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Abstract

Networks are expected to meet a growing volume of requirements igyseew applications such as multimedia streaming
and video conferencing. Two essential requirements are suppQualifty of Service (QoS) and resilience to failures.

In order to satisfy these requirements, a common approach is to usedjaimtdpaths between the source and the destination
nodes, the first serving aspgimary path and the second agestorationpath. Such approach, referred topsgh restoration has
several advantages, the major one being the ability to switch promptly frenpath to another in the event of a failure. A major
issue in this context is how to identify two paths that satisfy the QoS constraiptssed by network applications. Since network
resources, e.g., bandwidth, are allocated along both primary ataiatsn paths, we need to consider also the overall network
performance. Accordingly, in this paper we study the fundamentail@no of finding two disjoint paths that satisfy the QoS
constraints at minimum cost. We present approximation algorithms withapleperformance guarantees for this fundamental
network problem.

Index Terms: Routing, Restoration, Disjoint Paths, Quality of Service

I. INTRODUCTION

Networks are expected to me@uality of Service(QoS) requirements imposed by new applications, such atimadia
streaming and video conferencing. This is facilitated byrext efforts to provide resource reservations and exppeath
routing, e.g.,MultiProtocol Label SwitchingMPLS). On the other hand, physical network infrastructungay be prone to
failures. Therefore, a major challenge in this context isléwelop adequate network mechanisms for establishingections
that satisfy QoS requirements and are also resilient tarisl It has been recognized that, for many practical gsttithe
speed and capacity of links do not allow to provision restorapathsafter the failure. Thus, the restoration paths must be
provisioned in advance, i.ebeforea failure occurs.

This goal can be achieved by provisioning two disjoint Qofhpdetween the source and destination nodes. This approach
is widely used because of its ability to switch promptly frame path to another in the event of a failure. The disjoinh pat
strategy has many additional advantages. First, it allmvsse various protection schemes, such as 1+1 protectionlor 1
protection [1]. With 1+1 protection, traffic is simultanesty transmitted on both paths, which allows instantaneegsvery
from link failures. Alternatively, with 1:1 protection, dffic is transmitted along arimary path, and, upon a failure of one
of its links, the traffic is switched to gestorationpath. Second, the disjoint path strategy requires minireélvark support,
because failure detection and restoration can be implerdeatt the application level of the source. Finally, the digjpath
strategy provides a greater flexibility to application desirs, as they can choose a protection scheme (e.g., 1+1)othht
is most adequate for each particular application.

To facilitate seamless recovery to a restoration path inetrent of a failure, it is necessary to reserve network ressur
(e.g., bandwidth) on both the primary and restoration pafugh resources should be consumed in a networkwide efficien
manner. A common way for modelling the impact of such reseaensumption on each link is by associating “costs” with the
links. Accordingly, a major problem is to find two disjointtha between source and destination nodes that satisfyoeadet
QoS constraints at minimum cost. This problem is the sulgéthis study.

QoS constraints occur naturally in a number of practicdlrgg, involving bandwidth and delay-sensitive applioas, such
as voice over IP, audio and video conferencing, multimettieaming, etc. QoS constraints can be divided ibtdtleneck
constraints, such as bandwidth, asdiditive constraints, such as delay or jitter. Bottleneck QoS cairgs can be efficiently
handled by pruning links that do not satisfy them. The pnwbls then effectively reduced to finding two disjoint paths of
minimum cost; this problem was extensively investigatedhim literature [2]. Accordingly, in this study we focus ondétve
QoS constraints, which are more difficult to handle.

QoS routing has been the subject of several recent studiepraposals (see [3], [4] for comprehensive surveys). Hawnev
the problem of finding two disjoint QoS paths got little atten. Similarly, path restoration and routing over altéenpaths has
also attracted a large body of research (see, e.g., [5], &)kt of the proposed solutions, however, considered ootildneck

1Part of this work was done while A. Sprintson was with the Depant of Electrical Enginnering, Technion.
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QoS constraints. The few studies that did consider addithrestraints (e.g., [7]), focused on heuristic approacimelsdid not
provide proven performance guarantees.

To the best of our knowledge, this is the first study to provédeolution with provable performance guarantees for this
fundamental network problem. The problem is cleaxf{P-hard since even the basic problem of finding a single optimat
that satisfies an additive QoS constraint is intractable F8fthermore, it turned out that a special case of our probigth
no cost minimization, i.e., finding two disjoint paths thabth) satisfy an additive QoS constraint, A§P-hard. Thus, any
practical scheme is necessarily sub-optimal and incurseesdatation of the QoS constraint. In this paper we presehitiems
that incur a small violation of the QoS constraint and whosst @uaranteed to be within a certain factor away from the
optimum.

Our paper makes the following contributions. First, weadtice theminimum constrained flow (MCR)roblem, which is
an elaborated variant of the minimum-cost flow problem, adte it to our problem. Specifically, we show that, by saivin
the MCF problem, we can obtain a solution to our disjointagaproblem with the smallest possible violation of the QoS
constraint. Second, this relation between our problem atdark flow problems allows to employ methods and techniques
from the theory of network flows, such asth augmentatiomnd cycle-cancellationWhile the path augmentation method is
widely used for finding disjoint paths, our study is the figtenhance it with theycle-cancellatiormethod, thus improving
the performance of our disjoint QoS paths algorithms. Third investigate the fundamental trade-offs between theafdate
identified solution, the violation of the QoS constraint @inel computational complexity of the algorithm. Finally, yeesent a
family of algorithms that allows to find a solution that is gdate for any particular setting, such as a solution withimmim
violation of the QoS constraint, minimum cost, etc.

Due to the fundamental nature of the considered problemresuits can be used in a variety of practical applications. F
example, in MPLS networks, there is a requirement to prdtabel Switched Paths (LSHJ]. Accordingly, our methods can
be used for identification of disjoint LSPs that satisfy Qa®straints. In ATM networks, alternate paths can be useah @po
crankback[10]. In the Differential Services framework [11],andwidth broketis responsible for establishing suitable paths
that satisfy service level agreements (SLA). Here too, ddsirable to compute several disjoint QoS paths in ordeadiitate
failure resilience and prevent congestion.

We note that disjoint paths can be used for other purposgsnbepath protection. First, sending data on disjoint paths
improves network utilization and reduces congestion. tt, feending data on diverse paths is a major tool of trafficresgging.
Second, routers may use a precomputation approach in ardeptove response time [12]. The key idea is to compute séver
QoS paths in advance and store them in a database. Uponl afrsv@onnection request, a suitable path is selected thraug
simple, fast procedure. Since network topology can chapggsomputing disjoint paths increases the probability &tdeast
one path is valid. Finally, disjoint QoS paths can be usedhéndontext ofmultipath routing With multipath routing, traffic
is sent along multiple paths in order to increase bandwidththe probability of delivery. Multipath routing can be fidan
wired [13] and wireless (Ad hoc) Networks [14].

