
Approximation Schemes for Multicast QoS Routing
with Guaranteed Performance

Ariel Orda Alexander Sprintson
Department of Electrical Engineering

Technion—Israel Institute of Technology
Haifa 32000, Israel

Abstract

Emerging group applications require efficient multicast schemes that provide Quality of
Service (QoS) guarantees. QoS can be achieved by provisioning multicast trees that satisfy
QoS constraints. Since the efficient usage of network resources is an important requirement,
the cost of the constructed multicast tree should be as small as possible. Accordingly, in this
study we investigate the fundamental problem of finding a multicast tree that satisfies end-
to-end QoS constraints at minimum cost.

This problem has been extensively studied. However, existing solutions have either
relied on heuristic approaches or considered special cases, such asthe case where the delay
and cost of each link are identical. Moreover, many of the heuristic approaches are based
on restricting assumptions, such as symmetric link delays. In this study we propose a novel
algorithmic scheme, with proven performance guarantees, for this fundamental multicast
problem. Effectively, this scheme allows to obtain an approximate solution to this problem
out of any given approximate scheme of its (simpler) unconstrained directed version, with
about identical (ε-close) performance guarantees.

Keywords–Multicast, Routing, Quality of Service, Approximation Algorithms.

1

lesley
CCIT Report #435
July 2003

Multicast is an important network mechanism that allows simultaneous transmission of data
to multiple destinations with minimal bandwidth consumption. In order to support new applica-
tions such as multimedia streaming and video conferencing,multicast mechanisms are expected
to provide a certain degree of Quality of Service. A fundamental problem in this context is to
identify multicast trees that satisfy end-to-end QoS constraints at minimum cost. Sincebottle-
neckQoS constraints, such as bandwidth, can be efficiently handled by pruning infeasible links,
we focus onadditiveQoS constraints, such as delay or jitter, which are much moredifficult to
handle.

Finding multicast trees that support additive QoS constraints is an intractable problem, as it
contains the Minimum Steiner Tree (MST) and Restricted Shortest Path (RSP) problems, each
known to beNP-hard [9]. Essentially, MST is a special case of our problem with no QoS con-
straints, whereas RSP is the special case of unicast. The firstproblem, MST, has been extensively
investigated for undirected networks, and several efficient solutions, of constant approximation
ratios, have been established (see,e.g., [12]). For directednetworks, the only general solu-
tion was recently established in [5]. The second problem, RSP, has been the subject of several
studies [6, 10, 11, 15], which proposed efficient approximation schemes. In particular, several
efficient algorithms have been proposed for computing a paththat satisfies the delay constraint
and whose cost is at most(1 + ε) times higher than the optimum.

The problem that we consider, namely establishment of efficient QoS multicast routing
schemes, has attracted a large body of research (seee.g., [1, 7, 13, 19–21, 23, 25] and refer-
ences therein). A good survey of multicast routing protocols and their QoS extensions can
be found in [22]. Many of these studies employed heuristic approaches [1, 7, 13, 19, 21, 25].
Moreover, these heuristics were often based on restrictingassumptions, such as a symmetry of
link delays [7, 13, 19, 25].Provableapproximate solutions have been proposed, however they
either considered restricted special cases, or else incurred a potentially large violation of the
QoS constraint. For example, [14] effectively deals with our problem, however in the special
case ofidentical link delays. As another example, [23] also dealt with our problem, however
in the special case where thedelayandcostof each link areidentical. Obviously, such sim-
plified assumptions do not hold in many practical settings. In [16], a provable approximation
to our problem has been presented, however it allows aviolation of the delay constraint by a
factor as large aslog N , whereN is the number of nodes; moreover, it assumessymmetriclinks.
Hence, to the best of our knowledge, no solution of provable performance has been established
to this fundamental multicast problem forgeneralnetworks andno violationof the QoS con-
straints. Accordingly, in this study, we propose novel schemes for general directed networks that
achieve, for any fixedi > 0 andε > 0, an approximation ratio of(1 + ε)i(i − 1)K1/i, where
K is the number of terminals,i.e., our schemes find a tree that satisfies the QoS constraints and
whose cost is at most(1 + ε)i(i − 1)K1/i times higher than the optimum. For example, for a
typical valueK = 100, choosingi = 2 andε = 0.05 yields a worst-case guaranteed ratio of
21. For an asymptotically large number of terminals, the approximation ratio is upper-bounded
by log2 K. A proven lower bound for this problem isln K [2]. Although the ideas that led
to development of the schemes as well as performance proofs are rather involved, the schemes
itself are relatively simple and easy to implement.

Due to the fundamental nature of the considered problem, ourresults can by used in a va-
riety of practical applications. Indeed, any multicast architecture that provides a certain degree
of Quality of Service requires efficient schemes for identification of QoS trees. For example,
the ATM PNNI [17] protocol supports point-to-multipoint calls that satisfy QoS constraints
specified by connection requests. Due to the connection-oriented nature of ATM, bandwidth is
reserved along the tree’s links for a long period of time. This implies the need to select “good”

2

trees in terms of resource utilization. The IntServ/RSVP framework relies on underlying IP
routing protocols for selecting paths and trees. Since the selection of an unsuitable tree results
incurs major overhead, it would be desirable to provide a tree that satisfies the QoS constraints
in the first place. In the Differential Services framework [3, 4], a bandwidth brokeris respon-
sible for establishing suitable trees that satisfy servicelevel agreements (SLA). Here two, it is
desirable that bandwidth brokers be capable of computing the QoS trees. Finally, the MPLS
architecture [18] is expected to supports data forwarding for multicast traffic, which requires
establishing suitable QoS trees.

The rest of this paper is organized as follows. In Section 1, we formally state the consid-
ered problems. In Section 2, we briefly describe the algorithm of [5] for the MST problem in
directed networks, which serves as a basic building block inour solution. Next, in Section 3, we
present the first approximation scheme, which, while conceptually simple, incurs a high compu-
tational complexity. Accordingly, in Sections 4 and 5 we present two additional schemes, whose
computational complexity is reasonable. Finally, we discuss our results in Section 6.

1 Model and Problem Formulation

This section formulates the general model and main problemsaddressed in this paper.

1.1 Basic definitions

A network is represented by a directed graphG(V,E), whereV is the set of nodes andE is
the set of links. LetN = |V | and M = |E|. A path is a finite sequence of nodesP =
{v0, v1, · · · , vh}, such that, for0 ≤ i ≤ h− 1, (vi, vi+1) ∈ E; h = |P| is then said to be the
number of hops(or hop count)of P. A cycleis a path whose source and destination nodes are
identical.

A directed treeis a subgraphT of G(V,E) with a source nodes such that every node is
reached froms by a unique path. Amulticast connectionuses a treeT to interconnect the
sources and the members of a multicast groupX = {t1, t2, · · · , tK}. Given a treeT , a path
between the sources and a nodev ∈ T on links that belong toT is denoted byP(T ,v).

As mentioned in the Introduction, bottleneck QoS constraints can be easily handled by prun-
ing all links that do not satisfy the constraints. Hence we focus on additive QoS constraints
such as delay or jitter. For clarity of presentation and without loss of generality, we describe our
model and problems in terms of end-to-enddelayrequirements.

We assume that each link offers a delay guaranteedl. The delayD(P) of a pathP is the
sum of delays of its links,i.e., D(P) =

∑

l∈P dl. Each link is also associated with a nonnegative
costcl, which estimates the amount of network resources consumed in order to support delay
constraintdl. The link cost may depend on various factors,e.g., the link available bandwidth
and its location. The costC(P) of a pathP is defined to be the sum of the costs of its links,i.e.,
C(P) =

∑

l∈P cl. Similarly, the costC(T) of a treeT is C(T) =
∑

l∈T cl. We assume that all
parameters (cost and delays) are (non-negative) integers.

Definition 1 (Transitive closure) The transitive closureĜ of G is a graph that includes, for
each pair of nodesu and v in G, a link (u, v) such thatc(u,v) is the minimum cost of a path
betweenu andv in G.

Definition 2 (i-level tree) Let T be a tree with sources. T is said to be ani-level treeif for,
each nodev ∈ T , it holds that the path betweens andv in T includes at mosti links.

3

1.2 Problem formulation

We are now ready to formulate the problem considered in this study.

Problem RST (Restricted Steiner Tree)Given a graphG, a sources, a set ofK terminals
X = {t1, · · · , tK} and a delay constraintD, find a minimum cost treeT that connectss to
each terminaltj ∈ X and satisfies the delay constraintD, i.e., for eachtj ∈ X it holds that
D(P(T ,tj)) ≤ D.

An instance(G, s,X,D) of Problem DST is denoted byIX . We denote byOPT (IX) the
cost of an optimal solution for an instanceIX .

Clearly, Problem RST is intractable, as it contains the Minimum Steiner Tree (MST) and
Restricted Shortest Path (RSP) problems, which are known to beNP-hard [9]. Moreover, it is
hard to approximate Problem RST to a factor better thanln K [2]. The bound holds for both
directed and undirected graphs.

1.3 Related problems

Our approximation scheme for Problem RST employs a reductionto the following problem of
finding an (unconstrained) Steiner tree in directed graphs.

Problem DST (Directed Steiner Tree) Given a directed graphG, a sources and a set ofK
terminalsX = {t1, · · · , tK}, find a minimum cost treeT ∈ G that connectss and each terminal
tj ∈ X.

An instance(G, s,X) of Problem DST is denoted byI ′
X . We denote byOPT (I ′

X) the cost
of an optimal solution for instanceI ′

X . We also denote byOPT (i)(I ′
X) the cost of the optimum

i-level tree that solves instanceI ′
X of Problem DST.

An approximation scheme for Problem DST was presented in [5]. That scheme computes,
for any fixedi, a treeT that connects sources and terminalsX and satisfiesC(T) ≤ i(i −
1)K1/iOPT (I ′

X). The computational complexity of that scheme isO(N i−1K2i−1).
Another related problem is to find a minimum cost (unicast) path that satisfies a given delay

constraint. In effect, this is theRestricted Shortest Pathproblem, defined as follows.

