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Abstract

Emerging group applications require efficient multicast schemes that prQudlity of
Service (QoS) guarantees. QoS can be achieved by provisioning miitessthat satisfy
QoS constraints. Since the efficient usage of network resources is artémgrequirement,
the cost of the constructed multicast tree should be as small as possibtedifsgty, in this
study we investigate the fundamental problem of finding a multicast tree thisftesaend-
to-end QoS constraints at minimum cost.

This problem has been extensively studied. However, existing solutiawes dither
relied on heuristic approaches or considered special cases, sinehcase where the delay
and cost of each link are identical. Moreover, many of the heuristic appes are based
on restricting assumptions, such as symmetric link delays. In this study wesgramovel
algorithmic scheme, with proven performance guarantees, for this fumdaihmaulticast
problem. Effectively, this scheme allows to obtain an approximate solution tortiem
out of any given approximate scheme of its (simpler) unconstrained dirgetsion, with
about identical{-close) performance guarantees.
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Multicast is an important network mechanism that allowssianeous transmission of data
to multiple destinations with minimal bandwidth consuroptiIn order to support new applica-
tions such as multimedia streaming and video conferenamdfjcast mechanisms are expected
to provide a certain degree of Quality of Service. A fundatakproblem in this context is to
identify multicast trees that satisfy end-to-end QoS a@amsts at minimum cost. Sindsottle-
neckQoS constraints, such as bandwidth, can be efficiently ledralf pruning infeasible links,
we focus onadditive QoS constraints, such as delay or jitter, which are much miffieult to
handle.

Finding multicast trees that support additive QoS constsas an intractable problem, as it
contains the Minimum Steiner Tree (MST) and Restricted SIsbiPath (RSP) problems, each
known to beNP-hard [9]. Essentially, MST is a special case of our probleith wo QoS con-
straints, whereas RSP is the special case of unicast. Therbidem, MST, has been extensively
investigated for undirected networks, and several effigetutions, of constant approximation
ratios, have been established (seg, [12]). For directed networks, the only general solu-
tion was recently established in [5]. The second problem, R&Pbeen the subject of several
studies [6, 10, 11, 15], which proposed efficient approxiommschemes. In particular, several
efficient algorithms have been proposed for computing a thethsatisfies the delay constraint
and whose cost is at mogt + <) times higher than the optimum.

The problem that we consider, namely establishment of efficQoS multicast routing
schemes, has attracted a large body of researche(gedl, 7, 13, 19-21, 23, 25] and refer-
ences therein). A good survey of multicast routing protecmhd their QoS extensions can
be found in [22]. Many of these studies employed heuristigreaches [1, 7, 13, 19, 21, 25].
Moreover, these heuristics were often based on restrietisgmptions, such as a symmetry of
link delays [7, 13, 19, 25]Provableapproximate solutions have been proposed, however they
either considered restricted special cases, or else gdt@mpotentially large violation of the
QoS constraint. For example, [14] effectively deals with ptoblem, however in the special
case ofidentical link delays As another example, [23] also dealt with our problem, havev
in the special case where tlelay and costof each link aredentical Obviously, such sim-
plified assumptions do not hold in many practical settings[16], a provable approximation
to our problem has been presented, however it allowmlation of the delay constraint by a
factor as large aeg IV, wherelN is the number of nodes; moreover, it assusy@ametridinks.
Hence, to the best of our knowledge, no solution of provablégomance has been established
to this fundamental multicast problem fgeneralnetworks ancho violationof the QoS con-
straints. Accordingly, in this study, we propose novel sols for general directed networks that
achieve, for any fixed > 0 ande > 0, an approximation ratio ofl + £)i(i — 1)K'/?, where
K is the number of terminalsg., our schemes find a tree that satisfies the QoS constraints and
whose cost is at mogtl + )i(i — 1)K/ times higher than the optimum. For example, for a
typical value K = 100, choosingi = 2 andes = 0.05 yields a worst-case guaranteed ratio of
21. For an asymptotically large number of terminals, the axipnation ratio is upper-bounded
by log® K. A proven lower bound for this problem la K [2]. Although the ideas that led
to development of the schemes as well as performance proofather involved, the schemes
itself are relatively simple and easy to implement.

Due to the fundamental nature of the considered problemreswits can by used in a va-
riety of practical applications. Indeed, any multicastétexcture that provides a certain degree
of Quality of Service requires efficient schemes for idecdifion of QoS trees. For example,
the ATM PNNI [17] protocol supports point-to-multipoint ltsathat satisfy QoS constraints
specified by connection requests. Due to the connecti@mad nature of ATM, bandwidth is
reserved along the tree’s links for a long period of time.sTimplies the need to select “good”
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trees in terms of resource utilization. The IntServ/RSVneevork relies on underlying IP
routing protocols for selecting paths and trees. Sinceelecgon of an unsuitable tree results
incurs major overhead, it would be desirable to provide a tinat satisfies the QoS constraints
in the first place. In the Differential Services framework4B abandwidth brokeiis respon-
sible for establishing suitable trees that satisfy seriggel agreements (SLA). Here two, it is
desirable that bandwidth brokers be capable of computiaglbS trees. Finally, the MPLS
architecture [18] is expected to supports data forwardorgrulticast traffic, which requires
establishing suitable QoS trees.

The rest of this paper is organized as follows. In Section d fevmally state the consid-
ered problems. In Section 2, we briefly describe the algorith [5] for the MST problem in
directed networks, which serves as a basic building blodumsolution. Next, in Section 3, we
present the first approximation scheme, which, while cotu@dly simple, incurs a high compu-
tational complexity. Accordingly, in Sections 4 and 5 wegaet two additional schemes, whose
computational complexity is reasonable. Finally, we dsscour results in Section 6.

1 Model and Problem Formulation

This section formulates the general model and main probseidsessed in this paper.

1.1 Basic definitions

A networkis represented by a directed gra@glV, E'), whereV' is the set of nodes an# is

the set of links. LetV = |V| and M = |E|. A pathis a finite sequence of nodé3 =
{vo,v1, -+, v}, such that, fol0 <i < h—1, (v;,v;41) € E; h = |P| is then said to be the
number of hopgor hop count)of P. A cycleis a path whose source and destination nodes are
identical.

A directed treeis a subgrapty” of G(V, E') with a source node such that every node is
reached froms by a unique path. Anulticast connectiomuses a tre€¢/ to interconnect the
sources and the members of a multicast grodp= {¢y,ts,--- ,tx}. Given a tree7, a path
between the sourceand a node € 7 on links that belong t@" is denoted byP(7 ..

As mentioned in the Introduction, bottleneck QoS constsatan be easily handled by prun-
ing all links that do not satisfy the constraints. Hence weuion additive QoS constraints
such as delay or jitter. For clarity of presentation and witHoss of generality, we describe our
model and problems in terms of end-to-atelayrequirements.

We assume that each link offers a delay guaradiedhe delayD(P) of a pathP is the
sum of delays of its linkd,e., D(P) = >, d;. Each link is also associated with a nonnegative
costc;, which estimates the amount of network resources consumedier to support delay
constraintd;. The link cost may depend on various factagy, the link available bandwidth
and its location. The cost(P) of a pathP is defined to be the sum of the costs of its links,
C(P) = > ,cp c- Similarly, the cosC(7) of atreeT isC(7T) = ), ;. We assume that all
parameters (cost and delays) are (non-negative) integers.

Definition 1 (Transitive closure) The transitive closures of G is a graph that includes, for
each pair of nodes andv in G, a link (u,v) such thatc, ) is the minimum cost of a path
between: andv in G.

Definition 2 (i-level tree) Let 7 be a tree with source. 7 is said to be an-level treeif for,
each node € 7, it holds that the path betweerandv in 7 includes at most links.
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1.2 Problem formulation

We are now ready to formulate the problem considered in thidys

Problem RST (Restricted Steiner Tree) Given a graphG, a sources, a set of X' terminals
X = {t1,--- ,tx} and a delay constrainD, find a minimum cost tre& that connects to
each terminak; € X and satisfies the delay constraib, i.e., for eacht; € X it holds that
D(P(z.;) < D.