The remainder of the paper is organized as follows. In Sedtjove present the network model and formulate the problems
considered in this paper. In Section Ill, we present basitcepts of network flows and establish a relation between the
considered problem and network flow problems. In Sectionw¥ present a simple approximation algorithm for our problem
In Section V, we present a cycle-cancellation approach hod siow to use it in order to minimize delay violation. In Sens
VI and VII, we show how to improve the computational compigxdf that scheme. In Section VIII, we establish a lower
bound for the problem. Finally, conclusions are presente8dction IX.

Il. MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and the madblpm addressed in this paper. For simplicity of exposition
we use the terndelay requirement order to generically refer tadditive QoS constraints

A. The Network Model

We represent thaetworkby a directed grapld(V, E), whereV is the set of nodes an# is the set of links. We denote by
N and M the number of network nodes and links, respectively, Me= |V| and M = |E|. An (s, t)-pathis a finite sequence
of distinct nodesP = (s = vg,v1,- -+ ,t = vy,), such that, fol0 <i <n —1, (v;,v;41) € E. Here,n = |P| is thehop count
of P. The subpath of” that extends from; to v; is denoted byP,, ,,)- A cycleis a path whose source and destination
nodes are identical.

Each link! € FE offers a delay guarante¢. The delayD(P) of a path P is the sum of the delays of its links, i.e.,
D(P) = 3,cpdi. In order to satisfy QoS constraints, certain resourceb sscbandwidth and buffer space must be reserved
along QoS paths. In order to optimize the global resourdizafiion, we need to identify QoS paths that consume as few
network resources as possible. Accordingly, we associdéte each link! a nonnegative cost;, which estimates the quality
of the link in terms of resource utilization. The link cost yndepend on various factors, e.g., the link's available badth
and its location. The cogt'(P) of a pathP is defined to be the sum of the costs of its links, i@&) = > ;. p ¢;. We shall
assume that all parameters (both delay guaranties and ewstpositive integers.



[ Alg. ] Approx. Ratio | Complexity |

2DP-1 (1.5,1.5(1 + ¢)) O(MN(L +loglog N))
2DP-2 1+ £, k(L+7) O(MN - OPTlogk - log(CD))
2DP-3 | (14 L, k(1 +7)(1+¢) O(MN2 16g(C'D))
20P-4 | 1+ L k1491 +29) |  oME sk 1500 D))

TABLE |
PERFORMANCE CHARACTERISTICS OF PRESENTED ALGORITHMS

B. QoS paths

A fundamental problem in QoS routing is to identify a minimwost path between a soureseand a destinationt that
satisfies some delay and bandwidth constraints. Bottle@ek constraints, such as bandwidth, can be efficiently lednioly
simply pruning links that do not satisfy the QoS constradlifitus, in the rest of the paper, we only consider delay (idditixe)
constraints. Accordingly, the fundamental problem is ta fnminimum cost path that satisfies a given delay constrahis
can be formulated as Restricted Shortest Patbroblem.

Problem RSP (Restricted Shortest Patiiven a source node, a destination node¢ and a delay constrainb, find an
(s,t)-path P such that

1) D(P) < D, and

2) C(P) < C(P) for any other(s, t)-path P that satisfiesD(P) < D.

In general, Problem RSP is intractable, i.&/P-hard [8]. However, there exist pseudo-polynomial sohsiowhich give rise
to fully polynomial approximation schenfe@PAS), whose computational complexity is reasonable [E8j[17]). The most
efficient scheme, presented in [17], has a computationalptedty of O(MN(% + loglog N)), and computes a path with

delay of at mostD and cost of at mostl + ¢) times the optimum. We shall refer to that scheme as AlgoritRgP.

C. Problem Statement

We are now ready to formulate the problem that we considehisgtudy. The first problem seeks to identify two disjoint
QoS paths of minimum total cost.

Problem 2DP (2-Restricted Link Disjoint Pathsiven a source node, a destination nodé and a QoS requiremen?,
find two link-disjoint (s, ¢)-paths P, and P, such that:

1) D(P1) < D andD(P,) < D;

2) C(Py) 4 C(Py) < C(P,) + C(Py) for every other pair of link-disjoints, t)-paths P, and P, that satisfyD(P,) < D

andD(P,) < D.

We denote byOPT the cost of an optimal solution to Problem 2DP {@¥, s, ¢, D).

Problem 2DP includes Problem RSP as a special case; heise&/R-hard. In addition, as discussed below (in Section VIil),
it is intractable to find a solution that does not violate tledagl constraint of at least one of the paths. Furthermorejast
cases, we cannot provide an efficient solution without vietpthe delay constraint in both primary and restoratiothpa
Accordingly, we introduce the following definition of«, 3)-approximations

Definition 1 («, 3)-approximation) Given an instancéG, s, t, D) of Problem 2DP, afa, 3)-approximate solutioP;, P»)
to Problem 2DP is a solution for which:

1) D(Py)+ D(P2) < 2aD;

2) the total cost of two paths is at mgsttimes more than that of the optimal solution, i.€(P;) + C(P2) < SOPT.

In general, the path with minimum delay amoiy and P, serves as a primary path. Thus, the primary and restoration
paths violate the delay constraint by factors of at me& and «, respectively, i.e.D(P;) < aD and D(P,) < 2aD.

D. Our results

We introduce four approximation algorithms for Problem 20Bble | shows the approximation ratio achieved by each
algorithm and its complexity.

The parameters and k capture the trade-off between the violation of the delaystraimt, the cost of the approximation
and the computational complexity of the algorithms. Fornegke, Algorithm 2DP-2 achieves an approximation ratio of
1+ %,k(l + 7)) for a positive integerk, where~ is a small value bounded b%%. Thus, choosing:c = 4 yields a
(2.25,5.5)-approximation solution to Problem 2DP. In general, smalldues ofk yield solutions with lower delay violation
at the expense of higher costs and running times.

2A Fully Polynomial Approximation schenfEPAS) provides a solution whose cost is at mdst- ) times more than the optimum with a time complexity
that is polynomial in the size of the input ande.



Algorithm 2DP-4 is the main contribution of this paper. THgagithm achieves, for fixed > 0 and any integek > 0,
the apprOX|mat|on ratio 0(1 + £, k(1 4+7)(1+¢)), i.e, the primary and restoration paths violate the delaystraint by a
factor of (1 + ¢ ) and2(1+ ¢ ) respectively. Thus, the violation of delay by the primasatipcan be minimized by choosing
sufficiently Iarge values ok.

Ill. PRELIMINARIES: NETWORK FLOWS

In order to establish an efficient solution to Problem 2DP, emeploy ideas and techniques from the theory of network
flows. The solution to our problem, that is two disjoint patban be conveniently represented aoav. Accordingly, in this
section we briefly present the concept of network flow. A cazhpnsive survey on the theory of network flows can be found
in [18].

We consider flow networks in which each link is associatechveitnonnegativecapacity. We assume that for any pair
of nodesu andw, the flow network does not contain two links in opposite digts (v,u) and (u,v)). We note that this
assumption does not impose any loss of generality, becauseshitable transformation we can always define a network tha
is equivalent to any given network but satisfies the aboverapton: the transformation splits each nadento two nodes’
andv” corresponding to node output and input links, and replaeel eriginal link (v, «) by a link (v’, ") with the same
capacity, cost and delay; it also adds a lipk', v") of zero cost and delay and infinite capacity to each nade

We proceed to introduce the fundamental conceptetfvork flowsWe restrict ourselves tonary flowsi.e., flows that take
the value of 0 or 1 in each of the links.