Problem RSP (Restricted Shortest Path)Given a source nodes, a destination nodet and a
delay constraintD, find a minimum cost pathP betweens andt such thatD(P) ≤ D.

Several efficient approximation schemes have been proposedfor this problem. In partic-
ular, [15] presented an algorithm that computes, inO(MN(1

ε
+ log log N)) time, a path that

satisfies the delay constraintD and whose cost is at most(1+ε) times higher than the optimum;
we refer to this solution as Algorithm RSP-1. Taking a somewhat different approach, [10] pro-
posed to alleviate the delay constraints and presented an algorithm that computes, for each node
v ∈ V , a path betweens andv such thatD(P) ≤ (1 + ε)D andC(P) ≤ OPT , whereOPT
is the cost of an optimal path betweens andv that satisfies the delay constraintD. The com-
putation complexity of this algorithm isO(1

ε
(M + N log N)N); we refer to this solution as

Algorithm RSP-2.

4

0 20 40 60 80 100

5

10

15

20

25

K

ap
pr

ox
im

at
ion

 ra
tio

Figure 1: Approximation ratio as a function of the number of terminals.

1.4 Our results

Since the considered problem isNP-hard, we focus on (provable) approximate solutions. We
present three approximation schemes for Problem RST. The first scheme provides a solution
whose cost is at mosti(i− 1)K1/i times higher than the optimum, for any integeri > 0. The
computational complexity of the scheme depends on the values of the link delays, hence can be
prohibitively high. The complexities of the second and third schemes are much lower, and do
not depend on delay values. The second scheme allows a small violation of the delay constraint.
More specifically, it computes a treeT such that, for eachtj ∈ X, it holds thatD(P(T ,tj)) ≤

(1 + ε)D andC(T) ≤ (1 + ε)i(i − 1)K1/iOPT (IX), for anyε > 0 and integeri > 0. The
third scheme provides a solution that does not violate the delay constraint and whose cost is
at most(1 + ε)2i(i − 1)K1/i times higher than the optimum, for any0 < ε ≤ 1 and integer
i > 0. The computational complexity of the second and third schemes areO(

(

i·N
ε

)i−1
K2i−1)

andO((log log N + log 1
ε
)
(

N
ε

)i−1
K3i−2), respectively.

Fig. 1 shows the approximation ratios that can be achieved byour schemes for typical values
of K, namely2 ≤ K ≤ 100. For these values, choosingi = 2 andε = 0.05 yields a worst-
case guaranteed ratio of21. For large values ofK, namely up toK = 104, an optimal value
of i is at most4 and the approximation ratio is close tolog2 K. We note that for this range, a
choice ofi = 3 allows to achieve a relatively close approximation ratio atsignificantly lower
computational complexity. Finally, we note that, forK →∞, one can achieve an approximation
ratio of log2 K.

Our results are summarized in the following table.

Scheme Delay Violaltion Approximation Ratio Complexity

1 none i(i− 1)K1/i (high)

2 1 + ε (1 + ε)i(i− 1)K1/i O(
(

i·N
ε

)i−1
K2i−1)

3 none (1 + ε)i(i− 1)K1/i O((log log N + log 1
ε)·

(

N
ε

)i−1
K3i−2)

2 Preliminaries: Approximation Scheme for Problem DST

Previous studies [5, 14] have pointed out that problems RST and DST are closely related. We
exploit this relation by constructing a reduction from Problem RST to Problem DST. Then, we
solve Problem DST by using the algorithm presented in [5]. Inthis section we briefly describe
the algorithm of [5].

The algorithm, referred to as Algorithm DST, uses the notionof densityof a multicast tree,
which is defined to be the ratio of the tree cost to the number ofterminals.

5

Algorithm DST comprises of a recursive procedure Ai(K, r, Y), which identifies ani-level
tree T that connects noder with at leastK terminalsY ′ ⊆ Y . More specifically, Proce-
dure A1(K, r, Y) finds theK terminals which are closest to the root and connects them to the
root by using shortest paths; fori > 1, Procedure Ai(K, r, Y) repeatedly finds a nodev and
a numberK ′, 1 ≤ K ′ ≤ K such that the density of the treeTi−1(K

′, v, Y) ∪ {(r, v)} is the
minimal among all trees of this form, whereTi−1(K

′, v, Y) is the tree returned by the invocation
of Procedure Ai−1 for (K ′, v, Y). The detailed description of Algorithm DST appears in Fig. 2.

Algorithm DST (I ′
X(G, s,X), i)

input:
I ′X - an instance of Problem DST

G - the graph,
s- source node.
X = {t1, · · · , tK} - the set ofK terminals.

i- the level of the returned tree.
output:
T - A solution toIX .

1 T ←Ai(K, s,X)
2 return T

Procedure Ai(K, r, Y)
1 if there do not existK terminals reachable fromr then
2 return ∅
3 T ← ∅
4 while K > 0
5 TBEST ← ∅; KBEST ← 0
6 for each link(r, v) ∈ G and eachK ′, 1 ≤ K ′ ≤ K

do
7 T ′ ←Ai−1(K

′, v, Y) ∪ {(r, v)}

8 if C(TBEST)
KBEST

≥ C(T ′)
K′

then
9 TBEST ← T

′; KBEST ← K ′

10 Y ′ ← {tj | tj ∈ Y ∧ tj ∈ TBEST}
11 T ← T ∪ TBEST

12 Y ← Y \ Y ′

13 K ← |Y |
14 return T

Figure 2: Algorithm DST

The following theorem was proven in [5].

Theorem 1[5] Given an instanceI ′
X = (G, s,X) of Problem DST and an integeri, 1 ≤ i ≤

log |X|, AlgorithmDST returns a treeT that satisfiesC(T) ≤ i(i− 1)K1/iOPT (I ′
X).

By Theorem 1, Algorithm DST returns a tree whose cost is at mosti(i − 1)K1/i times
more than the optimum. For our purposes, we shall need a more general version of Theo-
rem 1. In particular, we prove that the algorithm returns a tree whose cost is at mosti(i −
1)K1/iĈ, provided thatĈ satisfies the following condition: for each subsetY of X, it holds
thatOPT (i)(I ′

Y (G, s, Y)) ≤ |Y |1/iĈ. We note that, for certain instancesI ′
X of Problem DST, it

might be the case that̂C ≤ OPT (I ′
X).

6

f

1
Instance I

X

 of

Problem RST

'

Algorithm

DST

g

1

Instance I

X
'

 of

Problem DST

'
Solution T
 of

Instance I

X
'

Solution T
 of

Instance I

X
 '

Figure 3: Reduction from Problem RST to DST

Theorem 2 Given an instanceI ′
X = (G, s,X) of Problem DST and an integeri, 1 ≤ i ≤

log |X|. Let Ĉ be the minimum cost such that for each subsetY of X holds
OPT (i)(I ′

Y (G, s, Y)) ≤ |Y |1/iĈ, i.e.,

Ĉ = max
Y ⊆X

{

OPT (i)(I ′
Y (G, s, Y))

|Y |1/i

}

.

Then, AlgorithmDST returns a treeT that satisfiesC(T) ≤ i(i− 1)K1/iĈ.

Proof: See Appendix.

Theorem 3 Let n be the maximum number of links that originate from a node inG. Then, the
computation complexity of AlgorithmDST isO(ni−1K2i−1).

Proof: The computational complexity of procedure Ai for i = 1 isO(K). Note also that
Procedure Ai invokes Procedure Ai−1 at mostnK2 times. Hence, the computational complexity
of Procedure Ai and, in turn, Algorithm DST isO(ni−1K2i−1).

3 First Approximation Scheme: simple but inefficient

In this section we present the first approximation scheme, which, while conceptually simple,
incurs a high computational complexity.

3.1 T -Reductions

We begin by introducing the concept ofT -Reductions, which allow to establish an approxima-
tion scheme for Problem RST out of any given approximation scheme for Problem DST. In this
section we describeT1-reductions, whileT2− andT3-reductions are introduced in sections 4 and
5, respectively.

Definition 3 (T1-reduction) AT1-reductionfrom Problem RST to Problem DST is a duple(f1, g1)
that satisfies the following:

• The functionf1 maps an instanceIX(G, s,X,D) of Problem RST to an instanceI ′
X′(G′, s′, X ′)

of Problem DST such thatOPT (I ′
X′) ≤ OPT (IX);

• The functiong1 maps a solutionT ′ of I ′
X′ to solutionT of IX such thatC(T) = C(T ′).

As we show below, aT1-reduction(f1, g1) gives rise to an approximation scheme for Prob-
lem RST.

7

(1,4)
 (3,5)

(1,2)

(2,6)

s

u

v

w

(a) Original graphG. Associated with
each link are its delay and cost

4

4

4

4

6

6

6

5

5

s
0

u
0
 v
0

w
0

s
2
 u
2

v
2
 w
2

s
3

u
3

v
3
 w
3

s
4

u
4
 v
4
 w
4

s
1

u
1

v
1
 w
1

2

2

2

2

6

5

5

(b) Layers GrapĥL1 (some of the links are omit-
ted)

Figure 4: Construction of Layers GrapĥL1

3.2 Layers Graph

We proceed by presenting a structure termedLayers Graph, which allows to establish aT1-
reduction(f1, g1) from Problem RST to Problem DST.