An instance(G, s, X, D) of Problem DST is denoted bix. We denote byD PT'(Ix) the
cost of an optimal solution for an instance.

Clearly, Problem RST is intractable, as it contains the Mimmbteiner Tree (MST) and
Restricted Shortest Path (RSP) problems, which are known tdBehard [9]. Moreover, it is
hard to approximate Problem RST to a factor better thaid [2]. The bound holds for both
directed and undirected graphs.

1.3 Related problems

Our approximation scheme for Problem RST employs a redutione following problem of
finding an (unconstrained) Steiner tree in directed graphs.

Problem DST (Directed Steiner Tree) Given a directed grapli-, a sources and a set ofi’
terminalsX = {t,,--- ,tx}, find a minimum cost tre€ < G that connects and each terminal
t; e X.

An instanceG, s, X') of Problem DST is denoted h¥,. We denote by) PT'(1’;) the cost
of an optimal solution for instanck,. We also denote b®) PT(I%.) the cost of the optimum
i-level tree that solves instan¢g of Problem DST.

An approximation scheme for Problem DST was presented inTBat scheme computes,
for any fixedi, a tree7 that connects sourceand terminalsX and satisfies”’(7) < i(i —
1)K'Y'"OPT(I%). The computational complexity of that schem@igN ! K1),

Another related problem is to find a minimum cost (unicasth plaat satisfies a given delay
constraint. In effect, this is thRestricted Shortest Pagiroblem, defined as follows.

Problem RSP (Restricted Shortest Path)Given a source node, a destination node and a
delay constraintD, find a minimum cost pat® betweerns andt such thatD(P) < D.

Several efficient approximation schemes have been prodosetis problem. In partic-
ular, [15] presented an algorithm that computesOifiV/ N (1 + loglog N)) time, a path that
satisfies the delay constraiftand whose cost is at mogt+ ¢) times higher than the optimum;
we refer to this solution as Algorithm RSP-1. Taking a somawdifferent approach, [10] pro-
posed to alleviate the delay constraints and presentedarithin that computes, for each node
v € V, a path betweenr andv such thatD(P) < (1 + ¢)D andC(P) < OPT, whereOPT
is the cost of an optimal path betweemndwv that satisfies the delay constrailt The com-
putation complexity of this algorithm i@(%(M + Nlog N)N); we refer to this solution as

Algorithm RSP-2.
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Figure 1: Approximation ratio as a function of the numbereshtinals.

1.4 Our results

Since the considered problemA§P-hard, we focus on (provable) approximate solutions. We
present three approximation schemes for Problem RST. Theséineme provides a solution
whose cost is at mosti — 1) K/ times higher than the optimum, for any integes 0. The
computational complexity of the scheme depends on the saitithe link delays, hence can be
prohibitively high. The complexities of the second anddischemes are much lower, and do
not depend on delay values. The second scheme allows a satatlon of the delay constraint.
More specifically, it computes a tree such that, for each; € X, it holds thatD(P(7,,)) <
(1+¢e)DandC(7) < (1 +¢)i(i — 1)K'*OPT(Ix), for anye > 0 and integeri > 0. The
third scheme provides a solution that does not violate th@ydeonstraint and whose cost is
at most(1 + ¢)%(i — 1)K'/* times higher than the optimum, for afy< ¢ < 1 and integer

i > 0. The computational complexity of the second and third sccatr!aefane(’)((%)H K271

andO((loglog N + log 1) (g)’_1 K31=2), respectively.

Fig. 1 shows the approximation ratios that can be achievenibgchemes for typical values
of K, namely2 < K < 100. For these values, choosing= 2 andes = 0.05 yields a worst-
case guaranteed ratio ®f. For large values of<, namely up tok = 10*, an optimal value
of 7 is at most4 and the approximation ratio is closeltgg” . We note that for this range, a
choice ofi = 3 allows to achieve a relatively close approximation ratisighificantly lower
computational complexity. Finally, we note that, #6r— oo, one can achieve an approximation
ratio oflog® K.

Our results are summarized in the following table.

| Scheme| Delay Violaltion | Approximation Ratio] Complexity \

1 none i(i — 1)K (high)
2 1+4¢ (1_|_5)Z'(1'_1)K1/z’ O((%)Z_l K%_l)
3 none (1+e)i(i — 1)K | O((loglog N +log 1)- (&)™ K3-2)

2 Preliminaries: Approximation Scheme for Problem DST

Previous studies [5, 14] have pointed out that problems RSITCEIT are closely related. We
exploit this relation by constructing a reduction from Hewvb RST to Problem DST. Then, we
solve Problem DST by using the algorithm presented in [5khla section we briefly describe
the algorithm of [5].

The algorithm, referred to as Algorithm DST, uses the notibdensityof a multicast tree,
which is defined to be the ratio of the tree cost to the numbeeratinals.
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Algorithm DST comprises of a recursive procedurg &, r, Y'), which identifies ari-level
tree 7 that connects node with at leastK terminalsY’ C Y. More specifically, Proce-
dure A (K, rY) finds theK terminals which are closest to the root and connects theimeto t
root by using shortest paths; for> 1, Procedure A K, r,Y) repeatedly finds a node and
a numberK’;1 < K’ < K such that the density of the trée_,(K’,v,Y) U {(r,v)} is the
minimal among all trees of this form, whe¥e , (K’, v, Y) is the tree returned by the invocation
of Procedure A ; for (K’,v,Y"). The detailed description of Algorithm DST appears in Fig. 2

Algorithm DST (1% (G, s, X), 1)
input:
I, - an instance of Problem DST
G - the graph,
s- source node.
X ={t1, - ,tx} - the set ofK terminals.
i- the level of the returned tree.
output:
T- A solution to/x.

1 7—A(K,s,X)
2 return 7

Procedure A(K,r,Y)
1 if there do not exisk terminals reachable fromthen

2 return 0

3 7«40

4 while K >0

5 Tpest < 0; KppsT < 0

6 for each link(r,v) € Gand eachK’,1 < K' < K
do

7 T A, 1(K' o, Y)U{(r,v)}

8 if SZzest) > ) then

9 Teest < 7'; Kpgpst — K’

10 Y {tj | t; € Y A t; € TBEST}
11 T «— T U7TRgsT

12 Y~Y \ Y’

13 K|V

14 return 7

Figure 2: Algorithm DST

The following theorem was proven in [5].

Theorem 1[5] Given an instancd’, = (G, s, X) of Problem DST and an integérl < i <
log | X|, AlgorithmDST returns a tree7 that satisfie<’ (7)) < i(i — 1)KY*OPT(I%).

By Theorem 1, Algorithm DST returns a tree whose cost is at m@st 1)K'/* times
more than the optimum. For our purposes, we shall need a nererg version of Theo-
rem 1. In particular, we prove that the algorithm returnses twhose cost is at mosti —
1)K'/iC, provided thatC' satisfies the following condition: for each sub3ebf X, it holds
thatOPT Y (I}, (G, s,Y)) < |Y|':C. We note that, for certain instanc&s of Problem DST, it
might be the case that < OPT(I%).
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Figure 3: Reduction from Problem RST to DST

Theorem 2 Given an instancdy = (G, s, X) of Problem DST and an integerl < i <
log | X|. LetC' be the minimum cost such that for each subSef X holds
OPTY(I,(G,s,Y)) < |Y|ViC, e,

C = max
YCX

OPTY(1,,(G,5,Y))

Then, AlgorithnDST returns a tree7” that satisfies”(7) < i(i — 1)K'/'C.
Proof: See Appendix. |

Theorem 3 Letn be the maximum number of links that originate from a nod@&'inrhen, the
computation complexity of AlgorithBSTis O(n'~! K?1).

Proof: The computational complexity of procedure far : = 1 is O(K). Note also that
Procedure Ainvokes Procedure A, at mostn K2 times. Hence, the computational complexity
of Procedure Aand, in turn, Algorithm DST i€ (n'~! K#~1), |

3 First Approximation Scheme: simple but inefficient

In this section we present the first approximation schemeglwtwhile conceptually simple,
incurs a high computational complexity.