Definition 2 (Unary Flow) A unary (s,t)-flow f is a binary functionf : £ — {0,1} that satisfies the following two
properties:

1) For alll = (u,v) € E, it holds thatf; € {0,1};

2) For allv € V'\ {s,t}, it holds that

Z f(w v) — Z f(u w)+

w:(w,v)EE w:(v,w)eEER
For clarity, we say that each linke G for which f; = 1 beIongsto the flow f and thatf includesall links for which

fi=1

Definition 2 uses thdink representation, i.e., the flow is described by means of atihm@ssociated with each link of
the network. Alternatively, a unary flow can also be represérby a set of path® = {P;,---, P} and cyclesW =
{W1,---,W,}, such that exactly one unit of flow is sent along each path amtkcWe refer to this representation as a
path and cyclerepresentation. Note that givenpath and cyclerepresentation of a flovyf, it is easy to determine the link
representation: the flow; on each linki that belongs to a path i or to a cycle inW is 1, while the flow on any other
link is 0. Similarly, given a link representatiofi of a flow, we can determine its path and cycle representatjonsing the
flow decomposition algorithm [18].

The value of a flow f is defined as follows:

|f‘ = Z f(s,v) (1)

vi(s,v)EE

A flow of zero value contains only cycles and no paths. Suchwa ifforeferred to as airculation.
The costC(f) of a flow f is defined as follows:

C(f) = Z Clu,v) * f(u,v) (2)
(u,v)EE
We introduce the notion of thdelay D(f) of flow f.
Z d(u,v) . f(u,'u) (3)
(u,v)EE

Note that a flowf with |f| = 2 can be decomposed into two disjoint paths whose total deldycast is at mosD(f) and
C(f), respectively. Thus, our goal is to find a flow whose delay avst are no more thadaD and SO PT, respectively.

A. Minimum Constrained Flow Problem

We proceed to introduce thminimum constrained flofMCF) problem. The problem seeks a minimum cpstt)-flow f
such that|f| = 2 and D(f) < D, whereD is a given delay constraint.

Problem MCF (Minimum Constrained Flow Problem(iven a graph, a source node, a destination node and a delay
requirementD, find an (s, t)-flow f such that:

D [fl=2

2) D(f) <2D;

3) C(f) < C(f) for any other flow/ that satisfiesf| = 2 and D(f) < 2D.



The cost of an optimal solution to Problem MCF {@¥, s, t, D) is denoted byD PT';. Note that Problem MCF is a relaxation
of Problem 2DP. In particular, instead of imposing a delagst@int for each of the two paths, Problem MCF requires that
the total delay of two paths be no more thab. Thus, if (P, P,) is a feasible solution to Problem 2DP, then the flow
f ={P1, P} is a feasible solution to Problem MCF. We conclude that th& ob the optimal solution to Problem MCF is
lower than that of Problem 2DP, i.eQPT; < OPT.

IV. SIMPLE APPROXIMATION ALGORITHM

In this section we present our first approximation algoritwhich achieves an approximation ratio (@f5,1.5(1+¢)). The
computational complexity of the algorithm @(MN(% +loglog N)), which is identical to that of the approximation scheme
for Problem RSP [17].

The idea of the algorithm is to identify a suitable flofvbetweens andt such that|f| = 2 and then decompose it into
two disjoint pathsP, and P». The algorithm employs thpath augmentation approadii8], which is a standard approach for
network flow and disjoint path problems.

The first step of the algorithm is to compute a p&thbetween the source node and destination nedasdt that satisfies
the delay constrainD. The pathP; is constructed by applying Algorithm RSP 06, s, ¢, D,<). This path defines a flow
f ={P1} whose value is one unit.

The next step is to augment this flow in order to increase itisevep 2. To that end, we construct@sidual networkG( f)
imposed by the flowf. Intuitively, the residual network consists of links thatncadmit more flow.

Definition 3 (Residual Network) Given a networkG with unit capacities and flowf, the residual networkG(f) is
constructed as follows. For each lik,v) € G for which f(, .,y = 0, we add toG(f) a link (u,v) of the same delay
and cost as irG. For each link(u,v) € G for which f(, ., = 1, we add toG(f) areverselink (v, u) to G(f) of zero cost
and zero delay.

A flow f in the residual network(f) is referred to as aaugmenting flowHaving identified the flowf, we canaugment
the flow f along the flowf by performing the following steps:

1) Omit from f each link(v, u) whose reverse linKu, v) appears inf.

2) Add to f each link(v,u) € f whose reverse linku, v) does not appear iff.

With the augmentation paths approach, the flfvis augmented along flows that consist of a singlgymenting pathin
particular, our algorithm identifies an augmenting pa&thin G(f) that satisfies a delay constraint 2D. To that end, we
apply Algorithm RSP forG(f), s,t,2D, ). Then, we augment the floy along the path?. For each linki that belongs to
P, if f; =0 we setf; = 1, otherwise we sef; = 0. The value of the resulted floy is 2.

The final step is to decompose the flgiinto two pathsP, and P, such thatD(P,) < D(P;). For this purpose we employ
the following flow decomposition algorithm. We start at tleuce nodes and select a linKs, v) for which f, ,y = 1. If v
is a destination node, we stop; otherwise, there must beka(dinu) for which f, ) = 1. This process is repeated until we
either encounter a destination noder revisit a previously examined node. In the former case ltaip an(s, ¢)-path P and
in the latter case we obtain a cyd&. If we obtain a directed patl?, we redefinef; = 0 for each linki in P. Similarly, if
we obtain a cycldV, we redefinef; = 0 for each linki in . We repeat this process till we discover two paths between
andt.

The detailed description of the approximation algoritheferred to as 2DP-1, appears in Fig. 1.

The correctness of our algorithm is based on the followimgnte.

Lemma 1:Let G(f) be the residual network aff imposed byf = {P;}. Then, there exists a pat, € G(f) such that
D(P}) < 2D andC(Py) < OPT.

Proof: Let G C G be a network imposed by links that belong B§"*, Py*" and P;. Let G(f) be the residual network
of G imposed by the flowf = {P;}. Clearly, G(f) C G(f). We prove that there exists a paftj € G(f) that satisfies the
conditions of the lemma.

By way of contradiction, assume that such a path does not. &ign, by thePath Augmentation Theoreft8], the flow
f = {P.} is a maximum flow in;. However, there exists a floy = {P**, PS*"} of higher value, resulting in a contradiction.

Note that pathP; includes only links that belong t&*, Ps** as well as links originated fron®,, whose delay and cost
are zero. As a resuli)(P}) < D(P{™") + D(Ps*") < 2D andC(P}) < C(P{*") + C(P5™") < OPT.