The purpose of the Layers Graph, denoted byL̂1, is to distinguish between trees that connect
the sources to the terminalsX and also satisfy the QoS constraintD and all other trees inG.
Specifically, the layer grapĥL1 is constructed as follows. First, we compute, for each two nodes
u andv and each delay constraintd, 1 ≤ d ≤ D, a minimum cost pathPd

(u,v) betweenu andv

whose delay is at mostd. Next, for each nodev ∈ G, we addD + 1 nodesv0, · · · , vD to L̂1.
For eachv ∈ G and eachd, 0 ≤ d ≤ D − 1, we add toL̂1 a link (vd, vd+1) whose cost is0.
Next, for each two nodes,ud andvj, such thatj > d, we add toL̂1 a link (ud, vj) whose cost is
c(ud,vj) = C(Pj−d

(u,v)). Fig. 4 depicts an example of a Layers Graph.
Consider a treeT in G that connectss and the terminalsX = {t1, · · · , tK}, and, in addition,

satisfies the delay constraintD. We show that there exists a corresponding treeT ′ ∈ L̂1 that con-
nectss0 andX ′ = {tD1 , · · · , tDK}, such thatC(T) = C(T ′). The treeT ′ is defined recursively,
starting with nodes0. First, for each nodev ∈ T , compute the delaydv of the path that betweens
andv in T , i.e., dv = D(P(T ,v)). Next, each linkl(s, v) ∈ T , we add toT ′ a link (s0, vdv). Next,
we grow the tree from each nodevdv : for each link(v, u) ∈ T we add toT ′ a link (vdv , udu).
Next, we proceed to grow the tree from nodeudu an so on. The process ends with a treeT ′

that connectss and nodes{t
dt1
1 , · · · , t

dtK
K }. Note that, for eachtj ∈ X, it holds thatdtj ≤ D.

We then use links(tdj , t
d+1
j) of zero cost in order to construct a treeT ′ that connectss and the

terminalsX ′ = {tD1 , · · · , tDK}. For example, consider the treeT = {(s, u), (u, v), (u,w)} in
Fig. 4(a). The corresponding treeT ′ = {(s0, u1), (u1, v4), (u1, w2), (w2, w3), (w3, w4)} in the
Layers GraphL̂1 is marked by bold lines in Fig. 4(b).

Similarly, it can be shown that, for each treeT ′ in L̂1 that connectss0 andX ′ = {tD1 , · · · , tDK},
there exists a treeT in G that connects and the terminalsX, such thatT satisfies the delay con-
straintD andC(T) = C(T ′).

The reduction(f1, g1) is then defined as follows.

8

Definition 4 (Reduction(f1, g1)) A reduction(f1, g1) is a pair of functionsf1, g1 such that:

1. The functionf1 gets as input an instanceIX = (G, s,X,D) of Problem RST and returns
an instanceI ′

X′ = (L̂1, s
0, X ′) of Problem DST, wherêL1 is a Layer graph andX ′ =

{tD1 , · · · , tDK}.

2. The functiong1 gets as input a solutionT ′ of I ′
X′ and returns a tree

T =
⋃

(ud,vj)∈T ′

Pj−d
(u,v), (1)

where{Pd
(u,v)} are paths computed during the construction of the Layers Graph L̂1.

In the following lemmas we prove that the functionsf1 andg1 constitute a validT1-reduction.

Lemma 1 If I ′
X′ = f1(IX) thenOPT (I ′

X′) ≤ OPT (IX).

Proof: Let T opt be an optimal solution for instanceIX of Problem RST,i.e., C(T opt) =
OPT (IX). For each nodev ∈ T opt, we denote bydv the delay of the path betweens andv in
T opt. Let T̂ = {(udu , vdv) | (u, v) ∈ T opt} ∪ {(tdj , t

d+1
j) | tj ∈ T

opt, dtj ≤ d ≤ D − 1}. It is

easy to verify that̂T is a tree inL̂1 that connects sources0 with terminalsX ′ = {tDj | tj ∈ X}

and it holds thatC(T opt) = C(T̂). We conclude thatOPT (I ′
X′) ≤ OPT (IX) and the lemma

follows.

Lemma 2 LetT ′ be a solution of instanceI ′
X′ of Problem DST. Then,T = g1(T

′) is a solution
of instanceIX of Problem DST and it holds thatC(T) = C(T ′).

Proof: According to the definition ofg1, T includes, for each linkl = (ud, vj) in T ′, a
pathPj−d

(u,v) in G that connects nodesu andv and whose delay is at most(j − d). Clearly, for
eachtj ∈ X it holds thatD(P(T ,tj)) ≤ D, which implies thatT is a solution of instanceIX .
SinceC(Pj−d

(u,v)) = cl it follows thatC(T) = C(T ′).

3.3 Approximation Scheme

TheT1-reduction(f1, g1), gives rise to the corresponding approximation scheme for Problem RST.
Specifically, given an instanceIX of Problem RST we compute an instanceI ′

X′ of Problem DST
by invoking functionf1. Next, we find a solutionT ′ of I ′

X′ by applying Algorithm DST. Finally,
we identify a solutionT of IX by invoking functiong1 on T ′. The detailed description of the
scheme, implemented by Algorithm RST-1, appears in Fig. 5.

Theorem 4 Algorithm RST-1 returns a solutionT to instanceIX of Problem RST such that
C(T) ≤ i(i− 1)K1/iOPT (IX).

Proof: Lemmas 1 and 2 imply that(f1, g1) is a validT1-reduction. Hence, the instanceI ′
X′

of Problem DST, computed in line 13, satisfiesOPT (I ′
X′) ≤ OPT (IX). By Theorem 1, Algo-

rithm DST(I ′
X′ , i) returns a treeT ′ that satisfiesC(T ′) ≤ i(i−1)K1/iOPT (I ′

X′). Sinceg1 maps
T ′ to a solutionT of IX such thatC(T) = C(T ′), we haveC(T) ≤ i(i− 1)K1/iOPT (I ′

X′) ≤
i(i− 1)K1/iOPT (IX) and the theorem follows.

9

Algorithm RST-1 (IX(G, s,X,D), i)
input:

IX - an instance of Problem RST
G - the graph,
s- source node.
X = {t1, · · · , tK} - the set ofK terminals.
D- the delay constraint.

i- the level of the returned tree.
variables:

L̂1(V̂ , Ê)- The Layers Graph.
output:
T - A solution toIX .

1 for each pair of nodes(u, v) ∈ G do
2 for eachd← 1 to D do
3 Pd

(u,v) ← a minimum cost path betweenv and

u whose delay is at mostd
4 V̂ ← ∅, Ê ← ∅
5 for each nodev ∈ G do
6 V̂ ← V̂ ∪ {v0, · · · , vD}
7 for eachd, 0 ≤ d ≤ D − 1 do
8 Ê ← Ê ∪ {(vd, vd+1)}
9 c(vd,vd+1) ← 0

10 for each pair of nodes(ud, vj) ∈ V̂ , j > d do
11 Ê ← Ê ∪ {(ud, vj)}

12 c(ud,vj) ← C(Pj−d
(u,v))

13 I ′X′ ← (L̂1, s0, {t
D
1 , · · · , tDK}

14 T ′ ← DST(I ′X′ , i)

15 T ←
⋃

(ud,vj)∈T ′

Pj−d
(u,v)

16 return T

Figure 5: Algorithm RST-1

10

Note 1 In Algorithm RST-1, we can substitute Algorithm DST with anyapproximation scheme
for Problem DST and obtain, through aT1 reduction(f1, g1), a solution to Problem RST with
the same approximation ratio as for Problem DST. For example, for the special case of a small
number of terminals, [8] presents an algorithm that identifies an exact (i.e., optimal) solution
to Problem DST within the computational complexity ofO(MN4K−2 + N4K−1 log N). By
employing this algorithm, we can identify an exact (optimal) solution for Problem RST in that
special case.

Due to the large size of the Layers GraphL̂1, the computational complexity of Algorithm RST-
1 is too high. Indeed, sincêL1 hasO(N · D) nodes, the running time of Algorithm DST is
O((N ·D)i−1K2i−1) (by Theorem 3). In the following sections we show how to construct Lay-
ers Graphs of smaller size which result in more efficient approximation schemes.

4 Second Approximation Scheme: efficient, but violates the
delay constraint

In the previous section we showed that the Layers Graph concept can be employed in order to
construct an approximation scheme for Problem RST. However,the computational complexity
of the resulting scheme depends on the value of the delay constraint D, which can be large.
In this section, we present an approximation scheme whose computational complexity is much
lower.

4.1 Layers Graph L̂2

We begin by presenting a Layers GraphL̂2, which is similar toL̂1, but has a much smaller size.
The idea is to use the technique oflinear scalingin order to build a Layers GrapĥL2 with a much
smaller number of layers than in̂L1. Specifically, the layers of̂L2 correspond to delay values
{0, ∆, 2∆, · · · , D̂}, where∆ = ε·D

i
andD̂ = ∆ · i(1+ε)

ε
= D(1 + ε). We begin by computing,

for each pair of nodesu, v ∈ G and for eachd ∈ {∆, 2∆, · · · , D̂}, a pathPd
(u,v) betweenu and

v such thatD(Pd
(u,v)) ≤ d andC(Pd

(u,v)) ≤ (1 + ε)Cd
(u,v), whereCd

(u,v) is the minimum cost of a
path betweenu andv whose delay is at mostd. For this purpose we use the algorithm presented
in [15], which we refer to as Algorithm RSP-1.

The Layers GrapĥL2 is then constructed as follows. For each nodev ∈ G, we addn = D̂
∆

=
i(1+ε)

ε
nodes{v0, v∆, v2∆, · · · , vD̂} to L̂2. For eachv ∈ G and eachd, 0 ≤ d ≤ n − 1, we add

to L̂2 a link (vd·∆, v(d+1)∆) with zero cost. Next, for each two nodesud·∆ ∈ L̂2 andvj·∆ ∈ L̂2,
j > d, we add a link(ud·∆, vj·∆) whose cost is set toC(P(j−d)∆

(u,v)). Fig. 6 depicts an example of

original networkG and the corresponding Layers GraphL̂2 for D = 40, ε = 1 andi = 2. In this
example we have∆ = 20, D̂ = 80 andn = 4. Note that the number of nodes in Layers Graph
L̂2 is just 20, compared to(D + 1)4 = 164 nodes in the Layers GrapĥL1 that corresponds toG.