3.1 T-Reductions

We begin by introducing the concept BfReductionswhich allow to establish an approxima-
tion scheme for Problem RST out of any given approximatioreswhfor Problem DST. In this
section we describé;-reductions, while; — and7;-reductions are introduced in sections 4 and
5, respectively.

Definition 3 (73-reduction) AT;-reductionfrom Problem RST to Problem DST is a dugfe g;)
that satisfies the following:

e The functionf, maps an instancéx (G, s, X, D) of Problem RST to an instanég, (G, s', X')
of Problem DST such th&PT'(I%,) < OPT(Ix);

e The functiory,; maps a solutiory” of I, to solution7 of Ix such thatC(7) = C(77).

As we show below, &}-reduction(fi, g1) gives rise to an approximation scheme for Prob-
lem RST.



(a) Original graphz. Associated with (b) Layers Graph., (some of the links are omit-
each link are its delay and cost ted)

Figure 4: Construction of Layers Gragh

3.2 Layers Graph

We proceed by presenting a structure terrhaglers Graph which allows to establish @;-
reduction(f, g;) from Problem RST to Problem DST.

The purpose of the Layers Graph, denoted byis to distinguish between trees that connect
the sources to the terminalsX and also satisfy the QoS constraitand all other trees .
Specifically, the layer graph; is constructed as follows. First, we compute, for each twaeso
u andv and each delay constraidf 1 < d < D, a minimum cost patt®f, ,, betweeru andv

whose delay is at most Next, for each node € G, we addD + 1 nodest?, - - ,v” to L.
For eachv € G and eachl, 0 < d < D — 1, we add tol, a link (v, v%*!) whose cost i$).
Next, for each two nodes,’ andv/, such thatj > d, we add toL; a link (u%, v/) whose cost is
Clud vi) = C(P{;{f)). Fig. 4 depicts an example of a Layers Graph.

Consider a tre€ in GG that connects and the terminal&” = {¢,--- ,¢x }, and, in addition,
satisfies the delay constraift We show that there exists a corresponding ffee L, that con-
nectss’ and X’ = {tP ... 2} suchthaC(T) = C(7T'). The treeT’ is defined recursively,
starting with node?. First, for each node € 7, compute the delay, of the path that between
andvinT,i.e,d, = D(Pir.)). Next, each link(s,v) € T, we add ta7” a link (s°, v™). Next,
we grow the tree from each noaé : for each link(v,u) € 7 we add to7”’ a link (v®, u).
Next, we proceed to grow the tree from node an so on. The process ends with a tiEe
that connects and nodes{tf“, e ,tf?(}. Note that, for each; € X, it holds thatd,, < D.
We then use linkgt, t;?“) of zero cost in order to construct a tréé that connects and the
terminalsX’ = {tP ... t2}. For example, consider the trde = {(s,u), (u,v), (u,w)} in
Fig. 4(a). The corresponding tré€ = {(s° u'), (u',v?), (u!, w?), (w? w?), (w?,w*)} in the
Layers Graph_, is marked by bold lines in Fig. 4(b).

Similarly, it can be shown that, for each trééin L, that connects® andX’ = {t ... 2},
there exists a tre€ in G that connect and the terminals(, such thatZ” satisfies the delay con-
straintD andC(7) = C(7").

The reduction( f1, g1) is then defined as follows.



Definition 4 (Reduction(fi, g;)) Areductiorifi, g;) is a pair of functionsf;, g; such that:

1. The functionf; gets as input an instanck; = (G, s, X, l?) of Problem RST and returns
an instancel’,, = (L, s° X’) of Problem DST, wheré, is a Layer graph andX’ =

{t1D7 e 7t§}'
2. The functiory; gets as input a solutiofi” of /,, and returns a tree
_ j—d
7= U 7)(u,v)’ (1)
(udwi)eT’

where{PEiu’v)} are paths computed during the construction of the Layerp6ia .
In the following lemmas we prove that the functiofysandg; constitute a valid’;-reduction.
Lemmal If I, = fi(Ix) thenOPT(Iy,) < OPT(Ix).

Proof: Let 7°P* be an optimal solution for instande of Problem RSTij.e,, C(7°F") =
OPT(Ix). For each node € 7°', we denote byl, the delay of the path betweerandv in
7o, LetT = {(ut,v®) | (u,v) € TP} U{(td, 1) |t; € T, d,, <d < D —1}. Itis
easy to verify thafl is a tree inL; that connects sourcg with terminalsX’ = {t?|t; € X}

~

and it holds that”(7°r*) = C'(7"). We conclude thaD PT(Iy,) < OPT(Ix) and the lemma
follows. |

Lemma 2 Let7’ be a solution of instancé,, of Problem DST. Thery, = ¢,(7”) is a solution
of instancel x of Problem DST and it holds th&at(7") = C(77).

Proof: According to the definition ofy;, 7 includes, for each link = (ud,v9) in 7', a
pathP{;ff) in G that connects nodasandv and whose delay is at mogt — d). Clearly, for
eacht; € X it holds thatD(Pr,,)) < D, which implies that7 is a solution of instancéy.
SinceC(P], 1)) = « it follows thatC(T) = C(T"). |

3.3 Approximation Scheme

TheT}-reduction( f1, g1 ), gives rise to the corresponding approximation schemerfuslPm RST.
Specifically, given an instandg; of Problem RST we compute an instari¢e of Problem DST
by invoking functionf,. Next, we find a solutio™ of I, by applying Algorithm DST. Finally,
we identify a solutiorZ” of Iy by invoking functiong; on7’. The detailed description of the
scheme, implemented by Algorithm RST-1, appears in Fig. 5.

Theorem 4 Algorithm RST-1returns a solution7 to instancelx of Problem RST such that
C(T) <i(i — 1)K'Y'OPT(Ix).

Proof: Lemmas 1 and 2 imply thdf;, g;) is a validT;-reduction. Hence, the instancg,
of Problem DST, computed in line 13, satisf@#®7'(Iy,) < OPT(Ix). By Theorem 1, Algo-
rithm DST(I%., %) returns a tred” that satisfie€’(7") < i(i—1)K*OPT(I,). Sinceg; maps
7" to a solution7 of Iy such thatC’(7) = C(T"), we haveC(7) < i(i — 1) K''OPT(I,)) <
i(i — 1)K'"OPT(Ix) and the theorem follows. |



Algorithm RST-1 (Ix(G, s, X, D), 1)
input:

Ix - an instance of Problem RST
G - the graph,
s- source node.
X ={t1, -+ ,tx} - the set ofK terminals.
D- the delay constraint.
i- the level of the returned tree.

variables:

L,(V, E)- The Layers Graph.

output:

WN -

© 00 ~NO O b~

10
11
12
13
14
15

16

T - A solution to/x.

for each pair of nodegu, v) € G do
for eachd — 1to D do
P,y < aminimum cost path betweerand
u whose delay is at most
Ve0,E—0
for each node € G do
V—Vu{d. . P}
for eachd, 0 <d < D —1do
E— BEu{( v}
C(vd’vdJrl) —0
for each pair of nodegu?,v7) € V, j > d do
E — Eu{(ut,v)}
Clud,wi) < C(P(Jq;j))
I}(/ — (-i/la 50, {t{)a e 7t£}
T’ — DST(I%.,i)
j—d
T (ud,vEJ)GT'P(u’U)
return 7

Figure 5: Algorithm RST-1
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Note 1 In Algorithm RST-1, we can substitute Algorithm DST with aaqyproximation scheme
for Problem DST and obtain, throughia reduction( fi, g1), a solution to Problem RST with
the same approximation ratio as for Problem DST. For exanimieéhe special case of a small
number of terminals, [8] presents an algorithm that idesgifan exactif., optimal) solution
to Problem DST within the computational complexity ©f M N*£-2 + N4£-1]og N). By
employing this algorithm, we can identify an exact (optijredlution for Problem RST in that
special case. |

Due to the large size of the Layers Gralph the computational complexity of Algorithm RST-
1 is too high. Indeed, sincé; hasO(N - D) nodes, the running time of Algorithm DST is
O((N - D)HK%‘l) (by Theorem 3). In the following sections we show how to corddtLay-
ers Graphs of smaller size which result in more efficient apjpnation schemes.

