the cost of the circulation, i.e.,OPT 1.

The basic idea of Algorithm 2DP-3 is to reduce the cost of eachlink in G by a certain factor. The cost of the circulation
f̄ in the resulting graph, and in turn, the computational complexity of Procedure IMPROVEFLOW, are much smaller. A key
requirement in the scaling approach is to get sufficiently tight upper and lower boundsL and U on the costOPT 1 of the
optimal solution to Problem MCF. We present an efficient technique for obtaining these bounds in Section VI-A.

We proceed to describe cost scaling in more detail. We scale the costcl of each linkl in G, replacing it byc′l, as follows:

c′l =
⌊ cl

∆

⌋

+ 1, (5)

where∆ = Lε
2N .

Let G′(f0) be the residual graph ofG imposed by flowf0 with scaled link costs. We show that there exists a circulation f̄
in G′(f0), such thatD(f̄) ≤ −(D(f) − 2D) andC(f̄) ≤ 2N ·U

ε·L + 2N . Let fopt be the optimal solution for Problem 2DP. It
is easy to verify that flowfopt contains at most2N links. Thus, the cost of̄f with respect to the scaled link costs is at most
OPT ′

1 = 2N ·OPT 1

ε·L + 2N . It can be shown, in the same way as in Lemma 2, that there exists a circulationf̄ in G′(f0), such
thatD(f̄) ≤ −(D(f)−2D) and whose cost is at most2N ·OPT 1

ε·L +2N . Thus, with scaled link costs Procedure IMPROVEFLOW

performs justO
(

N ·U
ε·L

)

iterations. For sufficiently tight lower and upper bounds,L andU , the number of iterations is small.
Scaling allows to reduce the computational complexity of the algorithm, but it incurs some penalty in terms of the solution

cost. Let f̄ we a circulation whose cost with respect to the scaled link costs is at mostOPT ′

1. The cost of that circulation
with respect to original link costs is at most

∆ · OPT ′

1 ≤ OPT 1 + εL ≤ (1 + ε)OPT 1.

Lower values ofε yield better approximate solutions on the expense of the running time of the algorithm.
The detailed description of the algorithm appears in Fig. 5.

Algorithm 2DP-3 (G, s, t,D, k, ε)

1 (P1, P2)←2DP-1(G, s, t, D, 1
N

)

2 f0 ← {P1, P2}
3 if D(f0) ≤ 2D(1 + 1

k
) then

4 return P1 andP2

5 L, U ←BOUND(G, s, t, f, D)

6 ∆← Lε
2N

7 for each linkl ∈ E do
8 cl ←

⌊ cl

∆

⌋

+ 1

9 f ←IMPROVEFLOW(G, f0, D, k)

10 Decompose flowf into two paths,P̂1 and P̂2, such that
D(P̂1) ≤ D(P̂2)

11 return P̂1 and P̂2

Procedure BOUND (G(V, E), s, t, D)

1 let c1 < c2 < · · · < cr the distinct costs values of the
links.

2 low ← 1; high← r
3 while low < high− 1
4 j ← ⌊(high + low)/2⌋
5 E′ ← {l | cl ≤ cj}
6 find a minimum delay flowf betweens and t in

(G′(V, E′) such that|f | = 2
7 if D(f) > 2D then
8 high← j
9 else

10 low ← j

11 U ← 2N · chigh; L← chigh

12 return L, U

Fig. 5. Algorithm 2DP-3

A. Computing Lower and Upper Bounds,L and U

In this subsection we present Procedure BOUND (see Fig. 5), which identifies lower and upper boundsL,U on OPT 1 such
that U/L ≤ 2N . We use the technique presented in [17].

We denote byc1 < c2 < · · · < cr the distinct costs values of the links. Our goal is to find the maximum cost valuec∗ ∈ {ci}
such that the graphG′ derived fromG by omitting all links whose cost is greater thanc∗, does not contain afeasibleflow f ,
i.e., a flow with value|f | = 2 and with delayD(f) ≤ 2D. Clearly, a feasible flow contains at least one link whose cost is
c∗ or more, hencec∗ is a lower bound onOPT 1. In addition, there exists a feasible flow that comprises links whose cost is
c∗ or less. Since an optimal flowf includes at most two paths, it includes at most2N links. We conclude that2N · c∗ is an
upper bound onOPT 1.