Far eachT in G that connectss and the terminalsX = {t1, · · · , tK}, and, in addition,
satisfies the delay constraintD there exists a corresponding treeT ′ ∈ L̂2 that connectss0

andX ′ = {tD̂1 , · · · , tD̂K}, such thatC(T) ≤ (1 + ε)C(T ′). For example, consider the tree
T = {(s, u), (u, v), (u,w)} in Fig. 6(a). The corresponding treeT ′ = {(s0, u20), (u20, v60),
(u20, w40), (w40, w60), (v60, v80), (w60, w80)} in the Layers GrapĥL2 is marked by bold lines in
Fig. 6(b). Recall that in Layers GrapĥL1 each nodev ∈ G is mapped tovdv ∈ L̂1, wheredv

is the delay of the path that betweens andv in T . Thus nodeu is mapped to nodeu10 ∈ L̂1.

11

(10,40)
 (30,50)

(10,20)

(20,60)

s

u

v

w

(a) Original graphG. Associated with
each link are its delay and cost

4

4

6

6

5

s
0

u
0
 v
0

w
0

s
2 0
 u
2 0
 v
2 0
 w
2 0

s
4 0
 u
4 0
 v
4 0
 w
4 0

2

2

6

5

5

5
s
6 0
 u
6 0
 v
6 0
 w
6 0

6

4

5

s
8 0
 u
8 0
 v
8 0
 w
8 0

6

(b) Layers GrapĥL2 (for a small value ofε, some
of the links are omitted)

Figure 6: Construction of Layers GrapĥL2.

Since there is no such node in̂L2, nodeu is mapped to the nearest node of higher layer,i.e., u20.
We continue to grow the tree from nodeu20: link (u, v) ∈ T is mapped to link(u20, v60) ∈ T ′,
while link (u,w) ∈ T is mapped to link(u20, w40).

4.2 T2-reductions

We proceed by introducing the concept of aT2-reduction, that allows to obtain an efficient
approximation scheme for Problem RST.

Definition 5 (T2-reduction) AT2-reduction from Problem RST to Problem DST is a triple(f2, g2, ε)
that satisfies the following:

• f2 maps an instanceIX(G, s,X,D) of Problem RST to an instanceI ′
X′(G′, s′, X ′) of

Problem DST such that:

1. |X ′| = |X|;

2. OPT (i)(I ′
X′) ≤ (1 + ε)|X|1/iOPT (IX);

3. for eachY ′ ⊆ X ′ it holds thatOPT (i)(I ′
Y ′) ≤ (1 + ε)|Y ′|1/iOPT (IX), where

I ′
Y ′ = (G′, s′, Y ′).

• g2 maps a solutionT ′ of I ′
X′ to a treeT ∈ G such that

1. C(T) ≤ C(T ′);

2. for eachtj ∈ X it holds thatD(P(T ,tj)) ≤ (1 + ε)D.

12

As we show below, aT2-reduction(f2, g2, ε) gives rise to an approximation scheme for
Problem RST that allows a small violation (by a factor of(1 + ε)) of the delay constraint.

We proceed to define aT2-reduction(f2, g2, ε).

Definition 6 (Reduction(f2, g2, ε)) A reduction(f2, g2, ε) is a pair of functionsf2, g2 and an
approximation ratioε, such that:

• The functionf2 receives as input an instanceIX(G, s,X,D) of Problem RST and an
approximate ratioε, and returns an instanceI ′

X′(L̂2, s
0, X ′) of Problem DST, wherêL2 is

the Layers Graph andX ′ = {tD̂j | tj ∈ X}.

• The functiong2 receives as input a solutionT ′ of I ′
X′. The function returns a tree

T =
⋃

(ud,vj)∈T ′

P(j−d)
(u,v) , (2)

where
{

P(d)
(u,v)

}

are paths computed during construction of the Layers GraphL̂2.

We proceed to show that(f2, g2, ε) is a validT2-reduction (as per Definition 5). We will use
the following lemma, taken from [24].

Lemma 3 [24] LetĜ be a transitive closure of graphG. Then, for each treeT ∈ Ĝ that connects
sources with a groupX of terminals and for eachi, 1 ≤ i ≤ log |X| there exists ani-level tree
T̂ in Ĝ that connectss with X such thatC(T̂) ≤ |X|1/i · C(T).

Lemma 4 If I ′
X′ = f2(IX) thenOPT (i)(I ′

X′) ≤ (1 + ε)|X|1/iOPT (IX).

Proof: Let ÎX̂(L̂1, s
0, X̂) = f1(IX) and letT be a solution to instancêIX̂ of Problem DST.

By Lemma 1,C(T) ≤ OPT (IX). We note that the Layers GrapĥL1 is a transitive closure
per se. Hence, by Lemma 3, there exists a tree ani-level treeT̂ in L̂1 such thatC(T̂) ≤
|X|1/iC(T) ≤ |X|1/iOPT (IX).

We round the delay valuedl of each linkl ∈ T̂ , replacing it byd′
l, as follows:

d′
l =

⌈

dl

∆

⌉

·∆,

where∆ = ε·D
i

. Note that after the rounding delay values of each link increase by at most∆,
i.e., d′

l ≤ dl + ∆.
For each nodev ∈ T̂ , we denote bydv andd′

v the delay of the path betweens andv in T̂
with respect to the original and rounded delay values, respectively, i.e., dv =

∑

l∈P(T̂ ,v)
dl and

d′
v =

∑

l∈P(T̂ ,v)
d′

l.

For each nodev ∈ T̂ , we defineF(v) = vd′v . Note that the delay of the pathP(T̂ ,v) with
respect to the original link delays is at mostD, i.e.,

∑

l∈P(T̂ ,v)
dl ≤ D. It follows that the delay

of the pathP(T̂ ,v) with respect to the rounded link costs is at mostD + i∆ = (1 + ε)D = D̂.

We conclude that, for eachv ∈ V , it holds thatF(v) ∈ L̂2.
For each linkl = (u, v) ∈ T̂ , we defineF(l) = (F(u),F(v)). As shown above,F(u) ∈ V̂

andF(v) ∈ V̂ . Moreover, there is a link betweenF(u) = ud′u andF(v) = vd′v in L̂2, whose
cost is set toC(Pd′v−d′u

(u,v)). Sinced′
v − d′

u > dv − du, it holds thatC(Pd′v−d′u
(u,v)) ≤ (1 + ε)cl.

13

Let T̂ ′ = {F(l) | l ∈ T̂ } ∪ {(tdj , t
d+1
j) | tj ∈ T̂ , dtj ≤ d ≤ D̂ − 1}. From the above dis-

cussion it follows that̂T ′ is ani-level tree inL̂2 that connects sources0 with nodestD̂1 , · · · , tD̂K .
Moreover, since the cost of each link in̂T ′ is at most(1 + ε) higher than the cost of the cor-
responding link inT̂ , it follows thatC(T̂ ′) ≤ (1 + ε)C(T̂). Thus,OPT (i)(I ′

X′) ≤ C(T̂ ′) ≤
(1 + ε)|X|1/iOPT (IX) and the lemma follows.

Lemma 5 Let I ′
X′ = f2(IX). For each subsetY ′ ⊆ X ′ it holds thatOPT (i)(I ′

Y ′) ≤ (1 +

ε)|Y ′|1/iOPT (IX), whereI ′
Y ′ = (L̂2, s

0, Y ′);

Proof: Let Y ′ be a subset ofX ′, we denoteY = {tj | t
D̂
j ∈ Y ′}. Next, we denote byIY the

instance(G, s, Y,D) of Problem RST. Note thatY ⊆ X andI ′
Y ′ = f2(IY). Hence, by Lemma 4,

OPT (i)(I ′
Y ′) ≤ (1 + ε)|Y ′|1/iOPT (IY). SinceY ⊆ X it holds thatOPT (IY) ≤ OPT (IX).

We conclude thatOPT (I ′
Y ′)(i) ≤ (1 + ε)|Y ′|1/iOPT (IX) and the lemma follows.

Lemma 6 Let T ′ be a solution of instanceI ′
X′ of Problem DST. Then,T = g2(T

′) is a tree
that connects the sources to the terminalsX in G and satisfiesC(T) = C(T ′) as well as
D(P(T ,tj)) ≤ (1 + ε)D for eachtj ∈ X.

Proof: According to the definition ofg2, T includes, for each linkl = (ud, vj) in T ′,
the pathP(j−d)

(u,v) , which was computed during the construction of the Layers Graph L̂2. Since

D(P(j−d)
(u,v)) ≤ (j − d) andC(P(j−d)

(u,v)) ≤ cl, we conclude thatC(T) = C(T ′), and for each

terminalt ∈ X, it holds thatD(P(T ′,t)) ≤ D̂ = (1 + ε)D.

4.3 Approximation Scheme

The T2-reduction(f2, g2, ε), gives rise to the corresponding approximation scheme for Prob-
lem RST. Specifically, given an instanceIX of Problem RST we compute an instanceI ′

X′ of
Problem DST by invoking functionf2. Next, we find a solutionT ′ of I ′

X′ by applying Algo-
rithm DST. Finally, we identify a solutionT of IX by invoking functiong2 onT ′. The detailed
description of the scheme, implemented by Algorithm RST-2,appears in Fig. 7.

Theorem 5 Given an instanceIX of Problem RST, AlgorithmRST-2identifies, in
O(

(

N
ε

)i−1
K2i−1) time, a treeT ∈ G such thatC(T) ≤ (1 + ε)i(i − 1)K1/iOPT (IX) and

D(P(T ,tj)) ≤ (1 + ε)D for eachtj ∈ X.

Proof: Lemmas 4, 5 and 6 imply that(f2, g2, ε) is a validT2-reduction. LetI ′
X′ be an

instance of Problem DST computed in line 16. Since(f2, g2, ε) is a validT2-reduction, for each
subsetY ′ of X ′, it holds thatOPT (i)(I ′

Y ′) ≤ (1 + ε)|Y ′|1/iOPT (IX). Thus, the condition of
Theorem 2 holds for̂C = (1 + ε)OPT (IX). Hence, Algorithm DST returns a treêT such
that C(T̂) ≤ (1 + ε)i(i − 1)K1/iOPT (IX). Sinceg2 mapsT̂ to a treeT ∈ G such that
C(T) = C(T̂) andD(P(T ,tj)) ≤ (1 + ε)D for eachtj ∈ X, we haveC(T) ≤ (1 + ε)i(i −

1)K1/iOPT (IX).We conclude that Algorithm RST-2 identifies a treeT ∈ G such thatC(T) ≤
(1 + ε)i(i− 1)K1/iOPT (IX) andD(P(T ,tj)) ≤ (1 + ε)D for eachtj ∈ X.