4 Second Approximation Scheme: efficient, but violates the
delay constraint

In the previous section we showed that the Layers Graph pbre® be employed in order to
construct an approximation scheme for Problem RST. Howévergomputational complexity
of the resulting scheme depends on the value of the delaytreartsD, which can be large.
In this section, we present an approximation scheme whasg@utational complexity is much
lower.

4.1 Layers GraphL,

We begin by presenting a Layers Grap$) which is similar toL;, but has a much smaller size.
The idea is to use the techniqudiakar scalingin order to build a Layers Graph, with a much
smaller number of layers than ib,. Specifically, the layers of, correspond to delay values
{0,A,2A,--- . D}, whereA = =D andD = A - ¢ 1+5) = D(l + €). We begin by computing,
for each pair of nodes, v € G and for eachl € {A, ZA D}, a patth between: and

v such thatD(Pf, ) < dandC(Py, ) < (1 +¢)C Where(]d ) is the mlnlmum cost of a

uv’

path between andv whose delay is at mogt For thls purpose We use the algorithm presented
in [15], which we refer to as Algorithm RSP-1.

The Layers Grapli, is then constructed as follows. For each node G, we addn = % =
“1%5) nodes{v?, v, v?* ... vP} to L,. For eachy € G and eachl,0 < d < n — 1, we add
to L, a link (v%2, v(@+D2) with zero cost. Next, for each two nodeé? € L, andvi® € L,,

j > d, we add a link(u®*,v7"2) whose cost is set té*(P((i;f)A). Fig. 6 depicts an example of
original networkG and the corresponding Layers Graphfor D = 40, e = 1 andi = 2. In this

example we havéh = 20, D = 80 andn = 4. Note that the number of nodes in Layers Graph
Lo is just 20, compared taD + 1)4 = 164 nodes in the Layers Gra|dh that corresponds t@'.

Far eachZ in G that connects; and the terminalsX = {¢,-- tK} and, in addition,
satisfies the delay constrauﬁt there exists a corresponding tr@é e L, that connects?’
and X’ = {tP ... 2}, such thatC(7) < (1 + ¢)C(7'). For example, consider the tree

T = {(s,u), (u,v), (u,w)} in Fig. 6(a). The corresponding tr&€ = {(s° u?’), (u*°,v),
(w20, w), (W, w), (vﬁo v®), (W, w*)} in the Layers Grapli, is marked by bold lines in
Fig. 6(b). Recall that in Layers Graph each node € G is mapped ta® € L,, whered,
is the delay of the path that betweemndv in 7. Thus node: is mapped to node'® € L.
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(10,20) ° %
(20,60)

(a) Original graph. Associated with (b) Layers GrapH, (for a small value of, some
each link are its delay and cost of the links are omitted)

Figure 6: Construction of Layers Grayh.

Since there is no such nodeiin, nodeu is mapped to the nearest node of higher laiyer,u2°.
We continue to grow the tree from nod®: link (u,v) € 7 is mapped to linku?’, v%°) € 77,
while link (u,w) € T is mapped to linku?, w°).

4.2 T5-reductions

We proceed by introducing the concept off a&reduction that allows to obtain an efficient
approximation scheme for Problem RST.

Definition 5 (T»-reduction) AT;-reduction from Problem RST to Problem DST is a tripfg g-, <)
that satisfies the following:

e f, maps an instancéx (G, s, X, D) of Problem RST to an instandg, (G’, s’, X') of
Problem DST such that:

LX = |XT;
2. OPTY(I%,) < (1+¢)|X|V'OPT (Ix);
3. for eachY’ C X' it holds thatOPT"(I},,) < (1 + &)|Y'|'OPT(Ix), where
L, =(G,s,Y").
e g, maps a solutiory” of I, to atree7 € G such that
1. C(T) <C(T);
2. for eacht; € X it holds thatD(P7,)) < (1 +¢)D.

12



As we show below, &3-reduction(f,, g2,¢) gives rise to an approximation scheme for
Problem RST that allows a small violation (by a factof bf+ <)) of the delay constraint.
We proceed to define’B-reduction( fs, g2, €).

Definition 6 (Reduction(f2, g2, £)) A reductior f5, g2, €) is a pair of functionsfs, g» and an
approximation ratice, such that:

e The functionf, receives as input an instandg (G, s, X, D) of Problem RST and an
approximate ratics, and returns an instancg,, (L», s°, X’) of Problem DST, wheré, is

the Layers Graph and”’ = {t? |t; € X}
e The functiory, receives as input a solutigh’ of I%.,. The function returns a tree

_ (j—d)
7= U Pl 2)

where{P((j?v)} are paths computed during construction of the Layers Graph

We proceed to show théf,, -, ¢) is a validT>-reduction (as per Definition 5). We will use
the following lemma, taken from [24].

Lemma 3[24] Let( be a transitive closure of grapfi. Then, for each tre@ € G that connects
sources with a groupX of terminals and for each 1 < i < log | X| there exists an-level tree
7 in G that connects with X such thatC(7) < | X|V . C(T).

Lemma 4 If I, = f,(Ix) thenOPTYV(I%,) < (1 + )| X[V OPT (Ix).

Proof: Letl(Ly,s°, X) = fi(Ix)andletT be a solution to instandg; of Problem DST.
By Lemma 1,C(7) < OPT(Ix). We note that the Layers Gragh is a transitive closure
per se Hence, by Lemma 3, there exists a treeidavel tree7 in L, such thatC(7) <
| X|VC(T) < | X|VOPT(Ix).
We round the delay valug of each link! € 7, replacing it byd;, as follows:

’ dl
a - M.A,

whereA = ED Note that after the rounding delay values of each link iasesby at mosf\,
lLe,d; <d + A

For each node € 7, we denote by, andd, the delay of the path betweemandwv in T
with respect to the original and rounded delay values, @y, i.e., d, = Zlepﬁ ” d; and

= ZZGP@M d;

For each node < 7, we defineF(v) = v%. Note that the delay of the path s, with
respect to the original link delays is at mdsti.e., ZleP(T : d; < D. It follows that the delay
of the pathP ;) with respect to the rounded link costs is at mbst iA = (1 +¢)D = D.

We conclude that, for eaahe V, it holds thatF (v) € L.

For each link = (u,v) € T, we defineF (1) = (F(u), F(v)). As shown aboveF (u) € V
andF(v) € V. Moreover, there is a link betweefi(u) = u% andF(v) = v% in L,, whose
costis set ta’(P: ). Sinced,, — d, > d, — d,, it holds thatO(Pd ) < (14 6)a.

13



LetT' = {F(I) |l € T}U{(thtI™") |t; € T,dy, < d < D — 1}. From the above dis-
cussion it follows thaf” is ani-level tree inL, that connects sourag with nodest?. - .. 2.
Moreover, since the cost of each link i is at most(1 + ¢) higher than the cost of the cor-
responding link in7, it follows thatC(7") < (1 + )C(T). Thus,OPTY(I,) < C(T") <
(1+¢)|X|'*OPT(Ix) and the lemma follows. |

Lemmas Let I, = fo(Ix). For each subset” C X' it holds thatOPT"(I},) < (1 +
)Y'|ViOPT(Ix), wherell,, = (Ly, s°,Y");

Proof: LetY’ be a subset ak”’, we denot@” = {¢; | t? € Y'}. Next, we denote by, the
instance@, s, Y, D) of Problem RST. Note that C X andl;, = f»(Iy). Hence, by Lemma 4,
OPTY(I,) < (1 + ¢)|Y'|'Y'OPT(Iy). SinceY C X it holds thatOPT(Iy) < OPT(Ix).
We conclude tha® PT(1%,,)® < (1 +¢)|Y'|*OPT(Ix) and the lemma follows. |

Lemma 6 Let 7’ be a solution of instancé,, of Problem DST. Therl = g,(7”) is a tree
that connects the sourceto the terminalsX in G and satisfies”(7) = C(7') as well as
D(Pr4;)) < (1+¢)D for eacht; € X.