SinceG(f) C G(f), it holds thatP; € G(f) and the lemma follows. [ |
Let (G, s,t, D) be an instance of Problem 2DP and (&**, Py*") be an optimal solution for this instance, i.&(P/*") <
D, D(PyP") < D and C(P{™") + C(Ps*") = OPT (see Fig. 2(a)). Note that the path computed in Step 1 might share

links with the optimal paths (see Fig. 2(b)). We note alsd tha

C(P1) < (1 +¢) min{C(P{"), C(Py™)} <

OPT
<(1+e¢) 5




Algorithm 2DP-1(G, s,t, D, ¢)

input:
G - the graph
s- source node
t -destination node
D- the delay constraint
e- the approximation ratio

output:
(P1, P»)- An approximate solution to Problem 2DP.

1 Identify pathP; in G such thatD(P;) < D by using
Algorithm RSP
2 f—A{P}
3 Construct the residual network(f) of G imposed byf:
4 Add to G(f) each link inG that does not belong t&;
5 for each link(u,v) € P do
6 Add a link (v, u) to G(f) with
d(vﬂw =0 and Clv,u) = 0
7 ldentify pathP, in G(f) such thatD(P;) < 2D
by using Algorithm RSP
8 Augment flowf along pathP»:

9 for each linki(u,v) € P> do
10 if f(v,u) = 0 then

11 f(v,u) —1

12 else

13 f(v,u) —0

14 Decompose flowf into two paths,P; and P,
such thatD(P;) < D(P)
15 return Py and P,
Fig. 1. Algorithm 2DP-1

Fig. 2(c) depicts the residual gragh(f) imposed by the flowf = {P;}. Each residual link € G(f) is assigned zero delay.
By Lemma 1, there exists a pat®, € G(f) betweens andt¢ whose delay is at motD and whose cost is at mo&1PT
(see Fig. 2(d)). Thus, Algorithm RSP, invoked f@(f), s, t,2D), returns a pathP, whose cost is at mostl + ¢) - OPT
(see Fig. 2(e)). We conclude that:

D(Py) + D(P,) < 3D

and
C(P)+C(P) <1.5(14+¢)OPT.

PathsP; and P, include links that belong t@; and P, excluding links that were assigned zero cost and delayRigpe(f)).
Hence,

D(Py) + D(Py) < D(Py) + D(Py) < 3D

and
C(P)) + C(Py) < C(P) + C(Py) < 1.5(1 +¢)OPT.

Choosing the minimum delay path amofgand P, as a primary path, results in(&.5,1.5(1+¢)) approximation algorithm
for Problem 2DP. The algorithm invokes Algorithm RSP twikence its computational complexity(&(MN(é +loglog N)).

We summarize our discussion by the following theorem.

Theorem 1:Algorithm 2DP-1 computes, ifO(MN (L1 + loglog N)) time, a (1.5,1.5(1 + ¢))-approximate solution for
Problem 2DP.

V. MINIMIZING THE DELAY VIOLATION

In the previous section we presented Algorithm 2DP-1 thavigies a(1.5, 1.5(1+¢)) approximate solution for Problem 2DP.
Fig. 3(a) demonstrates an instari€e s, ¢, D) of Problem 2DP, for which algorithm 2DP-1 has the worst-adelay violation,
i.e., o = 1.5. For D = 2, the optimal solution is?™" = {s,v1,vy,t} and Py*" = {s, vs,v4,t} (See Fig. 3(b)). The cogd PT
of the optimal solution i2. We now apply 2DP-1 to the instan€€, s, ¢, D). The algorithm select®; = {s, v1, va, v3,v4,t}
because it is the minimum cost path among all path& ithat satisfy the delay constraint 2 (see Fig. 3(c)). Fig) 8igbicts
the residual networlG(f) of G imposed by flowf = {P,}. The only path betweer and¢ in G(f) is P> = {s,vs, va,t},
with delay 4 and cost 0. The algorithm returns the pafhs= {s,v1,v9,t} and Py = {s,v3,v4,t}, as depicted in Fig. 3(e).
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Fig. 2. Execution of Algorithm 2DP-1(a) An optimal soluti(ﬁtprt,P;pt) to Problem 2DP (b) Patt; (c) Residual networlG(f) of G imposed by
flow f = {P1} (d) PathPj (e) PathP, (f) PathsP; and Ps.

Note thatD(P,) = D(P,) = 3. Thus, we conclude that the path augmentation strategye alannot achieve a delay ratia)
better than 1.5.

The basic idea of the algorithm is to find cycles with negatieéays and to augment floy along these cycles. This allows
to reduce the delay of the solution and achieve a smalleydatio. For example, Fig. 3(f) shows the residual netwéi(yf)
of G imposed by the flowf = {P;, P,}, constructed fronti by substituting each link(u, v) € f by a link (v, ) and setting
dy = —d; and ¢, = 0. The residual networks(f) contains two negative delay cycles: the first cycle is forrhgdwo links
betweens andwvy, while the second cycle is formed by two links betwegrand¢. Each cycle has delay1 and costl. Thus,
if we augment the flow along each of these cycles, the totalydef the flow is improved by-1 at costl. By identifying two
cycles, we find a flow whose delay and cost &rand2. This flow can be decomposed into two paths whose total dslay i
most4, achieving the approximation ratio ¢2, 1).

Algorithm 2DP-2 gets as input the network, the source and destination nodesand ¢, a delay constraintD and
approximation parametér. The algorithm includes the following steps. First, we ikedlgorithm 2DP-1 for(G, s, t, D, %),
which identifies two path$” and P,. These paths impose a floff’ = {P;, P>}. If D(f°) <2D(1 + 1), then the algorithm
halts and returns path3, and P,. Otherwise, we identify a negative delay cycle in the residpaphG(f,) of fy and augment
flow fo along this cycle. We repeat this process until the dely) of the resulted flowf is lower or equal t@D(1 + ;).
Finally, we decompose the floy into two disjoint paths?; and P,.

More specifically, we introduce the following ProcedungPROVEFLOW. The procedure gets as input flofi and an
approximation parameter. We begin by settingf = f° and constructing the residual graph f) of G imposed by flowf.
The residual graph is constructed according to Definitiowi8 the following exception: the delay of a reverse ik u)
is set to—d(,,.), Where (u,v) is the link in the original network that corresponds (ta ). Next, we find a cyclelV in
G(f) that minimizes the delay/cost ratio, i.e., the cycle formbh% is minimal among all cycles id7(f). Such a cycle
is determined by using theminimum cost-to-time ratio cycle algorltglrpresented in [18]. Next, we augment flofvalong
W. This process (i.e., finding cycles and circulation augragon) terminates when the deldy(f) of f is lower or equal to
2D(1 + ). Finally, flow f is decomposed into two path®; and P,, such thatD(P,) < D(P,). The formal description of
Algonthm 2DP-2 appears in Fig. 4.

The following theorem establishes the main properties gfofithm 2DP-2. Its proof appears in the next section.