The computational complexity of Algorithm RST-2 is dominated by the time required for
executing Algorithm DST for̂L2. Since the number of nodes in̂L2 is N · i(1+ε)

ε
= O(i·N

ε
), the

running time of the algorithm isO(
(

i·N
ε

)i−1
K2i−1).

14

Algorithm RST-2 (IX(G, s,X,D), i, ε)
input:

IX - an instance of Problem RST
G - the graph
s- source node
X = {t1, · · · , tK} - the set ofK terminals
D- the delay constraint

i- the level of the returned tree
ε- the approximation ratio

variables:
L̂2(V̂ , Ê)- The Layers Graph.

output:
T - A solution toIX .

1 ∆← ε·D
i

2 for each pair of nodes(u, v), u, v ∈ G do
3 for eachd, 0 ≤ d ≤ n do
4 Pd·∆

(u,v) ←RSP-1(G, u, v, d ·∆, ε)

5 V̂ ← ∅, Ê ← ∅

6 n← i(1+ε)
ε

7 D̂ ← ∆ · n
8 for each nodev ∈ G do
9 V̂ ← V̂ ∪ {v0, v∆, v2∆, · · · , vn·∆}

10 for eachd← 0 to n do
11 Ê ← Ê ∪ {(vd·∆, v(d+1)·∆)}
12 c(vd·∆,v(d+1)·∆) ← 0

13 for each pair of nodes(ud, vj), ud, vj ∈ G, d > i
do

14 Ê ← Ê ∪ {(ud, vj)}

15 c(ud,vj) = C(P
(j−d)∆
(u,v))

16 I ′X′ ← (L̂2, s
0, {tD̂1 , · · · , tD̂K})

17 T ′ ← DST(I ′X′ , i)

18 T =
⋃

(ud,vj)∈T ′

Pj−d
(u,v)

19 return T

Figure 7: Algorithm RST-2

15

5 Third Approximation Scheme: efficient and with no delay
violation

In this section we present an approximation scheme for Problem RST that has low computational
complexity and does not violate the delay constraint. The idea is to use a new Layers GraphL̂3

that is similar toL̂1, but contains much less links and nodes.
In order to construct̂L3 we need to have an estimateB on the value ofOPT (IX). We

assume for the moment that such an estimate is given, while later, in Section 5.5, we shall show
how to identify a sufficiently good estimate.

5.1 Path Aggregation

Recall that Algorithm RST-1 begins by computing the setS that includes, for each two nodes
u andv and each delay constraintd, 1 ≤ d ≤ D, a minimum cost pathPd

(u,v) betweenu andv
whose delay is at mostd. The tree returned by the algorithm comprises of paths that belong to
S. Note thatS contains a large number of paths(O(N2D)). Moreover, the computation of each
Pd

(u,v) ∈ S incurs high complexity. Accordingly, we use an alternativeset of paths,S ′ of much
smaller size. In addition, the setS ′ comprises of suboptimal paths, whose computation requires
much less time. Specifically, we set∆ = εB

4K−2
and compute, for eachu, v ∈ G and for each

c = ∆, 2 ·∆, · · · , B, a pathP̂c
(u,v), such that:

1. C(P̂c
(u,v)) ≤ c + ∆;

2. D(P̂c
(u,v)) ≤ D(P ′) for each pathP ′ betweenu andv that satisfiesC(P ′) ≤ c.

Note thatS ′ is a path set that represents much bigger path setS. Thus, we say thatS ′

aggregatespath setS.
For example, Fig. 8 demonstrates the paths that belong to sets S = {P1, · · · ,P8} andS ′ =

{P̂1, · · · , P̂3} in the delay-cost plane. A pathP is represented by a point(D(P), C(P)). Note
that the delay of̂P1 is no higher than that ofP1, P2 andP3, while the cost ofP̂1 is higher than
that ofP1, P2 andP3 by at most2∆. Thus, we can usêP1 instead ofP1,P2,P3. We useP̂2

instead ofP3, P4, P5 andP̂6 instead ofP7, P8 andP9.
We compute setS ′ by interchanging delays and costs inG and invoking Algorithm RSP-2,

presented in [10], on the resulting graph for delay constraint c andε = ∆
c
. Finally, we insert all

pathsP̂c
(u,v) to S ′, i.e., S ′ = {P̂c

(u,v) | u, v ∈ G, c = ∆, 2∆, · · · , B}.

Lemma 7 For each pathPd
(u,v) ∈ S there exists a patĥPc

(u,v) ∈ S ′ such thatD(P̂c
(u,v)) ≤

D(Pd
(u,v)) andC(P̂c

(u,v)) ≤ C(Pd
(u,v)) + 2∆.

Proof: Let Pd
(u,v) be a path inS. Let c = ∆

⌈

C(Pd
(u,v)

)

∆

⌉

. Note that sinceC(Pd
(u,v)) ≤ B it

holds thatc ≤ B, hence there exist patĥPc
(u,v) in S ′. We show that̂Pc

(u,v) satisfies both conditions

stated in the lemma. Recall thatP̂c
(u,v) is computed by AlgorithmRSP-2 applied foru, v, c, and

∆. Thus, sinceC(Pd
(u,v)) ≤ c, we haveD(P̂c

(u,v)) ≤ D(Pd
(u,v)). In addition, the costC(P̂c

(u,v))

of P̂c
(u,v) is at mostc + ∆ ≤ C(Pd

(u,v)) + 2∆.

16

co
st

delay
d

1
 d

2

d

3
 d

4

d

5

d

6

d

7
 d

8

d

9

2

3

4

P

1

P

2

P

3

P

4

P

5

P

6

P

7
 P

8

P

1

P

2

P

3

Figure 8: Paths that belong to setsS = {P1, · · · ,P8} andS ′ = {P̂1, · · · , P̂3} are depicted in
the delay-cost plane.

5.2 Layers Graph L̂3

As mentioned, our purpose is to build a Layers GraphL̂3 that is similar toL̂1, but has smaller
size.

In order to reduce the size of̂L3 we restrict ourself toi-label trees, which, by Lemma 3,
provide a good approximation of the optimum solution. Thus,all links of L̂1 do not belong to
i-level trees are omitted from̂L3. We construct̂L3 in i phases, as follows: in the first phase
we add links that originate froms and the corresponding nodes, in the second phase we add
links that originate from the nodes added in the second phase, etc.. Fig. 9 depicts an example of
Layers GrapĥL3, which comprises of several2-level trees. In order to further reduce the size of
L̂3, we use path aggregation. More specifically, links ofL̂3 represent paths inS ′, whose size is
smaller than that ofS. Thus, each nodevi ∈ L̂3 has onlyO(B

∆
N) = O(KN

ε
) links that originate

from it. Hence, the number of nodes that we add toL̂3 in the first phase isO(KN
ε

), in the second
phase we addO((KN

ε
)2) nodes,etc., and the total number of nodes and links isO((KN

ε
)i). The

important property of Layers GrapĥL3 is that the maximum numbern of links that originate
from a node inL̂3 is at mostO(KN

ε
), compared toO(D) in L̂1. Sincen determines the running

time of Algorithm DST applied tôL3, this results in a significant reduction in the computational
complexity of the overall scheme.

We proceed to describe the construction ofL̂3 in more details.̂L3 is constructed through the
following iterative process. We maintain a setAh that records the nodes added toL̂3 at iteration
h. We begin withL̂3 = {s0} andA0 = {s0}. At iterationh, we execute the following loop. For
each nodeud ∈ Ah−1 and for each patĥPc

(u,v) ∈ S ′, such thatD(P̂c
(u,v)) ≤ D−d, we add a node

uj to L̂3 andAh, wherej = d + D(P̂c
(u,v)). In addition, we add a link(ud, vj) to L̂3 whose cost

is set toC(P̂c
(u,v)). The process terminates afteri iterations. Finally, for each terminaltj ∈ X

we add a nodetDj to L̂3, and a zero-cost link that connects each nodetdj ∈ L̂3 to tDj .

5.3 T3-reductions

We define the concept of aT3-reduction, which is similar to aT2-reduction, but with no violation
of the delay constraint.

17

(2,4)
 (2,5)

(2,2)

(2,6)

s

u

v

w

(2,4)

(2,2)

(a) Original
graphG. Asso-
ciated with each
link are its delay
and cost

4
4

6

s
0

v
4
w
4

u
1

5

w
1

2

u
4

2

v
2

2

5

6

6

(b) Layers GraphL̂3

(for a small value ofε)

Figure 9: Construction of Layers GrapĥL3.

Definition 7 (T3-reduction) A T3-reductionfrom Problem RST to Problem DST is a quadruple
(f3, g3, B, ε) that satisfies the following:

• The functionf3 maps an instanceIX(G, s,X,D) of Problem RST to an instanceI ′
X′(G′, s′, X ′)

of Problem DST, such that:

1. |X ′| = |X|;

2. OPT (i)(I ′
X′) ≤ |X|1/iOPT (IX) + εB;

3. for eachY ′ ⊆ X ′ it holds thatOPT (i)(I ′
Y ′) ≤ |Y ′|1/iOPT (IX) + εB, whereI ′

Y ′ =
(G′, s′, Y ′);

• The functiong3 maps a solutionT ′ of I ′
X′ to solutionT of IX such thatC(T) ≤ C(T ′).

As it is the case for aT1-reduction, aT3-reduction(f3, g3, B, ε) gives rise to an approxima-
tion scheme for Problem RST.

We proceed to define aT3-reduction(f3, g3, B, ε).

Definition 8 (Reduction(f3, g3, B, ε)) A reduction(f3, g3, B, ε) is a pair of functionsf3, g3,
an estimateB onOPT (IX), and an approximation ratioε, such that:

• The functionf3 receives as input an instanceIX(G, s,X,D) of Problem RST, and returns
an instanceI ′

X′(L̂3, s
0, X ′) of Problem DST, wherêL3 is the Layers Graph forG, B and

ε, andX ′ = {tDj | tj ∈ X}.