Procedure BOUND performs a binary search on the valuesc1, c2, · · · , cr. At each iteration, we need to check whetherc ≤ c∗,
wherec is the current estimate ofc∗. For this purpose, we remove fromG all links whose cost is more thanc, and assign
the unit cost to the remaining links. Then, we find a minimum delay flow in the resulting graph. For this purpose we employ
the minimum cost disjoint path algorithm taken from [2], with respect to links delays. If this algorithm returns a feasible flow,
thenc ≥ c∗; otherwise,c < c∗. Procedure BOUND performsO(log N) iterations.

B. Analysis of Algorithm2DP-3

The following theorem establishes the correctness of Algorithm 2DP-3.
Theorem 6:Algorithm 2DP-3 computes, inO(log k·M ·N3

ε log(CD)) time, a(1 + 1
k , k(1 + γ)(1 + ε))-approximate solution

for Problem 2DP, whereγ ≤ 2(log k+1)
k .

Proof: Let fopt be an optimum solution to Problem MCF, i.e.,C(fopt) = OPT 1. Note thatfopt can be represented by
two disjoint (s, t)-paths. Indeed, iffopt contains a cycle, this cycle can be eliminated, resulting ina flow whose cost is less
than that offopt. We conclude thatfopt includes at most2N links. For each linkl ∈ G it holds that cl

∆ ≤ c′l ≤ cl

∆ + 1. Thus,
the cost offopt with respect to scaled link costs is at mostOPT ′

1 = OPT 1

∆ + 2N . By Theorem 5, Procedure IMPROVEFLOW

returns a flowf with delay D(f) ≤ 2D(1 + 1
k) and costC(f) ≤ (k + 2 log k + 1 + 1.5

N)OPT ′

1 = k(1 + γ)OPT ′

1, where
γ ≤ 2(log k+1)

k . The cost of flowf with respect to original link costs is

C(f) ≤ k(1 + γ)∆OPT ′

1 ≤ k(1 + γ)(OPT 1 + Lε)

≤ k(1 + γ)(1 + ε)OPT .

We proceed to analyze the computational complexity of Algorithm 2DP-3. We begin with Procedure BOUND. As discussed
above, the procedure executesO(log N) iterations of the main loop (i.e., the loop that begins at line 3 of the procedure). At
each iteration, the procedure invokes the minimum cost disjoint path algorithm [2], whose running time isO(M + N log N).
We conclude that the computational complexity of ProcedureBOUND is O((M + N log N) log N).

Since Procedure IMPROVEFLOW is invoked on the graph with scaled link costs, its computational complexity isO(MN ·
OPT ′

1 log(CD) log k). Since

OPT ′

1 ≤ OPT 1

∆
+ 2N ≤ 2N · U

εL
≤ 2N2

ε

the computational complexity of Algorithm 2DP-3 isO(log k·M ·N3

ε log(CD)).

VII. F URTHER IMPROVEMENTS

In this section we further improve the computational complexity of our solution. To that end we extend Algorithm 2DP-3,
by introducing the following changes. First, we modify Procedure IMPROVEFLOW, in order to ensure that its running time is
bounded by a certain value. Second, we introduce an additional procedure, referred to as Procedure IMPROVEBOUNDS, whose
purpose is to obtain tighter lower and upper bounds on the cost of the optimal solutionOPT 1 to Problem MCF.

More specifically, we add a new parameterÛ to Procedure IMPROVEFLOW in order to ensure that the cost of the returned
flow f is no more than2kÛ . With this modification, Procedure IMPROVEFLOW has the following properties.

Lemma 5:
1) If Û ≥ OPT 1, then Procedure IMPROVEFLOW returns a flowf with delayD(f) ≤ 2D(1 + 1

k).
2) If Procedure IMPROVEFLOW does not fail, it returns a flowf with delay D(f) ≤ 2D(1 + 1

k) and costC(f) ≤
min{2kÛ , (k + 2 log k + 1 + 1.5

N)OPT 1}.
3) The computational complexity of Procedure IMPROVEFLOW is O(MN · min{OPT 1, Û} log(CD) log k).