Theorem 2:Algorithm 2DP-2 computes, i@ (M N - OPT log klog(CD)) time, a(1 + +, k(1 +~)) approximate solution

for Problem 2DP, where < 2008F+1)

A. Analysis of Algorithn2DP-2

In this section we analyze the performance of Algorithm 2D Rnd establish its computational complexity. We use the
following variant of theAugmenting Cycle Theorertaken from [18].

Theorem 3:(Augmenting Cycle Theorem, [18]) Let f and f° be any two feasible network flows such tHgf| = |f|.
Then, f equalsf? plus the circulationf in G(f). Furthermore,D(f) = D(f°) + D(f).



opt

Fig. 3. Execution of Algorithm 2DP-1. Associated with eaatklare its delay and cost. (a) The original network (b) Théroal solution pathsP;
{s,v1,v2,t} and P(’pt = {s,v3,v4,t} (c) PathP; = {s,v1,v2,v3,v4,t} (d) The residual network induced by floy (e) PathsP; and P returned by
Algorithm 2DP-1 (f) The residual networ&(f) of G imposed by the flowf = {P1, P>}.

Proof: The proof follows the same lines as in [18], substituting ¢bstc; andC(f) by d; and D(f) for each linkl and
each flowf, respectively. |
Recall thatO PT is the cost of an optimal solution to Problem MCF. We prove thare exists a circulationf in G(f°)
such thatD(f) < —(D(f) — 2D), O(f) < OPT}.
Lemma 2:Let f be an(s,t)-flow in G such that|f| = 2 and D(f) > 2D, and letG(f) be the residual network aff
imposed byf. Then, there exists a circulatighin G(f), such thatD(f) < —(D(f) — 2D), C(f) < OPT}.

Proof: Let f* be the optimal solution to Problem MCF. Note tHaff*) < 2D. Let G be a subgraph of; that includes
only links ! for which hold eitherf, = 1 or f/ = 1. By Theorem 3, there exists a circulatignin the residual grapkf;(f)
of G imposed byf such thatD(f*) = D(f) +D(f) Since D(f*) < 2D, we haveD(f) <2D - D(f)=—(D(f) —2D).
We observe that all links with positive cost G\( f) belong tof*. Thus, the cost of is at mostOPT;. We also observe that

G(f) € G(f). Thus, f belongs toG(f) and the lemma follows. B B |
Lemma 2 implies that there exists a circulatifrin G(f) such thatD(f) < —(D(f) —2D) andC(f) < OPT. Since
the delayD(f) of circulation f is negative, it holds th ) < O;{F) < —D(OJ‘}D}QD. As circulation f includes a number of

cycles, there must be a cycl& e f for which it holds thatD(VVg) < (B 2D)

Corollary 1: Let f be an(s,t)-flow in G such that|f| = 2 and D(J) > 2D and letG(f) be the residual network aff
imposed byf. Then, there exists a cyc in G(f) for which it holds thathwg < —BUL2D),
Proof: By Lemma 2, there exists a circulatighin G(f), such thatD(f) < —(D(f) — 2D) andC(f) < OPT;. Such

a circulation is a set of cycles and the average r% for the cycles in this set i (Jf;) < —PU2D "Hence, there exists

at least one cycle such th@% < -byzb [
In the next lemma we prove that the cost of each negative dslele identified by ProcedurevPROVEFLOW is at leastl
and at mos{(2k + 1)OPT}.
Lemma 3:Let W be a cycle identified in the line 7 of ProcedumPlRovEFLOW. Then, it holds thatl < C(W) <
(k+ 1)OPT}.

Proof: Let W be an augmenting cycle i@ (f). It is easy to verify that flowf contains no cycles, i.ej includes two
disjoint (s, t)-paths. It follows that any cycle i7(f) must include at least one link that does not belond t&ince all links
in W have non-negative cost, it follows that the total costiofis at least 1.

We proceed to prove that(W) < (2k + 1)OPT;. By Corollary 12%; < —P2U2P henceC(W) < % We
note thatD(W) > —D(f), otherwise augmentation ¢f by W would result in an(s, t) -flow in G whose delay is negative,




Algorithm 2DP-2 (G, s, t, D, k)

1 (P, Pp) «2DP-1G,s,t,D, )

2 fo — {Pl, PQ};

3 if D(f°) < 2D(1+ 1) then

4 return P; and P>

5 f «IMPROVEFLOW(G, f9, D, k)

6 Decompose flowf into two paths,P; and P, such that
D(Py) < D(B,)

7 return P, and P,

Procedure MPROVEFLOW(G, f°, D, k)
1 fef0

2 while D(f) > 2D(1+ £) do
3 Construct the residual network(f) of G

imposed byf:
4 Add to G(f) each linkl in G for which f; =0
5 for each link(w, v) in G for which f, ., = 1 do
6 Add a link (v, u) to G(f) with

d(v,u) = —d(u v) and Clv,u) = 0

7 Find a cycleW in G(f) that m|n|m|zengW))
8 Augment flow f along W
9 return f

Fig. 4. Algorithm 2DP-2

which contradicts the fact that all links i@ have positive delay. Thus, it follows that(W) < DD({;QZQ < 175)5/%@)-

Since D(f) > 2D(1 + 1), we haveC(W) < % = (k+1)OPT}. [

Lemma 4:Let f be a flow inG, G(f) be the residual network af imposed byf. Let W be a cycle inG(f) and f’ be a
flow resulting from augmenting alongW. Then, D(f’) = D(f) + D(W) andC(f’) < C(f) + C(W).

Proof: Each link with positive delay iV is added tof. For each linkl in T/ with negative delayl;, we delete fromf

a link whose delay isd,;|. Hence,D(f') = D(f) + D(W). Since flow f" includes links fromf and W and since each link
in W has positive cost, it follows that'(f’) < C(f) + C(W). [ |

Lemma 4 implies that an augmentation of a fl¢vby a cyclelV decreases the deldy(f) of f by |[D(W)| (sinceD(W) is
negative) and increases its cost @y1V). In the following, we prove that the number of iterations aee in order to achieve
D(f) < D(2+ 1) is at most20PT log k.

Our prove uses th&eometric Improvement Approackn particular, we use the following theorem, taken from][18
Theorem 4:Suppose that an algorithm A iteratively minimizes some @alisuch thatz° is the initial value ofz, 2* is
the value ofz at thei-th iteration andz* the minimum objective function value. Furthermore, sugptist the algorithm A

guarantees that, for every iteration
2= 2 > (2 = 2% 4)

for some constan{ with 0 < ¢ < 1. Then, W|th|n2/§ consecutive iterations, it holds that< z* + =% ‘Z . Furthermore, the

algorithm A terminates after at mo%ﬂu iterations.
Proof: See [18]. |
Theorem 5:Procedure MPROVEFLOW returns a flowf with delay D(f) < 2D(1+ 1) and costC(f) < (k+2logk+1+
L2)OPT,. The computational complexity of ProcedunePRovEFLOW is O(M N - OPT1 log(CD)log k).

Proof: Consider the main loop of ProcedureHROVEFLOW, i.e., the loop that begins at line 2. We denote foythe
state of flowf at the beginning of iteratiofn (at line 7). Further, we denote B¥; the cycle that has been identified at iteration
i and byC; the cost ofiV, i.e., C; = C(W;).