• The functiong3 receives as input a solutionT ′ of I ′
X′. The function returns a tree

T =
⋃

l(ud,vj)∈T ′

P̂cl

(u,v).

In order to prove that(f3, g3, B, ε) is a validT3-reduction, we need the following lemma.

18

Lemma 8 Let Ĝ be a transitive closure of the graphG and letIX(Ĝ, s,X) be an instance of
Problem DST. Then there exists ani-level treeT̂ ∈ Ĝ that connectss and terminalsX such
thatC(T) ≤ |X|1/i ·OPT (IX) and the number of links in̂T is at most2|X| − 1.

Proof: By Lemma 3, there exists a treeT that connectss with X such thatC(T) ≤
|X|1/i ·OPT (IX). Let T̂ be such a tree with minimum number of links.

We prove thatT̂ has at most2|X| − 1 links. Suppose, by way of contradiction, thatT̂ has
more than2|X| − 1 links. Then, there exists a nodeud ∈ T̂ 6= s0 that has only one childvj that
belongs toT̂ . We then substitute the links(p(ud), ud) and(ud, vj) by a link (p(ud), vj), where
p(ud) ∈ T̂ is a parent node of nodeud. The cost of the resulted tree is identical toC(T̂), but
the number of links is fewer than in̂T , which contradicts the fact the number of links in̂T is
minimal.

We proceed to show that the functionf3 satisfies the conditions of aT3-reduction.

Lemma 9 Let I ′
X′ = f3(IX). If OPT (IX) ≤ B thenOPT (i)(I ′

X′) ≤ |X|1/iOPT (IX) + εB.

Proof: Let ÎX̂(L̂1, s
0, X̂) = f1(IX) and letTX̂ be a solution to instancêIX̂ . By Lemma 1,

it holds thatC(TX̂) ≤ OPT (IX). Lemma 8 implies that there exists ani-level treeT̂X̂ in L̂1

such thatC(T̂X̂) ≤ |X|1/iC(TX̂) ≤ |X|1/iOPT (IX) and the number of links inC(T̂X̂) is at
most2N − 1.

We show that there exists an i-level treeT̂ ′
X′ in L̂3 that connectss0 and the terminalsX ′ =

{tDj | tj ∈ X} such thatC(T̂ ′
X′) ≤ C(T̂X̂) + ε · B. We constructT̂ ′

X′ through the following

iterative process. For each nodevj ∈ T̂X̂ , there is a corresponding nodevj′ ∈ T̂
′

X′ , such thatj′ ≤
j. We maintain a setAh, which keeps each node added toT̂ ′

X′ at iterationh and the corresponding
node inT̂X̂ . We begin by settinĝT ′

X′ = {s0} andA0 = {(s0, s0)}. At iterationh we perform the
following loop. For each pair of nodes(ud′ , ud) ∈ Ah−1, and for each linkl(ud, vj) ∈ T̂X̂ we
setc′l =

⌈

cl

∆

⌉

∆. Sincecl ≤ OPT (IX) ≤ B, it holds thatc′l ∈ {∆, 2∆, · · · , B}, which implies

that there existŝP
c′l
(u,v) ∈ S ′. Next, we setj′ = d′ + D(P̂

c′l
(u,v)). Note thatc(ud′ ,vj′) ≤ cl + 2∆ =

cl + εB
2K−1

andd(ud′ ,vj′) ≤ dl. Next, we add a link(ud′ , vj′) to T̂ ′
X′ and pair of nodes(uj′ , uj)

to Ah. The process terminates afteri iterations. Finally, we augment̂T ′
X′ by zero-cost links in

order to obtain a tree that connects sources0 to terminalsX ′.
Note thatC(T̂ ′

X′) ≤
∑

l′∈T̂ ′

X′

cl′ ≤
∑

l∈T̂X̂
(cl + εB

2K−1
) ≤ C(T̂X̂) + εB, where the last

inequality holds because treêTX̂ has at most2K − 1 links. We conclude thatOPT (i)(I ′
X′) ≤

C(T̂X̂) + (2K − 1)∆ ≤ |X|1/iOPT (IX) + εB and the lemma follows.

Lemma 10 Let I ′
X′ = f3(IX). If OPT (IX) ≤ B then, for each subsetY ′ ⊆ X ′, it holds that

OPT (i)(I ′
Y ′) ≤ |Y ′|1/iOPT (IX) + εB, whereI ′

Y ′ = (L̂3, s
0, Y ′);

Proof: LetY ′ be a subset ofX ′, we denote byI ′
Y ′ the instance(L̂3, s

0, Y ′) of Problem DST.
Let Y = {tj | t

D
j ∈ Y ′} and letIY be the instance(G, s, Y,D) of Problem RST. Note that

I ′
Y ′ = f3(IY). Lemma 9 implies thatOPT (i)(I ′

Y ′) ≤ |Y |1/iOPT (IY) + εB. SinceY ⊆ X, we
haveOPT (IY) ≤ OPT (IX). We conclude thatOPT (i)(I ′

Y ′) ≤ |Y |1/iOPT (IX) + εB and the
lemma follows.

We proceed to show that the functiong3 satisfies the conditions ofT3-reduction.

Lemma 11 Let I ′
X′ = f3(IX) and letT ′ be a solution of instanceI ′

X′. Then,T = g3(T
′) is a

solution of instanceIX andC(T) = C(T ′).

19

Proof: By the definition ofg3, T includes, for each linkl(ud, vj) in T ′, a pathP̂cl

(u,v) ∈ S ′.

We note thatC(P̂cl

(u,v)) ≤ cl andD(P̂cl

(u,v)) ≤ j − 1. We conclude thatT is a solution of the
instanceIX andC(T) = C(T ′).

5.4 Algorithm SCALE

TheT3-reduction(f3, g3, B, ε), gives rise to the corresponding approximation scheme for Prob-
lem RST. Specifically, given an instanceIX of Problem RST we compute an instanceI ′

X′ of
Problem DST by invoking functionf3. Next, we find a solutionT ′ of I ′

X′ by applying Algo-
rithm DST. Finally, we identify a solutionT of IX by invoking functiong3 onT ′. The detailed
description of the scheme, implemented by Algorithm SCALE, appears in Fig. 10. Note that this
algorithm is not a complete approximation scheme because itassumes that an estimateB on
OPT (IX) is known.

Lemma 12 If OPT (IX) ≤ B then AlgorithmSCALE returns a solutionT to IX such that
C(T) ≤ i(i− 1)K1/i(OPT (IX) + εB).

Proof: Let I ′
X′ be an instance of Problem DST computed in line 22. By Lemmas 9 and 10,

for eachY ′ ⊆ X ′ it holds thatOPT (i)(I ′
Y ′) ≤ |Y ′|1/iOPT (IX) + εB. Thus, the condition of

Lemma 2 holds for̂C = OPT (IX) + εB. Hence, it follows that Algorithm DST returns a tree
T̂ such thatC(T̂) ≤ i(i− 1)K1/i(OPT (IX) + εB). By Lemma 11,g3 satisfies the conditions
of aT3-reduction. Thus,g3 mapsT̂ to a treeT ∈ G such thatC(T) = C(T̂). We conclude that
C(T) ≤ i(i− 1)K1/i(OPT (IX) + εB) and the lemma follows.

Lemma 13 The computational complexity of AlgorithmSCALE isO(
(

4N
ε

)i−1
K3i−2).

Proof: The Layers GrapĥL3 is constructed ini iterations. At iterationj, we invoke
Algorithm RSP-2O(B

∆
) = O(K

ε
) times, for eachc ∈ {∆, 2∆, · · · , B}. Since the running time

of Algorithm RSP-2 isO((M+N log N)·N ·B
∆

) =O((M+N log N)·N ·K
ε

), the total running time of all

invocations of Algorithm RSP-2 isO((M+N log N)iK2N
ε2).

Each nodevj ∈ L̂3 has at mostN ·B
∆

links originated from it. Thus, by Theorem 3, the execu-

tion time of Algorithm DST isO(
(

N ·B
∆

)i−1
K2i−1) = O(

(

KN
ε

)i−1
K2i−1) =O(

(

N
ε

)i−1
K3i−2).

We conclude that the total running time of the algorithm is dominated by the time required
to execute Algorithm DST, and the lemma follows.

5.5 Lower and Upper Bounds

Algorithm SCALE, presented in the previous section, requires an estimateB on the costOPT (IX)
of the optimal solution toIX . In this section we show how to obtain a good estimateB. For this
purpose, we maintain lower and upper bounds,L andU , on OPT (IX). We begin with some
initial bounds, and proceed to iteratively improve them, until they become sufficiently tight. The
technique we use is similar to the one employed in [15] for finding restricted shortest (unicast)
paths.

The initial upper and lower bounds,L and U , are identified by Procedure BOUND. We
denote byc1 < c2 < · · · < cr the distinct cost values of the link inG. Our goal is to identify
the maximum cost valuec∗ ∈ {cj} such that if all links whose cost is higher thanc∗ are omitted
from G, the resulted graphG′ has no tree that connectss and terminalX and satisfies the QoS

20

Algorithm S CALE (IX(G, s,X,D), i, B, ε)
input:

IX - an instance of Problem RST
G - the graph
s- source node
X = {t1, · · · , tK} - the set ofK terminals
D- the delay constraint

i- the level of the returned tree
B- an estimate onOPT (IX)
ε- approximation ratio

variables:
L̂3(V̂ , Ê)- The Layers Graph.

output:
T - A solution toIX .