Proof: The proof follows the same lines as that of Theorem 5.
We proceed to describe Procedure IMPROVEBOUNDS. The procedure obtains upper and lower bounds,L andU , such that:
• L is a lower bound on the cost of an optimal solutionOPT 1 to Problem MCF, i.e., for each flow inG with delay

D(f) ≤ 2D, it holds thatC(f) ≥ L.
• U is an upper bound on the cost of a flow inG with delay D(f) ≤ 2D(1 + 1

k), i.e., for each flow inG with delay
D(f) ≤ 2D(1 + 1

k), it holds thatC(f) ≤ U .
Lower and upper boundsL and U for which it holds that U

L ≤ 2N can be obtained through Procedure BOUND. The
goal of Procedure IMPROVEFLOW is to improve these bounds such thatU

L ≤ 16k2. At each iteration we compare a test
value B =

√
L · U with the cost of the optimal solution and update the boundsL and U accordingly. More specifically,

we scale the link costs by a factor∆ = B
2N and invoke Procedure IMPROVEFLOW with Û = 4N on the graph with scaled

link costs. As we show in Lemma 6, if Procedure IMPROVEFLOW fails, thenOPT 1 > B, hence we setL = B. Otherwise,
Procedure IMPROVEFLOW returns a flow whose delay and cost are at most2D(1+ 1

k) and4kB, respectively, henceU ≤ 4kB.
Accordingly, in this case we setU = 4kB.

Note that, if the ratioU/L is equal tox at the beginning of an iteration, then at the end of the iteration we haveU
L ≤ 4k

√
x.

Thus, it can be shown that, afterO(log log N) iterations, the ratioU/L is at most16k2. We then use these tight upper and
lower bounds in order to efficiently find an approximate solution to Problem 2DP. The detailed description of the algorithm,
referred to as Algorithm 2DP-4, appears in Fig. 5.

A. Analysis of Algorithm2DP-4

Lemma 6:Procedure IMPROVEBOUNDS returns valid upper and lower boundsL andU .
Proof: We note that Procedure BOUND returns valid upper and lower boundsL andU . This follows from the fact that

the minimum cost of a flow whose delay is at most2D is lower than the minimum cost of a flow whose delay is at most
2D(1 + 1

k).
We show that the lower and upper bounds remain valid during the execution of the procedure. First, we prove that if

Procedure IMPROVEFLOW fails thenOPT 1 > B. By way of contradiction, suppose that this is not the case, i.e.,OPT 1 ≤ B.
Procedure IMPROVEFLOW is applied to the graph whose costs were scaled by factor of∆ = B

2N . In the resulting graph, the
costOPT ′

1 of the optimal solution to Problem MCF is at most2N ·OPT 1

B + 2N , which is less than4N . Thus, by Lemma 5,
part 1, Procedure IMPROVEFLOW returns a flowf with delayD(f) ≤ 2D(1+ 1

k), which contradicts the fact the the procedure
fails. Second, by Lemma 5, part 2, if Procedure IMPROVEFLOW does not fail, it returns a flowf whose cost with respect to
the scaled link costs is at most2kÛ and delay is at most2D(1 + 1

k). The cost of flowf with respect to the original costs is
at most2kÛ∆ = 4kB. In this case, the minimum cost of a flow with delay at most2D(1 + 1

k) is bounded by4kB, henceU
remains to be a valid upper bound.

Theorem 7:Algorithm 2DP-4 computes, inO
(

MN2k2 log k
ε log(CD)

)

time, a(1+ 1
k , k(1+γ)(1+ε))-approximate solution

for Problem 2DP, whereγ ≤ 2(log k+1)
k .

Algorithm 2DP-4 (G, s, t,D, k, ε)

1 (P1, P2)←2DP-1(G, s, t, D, 1
N

)

2 f0 ← {P1, P2}
3 if D(f0) ≤ 2D(1 + 1

k
) then

4 return P1 andP2

5 L, U ←BOUND(G, s, t, D)

6 L, U ←IMPROVEBOUNDS(G, s, t, f0, D, L, U)

7 ∆← Lε
2N

8 for each linkl ∈ E do
9 cl ←

⌊ cl

∆

⌋

+ 1

10 Û ←
⌊

U
∆

⌋

+ 2N + 1

11 f ←IMPROVEFLOW(G, f0, D, k, Û)

12 Decompose flowf into two paths,P̂1 and P̂2,
such thatD(P̂1) ≤ D(P̂2)

13 return P̂1 and P̂2

Procedure IMPROVEBOUNDS (G(V, E), s, t, f, D, L, U)

1 while U/L > 16k2 do
2 B ←

√
L · U

3 ∆← B
2N

4 for each linkl ∈ E do
5 cl ←

⌊ cl

∆

⌋

+ 1

6 Û ← 4N
7 f ←IMPROVEFLOW(G, f0, D, k, Û)
8 if Procedure IMPROVEFLOW returned FAILthen
9 L← B