Proof:  According to the definition ofj;, 7 includes, for each link = (u?, /) in 77,
the pathP((z;f), which was computed during the construction of the LayempBi.,. Since

D(P.Y) < (j —d) andC(P{ ) < @, we conclude tha€'(T) = C(T"), and for each

U

terminalt € X, it holds thatD (P ) < D = (1 +¢)D. u

4.3 Approximation Scheme

The T;-reduction( f5, g2, €), gives rise to the corresponding approximation scheme fob-P
lem RST. Specifically, given an instanée of Problem RST we compute an instankg of

Problem DST by invoking functiorf,. Next, we find a solutiory” of I, by applying Algo-
rithm DST. Finally, we identify a solutiofi of Ix by invoking functiong, on7’. The detailed
description of the scheme, implemented by Algorithm RSadghears in Fig. 7.

Theorem 5 Given an instancéy of Problem RST, AlgorithrRST-2identifies, in
O((%)Z_IKQH) time, a tree7 € G such thatC(7) < (1 + ¢)i(i — 1)KY*OPT(Ix) and
D(Pir4,)) < (1+¢)D for eacht; € X.

Proof: Lemmas 4, 5 and 6 imply thdtfs, g2, ) is a valid 7>-reduction. Let/’, be an
instance of Problem DST computed in line 16. SiOge g-, <) is a validT;-reduction, for each
subsety” of X, it holds thatOPT¥(1},)) < (1 + ¢)|Y'|'?OPT(Ix). Thus, the condition of
Theorem 2 holds fo’ = (1 4+ £)OPT(Ix). Hence, Algorithm DST returns a trék such

A~

that C(7) < (1 +¢)i(i — 1)KY*OPT(Ix). Sinceg, maps7 to a tree7 € G such that
C(T) = C(T) andD(P(r,,)) < (1 + ¢)D for eacht; € X, we haveC(T) < (1 + e)i(i —
1)KY'*OPT(Ix).We conclude that Algorithm RST-2 identifies a tfEec G such thatC(7) <
(1+4¢)i(i — 1)K "OPT(Ix) andD(P(zy,)) < (1 +¢)D for eacht; € X.

The computational complexity of Algorithm RST-2 is domieatby the time required for
executing Algorithm DST fot,. Since the number of nodes in is N - ‘22 = O (¥ the

)

running time of the algorithm ié)((%)"’lK%l)_ -
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Algorithm RST-=2 (Ix(G, s, X, D), i,¢€)

input:
Ix - aninstance of Problem RST
G - the graph
s- source node
X =A{t1, -+ ,tx} - the set ofK terminals

D- the delay constraint
i- the level of the returned tree
e- the approximation ratio
variables:
L,(V, E)- The Layers Graph.
output:
T- A solutiontolx.

1 A+~ %
2 for each pair of nodegu, v), u,v € G do
3 for eachd, 0 < d < n do
4 Pioy —RSP-1G, u,v,d - Ae)
5 V 0, E—{
6 n« 0Fe)
7 De—A-n
8 for each node € G do
9 VHVU{UO,UA,UQA,-" J o AY
10 for eachd <+ 0ton do
11 E — EU{(v¥, pld+1)ay)
12 C(vd-A7U(d+1)-A) —0
13 for each pair of node&:?,v7), u¢,v’ € G, d > i
do
14 E — EU{(u,v9)}
(—d)A
15 C(ud7vj) = C(’P(u,v) )

16 Iy, « (ﬁg,so,{t{j, e t2

17 T' — DST(I%.,i)

8 7= U PLY
(ud,wi)eT’

19 return T

Figure 7: Algorithm RST-2

15




5 Third Approximation Scheme: efficient and with no delay
violation

In this section we present an approximation scheme for BroBRST that has low computational
complexity and does not violate the delay constraint. Teea id to use a new Layers Graph
that is similar toﬁl, but contains much less links and nodes.

In order to construc; we need to have an estimai on the value ofOPT(Ix). We
assume for the moment that such an estimate is given, whelg ia Section 5.5, we shall show
how to identify a sufficiently good estimate.

5.1 Path Aggregation

Recall that Algorithm RST-1 begins by computing the Sehat includes, for each two nodes

v andv and each delay constraiit1 < d < D, a minimum cost path?(d between: andv
whose delay is at most The tree returned by the algorithm comprises of paths thlainlg to

S. Note thatS contains a large number of patf@(N2D)). Moreover, the computation of each
P(Cluyv) € S incurs high complexity. Accordingly, we use an alternaset of pathsS’ of much
smaller size. In addition, the st comprises of suboptimal paths, whose computation requires
much less time. Specifically, we sat = 4K32

c=A,2-A,---, B, apathPg, ,, such that:

1 C(PE,,) < c+ A

2. D(75(Cu7v)) < D(P') for each pathP’ between: andv that satisfie€'(P’) < c.

Note thatS’ is a path set that represents much bigger pathSseThus, we say that’
aggregategath sets.

For example, Fig. 8 demonstrates the paths that belongs®'set{Py,--- ,Ps} ands’ =
{Py,---,Ps}in the delay-cost plane. A paff is represented by a poinD(P), C(P)). Note
that the delay of?; is no higher than that oPy, P, andPg, while the cost ofP, is higher than
that of P;, P, andP; by at most2A. Thus, we can us®, instead ofPyi, Py, P3. We useP,
instead ofP;, P., Ps andP; instead ofP;, Ps andP,.

We compute se$’ by interchanging delays and costsGnand invoking Algorithm RSP-2,
presented in [10], on the resulting graph for delay constraands = %. Finally, we insert all

pathsPf,  to S i.e, S = {P¢,, | u,v € G,e=A2A, -+ B}

Lemma 7 For each pathPf, ,, € S there exists a patl’f?(cu,v) € S’ such thatD(ﬁfuyv)) <
D(P{,,)) andC(P;, ) < C(PE, ) + 2A.

d
Proof: LetP(,,, be apathinS. Letc = A {%-‘ Note that sinc&(Pf, ) < B it

holds that: < B, hence there exist paﬁ?ﬁw) in S”. We show tha‘?@w) satisfies both conditions
stated in the lemma. Recall thafw) is computed by AlgorithmRSP-2 applied foyv, ¢, and
A. Thus, since(P¢, ) < ¢, we haveD(P¢, ) < D(P{, ). In addition, the cost'(P¢, )
of P¢,., isatmost+ A < C(PE, ) + 2A. |
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Figure 8: Paths that belong to séts= {P;,--- ,Ps} andS’ = {751, e ,753} are depicted in
the delay-cost plane.

5.2 Layers Graph L;

As mentioned, our purpose is to build a Layers Graglthat is similar toL;, but has smaller
size.

In order to reduce the size df; we restrict ourself ta-label trees, which, by Lemma 3,
provide a good approximation of the optimum solution. Thaiklinks of Z; do not belong to
i-level trees are omitted from;. We constructZ; in i phases, as follows: in the first phase
we add links that originate from and the corresponding nodes, in the second phase we add
links that originate from the nodes added in the second pleésefig. 9 depicts an example of
Layers Graph_;, which comprises of severatlevel trees. In order to further reduce the size of
L, we use path aggregation. More specifically, linkd gfrepresent paths if’, whose size is
smaller than that of. Thus, each node’ € L; has onlyO(£ N) = O(£Y) links that originate

from it. Hence, the number of nodes that we add jon the first phase ié)(@), in the second
phase we ad®((£%)?) nodesetc, and the total number of nodes and link€1§(£2)?). The

important property of Layers Grapbg, is that the maximum number of links that originate
from a node inLs is at mostO( ) compared t@(D) in L,. Sincen determines the running

time of Algorithm DST applied tch, this results in a significant reduction in the computationa
complexity of the overall scheme.