1 ∆← εB
4K−2

2 S′ ← ∅
3 for each pair of nodes(u, v), u, v ∈ G do
4 for c = ∆, 2∆, · · · , B do
5 P̂c

(u,v) ←RSP-2(G, u, v, c, ∆
c)

6 S′ ← S′ ∪ P̂c
(u,v)

7 L̂3 ← {s
0}

8 A0 ← {s
0}

9 for h← 1 to i do
10 for each nodeud ∈ Ah−1 do
11 if u ∈ X then
12 L̂3 ← L̂3 ∪ {(u

d, uD)}
13 c(ud,uD) ← 0

14 for each patĥPc
(u,v) ∈ S′ that originates from

u such thatD(P̂c
(u,v)) ≤ D − d do

15 j ← d + D(P̂c
(u,v))

16 Ah ← Ah ∪ {v
j}

17 L̂3 ← L̂3 ∪ {(u
d, vj)}

18 c(ud,vj) ← C(P̂c
(u,v))

19 X ′ ← {tD1 , · · · , tDK}

20 if terminalsX ′ are not reachable froms0 in L̂3 then
21 return FAIL
22 I ′X′ ← (L̂3, s

0,X ′)

23 T ′ ← DST(I ′X′ , i)

24 T ←
⋃

l(ud,vj)∈T ′

Pcl

(u,v)

25 return T

Figure 10: Algorithm SCALE

21

constraintD. Clearly, any such tree contains at least one link whose cost is c∗ or more, hencec∗

is a lower bound onOPT (IX). In addition, there exists a treeT that comprises of links whose
cost isc∗ or less and satisfies the constraintD. Since the number of links inT is at mostN we
conclude thatc∗ ·N is an upper bound onOPT (IX).

Procedure BOUND performs a binary search on the valuesc1, c2, · · · , cr. At each iteration
we check whetherc ≤ c∗, wherec is the current estimate ofc∗. For this purpose we remove
from G all links whose cost is more thanc and find a minimum delay path betweens and
each terminal inX . If all paths satisfy the delay constraintD, thenc ≥ c∗; otherwisec <
c∗. The total number of iterations isO(log r) = O(log N). At each iteration we execute a
shortest path algorithm, namely Dijkstra’s, whose complexity is O(M + N log N). Thus, the
total computational complexity of the procedure isO(M + N log N) log N .

In order to find a better estimate, we use Procedure TEST, which getsB and ε as input
and returns either a solutionT to instanceIX or FAIL. If the procedure returns FAIL, then
OPT (IX) > B; otherwise, it is the case thatC(T) ≤ (1 + ε)i(i − 1)K1/iB. Procedure TEST

invokes Algorithm SCALE for (IX , i, B, ε). If Algorithm SCALE returns a treeT whose cost
is at most(1 + ε)i(i − 1)K1/iB, then Procedure TEST returnsT ; otherwise Procedure TEST

returns FAIL.

Lemma 14 If ProcedureTEST returns FAIL thenOPT (IX) > B; otherwise ProcedureTEST

returns a treeT such thatC(T) ≤ (1 + ε)i(i− 1)K1/iB.

Proof: Suppose, by way of contradiction, that Algorithm SCALE returns FAIL and
OPT (IX) ≤ B. Then, Algorithm SCALE is invoked withB ≥ OPT (IX) and, by Lemma 12,
it returns a solutionT to IX such thatC(T) ≤ i(i − 1)K1/i(OPT (IX) + εB) ≤ (1 + ε)i(i −
1)K1/iB. Thus, Procedure TEST must returnT , which results in a contradiction.

We tighten the lower and upper boundsL,U by performing a binary search on the interval
(L,U) on a logarithmic scale. In each iteration we invoke Procedure TEST

with B =
√

U ·L
(1+ε)i(i−1)K1/i . If Procedure TEST returns FAIL, then it is the case thatOPT (IX) >

B, henceL is set toB. Otherwise, Algorithm SCALE returns a treeT whose cost is at most
(1 + ε)i(i − 1)K1/iB, hence we setU = C(T). We also keepT as a possible solution for
instanceIX .

Note that, if the ratioU/L is equal toβj at iterationj, then at iterationj + 1 we have

βj+1 = (1+ε)i(i−1)K1/iB
L

= U
B

=
√

(1 + ε)i(i− 1)K1/iβj.

Thus, sinceβ1 = N , afterO(log log N + log 1
ε
) iterations we haveβj ≤ (1 + ε)2i(i − 1)K1/i.

Finally, we return the solutionT to instanceIX such thatC(T) = U . SinceU ≤ βjL ≤
(1 + ε)2i(i − 1)K1/iOPT (IX), we conclude that the cost ofT is at most(1 + ε)2i(i − 1)K1/i

times higher than the optimum.

5.6 Approximation Scheme

The above is summarized through a detailed description of the approximation scheme, namely
Algorithm RST-3, specified in Fig. 11.

The following theorem establishes the complexity and performance guarantees of Algo-
rithm RST-3.

Theorem 6 Given an instanceIX of Problem RST, AlgorithmRST-3identifies, in
O((log log N + log 1

ε
)
(

4N
ε

)i−1
K3i−2) time, a solution treeT to IX such thatC(T) ≤ (1 +

ε)i(i− 1)K1/iOPT (IX).

22

Algorithm RST-3 (IX(G, s,X,D), i, ε)
input :

IX - an instance of Problem RST
G - the graph
s- source node
X = {t1, · · · , tK} - the set ofK terminals
D- the delay constraint

i- the level of the returned tree
ε- the approximation ratio

output:
T - A solution toIX .

1 L,U, T̂ ←BOUND(IX(G, s,X,D))
2 do
3 B ←

√

U ·L
(1+ε)i(i−1)|X|1/i

4 T ←TEST(IX(G, s,X,D), B, ε)
5 if Procedure TEST returned FAILthen L← B
6 elseU ← C(T), T̂ ← T
7 until U/L ≤ (1 + ε)2i(i− 1)|X|1/i.
8 return T .

Procedure TEST(IX(G, s,X,D), B)
1 T ←SCALE(IX(G, s,X,D), i, B)
2 if Algorithm SCALE returned FAIL or

C(T) ≥ 2i(i− 1)K1/iB then
3 return FAIL
4 else
5 return T

Procedure BOUND(IX(G(V,E), s,X,D))

1 let c1 < c2 < · · · < cr the distinct costs values of the
links.

2 low ← 1; high← r
3 while low < high− 1
4 h← b(high + low)/2c

5 E′ ← {l|cl ≤ ch}
6 Use Dijkstra’s algorithm to compute a minimum

delay pathP(s,tj) in G(V,E′) betweens and each
tj ∈ X

7 if for eachtj ∈ X it holds thatP(s,tj
≤ D then

8 high← h

9 T̂ = ∪tj∈XP(s,tj)

10 else
11 low ← h
12 U ← N · chigh; L← chigh;
13 return L, U , T̂ ;

Figure 11: Algorithm RST-3

23

Proof: Procedure BOUND computes obvious lower and upper boundsL andU onOPT (IX).
As discussed above, the bounds remain valid during the execution of the loop that begins at line
2, and after the execution of this loop it holds thatU

L
≤ (1+ ε)2i(i− 1)|X|1/i. The algorithm re-

turns a treeT that satisfiesC(T) ≤ (1 + ε)2i(i− 1)|X|1/iL ≤ (1 + ε)2i(i− 1)|X|1/iOPT (IX).
By invoking Algorithm RST-3 forε

3
we can achieve an approximation ratio of(1 + ε)i(i −

1)|X|1/iOPT (IX).
We proceed to analyze the computational complexity of Algorithm RST-3. As discussed

above, the loop that begins at line 2 is executedO(log log N + log 1
ε
) times. At each iteration

we invoke Procedure TEST. Procedure TEST, in turn, comprises of a single invocation of Algo-

rithm SCALE for (IX , i, B, ε), thus its running time isO((log log N+log 1
ε
)

(

(4K−2)N
ε

)i−1

K2i−1).

We conclude that the total running time of Algorithm RST-3 is

O((log log N + log
1

ε
)

(

(4K − 2)N

ε

)i−1

K2i−1) = O((log log N + log
1

ε
)

(

4N

ε

)i−1

K3i−2).

Note 2 Again, in Algorithm RST-3, by substituting Algorithm DST with any approximation
scheme for Problem DST (with some approximation ratioα), we obtain, through aT3 reduction,
a solution to Problem RST with an approximation ratio of(1 + ε)α. For example, by using the
solution of [8], we can obtain a(1 + ε)-optimal solution to Problem RST for a small number of
terminals.

6 Discussion

In this paper, we have investigated the fundamental problemof finding minimum cost multicast
trees under additive QoS constraints. Our major contributions are two efficient approximation
schemes that identify, for any fixedi > 0 andε > 0, a tree whose cost is at most(1 + ε)i(i −
1)K1/i times higher than the optimum, whereK is the number of terminals.

The first scheme, implemented by Algorithm RST-2, is more efficient, but allows a small vio-
lation (by a factor of(1+ε)) of the QoS constraint. Specifically, it identifies, inO(

(

i·N
ε

)i−1
K2i−1)

time, a tree such that the delay of every path between the source and any terminal is at most
(1+ε)D, whereD is the delay constraint. The second scheme, implemented by Algorithm RST-
3, finds a tree that fully satisfies the QoS constraint and incurs a computational complexity of
O((log log N +log 1

ε
)
(

N
ε

)i−1
K3i−2), which is by a factor ofO((log log N +log 1

ε
)Ki−1) higher

than that of Algorithm RST-2. To the best of our knowledge, the proposed schemes are the first
solutions of provable performance to this fundamental multicast problem. Our schemes work in
general network settings and topologies and they allow to find solutions with either no violation
or at most a small violation of the QoS constraint.

Our major contribution is the concept ofT -reductions, which allow to useany solution to
the Directed Steiner Tree problem in order to obtain a corresponding solution to its RST version.
For example, by using aT3-reduction and the DST algorithm of [8], we obtain a polynomial,
ε-optimal solution to Problem RST in the special case of a smallnumber of terminals.

24

Appendix A: Proof of Theorem 2

In the appendix we present a detailed proof of Theorem 2. The proof follows [5] almost ver-
batim. We begin by defining a variant of Problem DST, which seeks a minimum cost tree that
connectspart of the terminals.