10 else
11 U ← 4kB
12 return L, U

Procedure IMPROVEFLOW(G, f0, D, k, Û)

1 f ← f0

2 while C(f) ≤ 2kÛ do
3 G(f)← residual network ofG imposed byf

4 find a cycleW in G(f) that minimizesD(W)
C(W)

5 augment flowf alongW

6 if D(f) ≤ D(2 + 1
k
) then

7 return f
8 return FAIL

Fig. 6. Algorithm 2DP-4

Proof: As we proved in Lemma 6, Procedure IMPROVEBOUNDS returns valid lower and upper boundsL andU . Thus,
it can be shown that Algorithm 2DP-4 computes a(1 + 1

k , k(1 + γ)(1 + ε))-approximate solution for Problem 2DP, where
γ ≤ 2(log k+1)

k (The proof follows the same lines as the one for Theorem 6).
We proceed to analyze the computational complexity of the algorithm. As discussed above, Procedure IMPROVEBOUNDS

executesO(log log N) iterations of its main loop (i.e., the loop that begins in line 1). At each iteration we invoke Procedure IM-
PROVEFLOW, whose complexity isO(MN2 log(CD) log k). We conclude that the running time of Procedure IMPROVE-
BOUNDS is O(MN2 log log N log(CD) log k). By Lemma 5, the computational complexity of Procedure IMPROVEFLOW,
invoked at line 11 isO(MN · Û log(CD) log k). Since the procedure is invoked witĥU =

⌊

U
∆

⌋

+ 2N + 1 = O(k2N
ε), the

computational complexity of the procedure isO(MN2k2 log k
ε log(CD)). We assume that1ε ≥ log log N , hence the computational

complexity of the algorithm is dominated by the time incurred by invocation of Procedure IMPROVEFLOW in line 11, i.e.,
O(MN2k2 log k

ε log(CD)).

VIII. L OWER BOUND

In this section we prove that finding two disjoint paths that satisfy a given delay constraintD is an NP-hard problem.
Furthermore, we show that no polynomial algorithm can approximate this problem by a factorα such that1 ≤ α < 2. That
is, finding two disjoint paths such that the delay of each pathis at mostαD is an intractable problem for any1 ≤ α < 2.
Specifically, we show a reduction from the problem of finding two link disjoint paths in a directed network, one betweens1

and t1 and the other betweens2 and t2. This problem is known to byNP-hard [19].

s
 t

s

1

s

2

t

1

t

2

G

Fig. 7. Construction of auxiliary grapĥG

Our proof follows the same lines as the proof presented in [20] for a related problem. By way of contradiction, assume that
there exists an algorithm, say Algorithm A, which identifies, in polynomial time, two disjoint(s, t)-paths such that the delay
of each path is at mostαD. We show that this algorithm can find two disjoint paths between s1 and t1 and betweens2 and
t2 in a directed graphG. We build an auxiliary grapĥG formed fromG by adding two nodess and t and four links(s, s1),
(s, s2), (t1, t) and (t2, t). We assign delays to these four links as follows:d(s,s1) = d(t2,t) = 1 andd(s,s2) = d(t1,t) = 0. All
other links inĜ are assigned zero delay. Fig. 7 depicts the construction of an auxiliary graphĜ. By employing Algorithm A
(for D = 1) we can find two disjoint pathsP1 and P2 betweens and t such thatD(P1) ≤ α and D(P2) ≤ α. However, if
α < 2, then one of the paths must connects1 and t1 and the other must connects2 and t2. This contradicts the fact that the
problem of finding such two disjoint paths in a directed network is NP-hard.

IX. CONCLUSION

In this paper we investigated the fundamental problem of provisioning disjoint QoS paths. We presented a comprehensive
analysis of the problem, by using the framework ofnetwork flows. We showed that any polynomial algorithm for this problem
violates the delay constraint by at least a factor of 2. In addition, we indicated trade-offs between violation of the delay
constraint, cost and computational complexity.