We proceed to describe the constructiorLgfin more details L is constructed through the
following iterative process. We maintain a séf that records the nodes addedtpat iteration
h. We begin withL; = {s°} and 4, = {s°}. Atiterationh, we execute the following loop. For
each node:? € A;_, and for each pattiP ) € S’, such thatD(P( ) < D —d, we add a node

u’ to Ly and Ay, wherej = d + D(P(W ). In addition, we add a Ianud, v7) to L3 whose cost
is set toO(ﬁfu,v)). The process terminates afteiterations. Finally, for each termina) € X
we add a nodejD to L, and a zero-cost link that connects each mjde Lsto tf.

5.3 T3-reductions

We define the concept ofg-reduction which is similar to al,>-reduction, but with no violation
of the delay constraint.
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graphG. Asso- (for a small value of)
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Figure 9: Construction of Layers Grayh.

Definition 7 (73-reduction) A T3-reductionfrom Problem RST to Problem DST is a quadruple
(f3, g3, B, ¢) that satisfies the following:

e The functionf; maps aninstancéx (G, s, X, D) of Problem RST to an instanég, (G', s, X”)
of Problem DST, such that:

L X' = [X];
2. OPTO(I,,) < |X|'V'OPT(Ix) + ¢B;

3. for eachy” C X' it holds thatOPT W (1},) < |Y'|'/*OPT(Ix) + B, wherel},, =
(G, Y");

e The functiory; maps a solutiory” of I, to solution7 of Ix such thatC (7)) < C(7").

As it is the case for &} -reduction, als-reduction(fs, g3, B, ) gives rise to an approxima-
tion scheme for Problem RST.
We proceed to define’B;-reduction f3, g3, B, €).

Definition 8 (Reduction(fs, g3, B,¢)) A reduction(fs, g3, B, ¢) is a pair of functionsfs, gs,
an estimateB on OPT'(Ix), and an approximation ratie, such that:

e The functionfs recelves as input an instanég (G, s, X, D) of Problem RST, and returns
an instancel’,, (Ls, s°, X') of Problem DST, Wheré3 is the Layers Graph fo;, B and
e,and X’ = {t? | t; EX}

e The functiory; receives as input a solutigh’ of I’;,. The function returns a tree

7= U 7L,

l(utwi)eT’

In order to prove thatfs, g3, B, ¢) is a validT;-reduction, we need the following lemma.
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Lemma 8 Let G be a transitive closure of the grapH and let/x (G, s, X) be an instance of
Problem DST. Then there exists afevel tree7 € G that connectss and terminalsX such
thatC(7) < |X|'? - OPT(Ix) and the number of links iff is at mos| X | — 1.

Proof: By Lemma 3, there exists a tre€ that connects with X such thatC'(7) <
|X|'/i. OPT(Ix). LetT be such a tree with minimum number of links.

We prove that/ has at mose|X| — 1 links. Suppose, by way of contradiction, tH&thas
more thar2|X| — 1 links. Then, there exists a nodé € 7 # s° that has only one child’ that
belongs ta7. We then substitute the linkg(u?), u%) and (u?, v7) by a link (p(u?), v7), where
p(u?) € T is a parent node of node’. The cost of the resulted tree is identical®¢7), but
the number of links is fewer than i#f, which contradicts the fact the number of linksZhis
minimal. |

We proceed to show that the functignsatisfies the conditions of &-reduction.

Lemma9 Letl}, = fs(Ix). If OPT(Ix) < B thenOPTW(I%.,) < |X|''OPT(Ix) + ¢B.

Proof: Letl¢(Ly,s°,X) = fi(Ix) and letT; be a solution to instanck;. By Lemma 1,
it holds thatC(T ) < OPT(Ix). Lemma 8 implies that there exists afevel tree7; in L,
such thatC(7;) < |X|ViC(T;) < |X|Y'OPT(Ix) and the number of links i®(7%) is at
most2N — 1.

We show that there exists an i-level trg¢, in L3 that connects® and the terminalst’ =
{tP | t; € X} such thatC(T%,) < C(Ty) + ¢ - B. We constructZ}, through the following
iterative process. For each nodec 75(, there is a corresponding nodg € T)’(,, such thag’ <
j. We maintain a set;,, which keeps each node addedfgo atiterationh and the corresponding
node in7;. We begin by setting%, = {s°} andA, = {(s°, s°)}. At iterationh we perform the
following loop. For each pair of nodds , u?) € A,_;, and for each link(u?, /) € T; we
setd) = [4] A. Sincecl < OPT(Ix) < B, it holds thatc’ € {A,2A,---, B}, which implies
that there eX|st§> ) € 5" Next, we sefj’ = d' + D(P( »)- Note thate w1y < ¢ + 24 =
o + 5225 andd ud/,v]) < d;. Next, we add a linKu?,v7") to 77, and pair of nodegu’", u/)
to A,. The process terminates afteiterations. Finally, we augmenft,, by zero-cost links in
order to obtain a tree that connects sourteo terminaIsX’.

Note thatC(7%,) < Sty e S Yier (e + 5iy) < C(T%) + B, where the last

inequality holds because trdg has at mos2K — 1 links. We conclude tha® PT(I},) <
C(T3) + 2K — 1)A < |X|ViOPT(Ix) 4 B and the lemma follows. |

Lemma 10 Let [, = f3(Ix). If OPT(Ix) < B then, for each subséf’ C X’, it holds that
OPTY(I,,) < |Y'|V'OPT(Ix) + B, wherell,, = (L3, s°, Y");

Proof: LetY” be a subset ak’, we denote by!,, the instancéLs, s°, Y”) of Problem DST.
LetY = {t; | t? € Y’} and letly be the instancéG, s,Y, D) of Problem RST. Note that
I, = f3(Iy). Lemma 9 implies thaD PT" (I},,) < |Y|'Y*OPT(Iy) + B. SinceY C X, we
haveOPT(Iy) < OPT(Ix). We conclude thaDPT"(1.,) < |Y|'*OPT(Ix) + B and the
lemma follows. u

We proceed to show that the functignsatisfies the conditions @&-reduction.

Lemma 11 Let [y, = f3(Ix) and let7”’ be a solution of instancé,,. Then,7 = g3(7") is a
solution of instancdy andC(7) = C(7).
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Proof: By the definition ofgs, 7 includes, for each link(u?,v7) in 7", a pathP{. | € S'.
We note thatC(P(. ) < o and D(P(. ) < j — 1. We conclude thaf is a solution of the

(u0)

instancely andC(7) = C(77). |

5.4 Algorithm SCALE

TheTs-reduction( f3, g3, B, ), gives rise to the corresponding approximation schemerfalo-P
lem RST. Specifically, given an instan¢e of Problem RST we compute an instankg of
Problem DST by invoking functiorf;. Next, we find a solutiory” of I, by applying Algo-
rithm DST. Finally, we identify a solutiol” of Ix by invoking functiong; on7". The detailed
description of the scheme, implemented by AlgorithanSe, appears in Fig. 10. Note that this
algorithm is not a complete approximation scheme becausssiimes that an estimafeon
OPT(Ix) is known.

Lemma 12 If OPT(Ix) < B then AlgorithmScALE returns a solution7 to /x such that
C(T) <i(i — 1)K (OPT(Ix) +eB).