Problem (D-STEINER (K, s,X)) Given a roots ∈ V , an integerK and a setX ⊆ V of
terminals with|X| ≥ K, construct a tree rooted ats, spanning anyK terminals inX and of
minimum possible cost.

Recall that thedensityof a treeT is the ratio of the cost of the tree to the number of terminals
in T . We denote the density ofT by ζ(T). In addition, we denote bŷC the minimum cost such
that, for each subsetY of X, holdsOPT (i)(I ′

Y (G, s, Y)) ≤ |Y |1/iĈ, i.e.,

Ĉ = max
Y ⊆X

{

OPT (i)(I ′
Y (G, s, Y))

|Y |1/i

}

, (A1)

whereOPT (i)(I ′
X) is the cost of an optimumi-level tree that solves instanceI ′

X of Problem DST.

Definition 9 (Partial Approximation) Anf(K)-partial approximation procedure for
D-STEINER(K, s,X) is a procedure that constructs a treeT ′ rooted ins, spanning1 ≤ K ′ ≤ K

terminals inX such thatζ(T ′) ≤ f(K) Ĉ
K

.

Let A(K, s,X) be a partial approximation procedure for D-STEINER(K, s,X), we define
the Algorithm B(K, s,X) for D-STEINER(K, s,X), as follows.

Definition 10 (Algorithm B) Algorithm B(K, s,X) begins by invoking Algorithm A for(K, s,X).
LetT1 be a tree returned by Algorithm A and letK1 be the number of terminals inT1. If K1 = K,
Algorithm B terminates and returns a treeT1. Otherwise, B(K, s,X) returns the union ofT1 and
the tree returned by a recursive call to B(K −K1, s,X −X1), whereX1 is the set of terminals
spanned byT1.

Lemma 15 GivenA(K, s,X), anf(K)-partial approximation forD-STEINER(K, s,X) where
f(x)/x is a decreasing function ofx, the algorithmB(K, s,X) returns a solutionT for D-
STEINER(K, s,X) of costC(T) ≤ g(K)Ĉ, whereg(K) =

∫ K

0
f(x)

x
dx.

Proof: We will prove the claim by induction onK. The base case,K = 1, follows as
f(1) ≤

∫ 1

0
f(x)

x
dx (by the decreasing property off(x)

x
). Suppose it is true for all values less than

K. Suppose the call to A(K, s,X) returns a treeT1 rooted ats that spansK1 terminals. Since
A(K, s,X) is anf(K)-partial approximation solution, it holds that

ζ(T1) =
C(T1)

K1

≤ f(K)
Ĉ

K
(A2)

C(T1) ≤ K1
f(K)

K
Ĉ ≤ (A3)

≤

(
∫ K

K−K1

f(x)

x
dx

)

Ĉ, (A4)

where the last inequality follows from the decreasing property of f(x)
x

. If K1 = K, the algorithm
returnsT1. For this case,C(T1) ≤ g(K)Ĉ.

25

SupposeK1 ≤ K. Let X1 be the set of terminals spanned byT1 and letT2 be the tree
returned by the recursive call to B(K −K1, s,X \X1). By the inductive hypothesis,C(T2) ≤
g(K −K1)Ĉ, i.e.,

C(T2) ≤

(
∫ K−K1

0

f(x)

x
dx

)

Ĉ (A5)

Adding (A4) and (A5), we get

C(T1) + C(T2) ≤ g(K)Ĉ

This proves that, for this case too, the algorithm returns a treeT whose cost is at mostg(K)Ĉ.

We denote byT (i)
OPT (K, s,X), the optimumi-level tree that solves D-STEINER(K, s,X).

We denote the cost and density ofT (i)
OPT (K, s,X) by C

(i)
OPT (K, s,X) andζ

(i)
OPT (K, s,X), re-

spectively.
The following lemma is taken from [5].

Lemma 16 The treesTBEST chosen by the Algorithm Ai, i ≥ 2 in line 11 (Fig. 2) have the
following property: ζ(TBEST) ≤ (i − 1)ζ

(i)
OPT (K, s, Y), whereK and Y refer to the current

values being used by the Algorithm Ai.

We are no ready to prove Theorem 2.
Theorem 2 Given are an instanceI ′

X = (G, s,X) of Problem DST,K = |X| and an integer
i, 1 ≤ i ≤ log |X|. Let Ĉ be the minimum cost such that for each subsetY of X holds
OPT (i)(I ′

Y (G, s, Y)) ≤ |Y |1/iĈ, i.e.,

Ĉ = max
Y ⊆X

{

OPT (i)(I ′
Y (G, s, Y))

|Y |1/i

}

.

Then, Algorithm DST returns a treeT that satisfiesC(T) ≤ i(i− 1)K1/iĈ.
Proof: We divide the execution ofAi(K, s,X) into stages, each stage corresponds to one

iteration of the outer loop (line 4, Fig. 2). LetXj be the set of unsatisfied terminals,i.e., terminals
that have not been yet connected by the tree. We denoteKj = |Xj|. Lemma 16 implies that, at

stagej, Algorithm Ai identifies a tree with density no worse than(i − 1)
C

(i)
OPT (Kj ,s,Xj)

Kj
. Since

Problem D-STEINER(|Y |, s, Y) is a generalization of Problem DST forI ′
Y (G, s, Y), it holds

thatC(i)
OPT (|Y |, s, Y) ≤ OPT (i)(I ′

Y (G, s, Y)). Hence, the density of the tree identified at stage
j by AlgorithmAi is no worse than

(i− 1)
C

(i)
OPT (Kj, s,Xj)

Kj

≤ (i− 1)
OPT (i)(I ′

Xj
(G, s,Xj))

Kj

≤ (i− 1)
K

1/i
j

Kj

Ĉ.

Hence, each stage behaves like an(i− 1)K
1/i
j -partial approximation to D-STEINER(Kj, s,Xj).

Using Lemma 15 we obtain the following bound on the costC(T) of tree T identified by
Ai(K, s,X).

C(T) ≤ (i− 1)Ĉ

∫ K

0

y1/idy

y
= i(i− 1)K1/iĈ.

26

References

[1] T. Alrabiah and T. F. Znati. Low-Cost, Bounded-Delay Multicast Routing for QoS-Based
Networks. InProceedings of IEEE ICCCN’98, Lafayette, Lousiana, October 1998.

[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized Submodular Cover Problems and Ap-
plications. InProceedings of the fourth Israel Symposium on Theory of Computing and
Systems, Jerusalem, Israel, June 1996.

[3] Y. Bernet et al. A Framework for Differentiated Services.Internet draft, Internet Engineer-
ing Task Force, February 1999.

[4] S. Blake et al. An Architecture for Differentiated Services. - RFC No. 2475. Internet
Engineering Task Force, December 1998.

[5] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation
Algorithms for Directed Steiner Problems.Journal of Algorithms, 33(1):73–91, October
1999.

[6] F. Ergun, R. Sinha, and L. Zhang. An Improved FPTAS for Restricted Shortest Path.
Information Processing Letters, 83(5):237–293, September 2002.

[7] A. Erzin. Polynomial Algorithm for Bandwidth-Delay-Constrained Multicast Routing
Problem. InProceedings of International Conference on Integer Programming and Com-
binatorial Optimization, Houston, Texas, USA, 1998.

[8] J. Feldman and M. Ruhl. The Directed Steiner Network Problem is Tractable for a Constant
Number of Terminals. InProceedings of IEEE Symposium on Foundations of Computer
Science (FOCS ’99), New York, New York, October 1999.

[9] M.R. Garey and D.S. Johnson.Computers and Intractability. Freeman, San Francisco,
1979.

[10] A. Goel, K.G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient Computation of
Delay-Sensitive Routes from One Source to All Destinations.In Proceedings of IEEE
INFOCOM’01, Anchorage, Alaska, April 2001.

[11] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem.Mathematics
of Operations Research, 17(1):36–42, February 1992.

[12] S. Hougardy and H. J. Prömel. A 1.598 Approximation Algorithm for the Steiner Problem
in Graphs. InProceedings of Symposium on Discrete Algorithms (SODA), 1999.

[13] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast Routing for Multimedia
Communication.IEEE/ACM Transactions on Networking, 1(3):286–292, 1993.

[14] G. Kortsarz and D. Peleg. Approximating the Weight of Shallow Steiner Trees.Discrete
Applied Mathematics, 93:265–285, 1999.

[15] D.H. Lorenz and D. Raz. A Simple Efficient Approximation Scheme for the Restricted
Shortest Path Problem.Operations Research Letters, 28(5):213–219, June 2001.

27

[16] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III.
Bicriteria Network Design Problems.Journal of Algorithms, 28(1):142–171, 1998.

[17] Private Network-Network Interface Specification v1.0(PNNI). ATM Forum Technical
Committee, March 1996.

[18] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.
RFC No. 3031. Internet Engineering Task Force, January 2001.

[19] R. Sriram, G. Manimaran, and C. Ram. Algorithms for Delay-constrained Low-cost Multi-
cast Tree Construction.Computer Communications, 21(18):1693–1706, November 1998.

[20] A. Striegel and G. Manimaran. A Survey of QoS Multicasting Issues.IEEE Communica-
tions, 40(6):82–87, June 2002.

[21] Q. Sun and H. Langendörfer. An Efficient Delay-Constrained Multicast Routing Algo-
rithm. Journal of High Speed Networks, 7(1):43–55, 1998.

[22] B. Wang and J. Hou. Multicast Routing and its QoS Extension: Problems, Algorithms, and
Protocols.IEEE Network.

[23] G.L. Xue. Provably Good Approximations to Minimum Cost Delay-Constrained Multicast
Trees. InProceedings of IEEE International Conference on Computer Communications
and Networks, ICCCN’99, Natick-Boston, MA, October 1999.

[24] A. Zelikovsky. A Series of Approximation Algorithms for the Acyclic Directed Steiner
Tree Problem.Algorithmica, 18(1):99–110, 1997.

[25] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A Source-Based Algorithm for Delay-
Constrained Minimum-Cost Multicasting. InProceedings of IEEE INFOCOM’95, Boston,
Massachusetts, April 1995.

28