First, we prove that the procedure stops Wlt%lg— iterations, i.e., at some iteratigh < 201‘1;??7’,“ it holds thatD(f;) <
2D(1 + ) By Lemma 3, at each iteratiohwe identify a cyclelW; whose cost is at least Corollary 1 implies that the

delay of the cycle is at least ‘20-2P) Thus, by Lemma 4, the delay of floyvis reduced by at least®-22) at each

iteration. By Theorem 4, after at mo%i;% iterations, it holds thaD(f) < 2D + w <2D(1+ 4).

Second, we prove that the procedure returns a ffowhose cost is at most(f°) + (2k + 2logk + 2.5)OPT};. Let j be
the last iteration of the procedure. We show that the totat ob all cycles identified in the firsf — 1 iterations is at most
2log kOPT:. We assume, by way of contradiction, t@ﬂ C(W;) > 2log kOPT;. We consider two cases. In the first case

all cyclesWy,--- ,W;_; have cost of exactly. Then, at each iteration, the delay of flogfvdecreases by at Iea@t(of}sz

Thus, by Theorem 4, aftgr—1 iterations, the delay of floy is at mosQD+M < 2D(1+%), which contradicts the fact




thatj — 1 is not a last iteration. The last inequality follows from taet that D(f°) < 3D (by Theorem 1). Now we consider
the second case, in which the cost a eichmay be more than 1. In this case, at iteratipthe delay of flowf decreases
by at Ieastgl%C(W) We note that augmenting of floy along cyclelV; is equivalent to augmenting it along'(W;)|

cycles of costl and delay=54—2P) Thus, if 277} C(W;) > 2log kOPT1, then cyclesiVs, -+, W, can be substituted
by 2log kOPT; cycles of cost 1. This implies that after iteratign- 1 we haveD(f;_1) < 2D(1+ ), and again we have a
contradiction. By Lemma 3, the cost of the cy#l§ identified at the last iteration is at magt+ 1)OPT1. Thus, the total cost
of flow f returned by ProcedurevPROVEFLOW is at most(k + 1+ 2log k)OPT: + C(f°) < (k+2logk + 1+ X2)OPT}.

Finally, we analyze the computational complexity of PragediMPROVEFLOW. We proved that the procedure performs at
most 2log kO PT iterations. The running time of each iteration is domindbgdthe time required to identify a cycle that
minimizes gEVVg; Such a cycle is identified by invoking thminimum cost-to-time ratio cycle algorithfd8], which incurs
O(MN log(CD)) time. We conclude that the computational complexity of thecpdure isSO(M N - OPT log klog(CD)).

|

We are ready now to prove Theorem 2.

Theorem 2:Algorithm 2DP-2 computes, i®(MN - OPT log klog(CD)) time, a(1+ , k(1 +~)) approximate solution for
Problem 2DP, where < 2Ucgk+l),

Proof: The computational complexity of Algorithm 2DP-2 is domiegtby the time required to identify patt#y and P,
in (line 1) and the running time of ProceduneAROVEFLOW. By Theorem 1 The computational complexity of Algorithm 2DP
1is O(MN?) (by Theorem 1). By Theorem 5, ProcedurgROVEFLOW requiresO(M N log k-OPT; log(C D)) time. Since
N < OPT andOPT; < OPT, the computational complexity of Algorithm 2DP-2 (@(MN -OPTlogk -log(CD)).

By Theorem 5, ProcedurevPROVEFLOW returns a flows with delay D(f) < 2D(1+ 1) and costC(f) < (k +2log k +
1+ X2)OPT; < k(1 +v)OPT, wherey < 2185+ 'we conclude that Algorithm 2DP 2 computegla+ £, k(1 + 7))
approximate solution for Problem 2DP.

|

VI. MINIMIZING THE COMPUTATIONAL COMPLEXITY

While Algorithm 2DP-2 provides a good approximate solutionProblem 2DP, its computational complexity is proporéibn
to the costOPT of the optimal solution. The algorithm can be used in settimywhich the cost of each link is a relatively
small value. However, for settings with high cost values,dbomputational complexity may be prohibitive. Accordingh
this section we present Algorithm 2DP-3 whose computationmplexity does not depend on the values of links costs. The
algorithm uses the same ideas as Algorithm 2DP-2 and, irtiaddemploys theost scalingapproach [16] in order to reduce
the computational complexity.

Algorithm 2DP-3 begins by invoking Algorithm 2DP-1, whicHentifies two paths?, and P,. These paths form a flow
f% = {P1, P} and we construct the residual netwai¥ f°) of G imposed by flowf°. In the previous section we showed that
there exists a circulatiorf in G(f°), such thatD(f) < —(D(f) — 2D), C(f) < OPT; (Lemma 2). Algorithm 2DP-2 uses
this fact to reduce the delay of the flofif. In particular, it invokes ProcedurambRoVEFLOW, whose running time depends
on the cost of the circulation, i.eQPT.

The basic idea of Algorithm 2DP-3 is to reduce the cost of daghin G by a certain factor. The cost of the circulation
f in the resulting graph, and in turn, the computational caxip} of Procedure MPROVEFLOW, are much smaller. A key
requirement in the scaling approach is to get sufficientttiupper and lower bounds and U on the costOPT; of the
optimal solution to Problem MCF. We present an efficient teghe for obtaining these bounds in Section VI-A.

We proceed to describe cost scaling in more detail. We sbal€dstc; of each link! in G, replacing it byc), as follows:

d=|3]+1 ®)

where A = L&,
Let G’(foij\l[)e the residual graph @ imposed by flowf® with scaled link costs. We show that there exists a circoafi
in G'(f°), such thatD(f) < —(D(f) — 2D) andC(f) < 2&5Y 4+ 2N. Let f°r! be the optimal solution for Problem 2DP. It
is easy to verify that flowf°P* contains at mos2N links. Thus the cost of with respect to the scaled link costs is at most
OPT = M +2N. It can be shown, in the same way as in Lemma 2, that theresexisirculationf in G’(f°), such
that D(f) < (D(f) 2D) and whose cost is at mo%i% +2N. Thus, with scaled link costs ProcedurePRoVEFLOW
performs justO ( T ) iterations. For sufficiently tight Iower and upper boundlsand U, the number of iterations is small.
Scaling allows to reduce the computational complexity & #itgorithm, but it incurs some penalty in terms of the sohuti
cost. Letf we a circulation whose cost with respect to the scaled lindtsc@s at mosOPT',. The cost of that circulation
with respect to original link costs is at most

A-OPT), < OPTy +¢L < (1 +¢)OPT.

Lower values of: yield better approximate solutions on the expense of thaingntime of the algorithm.
The detailed description of the algorithm appears in Fig. 5.