Proof: Let [, be an instance of Problem DST computed in line 22. By Lemmasi9.an
for eachY”’ C X' it holds thatOPT"(I},,) < |Y'|'*OPT(Ix) + £B. Thus, the condition of
Lemma 2 holds fol” = OPT(Ix) + ¢B. Hence, it follows that Algorithm DST returns a tree
7 such thaC(T) < i(i — 1)KY/{(OPT(Ix) + eB). By Lemma 11g; satisfies the conditions

of aT3-reduction. Thusg; maps?7 to atreeZ € G such thatC(7) = C(7). We conclude that
C(T) <i(i —1)KY{(OPT(Ix) + ¢B) and the lemma follows. |

Lemma 13 The computational complexity of AlgorithfBTALE is (9((%)1'_1 K372),

Proof: The Layers Graprﬁg is constructed in iterations. At iterationj, we invoke
Algorithm RSP-20(%) = O(¥) times, for each: € {A,2A, - -+, B}. Since the running time

of Algorithm RSP-2 isO( XN NI VB — (M NIe ) NK) ' the total running time of all

invocations of Algorithm RSP-2 i€ (AN log NNy

2

Each node’ € L; has at mostA‘—B links originated from it. Thus, by Theorem 3, the execu-
tion time of Algorithm DST isO((X2)"™" k2-1) = O((EN)"™! g2-1) = o((¥)"™" K3-2),

€

We conclude that the total running time of the algorithm isndwated by the time required
to execute Algorithm DST, and the lemma follows. |

5.5 Lower and Upper Bounds

Algorithm ScALE, presented in the previous section, requires an estimatethe cosO PT (Ix)
of the optimal solution td x. In this section we show how to obtain a good estinfaté-or this
purpose, we maintain lower and upper bountlgndU, on OPT(Ix). We begin with some
initial bounds, and proceed to iteratively improve thentjluhey become sufficiently tight. The
technique we use is similar to the one employed in [15] forifigdestricted shortest (unicast)
paths.

The initial upper and lower boundg, and U, are identified by ProcedureddND. We
denote bye! < ¢ < --- < ¢" the distinct cost values of the link i@. Our goal is to identify
the maximum cost value' € {¢’} such that if all links whose cost is higher thetnare omitted
from G, the resulted grapti’ has no tree that connectsand terminalX and satisfies the QoS
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Algorithm ScALE (Ix(G,s, X, D),i, B,¢)

input:
Ix - aninstance of Problem RST
G - the graph
s- source node
X ={t1,--- ,tx} - the set ofK terminals

D- the delay constraint

i- the level of the returned tree

B- an estimate o® PT' (Ix)

¢- approximation ratio
variables:

Ls(V, E)- The Layers Graph.
output:

7 - A solutiontolx.

1 A 416(Eiz
2 58—
3 for each pair of nodeg&u, v), u,v € G do
4 forc=A,2A,--- ,Bdo
5 Pty —RSP-2G,u,v,¢,2)
6 S'— S'UPE, .,
7 Ly {s%%}
8 Ay — {s"}
9 for h — 1toido
10 for each node? € A;,_; do
11 if u € X thgzn
12 L3« Lz U {(u?,uP)}
13 C(ud7uD) — O
14 for each pati‘ﬁ(cu’v) € S’ that originates from
u such thatD(ﬁfuyv)) <D-—ddo
15 j—d+D(PE, )
16 Ay — Ap U {Uj}
17 Ly — Ls U {(u?,vi)}
18 C(ud7,uj) — C(Pfu7v))

19 X'« {tP,.-- 2}

20 if terminalsX’ are not reachable fronf in L; then

21 return FAIL

22 I, — (Ls,s°, X)

23 7' — DST(I%.,1)

24 T « U P(le’v)
l(udwi)eT’

25 return 7

Figure 10: Algorithm SALE
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constraintD. Clearly, any such tree contains at least one link whose sosor more, hence*

is a lower bound o PT'(Ix). In addition, there exists a trée that comprises of links whose
cost isc* or less and satisfies the constraint Since the number of links i is at mostN we
conclude that* - IV is an upper bound 0@ PT'(Ix).

Procedure BUND performs a binary search on the valuésc?, - - - ,¢". At each iteration
we check whether < ¢*, wherec is the current estimate ef. For this purpose we remove
from G all links whose cost is more thanand find a minimum delay path betweerand
each terminal inX . If all paths satisfy the delay constraiit, thenc > ¢*; otherwisec <
¢*. The total number of iterations ©(logr) = O(log N). At each iteration we execute a
shortest path algorithm, namely Dijkstra’s, whose comipfeis O(M + N log N). Thus, the
total computational complexity of the procedur&ls)M + N log N)log N.

In order to find a better estimate, we use ProceduEsT] which getsB ande as input
and returns either a solutidh to instancelx or FAIL. If the procedure returns FAIL, then
OPT(Ix) > B, otherwise, it is the case tha{(7) < (1 +¢)i(i — 1)K'/*B. Procedure EST
invokes Algorithm SALE for (Ix,i, B,¢). If Algorithm SCALE returns a tre¢/ whose cost
is at most(1 + ¢)i(i — 1)K'/*B, then Procedure 85T returns7 ; otherwise ProcedureesT
returns FAIL.

Lemma 14 If ProcedureTEST returns FAIL thenOPT (Ix) > B; otherwise Procedurd EST
returns a treeZ such thatC'(7) < (1 +¢)i(i — 1)K/ B.

Proof: Suppose, by way of contradiction, that Algorithra 8 E returns FAIL and
OPT(Ix) < B. Then, Algorithm ALE is invoked withB > OPT(Ix) and, by Lemma 12,
it returns a solutior?” to Ix such thatC'(7) < i(i — 1)K (OPT(Ix) +eB) < (1 +¢)i(i —
1)K''B. Thus, Procedure 85T must returriZ, which results in a contradiction. |

We tighten the lower and upper bountsU by performing a binary search on the interval
(L,U) on a logarithmic scale. In each iteration we invoke Proced@sT

with B = W If Procedure EsTreturns FAIL, then it is the case thatPT'(Ix) >
B, hencelL is set toB. Otherwise, Algorithm 8ALE returns a tre¢/ whose cost is at most
(1 +¢)i(i — 1)K'Y*B, hence we set/ = C(T). We also keef¥ as a possible solution for
instancel x.

Note that, if the ratid// L is equal tos; at iterationj, then at iteratiory + 1 we have

B4y = WD _ U [T 0)i(i — K5,
Thus, sinced, = N, afterO(loglog N + log 1) iterations we havey; < (1 + ¢)%i(i — 1)K/
Finally, we return the solutiof” to instancel/x such thatC(7) = U. SinceU < ;L <
(14 ¢)%(i — 1)K'Y*OPT(Ix), we conclude that the cost & is at most(1 + £)%i(i — 1)K/
times higher than the optimum.

5.6 Approximation Scheme

The above is summarized through a detailed descriptioneo&fiproximation scheme, namely
Algorithm RST-3, specified in Fig. 11.

The following theorem establishes the complexity and perémce guarantees of Algo-
rithm RST-3.

Theorem 6 Given an instancéy of Problem RST, AlgorithrRST-3identifies, in
O((loglog N + log 1) (%)H K3-2) time, a solution treeZ to Ix such thatC(7) < (1 +
e)i(i — 1) KYOPT (Ix).
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Algorithm RST-3 (Ix(G, s, X, D), i,¢€)

input:
Ix - aninstance of Problem RST
G - the graph
s- source node
X ={t1, -+ ,tx} - the set ofK terminals

D- the delay constraint
i- the level of the returned tree
e- the approximation ratio
output:
7 - A solutiontolx.

L,U, T —Bounp(Ix(G,s, X, D))

1
2 do

3 B \/amwonmrT

4 T —TesT(Ix(G,s, X, D), B,¢)

5 if Procedure EsTreturned FAILthen L +— B
6 elselU — C(T), T — T

7 until U/L < (14 ¢)%i(i — 1)|X]|'/".

8 return 7.

Procedure TESIx (G, s, X, D), B)

1 7 «—ScaLe(Ix(G,s,X,D),i, B)

2 if Algorithm ScALE returned FAIL or
C(T) > 2i(i — 1)K'/*B then

3 return FAIL

else

5 return 7

N

Procedure BOUNDIx (G(V, E), s, X, D))

1 lete! < ¢® < --- < ¢ the distinct costs values of the
links.

2 low <« 1; high — r

3 while low < high — 1

4 h «— [ (high + low) /2]

5 E' «{l|e; < '}
6 Use Dijkstra’s algorithm to compute a minimum
delay pattP( ;) in G(V, E') betweens and each
tj e X
7 if foreacht; € X it holds thatP(, ;, < D then
8 high « h
9 T = Ut,exPsy)
10 else
11 low «— h

12 U « N - chigh: [, — chigh:
13 return L, U, T;

Figure 11: Algorithm RST-3
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Proof: Procedure BUND computes obvious lower and upper bouidndlU onOPT'(Ix).