More specifically, the major contribution of our study are four approximation algorithms for the considered problem. The
first algorithm is conceptually simple and has low computational complexity. This algorithm identifies a solution that violates
the delay constraint by factors of 1.5 and 3 for the primary and restoration paths, respectively. The second algorithm reduces
the delay violation at the expense of higher cost and computational complexity. The third and fourth algorithms, achieve
similar cost and delay ratios as the second, but have significantly lower computational complexity. In particular, the algorithms
compute, for any fixedε > 0 and integerk > 0 a solution that violates the delay constraint by factors of at most1 + 1

k and
2(1 + 1

k) for the primary and restoration paths, respectively, and whose cost is at mostk(1 + γ)(1 + ε) times more than the
optimum, whereγ is a small value bounded by2(log k+1)

k .
We have indications that our results can be extended to a broader class of network restoration and network design problems.

In particular, our methods, especially the cycle-cancellation approach, can be used in order to solveh-disjoint path problems
for any h > 2. In addition, the techniques established in the study can beused also in the domain oflocal restoration[21],
where a restoration topology comprises of a primary path andseveral bridges, each protecting a portion of the primary path.

REFERENCES

[1] E. Mannie and D. Papadimitriou (editors), “Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching
(GMPLS),” Internet draft, Internet Engineering Task Force, May 2003.

[2] J. Suurballe and R. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,”Networks, vol. 14, pp. 325–336, 1984.
[3] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing for the Next Generation High-Speed Networks: Problems and Solutions,”IEEE

Network, Special Issue on Transmission and Distribution ofDigital Video, vol. 12, no. 6, pp. 64–79, November/December 1998.
[4] F.A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “A Review of Constraint-Based Routing Algorithms,” inTechnical Report, Lausanne,

Switzerland, June 2002.
[5] K. Kar, M. Kodialam, and T. V. Lakshman, “Routing Restorable Bandwidth Guaranteed Connections using Maximum 2-Route Flows,” in Proceedings

of IEEE INFOCOM’2002, New York, NY, USA, June 2002.
[6] G. Li, D. Wang, C. Kalmanek, and R. Doverspike, “Efficient Distributed Path Selection for Shared Restoration Connections,” in Proceedings of IEEE

INFOCOM’2002, New York, NY, USA, June 2002.
[7] N. Taft-Plotkin, B. Bellur, and R.G. Ogier, “Quality-of-Service Routing Using Maximally Disjoint Paths,” inProceedings IEEE/IFIP IWQoS, London,

UK, June 1999.
[8] M.R. Garey and D.S. Johnson,Computers and Intractability, Freeman, San Francisco, CA, USA, 1979.
[9] J.P. Lang and B. Rajagopalan (editors), “Generalized MPLS Recovery Functional Specification,” Internet draft, Internet Engineering Task Force, January

2003.
[10] “Private Network-Network Interface Specification v1.0 (PNNI),” ATM Forum Technical Committee, March 1996.
[11] S. Blake, “An architecture for Differentiated Services,” RFC No. 2475, Internet Engineering Task Force, December 1998.
[12] A. Orda and A. Sprintson, “Precomputation Schemes for QoSRouting,” IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 578–591, August

2003.
[13] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of Multi-pathRouting,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 885–896, 1999.
[14] S. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc Networks,” inProceedings of the IEEE ICC’2001, 2001.

[15] F. Ergun, R. Sinha, and L. Zhang, “An Improved FPTAS for Restricted Shortest Path,”Information Processing Letters, vol. 83, no. 5, pp. 237–293,
September 2002.

[16] R. Hassin, “Approximation Schemes for the Restricted Shortest Path Problem,”Mathematics of Operations Research, vol. 17, no. 1, pp. 36–42, February
1992.

[17] D.H. Lorenz and D. Raz, “A Simple Efficient Approximation Scheme for the Restricted Shortest Path Problem,”Operations Research Letters, vol. 28,
no. 5, pp. 213–219, June 2001.

[18] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Networks Flows, Prentice-Hall, NJ, USA, 1993.
[19] S. Fortune, J. Hopcroft, and J. Wyllie, “The Directed Subgraph Homeomorphism Problem,”Theoretical Computer Science, vol. 10, no. 2, pp. 111–121,

1980.
[20] C.L. Li, T. McCormick, and D. Simchi-Levi, “The Complexityof Finding Two Disjoint Paths with Min-Max Objective Function,” Discrete Applied

Mathematics, vol. 26, pp. 105–115, 1990.
[21] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson, “Algorithms for Computing QoS Paths with Restoration,” in Proceedings of IEEE

INFOCOM’2003, San Francisco, CA, USA, April 2003.