Algorithm 2DP-3 (G, s,t, D, k, €)

(P17P2) HZDP_](CTE s, t, D7 %)
fO —{P1, P2}
if D(f%) <2D(1+ 1) then
return P; and P,
L,U —BouUND(G, s,t, f, D)
A — QL—]\‘f[
for each linkl € E do
o |4 41
f «—IMPROVEFLOW(G, f°, D, k)
Decompose flowf into two paths,P; and P, such that
D(P1) < D(P)
return P, and P,
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Procedure BUND (G(V, E), s, t, D)
1 lete! < ¢ < --- < ¢ the distinct costs values of the
links.
2 low <« 1; high <~ r
3 while low < high — 1

4 J «— L(high + low)/2]

5 E —{l]|qg<d}

6 find a minimum delay flowf betweens and¢ in

(G'(V, E’) such that|f| = 2

7 if D(f) > 2D then

8 high «— j

9 else
10 low «— j

11 U « 2N - chigh; [, — chigh
12 return L, U

Fig. 5. Algorithm 2DP-3

A. Computing Lower and Upper Bounds,and U

In this subsection we present Procedur@uBIiD (see Fig. 5), which identifies lower and upper boudd$’ on O PT; such
thatU/L < 2N. We use the technique presented in [17].

We denote by:! < ¢ < --- < ¢" the distinct costs values of the links. Our goal is to find treximum cost value* € {c'}
such that the grapti’ derived fromG by omitting all links whose cost is greater thahy does not contain &asibleflow f,
i.e., a flow with value|f| = 2 and with delayD(f) < 2D. Clearly, a feasible flow contains at least one link whosd s
c¢* or more, hence* is a lower bound orOPT';. In addition, there exists a feasible flow that compriseksliwhose cost is
c* or less. Since an optimal floy includes at most two paths, it includes at mdat links. We conclude tha2N - ¢* is an
upper bound orOPT}.

Procedure BUND performs a binary search on the valuésc?, - - - , ¢". At each iteration, we need to check whethet c*,
wherec is the current estimate af*. For this purpose, we remove frot all links whose cost is more tha) and assign
the unit cost to the remaining links. Then, we find a minimurfagdlow in the resulting graph. For this purpose we employ
the minimum cost disjoint path algorithm taken from [2], viespect to links delays. If this algorithm returns a felesflow,
thenc > ¢*; otherwise,c < ¢*. Procedure BUND performsO(log N) iterations.

B. Analysis of Algorithn2DP-3

The following theorem establishes the correctness of Adgaor 2DP-3.
Theorem 6:Algorithm 2DP-3 computes, i@ (25E2N" 160 (D)) time, a(1+ 1, k(1 +7)(1 + £))-approximate solution
for Problem 2DP, where < %.

Proof: Let f°P* be an optimum solution to Problem MCF, i.€( f°P*) = OPT;. Note thatf°P* can be represented by
two disjoint (s, t)-paths. Indeed, iff°?* contains a cycle, this cycle can be eliminated, resulting ffow whose cost is less
than that off°rt. We conclude thay°?! includes at mos2V links. For each linkl € G it holds thaty < ¢ < 4+ 1. Thus,
the cost of fP! with respect to scaled link costs is at mesPT) = % + 2N. By Theorem 5, ProceduramPROVEFLOW
returns a flowf with delay D(f) < 2D(1 + 1) and costC(f) < (k + 2logk + 1 + X3)OPT! = k(1 + v)OPT}, where

~ < 20kt The cost of flowf with respect to original link costs is

C(f) < k(1 +~)AOPT| < k(14 v)(OPT; + Le)
<k(1+7)(1+¢)OPT.



We proceed to analyze the computational complexity of Atbor 2DP-3. We begin with ProcedureoBND. As discussed
above, the procedure execui®@glog N) iterations of the main loop (i.e., the loop that begins a¢ Ihof the procedure). At
each iteration, the procedure invokes the minimum cosbidispath algorithm [2], whose running time @(M + N log N).
We conclude that the computational complexity of Procedo@ND is O((M + N log N)log N).

Since ProcedureMPROVEFLOW is invoked on the graph with scaled link costs, its compateti complexity isO(M N -
OPT' log(CD)logk). Since

OPT, 2N -U _ 2N?
1< < <0
OPTi < = 4+2N < == < =2
. . . O . . 3
the computational complexity of Algorithm 2DP-3 @(*22 1og(C'D)). [}

VIl. FURTHERIMPROVEMENTS

In this section we further improve the computational comipyeof our solution. To that end we extend Algorithm 2DP-3,
by introducing the following changes. First, we modify Redare MPROVEFLOW, in order to ensure that its running time is
bounded by a certain value. Second, we introduce an additocedure, referred to as Proceduye ROVEBOUNDS, whose
purpose is to obtain tighter lower and upper bounds on theafae optimal solutiorOPT’; to Problem MCF.

More specifically, we add a new parametérto Procedure MPROVEFLOW in order to ensure that the cost of the returned
flow f is no more tharkU. With this modification, ProcedurevProvEFLOW has the following properties.

Lemma 5:

1) If U > OPT, then ProcedureMPROVEFLOW returns a flowf with delay D(f) < 2D(1 + ).

2) If Procedure MPROVEFLOW does not fail, it returns a flowf with delay D(f) < 2D(1 + 1) and costC(f) <

min{2kU, (k + 2logk + 1 + X2)OPT}}.

3) The computational complexity of Procedun@PRoVEFLOW is O(M N - min{OPT;, U} log(CD)logk).

Proof: The proof follows the same lines as that of Theorem 5. |

We proceed to describe ProcedurePROVEBOUNDS. The procedure obtains upper and lower bourddsnd U, such that:

o L is a lower bound on the cost of an optimal soluti&P7, to Problem MCF, i.e., for each flow itr with delay

D(f) < 2D, it holds thatC(f) > L.
« U is an upper bound on the cost of a flow @ with delay D(f) < 2D(1 + %), i.e., for each flow inG with delay
D(f) <2D(1+ ), it holds thatC(f) < U.

Lower and upper bound& and U for which it holds that% < 2N can be obtained through Procedur@®B\D. The
goal of Procedure MPROVEFLOW is to improve these bounds such th%tg 16k2. At each iteration we compare a test
value B = /L - U with the cost of the optimal solution and update the bouhdand U accordingly. More specifically,
we scale the link costs by a factdy = % and invoke ProcedureviPROVEFLOW with U/ = 4N on the graph with scaled
link costs. As we show in Lemma 6, if Procedume@PRoOVEFLOW fails, thenOPT, > B, hence we sel. = B. Otherwise,
Procedure MPROVEFLOW returns a flow whose delay and cost are at n2d3f1 + %) and4k B, respectively, henct < 4kB.
Accordingly, in this case we séf = 4kB.

Note that, if the ratid//L is equal tox at the beginning of an iteration, then at the end of the iemate have% < dk\/x.
Thus, it can be shown that, afté€(loglog N) iterations, the ratid//L is at most16k2. We then use these tight upper and
lower bounds in order to efficiently find an approximate dolutto Problem 2DP. The detailed description of the algarith
referred to as Algorithm 2DP-4, appears in Fig. 5.

A. Analysis of Algorithm2DP-4

Lemma 6: Procedure MPROVEBOUNDS returns valid upper and lower boundsand U.