As discussed above, the bounds remain valid during the égecf the loop that begins at line
2, and after the execution of this loop it holds tHat< (1+)%i(i — 1)|.X|'/". The algorithm re-
turns a treef that satisfie€(7) < (1+¢)%i(i — 1)| X|''L < (1+¢)%i(i — 1)|X|"V*OPT (Ix).
By invoking Algorithm RST-3 fors we can achieve an approximation ratio (af+ ¢)i(i —
DIX|YVOPT(Ix).

We proceed to analyze the computational complexity of Athar RST-3. As discussed
above, the loop that begins at line 2 is execut¥dbg log N + log %) times. At each iteration
we invoke Procedure&ST. Procedure EsT, in turn, comprises of a single invocation of Algo-

i—1 .
rithm ScALE for (Ix, i, B, ), thus its running time i©((log log N+log 1) (@) K%,
We conclude that the total running time of Algorithm RST-3 is

-1 i-1
O((loglog N + log é) (M) K* 1) = (’)((loglogN—Hogé) (g) K33,

Note 2 Again, in Algorithm RST-3, by substituting Algorithm DST thi any approximation
scheme for Problem DST (with some approximation rajiowe obtain, through @3 reduction,

a solution to Problem RST with an approximation ratiq bft- €)a. For example, by using the
solution of [8], we can obtain @l + ¢)-optimal solution to Problem RST for a small number of
terminals. |

6 Discussion

In this paper, we have investigated the fundamental probliinding minimum cost multicast
trees under additive QoS constraints. Our major contaigtiare two efficient approximation
schemes that identify, for any fixéd> 0 ands > 0, a tree whose cost is at madgt+ ¢)i(i —
1)K/ times higher than the optimum, whekéis the number of terminals.

The first scheme, implemented by Algorithm RST-2, is moreieffit, but allows a small vio-
lation (by a factor of 1+-¢)) of the QoS constraint. Specifically, it identifies,(fDrQ(%)Z_1 K1)
time, a tree such that the delay of every path between thes@nd any terminal is at most
(1+¢)D, whereD is the delay constraint. The second scheme, implementedgaoyithm RST-

3, finds a tree that fully satisfies the QoS constraint andréxalcomputational complexity of
O((loglog N +log 1) (g)z_l K?*=2), which is by a factor o®((log log N +log £) K'~*) higher
than that of Algorithm RST-2. To the best of our knowledge, pnoposed schemes are the first
solutions of provable performance to this fundamental iwast problem. Our schemes work in
general network settings and topologies and they allow tbdotutions with either no violation
or at most a small violation of the QoS constraint.

Our major contribution is the concept @treductions, which allow to usany solution to
the Directed Steiner Tree problem in order to obtain a cpoeding solution to its RST version.
For example, by using &3-reduction and the DST algorithm of [8], we obtain a polynalni
e-optimal solution to Problem RST in the special case of a smatiber of terminals.
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Appendix A: Proof of Theorem 2

In the appendix we present a detailed proof of Theorem 2. Tbefollows [5] almost ver-
batim. We begin by defining a variant of Problem DST, whichksese minimum cost tree that
connectgart of the terminals.

Problem (D-STEINER (K, s, X)) Given a roots € V, an integerkK and a setX C V of
terminals with| X | > K, construct a tree rooted at, spanning anyKx™ terminals in X and of
minimum possible cost.

Recall that thelensityof a tree7 is the ratio of the cost of the tree to the number of terminals
in 7. We denote the density af by (7). In addition, we denote bg' the minimum cost such
that, for each subséf of X, holdsOPT (I} (G,s,Y)) < |Y|VC, i.e,

¢ = max { OPTO(L/(G.5Y)) } : (A1)

whereO PT(I%.) is the cost of an optimurirlevel tree that solves instanég of Problem DST.

Definition 9 (Partial Approximation) An f(K)-partial approximation procedure for
D-STEINER(K, s, X) is a procedure that constructs a tr@é rooted ins, spanningl < K’ < K
terminals inX such that}(7”") < f(K)<.

Let A(K, s, X) be a partial approximation procedure for DSNER( K, s, X ), we define
the Algorithm B( K, s, X) for D-STEINER(K, s, X ), as follows.

Definition 10 (Algorithm B) Algorithm B K, s, X') begins by invoking Algorithm A f@i<, s, X).
Let7; be atree returned by Algorithm A and I&% be the number of terminalsif. If K; = K,
Algorithm B terminates and returns a trée. Otherwise, BK, s, X ) returns the union of; and
the tree returned by a recursive call td B — K, s, X — X;), whereX; is the set of terminals
spanned by7;.

Lemma 15 GivenA(K, s, X), an f(K)-partial approximation foD-STEINER( K, s, X' ) where
f(z)/x is a decreasing function of, the algorithmB (K s, X') returns a solutionZ for D-

STEINER(K, s, X) of costC(T) < g(K)C, whereg(K) = OK @dm.

Proof: We will prove the claim by induction oix’. The base casdy = 1, follows as
f(1) < 01 @dzp (by the decreasing property éf—)). Suppose itis true for all values less than
K. Suppose the call to A<, s, X) returns a tred; rooted ats that spands; terminals. Since
A(K, s, X)is anf(K)-partial approximation solution, it holds that

o) = G2 < o (2)
C(Th) < Klfgf)é < (A3)
< (/K_K1 . dz | C, (A4)

where the last inequality follows from the decreasing propef 2. If K, = K, the algorithm

~

returns7;. For this case(’(7;) < g(K)C'
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Supposek; < K. Let X; be the set of terminals spanned By and let7; be the tree
returned by the recursive call to B — K7, s, X \ X;). By the inductive hypothesig/(7;) <

g(K — K,)C, e,
O(T) < ( / o @dx) % (AS5)

T
Adding (A4) and (A5), we get
C(T) + C(T) < g(K)C

This proves that, for this case too, the algorithm returmeeX whose cost is at mogt k)
[
We denote byTOPT(K,s,X), the optimumi-level tree that solves DI%INER(K, s, X).
We denote the cost and densityﬁéz}T(K,s,X) by (J(OZ},T(K, s, X) and C(O’},T(K, s, X), re-
spectively.
The following lemma is taken from [5].

Lemma 16 The treesZzgst chosen by th'e Algorithm;A: > 2 in line 11 (Fig. 2) have the
following property: ((7ggst) < (i — 1)§8}T(K, s,Y), where K and Y refer to the current
values being used by the Algorithm A

We are no ready to prove Theorem 2.
Theorem 2 Given are an instancg; = (G, s, X) of Problem DST,K = |X| and an integer
i,1 <i<logl|X]|. Let C' be the minimum cost such that for each subsetf X holds
OPTY(I,(G,s,Y)) < [Y|MiC, e,

C = max
YCX

OPTY (1,,(G,5,Y))

Then, Algorithm DST returns a treE that satisfie€ (7)) < i(i — 1) K'/iC.
Proof: We divide the execution ofl;( K, s, X) into stages, each stage corresponds to one
iteration of the outer loop (line 4, Fig. 2). Lat; be the set of unsatisfied terminals,, terminals

that have not been yet connected by the tree. We déekipte |.X;|. Lemma 16 implies that, at

co@®
stagej, Algorithm A; identifies a tree with density no worse th@n- 1)%# Since

Problem D-SEINER(|Y],s,Y’) is a generalization of Problem DST fé{ (G, s,Y’), it holds
thatCl), (Y], s,Y) < OPTY(I, (G, s,Y)). Hence, the density of the tree identified at stage
j by Algorithm A; is no worse than

@ 1/i

: COPT(K S X) OPT ([X~<G757Xj)) ) Kj R
— < j < _ o)

(i—1) K, <(i—1) i <(i—1) 7 C

Hence, each stage behaves likgan 1)K K -partial approximation to D-8EINER(K, s, X).

Using Lemma 15 we obtain the foIIowmg bound on the c0$7") of tree 7 identified by

AZ‘(K,S7X). K 1/;
y'/idy

C(T) < (i—1)C

—i(i — 1)KY°C.
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