Proof: We note that Procedured®ND returns valid upper and lower boundsand U. This follows from the fact that
the minimum cost of a flow whose delay is at mag? is lower than the minimum cost of a flow whose delay is at most
2D(1+ ).

We sﬁow that the lower and upper bounds remain valid durimgetkecution of the procedure. First, we prove that if
Procedure MPROVEFLOW fails thenOPT'; > B. By way of contradiction, suppose that this is not the case,0PT; < B.
Procedure MPROVEFLOW is applied to the graph whose costs were scaled by factdx ef %. In the resulting graph, the
costOPT', of the optimal solution to Problem MCF is at mo@”%ﬂ + 2N, which is less thad N. Thus, by Lemma 5,
part 1, ProcedureMPROVEFLOW returns a flowf with delay D(f) < 2D(1+ %), which contradicts the fact the the procedure
fails. Second, by Lemma 5, part 2, if ProcedureeRoVEFLOW does not fail, it returns a flowf whose cost with respect to
the scaled link costs is at moskU/ and delay is at mostD(1 + +)- The cost of flowf with respect to the original costs is
at most2kUA = 4kB. In this case, the minimum cost of a flow with delay at m@B(1 + 1) is bounded bytkB, hencel/
remains to be a valid upper bound. |

Theorem 7:Algorithm 2DP-4 computes, i® (% 10g(CD)> time, a(1+ 1, k(1+v)(1+¢))-approximate solution
for Problem 2DP, where < 2008F+1)



Algorithm 2DP-4 (G, s,t, D, k, €)

(P1, P2) «2DP-1(G,s,t, D, %)
fO —{P1, P2}
if D(f%) <2D(1+ 1) then
return P; and P,
L,U —BouUND(G, s, t, D)
L,U «—IMPROVEBOUNDS(G, s,t, fO, D, L, U)
A Le
for each linkl € E do
a—[Z]+1
O |%|+2n+1
f —IMPROVEFLOW(G, f°, D, k, 1)
Decompose flowf into two paths,P; and P,
such thatD(P;) < D(P)
return P, and P,
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Procedure MPROVEBOUNDS (G(V, E), s, t, f, D, L,U)
while U/L > 16k? do

B«+— VL -U

A — %

for each linkl € E do

C| ~— \_%J + 1

U «— 4N

f —IMPROVEFLOW(G, f©, D, k,U)

if Procedure MPROVEFLOW returned FAILthen
9 L—B
10 else
11 U — 4kB
12 return L, U
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Procedure MPROVEFLOW(G, f0, D, k,U)
Je g0 )
while C(f) < 2kU do
G(f) < residual network of5 imposed byf

1

2

3

4 find a cycleW in G(f) that minimizesgé&,‘/;
5 augment flowf along W
6

7

8

if D(f) < D(2+ #) then
return f
return FAIL

Fig. 6. Algorithm 2DP-4

Proof: As we proved in Lemma 6, Procedur@ HROVEBOUNDS returns valid lower and upper boundsandU. Thus,
it can be shown that Algorithm 2DP-4 computesla+ +, k(1 + v)(1 + ¢))-approximate solution for Problem 2DP, where
v < M (The proof follows the same lines as the one for Theorem 6).

We proceed to analyze the computational complexity of tigerghm. As discussed above, Procedur®ROVEBOUNDS
executes)(log log ) iterations of its main loop (i.e., the loop that begins irelit). At each iteration we invoke Procedure-1
PROVEFLOW, whose complexity iSO(M N?log(C'D)logk). We conclude that the running time of Procedure®ROVE-
BOUNDS is O(M N?1loglog N log(C'D)logk). By Lemma 5, the computational complexity of ProceduvekovEFLOW,
invoked at line 11 iSO(MN - Ulog(CD)log k). Since the procedure is invoked with = || + 2N + 1 = O(EN), the
computational complexity of the procedure@:ﬁ% log(CD)). We assume thalgt > loglog N, hence the computational
complexity of the algorithm is dominated by the time incdrigy invocation of ProcedureMPROVEFLOW in line 11, i.e.,

O(%log(cD)). [ |

VIIl. L OWERBOUND

In this section we prove that finding two disjoint paths thatis§y a given delay constrain® is an A"P-hard problem.
Furthermore, we show that no polynomial algorithm can agprate this problem by a factor such thatl < « < 2. That
is, finding two disjoint paths such that the delay of each patat mostaD is an intractable problem for any < o < 2.
Specifically, we show a reduction from the problem of findimg link disjoint paths in a directed network, one betwegn
andt; and the other betweesy andt,. This problem is known to by\P-hard [19].



Fig. 7. Construction of auxiliary grap@

Our proof follows the same lines as the proof presented ihfi@0a related problem. By way of contradiction, assume that
there exists an algorithm, say Algorithm A, which identifies polynomial time, two disjoin{s, t)-paths such that the delay
of each path is at mostD. We show that this algorithm can find two disjoint paths betwe; andt; and betweers, and
t, in a directed graplz. We build an auxiliary grapltz formed fromG by adding two nodes and¢ and four links(s, s1),
(s,82), (t1,t) and(t2,t). We assign delays to these four links as follows:, ) = d(, +) = 1 andd, s,y = d, 1) = 0. All
other links in(; are assigned zero delay. Fig. 7 depicts the constructiom @uailiary graphG. By employing Algorithm A
(for D = 1) we can find two disjoint path$; and P, betweens and¢ such thatD(P;) < « and D(P;) < «. However, if
a < 2, then one of the paths must connegtand¢; and the other must connest andts. This contradicts the fact that the
problem of finding such two disjoint paths in a directed netwis NP-hard.

IX. CONCLUSION

In this paper we investigated the fundamental problem o¥ipioning disjoint QoS paths. We presented a comprehensive
analysis of the problem, by using the frameworknetwork flowsWe showed that any polynomial algorithm for this problem
violates the delay constraint by at least a factor of 2. Initaald we indicated trade-offs between violation of the ajel
constraint, cost and computational complexity.

More specifically, the major contribution of our study areif@pproximation algorithms for the considered probleme Th
first algorithm is conceptually simple and has low compotal complexity. This algorithm identifies a solution thatlates
the delay constraint by factors of 1.5 and 3 for the primarg sestoration paths, respectively. The second algorithonaes
the delay violation at the expense of higher cost and cormipantd complexity. The third and fourth algorithms, acldev
similar cost and delay ratios as the second, but have signtficlower computational complexity. In particular, tHgaithms
compute, for any fixed > 0 and integerk > 0 a solution that violates the delay constraint by factorstahast1 + % and
2(1+ 4) for the primary and restoration paths, respectively, andsghcost is at most(1 +~)(1 + ¢) times more than the

optimum, wherey is a small value bounded b§°&*+1).

We have indications that our results can be extended to albragass of network restoration and network design problem
In particular, our methods, especially the cycle-cantietlaapproach, can be used in order to saolvdisjoint path problems
for any h > 2. In addition, the techniques established in the study caodee also in the domain dbcal restoration[21],
where a restoration topology comprises of a primary pathsaveral bridges, each protecting a portion of the primatir.pa
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